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Nonparabolic Asymptotic Limits of Solutions of the
Heat Equation on RRR

N
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In this paper, we construct solutions u(t, x) of the heat equation on R
N such

that t
µ
2 u(t, xtβ) has nontrivial limit points in C0(R

N ) as t →∞ for certain
values of µ>0 and β >1/2. We also show the existence of solutions of this
type for nonlinear heat equations.
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1. INTRODUCTION

In this paper, we study the long time behavior of solutions of the heat
equation

ut −�u =0

in R
N with respect to nonparabolic rescalings. In the analysis of the

asymptotic behavior of global solutions (in time) of parabolic evolution
equations in R

N , one often encounters solutions which decay to 0 as
t → ∞. In the case where this decay is power-like, the finer asymptotic
behavior is often studied after applying a rescaling. There are two ways to
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carry out such a rescaling. On the one hand, one considers the behavior
as t →∞ of a spatially rescaled version of the solution, for example

v(t, x)= t
µ
2 u(t, x

√
t),

where u(t, x) is a solution. The hope is that the rescaled solution v(t, ·)
will converge to some function f . In this case, undoing the rescaling gives
the first term of an asymptotic development of u(t, ·) as t →∞, in terms
of f . On the other hand, one can study the limit of space–time dilations
of the solutions, for example

uλ(t, x)=λµu(λ2t, λx)

as λ→ ∞. If the transformation u �→ uλ leaves invariant the set of solu-
tions, then any limit of the uλ as λ→∞ should also be a solution. In this
case, since u√

t (1, x)= v(t, x), these two limiting procedures are formally
equivalent. Indeed, if v(t, ·)→ f , then at least for t ≥ 1 uλ(t, x)→w(t, x)
as λ→∞, where w is the solution with w(1, ·)= f .

The first of these two procedures was extended by the authors in
[2–4] and by Vázquez and Zuazua [9] to allow different limits of v(t, x)
along different sequences tn → ∞, all with respect to the same rescaling.
In [5–7] the authors proved the existence of solutions of the heat equation
which have different rates of decay along different sequences tn →∞. Such
a solution admits different limits of t

µ
2 u(t, x

√
t) along different sequences

tn →∞ and for different values of µ.
The spatial dilation x �→ x

√
t comes from the invariance properties of

the heat equation: if u(t, x) is a solution, then so is uλ for all λ> 0. The
purpose of the present paper is to investigate limits of t

µ
2 u(t, xtβ) along

sequences tn → ∞ where u is a solution of the heat equation and β > 0
is not necessarily equal to 1/2. Surprisingly, we find that certain solutions
of the heat equation give rise to nontrivial limits of this sort. Also, in this
case the corresponding space–time dilations λµu(λ2t, λ2βx) no longer leave
the set of solutions invariant. Nonetheless, we also find nontrivial limits
along sequences λn →∞. These limits are all with respect to the uniform
topology on R

N , which is the natural one to use because of the smoo-
thing effect of the heat semigroup. Indeed, using weaker topologies, one
can obtain limits which clearly are not related to the genuine asymptotic
properties of the solution. See Remark 2.3.

At this point, we give precise definitions of the objects we study. The
heat semigroup (et�)t≥0 on R

N is given by

u(t, x)= et�u0(x)= (4π t)−
N
2

∫
RN

e− |x−y|2
4t u0(y)dy (1.1)
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for u0 ∈C0(R
N ) and t>0. We want to consider the limit points in C0(R

N )

of t
µ
2 u(t, xtβ) with µ,β > 0 (and in particular β �= 1/2). Therefore, we

define

ωµ,β(u0)={ f ∈C0(R
N ); ∃tn →∞ s.t. Dµ,β√

tn
etn�u0 −→

n→∞ f in L∞(RN )},
(1.2)

where the dilation Dµ,β
λ is given by

Dµ,β
λ w(x)=λµw(xλ2β) (1.3)

for all µ,β,λ>0, and so

Dµ,β√
tn

etn�u0 = t
µ
2

n u(tn, ·tβn ). (1.4)

We define the space-time dilation �
µ,β
λ by

[�µ,βλ u0](t, x)=λµu(λ2t, xλ2β) (1.5)

for all µ,β,λ>0 where u(t, ·)=et�u0(·), and the corresponding ω-limit set

γ µ,β(u0) ={h ∈C((0,∞),C0(R
N )); ∃λn →∞ s.t. �µ,βλn

u0 −→
n→∞ h

in L∞((ε,T )×R
N ) for all 0<ε<T <∞}.

(1.6)

As mentioned above, if β=1/2 the transformation �µ,βλ leaves invariant the
set of solutions of the heat equation. This is equivalently expressed by the
commutation relation

Dµ, 1
2

λ eτ�= eτλ
−2�Dµ, 1

2
λ (1.7)

for all µ,λ> 0. For arbitrary β > 0, the following generalization of (1.7)
holds:

Dµ,β
λ eτ�= eτλ

−4β�Dµ,β
λ (1.8)

for all τ,µ,β,λ>0, as can verified by an elementary calculation. In addi-
tion,

[�µ,βλ u0](t, ·)=Dµ,β
λ [eλ2t�u0]= etλ2−4β�[Dµ,β

λ u0] (1.9)

and in particular

Dµ,β√
t

et�= et1−2β�Dµ,β√
t

(1.10)

for all t,µ,β,λ>0.
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If β < 1/2, then formally et (1−2β)� → 0 as t → ∞. Thus, by (1.10), if
Dµ,β√

t
u0 is bounded in some sense, the limit in (1.2) is 0. In other words,

one expects that if 0<β<1/2, then either ωµ,β(u0)=∅ or else ωµ,β(u0)=
{0}. This turns out to be true, see Theorem 4.1. On the other hand, if β>
1/2, then t1−2β→0 as t →∞ so that formally et1−2β�→ I d as t →∞. Thus,
formally again, the limit points in (1.2) are the limit points of Dµ,β√

t
u0. The

precise situation is more delicate, see Theorem 5.6 and its proof (and in
particular formula (5.43)).

From another point of view, w=�µ,βλ u0 is a solution of

∂tw=λ2−4β�w.

Thus, by a formal passage to the limit, one would expect that if h ∈
γ µ,β(u0), then

{
�h =0 if β <1/2,
∂t h =0 if β >1/2.

Since the only harmonic function in C0(R
N ) is 0 one expects that if β<1/2

then either γ µ,β(u0)= ∅ or γ µ,β(u0)= {0}. This turns out to be true, see
Corollary 3.2. On the other hand, if β > 1/2 it follows formally that if
h ∈γ µ,β(u0), then h is constant in time. This is also true, see Proposition
3.1 (iii). The surprising fact, and this is the main point of the paper, is that
if β > 1/2 then γ µ,β(u0) (and ωµ,β(u0)) can nonetheless be highly nontri-
vial. (See Theorems 5.1 and Corollary 6.3.) Furthermore, if f ∈ωµ,β(u0),
f �=0 and Dµ,β√

tn
etn�u0 → f in C0(R

N ), then for any β ′ �=β, Dµ,β ′√
tn

etn�u0 has

no limit points in C0(R
N ). It follows that the full asymptotic behavior of

et�u0 is not completely described by the standard parabolic rescaling. See
Remark 5.5 for a further discussion of this point.

The rest of the paper is organized as follows. In Section 2, we show
that nothing new for β �= 1/2 is obtained if we allow only full limits in
Definitions (1.2) and (1.6). (see Proposition 2.1.) It follows that allowing
convergence along sequences λn → ∞ or tn → ∞ is essential to our ana-
lysis. In Section 3, we study the interplay between the limits in Defini-
tions (1.2) and (1.6). As a consequence, we show that if 0<β < 1/2, then
γ µ,β(u0) is either empty or trivial. (see Corollary 3.2.) In Section 4, we
conclude the study of the case 0< β < 1/2 by showing that ωµ,β(u0) is
either empty or trivial (see Theorem 4.1.). Sections 5 and 6 constitute the
heart of the paper, where we study the case β > 1/2. In Theorem 5.1 and
Corollary 6.3, we construct initial values u0 ∈ C0(R

N ) for which γ µ,β(u0)

and ωµ,β(u0) are nontrivial for some values of µ∈ (0, N ) and β > 1/2. In
Section 7, we give an analogous result for µ≥ N but only for oscillatory
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solutions (see Theorem 7.2.). Finally in Section 8, we show a result ana-
logous to Theorem 5.1 for the nonlinear equation ut −�u +|u|αu =0 (see
Theorem 8.1).

2. LIMITS AS λ→∞
The purpose of this section is to prove that if we only allow limits

as λ→∞ or as t →∞ in Definitions (1.6) and (1.2), then nothing new is
obtained if β �=1/2. More precisely, we prove the following result.

Proposition 2.1. Suppose µ,β >0, β �=1/2. Let u0, f ∈C0(R
N ) and let

h ∈C((0,∞),C0(R
N )).

(i) If

t
µ
2 u(t, ·tβ) −→

t→∞ f (2.1)

in C0(R
N ), then f =0.

(ii) If

λµu(λ2t, ·λ2β) −→
λ→∞ h(t, ·) (2.2)

in C([ε,T ],C0(R
N )) for all 0<ε<T <∞, then h =0.

The proof uses the following lemma, which depends only on scaling
properties.

Lemma 2.2. Let β,µ > 0 and u ∈ C((0,∞),C0(R
N )). The following

properties are equivalent.

(i) There exists f ∈C0(R
N ) such that (2.1) holds.

(ii) There exists h ∈C((0,∞),C0(R
N )) such that (2.2) holds.

In additon, if these properties are true, then h(t, x)= t−
µ
2 f (xt−β) for all

t>0 and x ∈R
N .

Proof. Note first that property (ii) implies property (i) by setting
t =1 in property (ii).

Next, assume property (i) and define

uλ(t, x)=λµu(λ2t, λ2βx). (2.3)

If we set τ =λ2t , then

uλ(t, x)= t−
µ
2 τ

µ
2 u(τ, τβ(xt−β)) −→

τ→∞ t−
µ
2 f (xt−β) (2.4)

in C0(R
N ), uniformly for t ∈[ε,T ]. This concludes the proof.
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Proof of Proposition 2.1. By Lemma 2.2, it suffices to prove statement
(ii). Let h ∈ C((0,∞),C0(R

N )) and assume (2.2). Also by Lemma 2.2, we
know that h(t, x)= t−

µ
2 f (xt−β) with f =h(1, ·). On the other hand, it fol-

lows from Proposition 3.1 below that h is independent of t>0; and so, f
must be homogeneous of degree − µ

2β . Since f ∈C0(R
N ), we conclude that

f =0 and thus h =0.

Remark 2.3. Nonzero limits in (2.1) for β �=1/2 can be obtained with
respect to weaker topologies, but these limits have little to do with the
asymptotic behavior of the solution. Indeed, fix 0<σ < N and let u0(x)=
|x |−σ . It follows that u(t)= et�u0 is given by u(t, x)= t−

σ
2 f (x/

√
t) where

f = e�u0, so that

t
σ
2 u(t, x

√
t)≡ f (x). (2.5)

Formula (2.5) clearly gives the decay rate and the spatial scaling which
completely describe the asymptotic behavior of u.

On the other hand, fix µ>σ and set β=µ/2σ >1/2. Since |x |σ f (x)→1
as |x |→∞, we see that

t
µ
2 u(t, xtβ)= t

µ−σ
2 f (xtβ− 1

2 )−→
t→∞|x |−σ (2.6)

in L∞({|x |>ε}) for every ε>0. Formula (2.6) is misleading in that it sug-
gests that the solution u decays like t−

µ
2 for any µ>σ .

Furthermore, if 0<β<1/2, then

t
σ
2 u(t, xtβ)= f (xtβ− 1

2 ) −→
t→∞ f (0) (2.7)

uniformly on compacts sets. Formula (2.7) represents a considerable loss
of information in comparison with (2.5).

This example shows the importance of using the uniform topology in
the Definition (1.2).

3. A RELATIONSHIP BETWEEN ωµ,β(u0) AND γ µ,β(u0)

In the previous section, we used scaling properties in order to obtain a
relationship between the limit as t →∞ of Dµ,β√

t
et�u0 and the limit as λ→∞

of �µ,βλ u0. In this section, we obtain a relationship between ωµ,β(u0) and
γ µ,β(u0) using the (quasi) invariance properties of the heat equation under
the various scalings, as described by formulas (1.8) and (1.9).

Proposition 3.1. Let u0 ∈ C0(R
N ), µ,β > 0 and let ωµ,β(u0) and

γ µ,β(u0) be defined by (1.2) and (1.6), respectively.
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(i) If h ∈γ µ,β(u0), then h(1)∈ωµ,β(u0).
(ii) Let f ∈ ωµ,β(u0) and suppose tn → ∞ is such that

et1−2β
n �[Dµ,β√

tn
u0] → f in C0(R

N ) as n → ∞. If we set λn = √
tn ,

then

�
µ,β
λn

u0(t, ·) −→
n→∞ g(t, ·) (3.1)

in C([1,T ],C0(R
N )) for all 1< T <∞ if β ≥ 1/2 and in C([1 +

ε,T ],C0(R
N )) for all 1<ε+1<T <∞ if β<1/2, where g is given

by g(1)= f and

g(t)=
⎧⎨
⎩

f if β >1/2,
e(t−1)� f if β=1/2,
0 if β <1/2

(3.2)

for t>1.
(iii) If h ∈γ µ,β(u0), then⎧⎨

⎩
h(t)≡h(1) if β >1/2,
h(t + s)= et�h(s), s, t>0 if β=1/2,
h(t)≡0 if β <1/2.

(3.3)

Corollary 3.2. Let u0 ∈ C0(R
N ) and µ> 0. If 0<β < 1/2, then either

γ µ,β(u0)=∅ or else γ µ,β(u0)={0}.
Proof of Proposition 3.1

(i) If h ∈γ µ,β(u0), then there exist λn →∞ such that [�µ,βλn
u0](1, ·)→

h(1) in C0(R
N ). Letting tn = λ2

n and applying formula (1.9), we
deduce that h(1)∈ωµ,β(u0).

(ii) By assumption, eλ
2−4β
n �[Dµ,β

λn
u0] − f → 0 in C0(R

N ). Given

t>1 and applying e(t−1)λ2−4β
n �, we deduce that etλ2−4β

n �[Dµ,β
λn

u0]−
e(t−1)λ2−4β

n � f → 0 in C0(R
N ). Using (1.9), we obtain

�
µ,β
λn

u0(t, ·) − e(t−1)λ2−4β
n � f → 0. Property (ii) follows, since

e(t−1)λ2−4β
n � f → g(t) in C0(R

N ), uniformly for t in a compact
subset of (1,∞) if β < 1/2 and uniformly for t in a bounded
subset of [1,∞) if β≥1/2.

(iii) Let h ∈γ µ,β(u0) and let λn →∞ be such that [�µ,βλn
u0]→h. Given

any s> 0, it follows from (1.9) that esλ2−4β
n �[Dµ,β

λn
u0] − h(s)→ 0.

Applying etλ2−4β
n �, with t>0, we deduce that

e(t+s)λ2−4β
n �[Dµ,β

λn
u0]− etλ2−4β

n �h(s) −→
n→∞ 0. (3.4)
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On the one hand, the term on the left of (3.4) converges to h(s + t) as
n →∞. Since etλ2−4β

n �h(s) converges to h(s) if β>1/2, to et�h(s) if β=1/2
and to 0 if β <1/2, the conclusion follows.

Remark 3.3. Given f ∈ ωµ,β(u0), it is not clear if there exists
h ∈γ µ,β(u0) such that h(1)= f .

4. THE CASE β <1/2

In this section, we show the same result as in Corollary 3.2 but for
ωµ,β(u0) instead of γ µ,β(u0). Surprisingly this seems to require a different
type of argument.

Theorem 4.1. Let u0 ∈C0(R
N ) and µ>0. If 0<β<1/2 and ωµ,β(u0)

is defined by (1.2), then either ωµ,β(u0)=∅ or else ωµ,β(u0)={0}.
Proof. Suppose f ∈ωµ,β(u0) so that

Dµ,β√
tn

etn�u0 → f (4.1)

in S ′(RN ) for some sequence tn →∞. It follows that

F(Dµ,β√
tn

etn�u0)→ f̂ (4.2)

in S ′(RN ). Using (1.8) with τ = tn and λ=√
tn , we see that

F(Dµ,β√
tn

etn�u0) = e−4π2t (1−2β)
n |·|2F(Dµ,β√

tn
u0)

= e−4π2t (1−2β)
n |·|2 t

µ
2 −Nβ

n û0(·/tβn ).
(4.3)

Therefore, given any ϕ∈S(RN ),

〈F(Dµ,β√
tn

etn�u0), ϕ〉=〈û0, t
µ
2

n e−4π2tn |·|2ϕ(·tβn )〉. (4.4)

We now deduce from (4.2), (4.4), and Lemma 9.1 that supp f̂ ⊂{0}. Thus,
f is a polynomial, so that f =0 since f ∈C0(R

N ).

Remark 4.2. Note that both the cases ωµ,β(u0)=γ µ,β(u0)={0} and
ωµ,β(u0)=γ µ,β(u0)=∅ can be achieved. Indeed, given µ>0 let θ ∈S(RN )

and let the integer k be sufficiently large so that N + k > 2µ. Letting
u0 =∂k

x1
θ , we have supt>0 t

N+k
2 ‖et�u0‖L∞ <∞, so that tµ‖et�u0‖L∞ →0 as

t → ∞. One easily concludes that ωµ,β(u0)= γ µ,β(u0)= {0} for all β > 0.
On the other hand, let 0< ν < N and let u0 = e�| · |−ν . It follows that
t
ν
2 ‖et�u0‖L∞ → c> 0 as t →∞. Therefore, ωµ,β(u0)= γ µ,β(u0)=∅ for all
β >0 and µ>ν.
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5. THE CASE β >1/2: A FIRST RESULT

In this section, we give a relatively simple example of how ωµ,β(u0)

and γ µ,β(u0) can be nontrivial, see Theorem 5.1. Our construction is simi-
lar to the one used in [5] except that, unlike in [5], the initial value u0
satisfies sup |x |σ |u0(x)|<∞ for some 0<σ < N . Furthermore, we show in
Theorem 5.2 that if also inf |x |σ |u0(x)|>0, then the kind of phenomenon
described in Theorem 5.1 is not possible. Finally, we show in Theorem 5.6
(see also Remark 5.5) that the non parabolic asymptotic behavior of et�u0
cannot be obtained from the parabolic asymptotic behavior.

Theorem 5.1. Fix β > 1/2 and 0< µ < N . Given f ∈ S(RN ), f ≥ 0,
there exists u0 ∈C0(R

N )∩C∞(RN ), u0 ≥0 with the following properties.

(i) There exists a sequence tn →∞ such that

Dµ,β√
tn

etn�u0 −→
n→∞ f (5.1)

in C0(R
N ). In other words, f ∈ωµ,β(u0).

(ii) There exists a sequence λn →∞ such that

�
µ,β
λn

u0 −→
n→∞ h (5.2)

in L∞((ε,T )×R
N ) for all 0<ε<T <∞, where h(t)≡ f . In other

words, h ∈γ µ,β(u0).
(iii) There exists 0< c1<∞ such that |x | µ2β |u0(x)|≤ c1 for all x ∈R

N .
(iv) If f is radially symmetric and nonincreasing, then u0 is radially

symmetric and decreasing.

Proof. Let f ∈S(RN ), f ≥0 and set

�=‖ f ‖L1 , M =‖ f ‖L∞ , σ = µ

2β
∈ (0, N ). (5.3)

Next, we let a0 ≥1 be large enough so that

ex ≥ (2x)N for x ≥a0 ≥1 (5.4)

and we define the sequence (a j ) j≥1 by
{

a1 =a0,

a j+1 = exp( a j
σ
), j ≥1.

(5.5)

Applying inductively the relation

a j+1 = exp
(a j

σ

)
> exp

(a j

N

)
≥2a j , (5.6)
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where we used (5.5) and (5.4), we deduce that

a j ↑∞, a j ≥2 j−1 (5.7)

for all j ≥1. We now let u0 ≥0 be defined by

u0(x)=
∞∑
j=1

e−a j−1 f (x/a j )=
∞∑
j=1

a−σ
j f (x/a j )≥0. (5.8)

Given any multi-index α, we have

‖∂α f (·/a j )‖L∞ =a−|α|
j ‖∂α f ‖L∞ ≤‖∂α f ‖L∞

by (5.7). Therefore, it follows from (5.7) that the series in (5.8) is normally
convergent in Cm

b (R
N ) for all m ≥0, so that u0 ∈C∞(RN )∩C0(R

N ).
Given t>0 and λn>0, we write using (1.9)

[�µ,βλn
u0](t, ·)= etλ2−4β

n �(un +vn +wn), (5.9)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

un =λµn
n−1∑
j=1

e−a j−1 f (xλ2β
n /a j ),

vn =λµn e−an−1 f (xλ2β
n /an),

wn =λµn
∞∑

j=n+1

e−a j−1 f (xλ2β
n /a j ).

(5.10)

We have by (5.3) and (5.6)

‖un‖L1 ≤λµn
n−1∑
j=1

‖ f (·λ2β
n /a j )‖L1 =�λµ−2Nβ

n

n−1∑
j=1

aN
j ≤n�λµ−2Nβ

n aN
n−1.

(5.11)

Also,

‖wn‖L∞ ≤ Mλµn

∞∑
j=n+1

e−a j−1 = Mλµn

∞∑
j=n

e−a j . (5.12)

We deduce from (5.11) that

‖etλ2−4β
n �un‖L∞ ≤ t−

N
2 λ−N (1−2β)

n ‖un‖L1 ≤n�t−
N
2 λ−(N−µ)

n aN
n−1 (5.13)

and from (5.12) that
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‖etλ2−4β
n �wn‖L∞ ≤‖wn‖L∞ ≤ Mλµn

∞∑
j=n

e−a j . (5.14)

We now prove Property (ii) and we let

λn =a1/2β
n . (5.15)

It follows from (5.10) and (5.5) that

vn = f. (5.16)

Moreover, we deduce from (5.13), (5.15), and (5.5) that

‖etλ2−4β
n �un‖L∞ ≤n�t−

N
2 a

− N−µ
2β

n aN
n−1 =n�t−

N
2 e− N−µ

µ
an−1aN

n−1.

Since µ< N and an ↑∞, we conclude that

‖etλ2−4β
n �un‖L∞ −→

n→∞ 0 (5.17)

uniformly for t ≥ ε, for any fixed ε > 0. Next, we deduce from (5.14) and
(5.15) that

‖etλ2−4β
n �wn‖L∞≤Maσn

∞∑
j=n

e−a j ≤ M
∞∑

j=n

aσj e−a j −→
n→∞ 0, (5.18)

where we used (5.7) in the last two relations. Given T >0, we deduce from
(5.15) and (5.16) that

etλ2−4β
n �vn = etλ2−4β

n � f −→
n→∞ h(t) (5.19)

in C0(R
N ), uniformly for t ∈[0,T ]. Property (ii) follows from (5.9), (5.17),

(5.18), and (5.19).
Property (i) follows from Property (ii) by setting t = 1 and tn = λ2

n .
Property (iii) follows from Lemma 9.3 and the definition of u0. Finally,
Property (iv) follows from formula (5.8).

At first sight it may seem that Property (iii) in Theorem 5.1 is not relevant
to the study of ωµ,β(u0). On the other hand, the following theorem shows that
if this property is strengthened to give a lower bound as well as an upper bound,
then ωµ,β(u0) is either empty or trivial for all β �=1/2.
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Theorem 5.2. Let u0 ∈C0(R
N ) and suppose there exist 0<σ < N and

0< c0< c1<∞ such that

c0 ≤|x |σu0(x)≤ c1 (5.20)

for all x ∈R
N . If µ,β>0 are such that there exists f ∈ωµ,β(u0), f �≡0, then

µ=σ and β=1/2.

Proof. Let tn →∞ be such that

t
µ
2

n u(tn, ·tβn ) −→
n→∞ f (5.21)

in C0(R
N ). It follows from the results of Cazenave et al. [2] that there

exists a subsequence, which we still denote by (tn)n≥1, and f̃ ∈ C0(R
N ),

f̃ >0, such that

t
σ
2

n u(tn, ·t1/2
n ) −→

n→∞ f̃ (5.22)

in C0(R
N ). (It is the lower inequality in (5.20) which guarantees that

f̃ > 0.) We deduce from (5.21) and (5.22) by taking the L∞ norm that
σ =µ. It follows from (5.22) that

t
σ
2

n u(tn, xtβn )− f̃ (xt
β− 1

2
n ) −→

n→∞ 0 (5.23)

uniformly on R
N . Since f̃ ∈ C0(R

N ) and f̃ > 0, this is compatible with
(5.21) only if β=1/2.

Remark 5.3. Let u0 be given by formula (5.8). Calculations similar
to those used in the proof of Theorem 5.1 show that

Dµ,β√
tn

u0 → f (5.24)

in S ′(RN ) where tn =λ2
n . Setting sn = t2β

n and σ = µ
2β , this becomes

Dσ, 1
2√
sn

u0 → f (5.25)

in S ′(RN ). Since sup |x |σ |u0(x)|<∞, it follows from Proposition 3.8 (i) in
[2] that

Dσ, 1
2√
sn

esn�u0 = e�Dσ, 1
2√
sn

u0 → e� f (5.26)

in C0(R
N ). This implies that e� f ∈ωσ,1/2(u0).
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Remark 5.4. Given 0 < σ < N , there exist u0 ∈ C0(R
N ) with

sup |x |σ |u0(x)|<∞, f ∈C0(R
N ), f �=0 and a sequence sn →∞ such that

Dσ, 1
2√
sn

u0 → f (5.27)

in S ′(RN ) and

Dσ, 1
2√
sn

esn�u0 → e� f (5.28)

in C0(R
N ), see Proposition 3.8 (i) in [2]. If σ <µ< N , β=µ/2σ >1/2 and

tn = s1/2β
n (5.29)

then (5.27) becomes

Dµ,β√
tn

u0 → f (5.30)

in S ′(RN ). We deduce from (1.8) and (5.30) that

Dµ,β√
tn

etn�u0 = et (1−2β)
n �Dµ,β√

tn
u0 → f (5.31)

in S ′(RN ). In this way, we may obtain convergence of Dµ,β√
tn

etn�u0 to a

function of C0(R
N ), but we do not know if the convergence is in C0(R

N ).

Remark 5.5. The previous two remarks suggest the possibility that
if u0, f ∈ C0(R

N ) satisfy sup |x |σ (|u0(x)|+ | f (x)|)<∞, then the following
two limits are equivalent

Dµ,β√
tn

etn�u0 → f,

Dσ, 1
2√
sn

esn�u0 → e� f

in C0(R
N ) as n → ∞, where sn = t2β

n and β = µ/2σ . If true, this would
mean that the asymptotic behavior with respect to the nonparabolic resca-
ling (1.4) is somehow equivalent to the asymptotic behavior with respect
to a parabolic rescaling. In fact, these limits are not equivalent, as the fol-
lowing theorem shows. Thus, and we emphasize this point, consideration
of ωµ,β(u0) with β >1/2 is essential to the understanding of the asympto-
tic behavior of et�u0 as t →∞.
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Theorem 5.6. Let 0 < σ < µ < N and set β = µ/2σ > 1/2. Given
f ∈C0(R

N ), f ≥0 such that

f (0)>0 (5.32)

and

sup
x∈RN

|x |σ f (x)<∞ (5.33)

there exist u0 ∈ C0(R
N ) satisfying u0 ≥ 0 and sup |x |σu0(x) < ∞ and a

sequence (tn)n≥0, tn ↑∞ such that

Dσ, 1
2√
sn

esn�u0 → e� f (5.34)

in C0(R
N ) with sn = t2β

n and

‖Dµ,β√
tn

etn�u0‖L∞ →∞ (5.35)

as n →∞.

Proof. By (5.33), we may assume without loss of generality that

sup
x∈RN

|x |σ f (x)≤1. (5.36)

Furthermore, it follows from (5.32) that there exist ε, δ >0 such that

f (x)≥ ε if |x |≤ δ. (5.37)

Define inductively the sequences (ak)k≥0 and (bk)k≥0 as follows. Fix 1<
a0<b0 such that a2β

0 >b0 and let

a j =a2β
j−1, b j =b2β

j−1. (5.38)

It follows easily that an<bn<an+1 for all n ≥0. Set

tn = (anbn)
1/2β. (5.39)

Consider a sequence (ϕk)k≥0 ⊂C0(R
N ) such that⎧⎨

⎩
0≤ϕk ≤1,
ϕk(x)=1 if |x | ∈ [ak,bk],
supp ϕk ∩ supp ϕ j =∅ if k �= j.

(5.40)

We define

u0(x)=
∑
k≥0

ϕk(x)Dµ,β

t−1/2
k

f (x). (5.41)
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Using (5.40), (5.36), it is clear that u0 ∈ C0(R
N ) and u0 ≥ 0. Note that by

(5.33), Dµ,β

t−1/2
k

f (x)≤|x |−σ for all k ≥0. Thus u0(x)≤|x |−σ , so that

Dµ,β
λ u0(x)≤|x |−σ (5.42)

for all λ>0. We next show that

Dµ,β√
tn

u0 → f (5.43)

in S ′(RN ), for tn given by (5.39). Indeed, decompose

Dµ,β√
tn

u0 =
∑
k<n

Dµ,β√
tn
(ϕkDµ,β

t−1/2
k

f )+ϕn(·tβn ) f +
∑
k>n

Dµ,β√
tn
(ϕkDµ,β

t−1/2
k

f )

: =vn +wn + zn . (5.44)

We write

vn(x)=
∑
k<n

ϕk(xtβn )Dµ,β√
tn

Dµ,β

t−1/2
k

f (x).

If |x |> (an/bn)
1/2, then |x |tβn > (an/bn)

1/2(anbn)
1/2 = an . Using (5.40), this

implies that ϕk(xtβn )=0 if k<n. It follows that suppvn ⊂{|x |≤ (an/bn)
1/2}.

Since an/bn →0 as n →∞ and vn(x)≤|x |−σ , see (5.42), we obtain that

vn −→
n→∞ 0 (5.45)

in S ′(RN ). Next, we have

zn(x)=
∑
k>n

ϕk(xtβn )Dµ,β√
tn

Dµ,β

t−1/2
k

f (x).

If |x |< (bn/an)
1/2. then |x |tβn < (bn/an)

1/2(anbn)
1/2 = bn , so that ϕk(xtβn )= 0

if k > n. Thus supp zn ⊂ {|x | ≥ (bn/an)
1/2}. Since bn/an → ∞ as n → ∞ and

zn(x)≤|x |−σ , see (5.42), we obtain that

zn −→
n→∞ 0 (5.46)

in C(RN ). Finally, we observe that wn(x)= ϕn(xtβn ) f (x)= f (x) if |x |tβn ∈
[an,bn], that is, if (an/bn)

1/2 ≤ |x | ≤ (bn/an)
1/2. Using that an/bn → 0 and

(5.36), we conclude that

wn −→
n→∞ f (5.47)

in S ′(RN ). The convergence (5.43) now follows from (5.44) to (5.47). This
means (see Remark 5.3) that Dσ,1/2√

sn
u0 → f in S ′(RN ), which implies (5.34)

(see Remark 5.4).
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It remains to show (5.35). Set τn = t1−2β
n . We have, using (1.8),

Dµ,β√
tn

etn�u0 ≥Dµ,β√
tn

etn�(ϕn−1Dµ,β

t−1/2
n−1

f )= eτn�Dµ,β√
tn
(ϕn−1Dµ,β

t−1/2
n−1

f ). (5.48)

Note that by (5.38)–(5.39) an/t
β
n →0 as n →∞ so that an−1t−βn <δtβn−1t−βn

for n large, where δ is as in (5.37). Since ϕn−1(xtβn )= 1 if an−1t−βn ≤ |x | ≤
δtβn−1t−βn by (5.40), we have

Dµ,β√
tn
(ϕn−1Dµ,β

t−1/2
n−1

f )(x)= (tnt−1
n−1)

µ
2 f (x(tn/tn−1)

β)≥ εt (2β−1) µ2
n−1

if an−1t−βn ≤|x |≤ δtβn−1t−βn , where we used (5.37). Therefore,

eτn�Dµ,β√
tn
(ϕn−1Dµ,β

t−1/2
n−1

f )(0)

≥ ε(4πτn)
− N

2 t
(2β−1) µ2
n−1

∫
{an−1t−βn <|y|<δtβn−1t−βn }

e− |y|2
4τn dy.

Since an−1<δt
β

n−1/2 if n is large and t2β
n−1 = t2β

n τn , we obtain that

‖Dµ,β√
tn

etn�u0‖L∞ ≥ ε(4πτn)
− N

2 t
(2β−1) µ2
n−1 e− δ2

4 |{an−1t−βn < |y|<δtβn−1t−βn }|
≥ητ− N

2
n t

(2β−1) µ2
n−1

(δtβn−1−an−1)
N

t Nβ
n

≥η
(
δ
2

)N
t
(2β−1) µ2
n−1

for some constant η>0. Thus ‖Dµ,β√
tn

etn�u0‖L∞ →∞ as n →∞. This com-
pletes the proof.

6. GENERALIZATION

In this section, we show how to construct u0 ∈ C0(R
N ) so that

ωµ,β(u0) and γ µ,β(u0) have much richer structures than described in
Theorem 5.1.

Theorem 6.1. Fix a countable subset S of (0, N ) and a countable sub-
set E of S(RN ). There exists u0 ∈C0(R

N ) with the following properties.

(i) For all

β≥ 1
2
, 0<µ< N (6.1)

such that
µ

2β
∈ S (6.2)
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and all ψ ∈ E , there exists a sequence tn →∞ such that

Dµ,β√
tn

etn�u0 −→
n→∞ψβ (6.3)

in C0(R
N ), where

ψβ =
{
ψ if β >1/2,
e�ψ if β=1/2.

(6.4)

In other words, ψβ ∈ωµ,β(u0) for all µ,β satisfying (6.1)–(6.2) and
all ψ ∈ E .

(ii) For all µ,β satisfying (6.1)–(6.2) and all ψ ∈ E , there exists a
sequence λn →∞ such that

�
µ,β
λn

u0 −→
n→∞�β (6.5)

in L∞((ε,T )×R
N ) for all 0<ε<T <∞, where

�β(t, ·)=
{
ψ if β >1/2,
et�ψ if β=1/2

(6.6)

for all t > 0. In other words, �β ∈ γ µ,β(u0) for all µ,β satisfying
(6.1)–(6.2) and all ψ ∈ E .

(iii) Set

N ={ce�∂αδ0; c ∈R, α∈R
N }, (6.7)

where δ0 is the Dirac mass at 0. For all 0<µ< N and all f ∈N ,
there exists a sequence tn →∞ such that

Dµ, 1
2√

tn
etn�u0 −→

n→∞ f (6.8)

in C0(R
N ). In other words, N ⊂ωµ, 1

2 (u0) for all 0<µ< N .
(iv) Set

M={h ∈C((0,∞),C0(R
N ));

∃c ∈R,∃α∈R
N ,h(t)

= cet�∂αδ0 for all t>0}, (6.9)

where δ0 is the Dirac mass at 0. For all 0<µ< N and all h ∈M,
there exists a sequence λn →∞ such that

�
µ, 1

2
λn

u0 −→
n→∞ h (6.10)

in L∞((ε,T ) × R
N ) for all 0 < ε < T < ∞. In other words,

M⊂γ µ, 1
2 (u0) for all 0<µ< N .
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For the proof of Theorem 6.1, we will use the following lemma.

Lemma 6.2. Let S be a countable subset of (0, N ) and let E be a
countable subset of S(RN ) such that E � 0. It follows that there exist a
sequence (σ j ) j≥1 ⊂ S and a sequence (θ j ) j≥1 ⊂ E such that the following pro-
perties are satisfied.

(i) Every element (r,ψ)∈ S × E occurs infinitely often in the sequence
(σ j , θ j ) j≥1.

(ii) The sequence (θ j ) j≥1 ⊂ E satisfies

max{‖θ j‖L1 ,‖θ j‖L∞}≤ j, (6.11)

for all j ≥1.

Proof. Since the set S × E is countable, it easily follows that there
exists a sequence (σ j ) j≥1 ⊂ S and a sequence (θ̃ j ) j≥1 ⊂ E such that every
element (r,ψ) ∈ S × E occurs infinitely often in the sequence (σ j , θ̃ j ) j≥1.
We then define

θ j =
{
θ̃ j if θ̃ j satisfies (6.11),
0 otherwise.

(6.12)

Since 0∈ E , we see that (θ j ) j≥1 ⊂ E and it follows from (6.12) that (θ j ) j≥1
satisfies (6.11) for all j ≥1. Thus Property (ii) is satisfied. Next, let (r,ψ)∈
S × E and let jk → ∞ be such that (σ jk , θ̃ jk ) = (r,ψ) for all k ≥ 1. If
jk ≥ max{‖ψ‖L1 ,‖ψ‖L1}, we deduce from (6.12) that θ̃ jk = θ jk . Thus
(σ jk , θ jk )= (r,ψ) for all sufficiently large k, so that Property (i) is satisfied.

Proof of Theorem 6.1 Fix a function⎧⎨
⎩
ϕ∈S(RN ),

ϕ≥0,
‖ϕ‖L1 =1

(6.13)

and consider the countable set

F = ∪
α∈RN

{∂αϕ}. (6.14)

We observe that without loss of generality, we may assume that

F ∪{0}⊂ E . (6.15)

Consider two sequences of (σ j ) j≥1 ⊂ S and (θ j ) j≥1 ⊂ E as given by Lemma
6.2. Next, we let a0 be large enough so that

ex ≥ x2N for x ≥a0 ≥1. (6.16)
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We fix the sequence (a j ) j≥1 by
⎧⎨
⎩

a1 =a0,

a j+1 = exp
( a j

σ j+1

)
, j ≥1. (6.17)

Applying inductively the relation

a j+1 = exp
( a j

σ j+1

)
> exp

(a j

N

)
≥2a j , (6.18)

where we used (6.17), the fact that S ⊂ (0, N ) and (6.16), we deduce that

a j ↑∞, a j ≥2 j−1 (6.19)

for all j ≥1. We define u0 ≥0 by

u0(x)=
∞∑
j=1

e−a j−1θ j (x/a j ). (6.20)

It follows from (6.11) and (6.19) that

∞∑
j=1

e−a j−1‖θ j (x/a j )‖L∞ ≤
∞∑
j=1

je−a j−1 <∞

so that the series in (6.20) is normally convergent in C0(R
N ). Thus

u0 ∈C0(R
N ).

Given 0<µ< N , β≥1/2, t>0 and λn>0, we write using (1.9)

[�µ,βλn
u0](t, ·)= etλ2−4β

n �(un +vn +wn), (6.21)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

un =λµn
n−1∑
j=1

e−a j−1θ j (xλ
2β
n /a j ),

vn =λµn e−an−1θn(xλ
2β
n /an),

wn =λµn
∞∑

j=n+1

e−a j−1θ j (xλ
2β
n /a j ).

(6.22)

We have by (6.11),

‖un‖L1 ≤λµn
n−1∑
j=1

‖θ j (·λ2β
n /a j )‖L1 ≤λµ−2Nβ

n

n−1∑
j=1

jaN
j ≤n2λµ−2Nβ

n aN
n−1 (6.23)
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and

‖wn‖L∞ ≤λµn
∞∑

j=n+1

je−a j−1 =λµn
∞∑

j=n

( j +1)e−a j . (6.24)

We deduce from (6.23) that

‖etλ2−4β
n �un‖L∞ ≤ t−

N
2 λ−N (1−2β)

n ‖un‖L1 ≤n2t−
N
2 λ−(N−µ)

n aN
n−1 (6.25)

and from (6.24) that

‖etλ2−4β
n �wn‖L∞ ≤‖wn‖L∞ ≤λµn

∞∑
j=n

( j +1)e−a j . (6.26)

We now prove Property (ii). Assume (6.1)–(6.2) and set r =µ/2β ∈ S. We
let

λn =a
1

2β
n . (6.27)

It follows from (6.22), (6.17), and (6.27) that

vn =a
µ
2β−σn
n θn (6.28)

for all n ≥1. Moreover, it follows from (6.25),(6.27), and (6.17) that

‖etλ2−4β
n �un‖L∞ ≤n2t−

N
2 a

− N−µ
2β

n aN
n−1 =n2t−

N
2 e− N−µ

2βσn
an−1aN

n−1. (6.29)

Since σn ≤ N and an ↑∞, we conclude that

‖etλ2−4β
n �un‖L∞ −→

n→∞ 0 (6.30)

uniformly for t ≥ε for any fixed ε>0. Next, (6.26), (6.27), and (6.19) yield

‖etλ2−4β
n �wn‖L∞ ≤a

µ
2β
n

∞∑
j=n

( j +1)e−a j ≤
∞∑

j=n

( j +1)a
µ
2β
j e−a j −→

n→∞ 0 (6.31)

Let ψ ∈ E and let (nk)k≥1 be a sequence of integers going to infinity such
that σnk = r and θnk =ψ for all k ≥1. We deduce from (6.28) that

etλ2−4β
nk �vnk = etλ2−4β

nk �ψ −→
n→∞�β(t, ·) (6.32)

in C0(R
N ), uniformly for t ≥ 0 and bounded. Property (ii) follows from

(6.21) and (6.30)–(6.32).
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We next prove Property (iv), and so β = 1/2. Using (6.15), we fix a
multi-integer α and we let (nk)k≥1 be a sequence of integers going to infi-
nity such that

σnk ≤ µ

2
, θnk = ∂αϕ (6.33)

for all k ≥1. We then let c>0 and define λk by

cλN−µ
k =a

N−σnk
nk . (6.34)

It follows from (6.22), (6.17), (6.33), and (6.34) that

vnk =λµk a
−σnk
nk ∂αϕ(·λka−1

nk
)= cλN

k a−N
nk
∂αϕ(·λka−1

nk
). (6.35)

Set

dk =λka−1
nk

(6.36)

so that by (6.35)

vnk = c∂α[d N
k ϕ(dk ·)]. (6.37)

It follows from (6.34), (6.33), and (6.19) that

dk = c− 1
N−µ a

µ−σnk
N−µ

nk ≥ c− 1
N−µ a

µ
2(N−µ)
nk −→

k→∞∞. (6.38)

Therefore, we deduce from (6.37), (6.38), and Lemma 9.2 that

et�vnk −→
k→∞ ∂

αet�δ0 (6.39)

in C0(R
N ), uniformly in t ≥ ε for all ε > 0. Next, it follows from (6.25),

(6.34), (6.17), and (6.19) that

‖et�unk ‖L∞ ≤ cn2
k t−

N
2 e

− N−σnk
σnk

ank−1aN
nk−1 −→

k→∞ 0 (6.40)

uniformly in t ≥ ε for all ε > 0. Moreover, we deduce from (6.26), (6.34),
(6.17), and (6.19) that

‖et�wnk ‖L∞ ≤ c− µ
N−µ a

µ(N−σnk )
N−µ

nk

∞∑
j=nk

( j +1)e−a j

≤ c− µ
N−µ

∞∑
j=nk

( j +1)a
µ(N−σnk )

N−µ
j e−a j −→k→∞ 0.

(6.41)

Property (iv) follows from (6.21), (6.39), (6.40), and (6.41).
Finally, Properties (i) and (iii) follow from Properties (ii) and (iv) by

setting t =1 and tn =λ2
n .
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Corollary 6.3. Given any countable subset S of (0, N ), there exists
u0 ∈C0(R

N ) with the following properties.

(i) ωµ,β(u0)=C0(R
N ) and γ µ,β(u0)=Eβ for all µ,β satisfying (6.1)–

(6.2), where

Eβ =
{ {h ∈C((0,∞),C0(R

N )); h(t)≡h(1)} if β >1/2,
{h ∈C((0,∞),C0(R

N )); h(t + s)= et�h(s)∀s, t>0} if β=1!/2.
(6.42)

(ii) N ⊂ωµ, 1
2 (u0) and M⊂ γ µ, 1

2 (u0) for all 0<µ< N , where N and
M are defined by (6.7) and (6.9), respectively.

Proof. Let E ⊂S(RN ) be a countable dense subset of C0(R
N ) which

also satisfies (6.15), and consider u0 given by Theorem 6.1 applied with
this set E . Property (ii) follows from Properties (iii) and (iv) of Theorem
6.1. Since E is dense in C0(R

N ) and ωµ,β is clearly closed in C0(R
N ),

the first statement of Property (i) follows from Property (i) of Theo-
rem 6.1. Suppose now β > 1/2. Note that γ µ,β(u0) is a closed subset of
C((0,∞),C0(R

N )) for the topology of uniform convergence on (ε,T )×R
N

for all 0<ε< T <∞. Since E is dense in C0(R
N ), the second statement

of Property (i) follows from Property (ii) of Theorem 6.1. Finally, suppose
β=1/2 and let

V ={h ∈C((0,∞),C0(R
N )); ∃ψ ∈C0(R

N ),h(t)≡ et�ψ}. (6.43)

Using Property (ii) of Theorem 6.1, we see that V ⊂ γ µ, 1
2 (u0). Since V is

clearly dense in E 1
2

(approximate h by h(·+ε)) and γ µ,
1
2 (u0) is closed, we

deduce that γ µ,
1
2 (u0)=E 1

2
. This completes the proof.

7. THE CASE µ≥ N

It is well-known that positive solutions of the heat equation do not
decay faster than t−

N
2 , so that γ µ,β(u0)=∅ and ωµ,β(u0)=∅ if µ>N and

u0 ≥0, u0 �≡0. See Proposition 7.1. On the other hand, oscillatory solutions
can decay faster, allowing the possibility of nontrivial asymptotic limits.
This situation is the subject of Theorem 7.2.

Proposition 7.1. Let u0 ∈ C0(R
N ), u0 ≥ 0, u0 �≡ 0. If there exist

v∈C0(R
N ), s>0, µ0 ≥ N , β0>0 and a sequence λn →∞ such that

�
µ0,β0
λn

u0(s, ·) −→
n→∞v (7.1)

in C0(R
N ), then u0 ∈ L1(RN ), µ0 = N and β0 =1/2. In particular, γ µ,β(u0)=∅

and ωµ,β(u0)=∅ if µ> N or if µ= N and β �=1/2.
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Proof. It follows from (7.1) and formula (1.9) that Dµ0,β0
λn

eλ
2
ns�u0(0)≤

v(0)+1 for n sufficiently large; and so,

v(0)+1≥λµ0−N
n (4πs)−

N
2

∫
e
− |y|2

4λ2
n s u0(y)dy.

Letting n −→∞, we conclude by monotone convergence that µ0 = N and

u0 ∈ L1(RN ). It is then well-known that DN , 1
2√

t
et�u0 → (4π)−N/2‖u0‖L1 e− |·|2

4

in C0(R
N ) as t → ∞. (See Herraiz [8].) One then concludes that β0 = 1/2

and that γ N ,β(u0)=∅ and ωN ,β(u0)=∅ if β �=1/2 (see the proof of Theo-
rem 5.2.). This completes the proof.

Theorem 7.2. Given µ ≥ N and β ≥ 1/2, there exist u0 ∈ C0(R
N ) ∩

C∞(RN ), a function f ∈C0(R
N ), θ �≡0, and a sequence tn →∞ such that

�
µ,β
λn

u0 −→
n→∞ h (7.2)

in C([ε,T ],C0(R
N )) for all 0< ε < T <∞, where h(t)≡ f if β > 1/2 and

h(t)≡ et� f if β=1/2. In particular, h ∈γ µ,β and h(1)∈ωµ,β .

Proof. The proof is similar to that of Theorem 5.1. Let ϕ ∈S(RN ),
ϕ �≡0 and let the integer k be sufficiently large so that

N + k ≥2µ. (7.3)

Let α be a multi-index such that |α|= k and set f = ∂αϕ, so that

sup
t>0

t
N+k

2 ||et� f ||L∞ <+∞. (7.4)

Set

M =‖ f ‖L∞ , σ = µ

2β
(7.5)

and let a0 ≥1 be large enough so that

ex ≥ (2x)σ for x ≥a0 ≥1 (7.6)

We define the sequence (a j ) j≥1 by
{

a1 =a0,

a j+1 = exp
(a j

σ

)
, j ≥1.

(7.7)

Applying inductively the relation

a j+1 = exp
(a j

σ

)
≥2a j , (7.8)
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where we used (7.7) and (7.6), we deduce that

a j ↑∞, a j ≥2 j−1 (7.9)

for all j ≥1. We now define

u0(x)=
∞∑
j=1

e−a j−1 f (x/a j )=
∞∑
j=1

a−σ
j f (x/a j ). (7.10)

Given any multi-index α, we have

‖∂α f (·/a j )‖L∞ =a−|α|
j ‖∂α f ‖L∞ ≤‖∂α f ‖L∞

by (7.9). Therefore, it follows from (7.9) that the series in (7.10) is nor-
mally convergent in Cm

b (R
N ) for all m ≥0, so that u0 ∈C∞(RN )∩C0(R

N ).
Given t>0 and λn>0, we write using (1.9)

[�µ,βλn
u0](t, ·)= etλ2−4β

n �(un +vn +wn), (7.11)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

un =λµn
n−1∑
j=1

e−a j−1 f (xλ2β
n /a j ),

vn =λµn e−an−1 f (xλ2β
n /an),

wn =λµn
∞∑

j=n+1

e−a j−1 f (xλ2β
n /a j ).

(7.12)

We let

λn =a
1

2β
n . (7.13)

It follows from (7.12) and (7.7) that

vn = f (7.14)

so that

etλ2−4β
n �vn = etλ2−4β

n � f −→
n→∞ h (7.15)

in C0(R
N ), uniformly for t ≥0 and bounded. Next, we deduce from (7.12),

(7.13), and (7.5) that

‖etλ2−4β
n �wn‖L∞ ≤‖wn‖L∞ ≤ Maσn

∞∑
j=n

e−a j ≤ M
∞∑

j=n

aσj e−a j −→
n→∞ 0, (7.16)
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where we used (7.9) in the last two relations. Next, it follows from (7.12),
(7.13), (1.8), and (7.7) that

etλ2−4β
n �un =

n−1∑
j=1

aσj e−a j−1Dµ,β

(an/a j )
1/2β eta1/β

n a−2
j � f

so that

‖etλ2−4β
n �un‖L∞ ≤

n−1∑
j=1

aσn e−a j−1‖eta
1
β

n a−2
j � f ‖L∞

≤C
n−1∑
j=1

aσn e−a j−1(ta
1
β
n a−2

j )−
N+k

2

≤Ct−
N+k

2

n−1∑
j=1

a−σ
n e−a j−1aN+k

j , (7.17)

where we used (7.4), (7.3), and (7.7). We deduce from (7.17) that

‖etλ2−4β
n �un‖L∞ ≤Ct−

N+k
2 a−σ

n aN+k
n−1 =Ct−

N+k
2 e−an−1aN+k

n−1 . (7.18)

Since an ↑∞, we conclude that

‖etλ2−4β
n �un‖L∞ −→

n→∞ 0 (7.19)

uniformly for t ≥ε, for any fixed ε>0. The result now follows from (7.11),
(7.15), (7.16), and (7.19).

8. NONLINEAR HEAT EQUATIONS

In this section, we consider the nonlinear heat equation{
ut −�u +|u|αu =0,
u(0, x)=U0(x)

(8.1)

in R
N , where α>0. We show the following analogue of Theorem 5.1.

Theorem 8.1. Let

α>
2
N

(8.2)

and

2
α
<σ < N . (8.3)
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Fix

1
2
<β<

1
2

min
{ N

σ
,1+α− 2

σ

}
(8.4)

and set

µ=2βσ. (8.5)

Let f ∈S(RN ), f ≥0, f �≡0 and let u0 ∈C0(R
N )∩C∞(RN ), u0 ≥0 be given

by Theorem 5.1. If u is the solution of the Eq. (8.1) with the initial value
U0 =u0, then there exists a sequence tn →∞ such that

Dµ,β√
tn

u(tn) −→
n→∞ f (8.6)

in C0(R
N ).

Proof. It follows from the calculations of Lemma 5.1 in [3] that if
the function v∈C([0,∞),C0(R

N )) satisfies

M := sup
t>0,x∈RN

(1+ t +|x |2) σ2 |v(t, x)|<∞ (8.7)

then for every

γ <min{N −σ,σα−2} (8.8)

there exists C such that

(1+ t +|x |2) σ2
∣∣∣
∫ t

0
e(t−s)�|v|αv(s, x)ds

∣∣∣≤C Mα+1(1+ t)−
γ
2 (8.9)

for all t ≥ 0 and x ∈R
N . Note that |u(t)|≤ et�|u0| by the maximum prin-

ciple. Since

sup
t>0,x∈RN

(1+ t +|x |2) σ2 |et�u0(x)|≤C sup
x∈RN

(1+|x |2) σ2 |u0(x)| (8.10)

by Corollary 8.5 in [1], we see that u satisfies (8.7). Since

u(t)= et�u0 −
∫ t

0
e(t−s)�|u|αu(s)ds

we deduce from (8.9), (8.8), and (8.4) that

t
µ
2 ‖u(t)− et�u0‖L∞ −→

t→∞ 0 (8.11)

and the conclusion follows from Theorem 5.1.
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Remark 8.2. Consider the equation
{

ut −�u =|u|αu,
u(0, x)=U0(x).

(8.12)

If α≤ 2/N , then all positive solutions of (8.12) blow up in finite time. If
α > 2/N , then it follows easily from (8.9), (8.10) and an easy contraction
mapping argument that if ‖(1 + | · |2) σ2 U0‖L∞ ≤ ε with ε > 0 sufficiently
small, then the solution of (8.12) is global and satisfies (8.11). Therefore,
if we consider f and u0 as in Theorem 5.1 and if we let U0 = ηu0 with
η>0 sufficiently small, then u(t) satisfies (8.6).

APPENDIX

Lemma 9.1. Let ϕ∈S(RN ) satisfy suppϕ �� {0} and let a, ν >0. If 0<
β<1/2, then tνe−at |·|2ϕ(·tβ)→0 in S(RN ) as t →∞.

Proof. Suppose

ϕ(ξ)=0 for |ξ |≤a. (9.1)

Let m be a non-negative integer and α a multi-index. We have

|ξ |m |Dα[tνe−at |ξ |2ϕ(ξ tβ)]|≤Ctν |ξ |m
∑

α1+α2=α
|Dα1 [e−at |ξ |2 ]| |Dα2 [ϕ(ξ tβ)]|.

(9.2)

On the one hand,

|Dα2 [ϕ(ξ tβ)]|= t |α2|β |Dα2ϕ(ξ tβ))| (9.3)

and on the other hand |Dα1 [e−at |ξ |2 ]|, is estimated by a sum of terms of
the form

tγ |ξ |σ e−at |ξ |2 (9.4)

with 0≤γ, σ ≤|α1|. Thus |ξ |m |Dα[tνe−at |ξ |2ϕ(ξ tβ)]| is estimated by a sum
of terms of the form

tν+γ+|α2|β |ξ |m+σ e−at |ξ |2 |Dα2ϕ(ξ tβ))|. (9.5)

Setting y = ξ tβ and using (9.1), we are led to estimate terms of the form

A = sup
|y|≥a

t p|y|qe−at1−2β |y|2 |Dα2ϕ(y))| (9.6)
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with p,q ≥0. The last term in (9.6) is bounded in y, so that

A ≤C sup
|y|≥a

t p|y|qe−at1−2β |y|2 −→
t→∞ 0 (9.7)

since β <1/2. This completes the proof.

Lemma 9.2. Let ϕ∈ L1(RN ) satisfy∫
RN
ϕ=1 (9.8)

let (dn)n≥1 ⊂ (0,∞) satisfy dn → ∞, and let δ0 be the Dirac mass at 0. If
ϕn(x)=d N

n ϕ(dn x), then

et�ϕn −→
n→∞ et�δ0 (9.9)

in C0(R
N ), uniformly in t ≥η for all η>0. In addition, for every multi-index

α with |α|≤m,

∂αet�ϕn −→
n→∞ ∂

αet�δ0 (9.10)

in C0(R
N ), uniformly in t ≥η for all η>0.

Proof. Given ψ ∈S(RN ),∫
ϕn(x)ψ(x)dx =

∫
ϕ(x)ψ(x/dn)dx −→

n→∞ψ(0)
∫
ϕ=ψ(0)

so that ϕn → δ0 in S ′(RN ); and so

et�ϕn −→
n→∞ et�δ0 in S ′(RN ) for all t>0. (9.11)

In addition, ‖ϕn‖L1 =‖ϕ‖L1 , so that by parabolic regularity,

sup
t>0

{
t

N
2 ‖et�ϕn‖L∞ + t

N+1
2 ‖∇et�ϕn‖L∞ + t

N+2
2 ‖∂t e

t�ϕn‖L∞
}

≤C‖ϕ‖L1 .

(9.12)

It follows in particular from (9.11), (9.12) and Ascoli’s theorem that

et�ϕn −→
n→∞ et�δ0 in C([η,∞)×{|x |≤ R}) (9.13)

for all η, R>0. Also,

(4π t)
N
2 |et�ϕn(x)| =

∣∣∣
∫

{|y|<1}
e− |x−y|2

4t ϕn(y)+
∫

{|y|>1}
e− |x−y|2

4t ϕn(y)
∣∣∣

≤ sup
|y|<1

e− |x−y|2
4t +

∫
{|y|>dn}

ϕ. (9.14)
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We easily deduce from (9.14) that |et�ϕn(x)| → 0 as |x | → ∞, uni-
formly in n ≥1 and t ≥η>0. This, together with (9.13), implies (9.9). Now
(9.10) follows immediately from (9.9) and parabolic regularity.

Lemma 9.3. Let (a j ) j≥1 ⊂ (1,∞), j0 ∈R satisfy

a j ≤ εa j+1 (9.15)

for some 0<ε<1 and for all j ≥ j0. Given θ ∈S(RN ) and σ >0, set

u(x)=
∞∑
j=1

a−σ
j θ(x/a j ). (9.16)

It follows that u ∈C0(R
N ) and | · |σu(·)∈ L∞(RN ).

Proof. Note that by (9.15),

a j ≥ ε−( j− j0)a j0 (9.17)

for all j> j0. In particular,
∑

a−σ
j <∞, so that the series in (9.16) is nor-

mally convergent in L∞(RN ). Therefore u ∈C0(R
N ). Next, we write

|x |σu(x)=
∑
j≥1

ψ(x/a j ), (9.18)

where ψ(y) = |y|σ θ(y). Clearly, it suffices to show that there exists a
constant C such that

∑
j≥ j0

ψ(x/a j )≤C (9.19)

for all x ∈ R
N , so we may assume without loss of generality that j0 = 1.

Considering y j = x/a j , this is equivalent to
∑
j≥1

ψ(y j )≤C (9.20)

for all sequences (y j ) j≥0 ⊂R
N such that

|y j+1|≤ ε|y j |. (9.21)

To prove (9.20), let (y j ) j≥0 ⊂R
N satisfy (9.21) and set k =min{ j ≥0; |y j |≤1},

so that { |y j |≤ ε j−k, j ≥ k,
|y j |≥ ε−(k− j−1), j < k.

(9.22)
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We write ∑
j≥1

ψ(y j )=
∑
j≥k

ψ(y j )+
∑
j<k

ψ(y j ). (9.23)

From (9.22) we deduce that
∑
j≥k

ψ(y j )≤‖θ‖L∞
∑
�≥0

ε�σ =‖θ‖L∞(1− εσ )−1. (9.24)

Take now A> 0 such that |ψ(y)|≤ A|y|−1 for all |y|≥ 1. Using (9.22) we
obtain ∑

j<k

ψ(y j )≤ A
∑
j<k

|y j |−1 ≤ A
∑
�≥0

ε�−1 = Aε−1(1− ε)−1. (9.25)

Then (9.20) follows from (9.23)–(9.25).
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