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Sets of Dynamical Systems with Various Limit
Shadowing Properties∗
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We study the C1-interiors of sets of diffeomorphisms of a closed smooth
manifold with various limit shadowing properties. It is shown that, for some
natural analogs of the usual limit shadowing property, the corresponding C1-
interiors coincide with the set of �-stable diffeomorphisms. The same pro-
blem is considered for two-sided analogs of the limit shadowing property.
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1. INTRODUCTION

The shadowing property of dynamical systems is now well-studied
(see, for example, the monographs [1,2]). Consider a dynamical system
generated by a homeomorphism f of a metric space (M,dist).

Fix d > 0. We say that a sequence ξ = {xk ∈ M : k ∈ Z} is a
d-pseudotrajectory of f if the inequalities

dist(f (xk), xk+1)<d, k∈Z (1)

hold. The shadowing property (usually abbreviated POTP, pseudoorbit tra-
cing property) of f is formulated as follows: given ε>0, there exists d >0
with the following property: for any d-pseudotrajectory ξ = {xk}, we can
find a point p∈M such that

dist(f k(p), xk)<ε, k∈Z. (2)
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Let us assume that M is a closed smooth manifold. Denote by POTP the
set of diffeomorphisms of M having the shadowing property (we denote
the properties which we study by the same symbols as the sets of dynami-
cal systems having these properties). We have no hope to characterize the
set POTP in terms of properties standard for the classical theory of struc-
tural stability (such as hyperbolicity and transversality; see, for example,
[3] for definitions) since if f ∈POTP, then any diffeomorphism topologi-
cally conjugate with f is in POTP as well [1] , while the above-mentioned
properties are not preserved under homeomorphisms of the phase space.

The situation changes when we pass from the set POTP to its interior
with respect to the C1 topology, Int1(POTP) (here and below, we denote
by Int 1(P) the C1-interior of any subset P of the space of diffeomorphisms
Diff 1(M)). It was shown by Sakai [4] that the set Int1(POTP) coincides
with the set S of structurally stable diffeomorphisms.

Later, several similar results were established for some other shado-
wing properties; let us mention, for example, that the set Int 1(OSP) coin-
cides with the set S [5], where OSP is the set of diffeomorphisms of M
having the orbital shadowing property (see the definition below).

In this paper, we study the structure of the C1-interior for sets of dif-
feomorphisms having various limit shadowing properties.

We give the definitions below for a homeomorphism f of a metric
space (M,dist); the consideration is restricted to the case of diffeomor-
phisms of a closed smooth manifold M when we work with the sets
Int 1(P).

We say that f has the limit shadowing property (LmSP, [6]) if, for any
sequence ξ ={xk ∈M :k�0} such that

dist(f (xk), xk+1) → 0, k → ∞ (3)

there exists a point p such that

dist(f k(p), xk) → 0, k → ∞. (4)

Of course, one can define a “parallel” negative LmSP replacing k → ∞ by
k → −∞ in both relations (3) and (4) (and noting that

dist(f (xk), xk+1) → 0, k → −∞ (5)

if and only if

dist(f−1(xk+1), xk) → 0, k → −∞.)

It is easy to transfer our results to such “parallel” properties.
In general, we know less about the limit shadowing property than

about the usual one. For example, it is known that the POTP is C0-generic
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in the space of homeomorphisms of any smooth closed manifold M [7],
while no analog of this statement is known for the LmSP if dimM�2.

In [1, Theorem 1.4.1], it is shown that a diffeomorphism has the
LmSP in a neighborhood of its hyperbolic set; we refer to this statement
in the proof of Theorem 1 below (see also a related result in Proposition
11 of Chapter 11 in [8]).

Let us introduce several shadowing properties related to the LmSP.
The first of these properties is, in a sense, an “orbital” analog of the
LmSP.

For a point x, we denote by O(x,f ) its trajectory in the system f ,
i.e., the set

O(x,f )={f k(x) :k∈Z}.
Recall that f has the orbital shadowing property (OSP, [5]) if, given ε>0,
there exists d > 0 with the following property: for any d-pseudotrajectory
ξ ={xk}, we can find a point p∈M such that

distH
(
ξ,O(p,f )

)
� ε, (6)

where distH is the Hausdorff distance.
The sense of the “orbital” approach to shadowing is as follows: one

studies not the pointwise closeness of the trajectory O(p,f ) and pseudo-
trajectory ξ expressed by inequalities (2), but their closeness as sets (where
the indices of individual points f k(p) and xk are irrelevant).

For a point x ∈M, let us denote by ω(x) the ω-limit set of O(x,f ).
Similarly, for a sequence ξ = {xk ∈M : k� 0}, we denote by ω(ξ) the

set of all limit points of ξ as k → ∞. The following property is a natural
“orbital” analog of the LmSP.

We say that f has the orbital LmSP (OLmSP) if, for any sequence
ξ ={xk ∈M :k�0} satisfying relations (3), there exists a point p such that

ω(ξ)=ω(p). (7)

Obviously, LmSP⊂OLmSP.
It is easy to see that the properties LmSP and OLmSP do not coin-

cide, for example, for an irrational rotation of the circle (see the Appen-
dix).

Now we consider “inverse” analogs of the LmSP. Dynamically, the
shadowing property means the following: for any approximate trajectory
we can find a close real trajectory.

It is natural to pose the “inverse” problem: given a dynamical sys-
tem and a family of approximate trajectories, is it possible, for any real
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trajectory, to find a close approximate trajectory? The corresponding pro-
perty (called the inverse shadowing property, ISP) was introduced in [9].
It is possible to consider various families of approximate trajectories. In
[10], two classes of continuous methods were considered. In this paper, we
consider one more class �t close to the class �s studied in [9] (for “one-
sided limit shadowing” treated in Theorem 1 below, these classes coincide).

Fix d > 0. A continuous d-method of the class �t for a homeomor-
phism f is a sequence �={ψk :k∈Z}, where any ψk is a continuous map-
ping ψk :M → M such that

dist(ψk(x), f (x))<d, k�0, and dist(ψk(x), f−1(x))<d, k<0

for any x ∈M. We say that a sequence ξ ={xk ∈M : k ∈ Z} is a pseudotra-
jectory generated by a d-method �={ψk} (we write ξ ∈G� in this case)
if

xk+1 =ψk(xk), k�0, and xk−1 =ψk−1(xk), k�0. (8)

We say that f has the ISP if, given ε>0, there exists d >0 such that, for
any p∈M and any continuous d-method � of the class �t , we can find a
pseudotrajectory ξ ∈G� satisfying inequalities (2).

Now we define an “inverse” analog of the LmSP.
We say that a sequence �={ψk :k�0} is a positively convergent (p.c.

below) method for a homeomorphism f if any ψk is a continuous map-
ping ψk : M → M and

max
x∈M

dist(ψk(x), f (x)) → 0, k → ∞. (9)

In the study of limit shadowing, we are mostly interested in the beha-
vior of trajectories and pseudotrajectories as time goes to infinity and not
in the behavior of their finite initial segments. Thus, we may restrict our
attention to p.c. methods for which the values dist(ψk(x), f (x)) are boun-
ded from above by a preliminary fixed constant. On the other hand, stan-
dard topological reasons show that if f is a homeomorphism of a closed
manifold M, then there exists a number �=�(f )>0 such that if ψ is a
continuous mapping M → M and

dist(ψ(x), f (x))<�

then ψ maps M onto M. Thus, without loss of generality, we assume
below that any mapping ψk in the definition of a p.c. method maps M
onto M.

We say that a sequence ξ ={xk ∈M :k�0} is a pseudotrajectory gene-
rated by a p.c. method �={ψk} (we write ξ ∈G� in this case) if relations
(8) hold.
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We say that f has the inverse LmSP (ILmSP) if, for any p∈M and
any p.c. method �={ψk} for f , there exists a pseudotrajectory ξ ∈G� for
which relation (4) holds.

Similarly, we say that f has the orbital inverse LmSP (OILmSP) if,
for any p∈M and any p.c. method �={ψk} for f , there exists a pseudo-
trajectory ξ ∈G� for which relation (7) holds.

Clearly, ILmSP⊂OILmSP; at the same time, the above-mentioned
example of an irrational rotation of the circle shows that ILmSP �=
OILmSP (we leave details to the reader).

The next group of considered properties is related to the notion of
weak shadowing first considered in [9] (see also [5]).

Denote by N(a,A) the a-neighborhood of a set A⊂M.
We say that f has the weak shadowing property (WSP) if, given ε>0,

there exists d > 0 with the following property: for any d-pseudotrajectory
ξ ={xk}, we can find a point p∈M such that

ξ ⊂N(ε,O(p,f )). (10)

The problem of characterization of the set Int 1(WSP) was considered
in [11,12].

The “limit” analog of this property is as follows: we say that f has
the weak LmSP (WLmSP) if, for any sequence ξ = {xk : k � 0} satisfying
relations (3), we can find a point p∈M such that

ω(ξ)⊂ω(p). (11)

A close property (called the limit weak shadowing property) was stu-
died in the recent paper [13].

Let us note here that f ≡ id /∈WLmSP for any manifold M with
dimM � 1, where id is the identity mapping, while f ∈WLmSP if f has
a dense positive semitrajectory.

Now we define one more property considered in this paper.
We say that f has the weak inverse LmSP (WILmSP) if, for any p∈

M and any p.c. method �={ψk} for f , there exists a pseudotrajectory ξ ∈
G� for which relation (11) holds.

Let us formulate the first result.

Theorem 1. Any of the sets Int 1(P), where P = LmSp, OLmSP, ILmSP,
OILmSP, WILmSP, coincides with the set �S of �-stable diffeomorphisms.

Remark 1. This result indicates a difference between the sets of sys-
tems with weak limit and weak inverse limit shadowing properties.

Mané had constructed in [14] a domain M in the space Diff 1(T 3),
where T 3 is the 3-dimensional torus, such that any diffeomorphism f ∈ M



752 Pilyugin

has a dense trajectory, �(f )= T 3, and f is not Anosov (hence, f is not
�-stable). It is known (see [15]) that if f is a homeomorphism of a com-
pact metric space X and �(f )=X, then the existence of a dense trajec-
tory implies the existence of a dense positive semitrajectory. By our comment
above, M⊂ Int 1(WLmSP), while M∩ Int 1(WILmSP)=∅ by Theorem 1.

Now we pass to two-sided analogs of the LmSP (in this paper, we res-
trict our attention to two of such properties).

We say that f has the two-sided LmSP (TSLmSP) if there exists a
number d >0 with the following property: if a sequence ξ ={xk ∈M :k∈Z}
is a d-pseudotrajectory of f for which relations (3) and (5) hold, then
there is a point p such that

dist(f k(p), xk) → 0, |k| → ∞. (12)

It was noted in [1] that a diffeomorphism has the TSLmSP in a neigh-
borhood of a hyperbolic set.

Remark 2. In the global study of a dynamical system, it is unreaso-
nable to consider a two-sided analog of the LmSP without restrictions on the
values dist(f (xk), xk+1). Indeed, if a homeomorphism f has an attractor A
and a repeller B with A∩B = ∅, one may take a sequence ξ = {xk : k ∈ Z}
such that x0 ∈A, xk = f −1(xk+1) for k < 0, x1 ∈ B, and xk+1 = f (xk) for
k� 1. Of course, such a sequence ξ satisfies relations (3) and (5), but we
cannot find a point p for which f k(p) → A as k → −∞ and f k(p) → B as
k → ∞, so that relation (12) cannot hold. Thus, it is natural to restrict the
values of “jumps” for the pseudotrajectories considered (as was done in the
definition above).

To define a two-sided analog of the ILmSP, let us consider the following
class of continuous methods. We say that a sequence �={ψk :k∈Z} is a two-
sided convergent (ts.c. below) method for a homeomorphism f if any ψk is
a surjective continuous mapping ψk :M → M, relation (9) holds, and

max
x∈M

dist(ψk(x), f −1(x)) → 0, k → −∞. (13)

We say that a sequence ξ ={xk ∈M :k∈Z} is a pseudotrajectory generated
by a ts.c. method �={ψk} (we write ξ ∈G� in this case) if relations (8)
hold.

We say that a ts.c. method � is a d-method if any sequence ξ ∈G�
is a d-pseudotrajectory of f .

We say that f has the two-sided ILmSP (TSILmSP) if there exists a
constant d > 0 with the following property: for any p ∈M and any ts.c.
d-method �, there exists a sequence ξ ∈G� for which relation (12) holds.
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The problem of description of the sets Int 1(TSLmSP) and Int 1

(TSILmSP) is really more complicated than the same problem for one-
sided limit shadowing properties. We can prove the following general sta-
tement.

Theorem 2. Any structurally stable diffeomorphism has the properties
TSLmSP and TSILmSP.

Since the set of structurally stable diffeomorphisms of any smooth
closed manifold is open, Theorem 2 implies that the set S is a subset of
both sets Int 1(TSLmSP) and Int 1(TSILmSP). Below we also establish the
following result.

Theorem 3. The sets S, Int 1(TSLmSP), and Int 1(TSILmSP) are
pairwise different.

Proofs. We begin with the proof of Theorem 1.
First, we show that any �-stable diffeomorphism has the LmSP and

ILmSP. Since LmSP⊂OLmSP, ILmSP⊂OILmSP ⊂WILmSP, and the
set �S of �-stable diffeomorphisms is C1-open, in this case the set �S
belongs to any of the sets Int 1(P) mentioned in the statement of Theorem
1.

Lemma 1. �S ⊂LmSP.

Proof. Let f be an �-stable diffeomorphism and let

�(f )=�1 ∪· · ·∪�m
be the spectral decomposition of the nonwandering set �(f ) into basic
sets (see [3]).

Consider a sequence ξ = {xk : k� 0} for which relation (3) holds. We
claim that there exists a basic set �i such that

dist(xk,�i) → 0, k → ∞. (14)

For two different basic sets �i and �j , we write �i → �j if there exists
a wandering point x such that

f k(x) → �i, k → −∞, and f k → �j , k → ∞.

The graph with vertices corresponding to the basic sets and with edges
corresponding to the relation → introduced above is usually called the
phase diagram of f . Since f is �-stable, this graph does not contain
cycles [3].
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The following two statements are well known (cf. [12], Propositions
3.2 and 3.3):

(I) if �i is a basic set, then for any neighborhood Ui of �i we can
find a neigborhood Wi of �i such that if f k(x) /∈Ui for some x ∈Wi and
k>0, then f l(x) /∈Wi for l�k;

(II) there exist neighborhoods Ui of the basic sets �i such that if
f k(Ui) ∩ Uj �= ∅ for some k > 0 and i �= j , then there exist basic sets
�i1 , . . . ,�il such that

�i → �i1 → . . . → �il → �j . (15)

Let us fix disjoint neighborhoods Ui of the basic sets �i for which state-
ment (II) holds. There exists a number b> 0 and arbitrarily small neigh-
borhoods Wi of the basic sets �i such that

N(b,Wi)⊂Ui. (16)

Consider the neighborhood U =W1 ∪· · ·∪Wm of the set �(f ) and the set
of indices κ :={k�0 :xk /∈U}.

It is known that f has a global Lyapunov function (see [16]), i.e., a
continuous function V :M → [0,+∞) such that

V (f (x))�V (x), x ∈M, and V (f (x))=V (x)⇔x ∈�(f ).
The set M ′ =M \U is compact; the function V (f (x))−V (x) is continuous
and negative in M ′. Hence, there exists a>0 such that

V (f (x))−V (x)�−2a, x ∈M ′.

If k∈κ, then

V (xk+1)−V (xk) = (xk+1)−V (f (xk))+V (f (xk))−V (xk)
� V (xk+1)−V (f (xk))−2a.

Since V is uniformly continuous, |V (xk+1)− V (f (xk))| → 0 as k →
∞. Hence, there exists k1 such that

V (xk+1)−V (xk)�−a, k∈κ, k�k1. (17)

Let us say that a set {k, . . . , l}⊂κ of consecutive indices is a block of
type (i, j), i, j ∈{1, . . . ,m}, if xk−1 ∈Wi and xl+1 ∈Wj ; the number l−k is
called the length of the block. Since the Lyapunov function V is bounded,
inequalities (17) imply that the length of any block {k, . . . , l} with k�k1 is
bounded from above by a value depending on the neighborhood U only.
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Since the lengths of blocks are bounded, relations (3) imply that there
exists a number k2 � k1 such that for any block {k, . . . , l} with k� k2, the
inequalities

dist(f n(xk−1), xk+n−1)<b, 0�n� l−k+2 (18)

hold, where the number b has property (16).
It follows that if {k, . . . , l} is a block of type (i, j) such that k�k2 and

i �= j , then f l−k+2(xk−1)∈Uj ; hence, the phase diagram contains a chain

�i → . . . → �j

of the form (15).
It is easy to see that if {k′, . . . , l′} is the first block of type (i′, j ′) to

the right of {k, . . . , l} (this means that k′>k) such that i′ �= j ′, then i′ = j
and the phase diagram contains a chain

�i → . . . → �j → . . . → �j ′ .

Since the phase diagram of f contains no cycles, j ′ /∈{i, j}. Thus, moving
to the right and passing blocks of type (i, j) with i �= j , we decrease the
set from which elements of pairs (i, j) can be taken. It follows that the
number of blocks of any type (i, j) with i �= j is finite.

Hence, there exist indices i∈{1, . . . ,m} and k3>0 such that any block
{k, . . . , l} with k�k3 is of type (i, i) (this means that if k>k3, then xk /∈Wj

with j �= i).
The neighborhood Wi can be chosen arbitrarily small; hence, our rea-

soning above shows that if relations (3) are satisfied, then there exists an
index i ∈{1, . . . ,m} with the following property:

(III) for any neighborhood W of the basic set �i , there exists k′> 0
such that if κ ′ :={k�k′ :xk /∈W }, then the length of any block of κ ′ (defi-
ned as above with Wi,Wj replaced by W ) is bounded from above.

Now we fix an arbitrary neighborhood U of the basic set �i and find
neighborhoods U ′,W ′,W of �i and a number b>0 such that

N(b,W)⊂W ′ and N(b,U ′)⊂U.
In addition, we take the neighborhood W ′ so small that statement (I)
above holds for the pair (W ′,U ′).

Property (III) implies that there exists a number k0 such that if
{k, . . . , l} is a block of the set κ ′ with k>k0, then inequalities (18) hold. In
this case, xk−1 ∈W ⊂W ′ and f l−k+2(xk−1)∈W ′. If there exists n∈{k, . . . , l}
such that xn /∈U , then f n−k+1(xk−1) /∈U ′, and we get a contradiction.

Thus, xk ∈U for k>k0. We have proved that if relations (3) are satis-
fied, then there exists an index i ∈{1, . . . ,m} for which relation (14) holds.
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Now the statement of Lemma 1 follows from Theorem 1.4.1 of [1].

Lemma 2. �S ⊂ILmSP.

Proof. Fix a point p ∈M and a p.c. method � = {ψk} for a diffeo-
morphism f ∈�S.

There exists a basic set �i such that f k(p) → �i as k → ∞.
Precisely the same reasoning as in the proof of Theorem 1.1 in [9]

shows that there exists a neighborhood U of the basic set �i with the fol-
lowing property:

(IV) there exist positive constants d0,L0 such that if φk, k ∈ Z, are
continuous mappings of M with

sup
x∈U

dist(f (x), φk(x))�d�d0 (19)

and f k(r)∈U for k�0, then there exists a sequence {yk} such that yk+1 =
φk(yk) and dist(f k(r), yk)�L0d.

(In [10], the case of a structurally stable diffeomorphism is considered,
but the case of a neighborhood of a hyperbolic set is treated similarly, see
also Lemma 6 below.)

It follows from the stable manifold theorem that, reducing the neigh-
borhood U if necessary, we may as well assume that the following state-
ment holds:

(V) there exists a constant �> 0 such that if f k(q1), f
k(q2)∈U for

k�0 (for k�0) and

dist(f k(q1), f
k(q2))�� for k�0

(for k�0), then

dist(f k(q1), f
k(q2)) → 0 as k → ∞

(as k → −∞, respectively).
Since f k(p) → �i , there exists an index k0 such that f k(p′)∈U for

k� 0, where p′ =f k0(p), and the mappings φk =ψk−k0 satisfy inequalities
(19) with

d=min
(
d0,

�

2L0

)
,

where � is fixed in statement (V).
By property (IV), there exists a sequence yk such that yk+1 = φk(yk)

and

dist(f k(p′), yk)��/2, k�0. (20)
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Since � is a p.c. method, dist(f (yk), yk+1) → 0 as k → ∞. We have shown
in Lemma 1 that f ∈LmSP; hence, there exists a point z such that

dist(f k(z), yk) → 0 as k → ∞. (21)

(Of course, we may assume that f k(z), yk ∈U for k�0.)
Find an index k1>0 such that

dist(f k(z), yk)��/2, k�k1. (22)

By the choice of �, inequalities (20) and (22) imply that

dist(f k(z), f k(p′)) → 0 as k → ∞.

Combining this relation with (21), we see that

dist(f k(p′), yk) → 0 as k → ∞.

It remains to set xk0+k = yk for k � 0 and take successfully xk0−1 ∈
ψ−1
k0−1(y0), xk0−2 ∈ψ−1

k0−2(xk0−1), and so on (recall that the mappings ψk are
assumed to be surjective). Lemma 2 is proved.

To complete the proof of Theorem 1, now we are going to show that
any of the sets Int 1(P) mentioned in its statement consists of �-stable dif-
femorphisms.

Let us say that a diffeomorphism f of a closed smooth manifold has
the property HP if any of its periodic points is hyperbolic; denote F =
Int 1(HP). It was shown by Hayashi and Aoki in [17,18] that F ⊂�S.

Lemma 3. Int 1(WILmSP)⊂F .

Proof. To obtain a contradiction, assume that there exists a diffeo-
morphism f ∈ Int 1(WILmSP) \ F . In this case, there exists a
C1-neighborhood W of f such that W ⊂ Int 1(WILmSP) and W contains
a diffeomorphism g having a nonhyperbolic periodic point p (let m be the
period of p; we denote pi =g i(p), i=0, . . . ,m−1).

Let us fix a C1-neighborhood W ′ ⊂W of g. First, we assume that the
derivative Dgm(p) has an eigenvalue 1.

Obviously, we can find a diffeomorphism h∈W ′ (by the choice of W ′
and W , h has the WILmSP) with the following properties:

(h1) pi =h i(p), i=0, . . . ,m−1 (i.e., p is a periodic point of h of per-
iod m);

(h2) there exist disjoint neighborhoods Ui of the points pi with local
coordinates yi such that

(h2.1) pi is the origin in the coordinates yi, i=0, . . . ,m−1;
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(h2.2) coordinates yi can be represented as yi = (vi,wi), where the
vector vi is one-dimensional and the vector wi is (n− 1)-dimensional (we
denote by n the dimension of M), so that the restriction hi =h|Ui is given
by the formula

hi(yi)= (rivi,Biwi), i=0, . . . ,m−1,

where the Bi are (n−1)× (n−1) matrices, and

r0 · · · rm−1 =1; (23)

(h2.3) there exists a number a > 0 independent of i such that if Vi =Ui ∩
{yi : |vi |�a, |wi |�a}, then

h(Vi)⊂Ui+1, i=0, . . . ,m−1

(as usual, we set pm=p0 and Um=U0).
Thus, we assume that the derivative Dhm(p) has an eigenvalue 1 of

multiplicity 1 and that h is linear in any of the neighborhoods Ui . Of
course, this can be achieved by an arbitrarily C1-small perturbation of g
and a proper choice of the neighborhoods Ui .

Since h is a diffeomorphism, there exists a number r >0 such that

|rj · · · rk|� r (24)

for any finite set of distinct indices j, . . . , k∈{0, . . . ,m−1}.
Let us construct a p.c. method �={ψk} as follows. We set ψ0 =id; for

k�1, we define ψk in the sets Vi by the formula

ψk(yi)=
(
rivi + signvi

ri

k
,Biwi

)
.

Clearly, it is possible to construct the mappings ψk so that they are conti-
nuous on M and analogs of relations (9) hold with f replaced by h.

Since h has the WILmSP, there exists a pseudotrajectory ξ = {xk}
generated by the method � for which equality (7) holds with the point
p having properties (h1) and (h2) (of course, in this case ω(p) is the ω-
limit set of the trajectory O(p,h); in fact, this set consists of the points
p0, . . . , pm−1).

Let us show that there exist indices k0 � 1 and i ∈{0, . . . ,m− 1} such
that

xk ∈Vk′ , k�k0, where k′ = i+k (mod m). (25)

Indeed, since analogs of relations (9) for h and property (h2.3) hold, there
exists k1 such that

ψk(Vj )⊂Uj+1, k�k1, j =0, . . . ,m−1. (26)
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Equality (7) implies that there exists k0 �k1 such that

xk ∈V0 ∪· · ·∪Vm−1, k�k0.

Since the neighborhoods Ui are disjoint, the above relation combined with
inclusions (26) proves that if k� k0 and xk ∈Vj , then xk+1 =ψk(xk)∈Vj+1
(of course, we set Vm=V0). This proves inclusions (25).

For definiteness, let us assume that i=0 and denote zk=xk+k0 for k�
0. Thus, zk ∈Vk′ , where k′ =k(mod m). Represent zk= (vk,wk) in the local
coordinates of Vk′ .

For 1�k< l, denote

σ(k, l)=
l∑
i=k

1
i
.

Obviously, σ(k, l) → ∞ if k is fixed and l → ∞.
By the definition of the mappings ψk,

|v1|= |r0v0|+ |r0|
k0
, |v2|= |r1r0v0|+ |r1r0|

k0
+ |r1|
k0 +1

, . . . ,

|vm−1|= |rm−2 · · · r0v0|+ |rm−2 · · · r0|
k0

+· · ·+ |rm−2|
k0 +m−2

and

|vm|= |v0|+ 1
k0

+· · ·+ |rm−1|
k0 +m−1

(27)

(we apply relation (23)).
Taking into account inequalities (24), we deduce from relation (27)

that

|vm|� |v0|+ rσ (k0, k0 +m−1).

Similarly, we see that if j → ∞, then

|vjm|� |v0|+ rσ (k0, k0 + jm−1) → ∞,

and we obtain a contradiction with inclusions (25).
If Dgm(p) has an eigenvalue λ=−1, then the reasoning is almost the

same as above in the case of λ=1. We take a diffeomorphism h∈WILmSP
with properties (h1) and (h2) and note that relation (23) is replaced by the
relation

(r0 · · · rm−1)
2 =1.
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We take the same convergent method � as above and note that relation
(27) is replaced by the relation

|v2m|= |v0|+ 1
k0

+· · ·+ |rm−1|
k0 +2m−1

.

The rest of the proof in this case is the same as above.
Now we assume that Dgm(p) has a complex eigenvalue λ that is a

root of 1, i.e., λν = 1 for some natural ν. We take a diffeomorphism h∈
WILmSP with the same property (h1) as in the first case and property
(h2) modified as follows: property (h2.2) is replaced by

(h2.2′) if the coordinate yi is represented as yi = (vi,wi), where the
vector vi is two-dimensional, the vector wi is (n−2)-dimensional, and vi=
(ρi cos θi, ρi sin θi), with ρi�0 and θi ∈ [0,2π), then the restriction hi=h|Ui
is given by the formula

hi(yi)= (riρi, θi +χi(mod 2π),Biwi), i=0, . . . ,m−1, (28)

where the Bi are (n−2)× (n−2) matrices, ri >0,

(r0 · · · rm−1)
ν =1 (29)

and

ν(χ0 +· · ·+χm−1)=0 (mod 2π). (30)

In this case, we construct a p.c. method � = {ψk} as follows. We set
ψ0 =id; for k�1, the mappings ψk are defined by the formula

ψk(yi)=
(
riρi + ri

k
, θi +χi(mod 2π),Biwi

)

in the sets Vi , continuous on M, and satisfy analogs of relations (9) with
f replaced by h.

If there exists a pseudotrajectory ξ ={xk} generated by the method �
for which equality (7) holds, then the same reasoning as in the first case
shows there exist indices k0 and i ∈ {0, . . . ,m− 1} such that relations (25)
hold.

We again assume that i=0, denote zk=xk+k0 for k�0, and represent
zk = (ρk, χk,wk) in the local coordinates of Vk′ .

We fix a number r >0 such that

r
µj
j · · · rµ0

0 � r, 0� j �m−1, 0�µj �ν. (31)

By the definition of the mappings ψk,

ρ1 = r0ρ0 + r0

k0
, ρ2 = r1r0ρ0 + r1r0

k0
+ r1

k0 +1
, . . .
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and

ρνm=ρ0 + 1
k0

+· · ·+ rm−1

k0 +νm−1
.

Hence,

ρνm�ρ0 + rσ (k0, k0 +νm−1),

where r satisfies inequalities (31) (we take into account that the numera-
tors of fractions in the expression for ρνm belong to the set of numbers
listed in the left-hand sides of inequalities (31)).

Similarly, we see that if j → ∞, then

ρjνm�ρ0 + rσ (k0, k0 + jνm−1) → ∞

and we obtain a contradiction with inclusions (25).
Finally, if Dgm(p) has an eigenvalue λ with |λ|=1 that is not a root

of 1 (i.e., λ= exp(iθ) with an irrational real θ/π ), we can find a diffeo-
morphism h ∈W ′ (recall that W ′ is a neighborhood of g belonging to
WILmSP) with the following properties: p is a periodic point of h of
period m, Dhm(p) has an eigenvalue λ that is a root of 1, and h satis-
fies conditions (h1) and (h2) (with (h2.2) replaced by (h2.2′)). For this
purpose, it is enough to approximate g by a diffeomorphism h′ with repre-
sentations (28) in the neighborhoods Ui , and then to perturb h′ by an
arbitrarily small change of r0 and χ0 to satisfy conditions (29) and (30)
(here we take into account that ν can be taken as large as we want). Thus,
this case is reduced to the previous one. Lemma 3 is proved.

Thus, Int 1(WILmSP) ⊂ �S. Since ILmSP⊂OILmSP⊂WILmSP, the
statement of Theorem 1 is proved for P=ILmSP, OILmSP, WILmSP.

Since LmSP⊂OLmSP, to complete the proof of Theorem 1, it is
enough to prove the following statement.

Lemma 4. Int 1(OLmSP)⊂F .

Proof. To get a contradiction, let us assume that there exists a
diffeomorphism f ∈ Int 1(OLmSP) \ F . In this case, there exists a C1-
neighborhood W of f such that W ⊂ Int 1(OLmSP) and W contains a dif-
feomorphism g having a nonhyperbolic periodic point P .

To clarify the main idea, let us treat in detail the simplest case where
P is a fixed point of g and the derivative Dg(P ) has an eigenvalue λ= 1
(below, we explain how to treat the remaining cases).
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Let us fix a C1-neighborhood W ′ ⊂W of g and a diffeomorphism h∈
W ′ (by the choice of W ′ and W , h has the OLmSP) with the following
properties:

(h3) P is a fixed point of h;
(h4) there exists a neighborhood U of the point P with local coordi-

nate y such that
(h4.1) P is the origin in the coordinate y;
(h4.2) the coordinate y can represented as y= (v,w), where the vector

v is one-dimensional and the vector w is (n− 1)-dimensional, so that the
restriction h′ =h|U is given by the formula

h′(y)= (v,Bw),
where B is a (n−1)× (n−1) matrix;

(h4.3) there exists a number a>0 such that if V =U ∩{y : |v|�a, |w|�
a}, then

h(V )⊂U.
Thus, we assume that h is linear in the neighborhood U and the deri-

vative Dh(P ) has an eigenvalue 1 of multiplicity 1. Of course, this can be
achieved by an arbitrarily C1-small perturbation of g and a proper choice
of the neighborhood U .

Now we perturb the diffeomorphism h as follows: we take a number
c∈ (0, a/3) and consider a mapping s such that s=h outside U , and the
restriction s′ = s|V is given by the formula

s′(y)= (t (v),Bw),
where t (v) is a C1 function with the following properties:

(t1) t (v)=v if either |v|� c or |v|�3c;
(t2) t (v)>v if c< |v|<3c.
Obviously, if c is small enough, we may construct s so that s is a dif-

feomorphism and s ∈W ′ (hence, s ∈OLmSP).
Let us consider the following pseudotrajectory ξ = {xk} of s: x0 = p

(i.e., the origin of U ), x1 = (c,0) (here and below, xk = (vk,0)), and the
values vk, k�2, are defined recursively by the formula

vk+1 =vk + bkc

k
,

where the numbers bk ∈ {1,−1} are chosen by the following rule:
b1 =· · ·= bk(1)−1 =−1, where k(1) is such that vk ∈ [−c, c] for k ∈ (1, k(1))
and vk(1) < −c; bk(1)+1 = · · · = bk(2) = 1, where k(2) is such that vk ∈
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(vk(1), c] for k ∈ (k(1), k(2)) and vk(2) > c, and so on; for a natural num-
ber m, bk(2m) = · · · = bk(2m+1)−1 = −1, where k(2m+1) is such that vk ∈
[−c, vk(2m)) for k ∈ (k(2m), k(2m+1) − 1) and vk(2m+1) < −c; bk(2m+1)
= · · · = bk(2m+2)−1 = 1, where k(2m+2) is such that vk ∈ (vk(2m+1), c] for
k∈ (k(2m+1), k(2m+2)−1) and vk(2m+2) >c.

It is easy to see that the analog of relation (3) holds for the sequence
ξ (with f replaced by s) and that ω(ξ)= [−c, c]×{w=0}. By assumption,
s ∈OLmSP; hence, there exists a point p such that the set ω(p) (the ω-
limit set of O(p, s)) satisfies equality (7).

The set V ′ = (−2c,2c)×{|w|<a} is a neighborhood of ω(ξ). Hence,
there exists an index k0 such that sk(p)∈V ′ for k�k0. Let sk(p)= (qk,wk).
Then qk+1 = t (qk) for k� k0. It follows from properties (t1) and (t2) that
if qk ∈ (−2c,2c) for all large k, then qk → c′ ∈ [−c, c] as k → ∞. Hence,
equality (7) cannot hold.

The contradiction obtained completes the consideration of the case
where g has a fixed point P such that the derivative Dg(P ) has an eigen-
value 1. The cases where g has a periodic point P of period m such that
the derivative Dgm(P ) has an eigenvalue 1 or −1 are treated similarly
(we may perturb the corresponding diffeomorphism s in the same way as
above to obtain a pseudotrajectory ξ whose ω-limit set contains a nonde-
generate segment, while the ω-limit set for any exact trajectory in a neigh-
borhood of ω(ξ) is a periodic orbit).

If g has a periodic point P of period m such that the derivative
Dgm(P ) has a complex eigenvalue λ that is a root of 1, we pass to
polar coordinates and construct (by a similar kind of perturbations that
influence the polar radius only) a pseudotrajectory ξ such that its ω-limit
set intersects all concentric circles of small radius in the 2-dimensional real
plane P passing through P and corresponding to λ, while the intersecton
of the ω-limit set for any exact trajectory with P in a neighborhood of
ω(ξ) belongs to a single circle. If λ is not a root of 1, we perturb the dif-
feomorphism once more (see the end of the proof of Lemma 3). Details
are left to the reader.

Thus, Theorem 1 is proved. Theorem 2 is a corollary of the following
Lemmas 5 and 6.

Lemma 5. If f ∈S, then f ∈TSLmSP.

Proof. Since f is structurally stable, there exists a number ε >0 and
neighborhoods Ui of the basic sets �i of f such that statement (V) (see
the proof of Lemma 2) holds for the neighborhoods Ui with �=2ε. Redu-
cing ε, if necessary, we may assume that there exist neighborhoods Vi of
the basic sets �i such that N(ε,Vi)⊂Ui .
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Since f is structurally stable, it has the POTP (see [1]). Hence, there
exists a number d > 0 such that if ξ = {xk} is a d-pseudotrajectory of f ,
then there exists a point p for which relation (2) holds.

We claim that this d has the property formulated in the definition of
the TSLmSP.

Indeed, consider a d-pseudotrajectory ξ of f for which relations (3)
and (5) hold. Find a point p for which relation (2) holds.

Since f is structurally stable, it is �-stable as well. It is shown in the
proof of Lemma 1 that there exists a basic set �i of f and a point q such
that f k(q) → �i and dist(f k(q), xk) → 0 as k → ∞.

There exists a number k1 such that xk ∈ Vi (hence, f k(p) ∈ Ui),
f k(q)∈Ui , and dist(f k(q), f k(p))<� for k�k1.

By statement (V), dist(f k(q), f k(p)) → 0 as k → ∞. We see that
dist(xk, f k(p))→ 0 as k → ∞. Similarly, one shows that dist(xk, f k(p))→
0 as k → −∞. Thus, relations (12) hold. The lemma is proved.

Lemma 6. If f ∈S, then f ∈TSILmSP.

Proof. First, we show that if f ∈S, then f has the ISP with respect
to continuous methods of the class �t considered in this paper (the proof
is almost parallel to that given in [10] for methods of the class �s , so we
only indicate the main differences). We denote below by TpM the tangent
space of M at p.

Since f ∈ S, there exist C > 0, λ ∈ (0,1) such that, for any p ∈M,
the trajectory O(p,f ) has a (C,λ)-structure (see [1]). This means that if
pk =f k(p), then there exist projections Pk, Qk in TpkM such that if Sk =
PkTpkM and Uk =QkTpkM, then

TpkM=Sk ⊕Uk, ‖Pk‖ ,‖Qk‖�C,

Df (pk)Sk ⊂Sk+1, Df−1(pk)Uk ⊂Uk−1,

∣∣Dfm(pk)v
∣∣�Cλm|v|, v∈Sk, m�0,

∣∣Dfm(pk)v
∣∣�Cλ−m|v|, v∈Uk, m�0.

We set

L0 =C2 1+λ
1−λ

and fix N �1 such that ||Df (r)||�N for r ∈M.
We note that the problem can be “linearized” similarly to [10], so we

work below in the corresponding “local” coordinates.
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For any point r ∈M and a vector w, we represent

f (r+w)=f (r)+Df (r)w+G(r,w)
and

f −1(r+w)=f −1(r)+Df −1(r)w+H(r,w)
and note that the following statements hold: G(r,0)= 0, H(r,0)= 0, and
there exists δ>0 such that if |w|, |w′|� δ, then

|J (r,w)−J (r,w′)|� 1
2NL0

|w−w′| for J =G,H.

Let us fix a point p∈M and a d-method �={ψk : k∈Z} of the class
�t with 2NL0d <δ; we denote pk=f k(p) and want to find a sequence xk
such that the points xk are close to pk, xk+1 =ψk(xk), k� 0, and xk−1 =
ψk−1(xk), k�0.

If we represent xk =pk + vk, then we obtain the following equations
for the unknown vectors vk:

vk+1 =Df (pk)vk +G(pk, vk)+ψk(pk +vk)−f (pk +vk), k�0

and

vk−1 =Df −1(pk)vk +H(pk, vk)+ψk(pk +vk)−f −1(pk +vk), k�0.(32)

Obviously, relations (32) are equivalent to the relations

vk =Df (pk−1)vk−1 −Df (pk−1)
[
H(pk, vk)+ψk(pk +vk)−f −1(pk +vk)

]
.

Thus, our problem is reduced to the search for a sequence V ={vk : k∈Z}
such that

vk+1 =Df (pk)vk + zk(V ),
where

zk(V )=G(pk, vk)+ψk(pk +vk)−f (pk +vk), k�1

and

zk(V )=−Df (pk−1)
[
H(pk, vk)+ψk(pk +vk)−f −1(pk +vk)

]
, k�0.

For a sequence W ={wk}, we set

||W ||∞ := sup
k

|wk|.
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The above-mentioned properties of the functions G and H imply that
if ||V ||∞ �2NL0d, then

||Z(V )||∞ � 1
2NL0

||V ||∞ +Nd.

Now the proof of the existence of the required sequence V repeats
literally the corresponding proof of Theorem 1 in [10] for the class �s .

The rest of the proof of Lemma 6 repeats the reasoning in the proof of
Lemma 5 since the constructed sequence xk satisfies relations (3) and (5).

To prove Theorem 3, we first note that we denote by S the set of all
structurally stable diffeomorphisms (on all closed smooth manifolds); the
symbols Int 1(TSLmSP) etc have a similar meaning. Thus, to show that the
sets considered are different, it is enough to show that there exists a mani-
fold for which the corresponding sets of diffeomorphisms are different.

For this purpose, we consider a special class P of �-stable diffeo-
morphisms of the 2-dimensional torus T 2; diffeomorphisms of that class
played an important role in the study of the weak shadowing property (see
[19]).

We say that f is a diffeomorphism of the class P if the following
conditions hold.

(P1) The nonwandering set of f consists of four hyperbolic fixed
points (we denote them o, s, q, r) such that s is a sink (an asymptotically
stable fixed point), o is a source (an asymptotically stable fixed point for
f −1), and q, r are saddles. We denote by Ws(p) and Wu(p) the stable and
unstable manifolds of a fixed point p, respectively.

(P2) Ws(r)\ {r}⊂Wu(o) and Wu(q)\ {q}⊂Ws(s).

Lemma 7. Let f be a diffeomorphism of the class P . If Ws(q) ∩
Wu(o) �=∅ and Wu(r)∩Ws(s) �=∅, then f has the TSLmSP.

Proof. If Wu(r) ∩Ws(q) = ∅, then the one-dimensional stable and
unstable manifolds do not intersect; hence, the transversality condition is
satisfied automatically, and the diffeomorphism f is structurally stable. In
this case, the statement of our lemma follows from Theorem 2.

Otherwise, the phase diagram � of f (see the proof of Lemma
1) contains the connection r → q. By the definition of the class P , �
contains the connections o → s, o → r, and q → s. By the assumption of
our lemma, � contains the connections o → q and r → s.

Let us say that a pseudotrajectory ξ = {xk} is of type (P,P ′), where
P,P ′ ∈ {s, o, q, r}, if xk → P as k → −∞ and xk → P ′ as k → ∞.

It follows from Proposition 3.3p of [12] that there exist neighborhoods
Us,Uo,Uq,Ur of the fixed points s, o, q, r and a number d > 0 such that if
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P,P ′ ∈ {s, o, q, r} and there exists a d-pseudotrajectory ξ ={xk} such that xk ∈
UP and xl ∈UP ′ for some l >k, then� contains a connection P → . . . → P ′.

Our diffeomorphism f is �-stable, hence � does not contain cycles
[3]. Thus, � does not contain connections s→ ·· · → o, r→ ·· · → o, q→
·· ·→o, s→·· ·→q, and s→·· ·→ r.

Hence, for the above-mentioned d, f does not have d-pseudotrajectories
of the types (s, o), (r, o), (q, o), (s, q), (s, r).

Now it follows from our description of the diagram � that if ξ is a
d-pseudotrajectory satisfying relations (3) and (5) (and hence having some
type (P,P ′) by Lemma 1), then either P =P ′ or � contains the connec-
tion P → P ′. In both cases, there exists a point p for which relation (12)
holds. The lemma is proved.

Remark 3. It is easy to see that the conditions of Lemma 7 are not
only sufficient but also necessary.

To prove this, let us first show that if

Ws(q)∩Wu(o)=∅ (33)

then

Wu(r)∩Ws(s)=∅ (34)

as well. To simplify notation, let us denote by G and G′ the connected
components of Ws(q) \ {q} and by H and H ′ the connected components
of Wu(r) \ {r}, respectively. If relation (33) holds, then G⊂Wu(r). Note
that G is a path connected subset of Wu(r) not containing r; hence, either
G⊂H or G⊂H ′. Assume that the first inclusion holds. It is well known
(see [3]) that there exists an injective continuous mapping a : R → H such
that a(R)=H and a(t) → r as t → −∞. Take a point x∈H ∩G and note
that a−1(f k(x)) → −∞ as k → −∞ and a−1(f k(x)) → ∞ as k → ∞.
Since G is a path connected subset of H , it follows that G=H . The same
reasoning shows that if relation (33) holds, then either G′ =H (but this is
impossible since G∩G′ =∅) or G′ =H ′.

Thus, if relation (33) holds, then we have a “double” saddle connec-
tion: connected components of Ws(q) \ {q} coincide with connected com-
ponents of Wu(r)\ {r}.

In this case, f does not have the TSLmSP. Indeed, for any d > 0,
we can construct a d-pseudotrajectory ξ = {xk} such that xk ∈Ws(r), k <

0, xk → o, k → −∞, xk ∈ Wu(r), k � 0, and xk → q, k → ∞. At the
same time, since relation (33) holds, we cannot find a point p such that
f k(p) → o, k → ∞, and f k(p) → q, k → ∞.
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The case of relation (34) is considered similarly.

Lemma 8. Int 1(TSLmSP)\TSILmSP �=∅.

Proof. Let us consider the following diffeomorphism of the class
P . Represent the torus T 2 as the rectangle [−2,2] × [−2,2] with identi-
fied opposite sides and with coordinates (y, z). We assume that the saddle
point q is the origin, its unstable manifold coincides with {0} × (−2,2),
and the sink s is represented by the points (0,−2) and (0,2). In addition,
we assume that f is linear in the square Q= [−1,1]× [−1,1]:

f (y, z)= (y/2,2z), (y, z)∈Q
and Ws(q)∩Q= [−1,1]×{0}.

Figure 1. To the proof of Lemma 8.

We assume that the phase diagram of f has the connections r →
q and r → s and the intersection of the unstable manifold Wu(r) with
[0,1] × [−2,2] is a curve belonging to [0,1] × [0,2] and having points of
one-sided tangency with Ws(q) (see Fig. 1). It is also assumed that

R := (−1/2,1/2)× (−2,0)∪ (−1/2,1/2)× (0,2)⊂Ws(s) (35)

and if (y, z)∈R and f (y, z)= (y′, z′), then

|y′|� |y| and |z′|> |z|. (36)

We claim that f does not have the TSILmSP. To get a contradiction,
assume that f has the TSILmSP and fix the corresponding d > 0. Let
us consider the following ts.c. d-method �. Denote Q′ = (−1/2,1/2) ×
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(−1/2,1/2) and define mappings ψk as follows: ψk=f−1 for k<0, ψ0 =f ,
and if k�1, then ψk =f outside Q′ and

ψk(y, z)= (y/2,2z+g(y, z)/k), (y, z)∈Q′,

where g is continuous and 0<g(y, z)<d/2 in Q′.
Since Wu(r)∩Ws(q) �=∅, there exists a pseudotrajectory ξ ={xk}∈G�

such that xk → q as k → ∞ and xk → r as k → −∞.
The definition of � and properties (35) and (36) imply that xk /∈R \Q′

for all k (otherwise, xl+1 =f (xl) for l� k, and xl → s as l → ∞). Hence,
there exists an index l such that xk ∈Q′ for k� l and xk /∈Q′ for k<l. Let
xk = (yk, zk).

Let us consider the following two possible cases.
Case 1. l�1. If zl �0, then

zl+1 =2zl +g(yl, zl)/ l >zl, zl+2>zl+1, . . .

and we get a contradiction with the relation zk → 0, k → ∞.
Hence, zl < 0. It remains to note that xl = f (xl−1), xl−1 ∈Q (hence,

zl−1<0) and xk=f (xk−1) for k� l−1 (hence, xl−1 ∈Wu(r), and zl−1 �0).
The contradiction obtained shows that case 1 is impossible.

Case 2. l <1. In this case, signzl = signzl+1 =· · ·=sign z0, and this case
is reduced to the previous one.

Thus, we have proved that f does not have the TSILmSP.
It is easy to see that the assumptions of Lemma 7 are satisfied for

any diffeomorphism C1-close to f . Hence, f ∈Int 1(TSLmSP). The lemma
is proved.

To complete the proof of Theorem 3, let us consider a diffeomor-
phism f of the class P with the same behavior in the square Q but with
a different position of Wu(r) in Q (see Fig. 2).

Consider a point p∈Wu(r)∩Ws(q)∩Q and assume that the connec-
ted component � of Wu(r) ∩Ws(q) containing p is a subset of IntQ.
Denote by π and π ′ the endpoints of � (if � is a point, then π=π ′ =p).
Let us say that the component � is two-sided if any neighborhoods V and
V ′ of the points π and π ′ (in the inner topology of Wu(r)) contain points
ρ= (Y,Z) and ρ′ = (Y ′,Z′), respectively, such that YY ′<0; i.e., the points
ρ and ρ′ lie to different sides of the line y= 0 (note that any component
shown in Fig. 2 is two-sided).
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Figure 2. To the proof of Lemma 9.

Lemma 9. If the considered diffeomorphism f of the class P has a
two-sided component �, then f ∈TSILmSP.

Proof. Clearly, it is enough to show that there exists d > 0 with the
following property: if � is a ts.c. d-method and P,P ′ is a pair of fixed
points of f such that Wu(P )∩Ws(P ′) �= ∅, then there exists a pseudotra-
jectory {xk}∈G� of type (P,P ′) (see Lemma 7).

If either P =P ′ or (P,P ′) is one of the pairs (o, s), (o, r), (o, q), (q, s),
(r, s), then obviously f has a (C,λ)-structure at O(p,f ), hence the requi-
red fact is proved by the same reasoning as Lemma 6.

Thus, it remains to consider the case (P,P ′)= (r, q). Take a point p
belonging to a two-sided component � and set pk =f k(p).

First we describe the main technical construction applied in the proof
(cf. a similar construction in [20]). For a continuous mapping ψ :M → M,
denote

Dist(f,ψ)=max
z∈T 2

dist(f (z),ψ(z)).

Assume that there exists a number λ>1 and positive numbers �,�1
with the following property (HC).

(HC) For any point pk, k�0, we can introduce coordinates (t, v) cen-
tered at pk such that the corresponding “inner” metrics determined by
these coordinates are equivalent to dist (with constants independent of k)
and if

Pk ={|t |��, |v|��} and P ′
k ={|t |��1, |v|��1}

then (HCI) if (t, v)∈Pk and f (t, v)= (t ′, v′)∈Pk+1, then t ′t � 0, v′v� 0,
|t ′|�λ−1|t |, and |v′|�λ|v|;
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(HCII) if a ∈ (0,�] and we denote by Cs(a, k) the segment of Ws(q)

of length 2a centered at pk (where the length is measured in the “inner”
metric of Pk), then Cs(�, k)=Pk ∩{v=0};

(HCIII) there exists a number d0 > 0 such that if ψ is a continuous
mapping of T 2 with Dist(f,ψ)<d0, then ψ(Pk)⊂P ′

k+1.
For simplicity of notation, we assume that all of the introduced

“inner” metrics coincide with dist.
Let {ψk :k�0} be a sequence of continuous mappings of T 2. For m�

0, denote

�m=ψm ◦ψm−1 ◦ · · · ◦ψ0.

Fix ε, β <� and introduce the sets Rk :=Rk(β, ε) := {|t | � β, |v| � ε},
R+
k :={|t |�β, v= ε}, R−

k :={|t |�β, v=−ε}, and R∗
k :=R+

k ∪R−
k , k�0.

Consider a continuous curve L : [0,1] → Rk. We say that the curve L
is a vertical arc in Rk if {L(0),L(1)} ⊂R∗

k and the endpoints L(0),L(1)
belong to different “horizontal” sides R+

k ,R
−
k of Rk.

Lemma 10. Assume that f has property (HC). For any ε, β>0, there
exists a number d1 > 0 with the following property. If {ψk : k � 0} is a
sequence of continuous mappings of T 2 such that Dist(f,ψk)<d1, then the
set

X={z∈R0 =R0(β, ε) : �m−1(z)∈Rm,m>0}

is a closed subset of R0 that intersects any vertical arc in R0.

Proof. Since the mappings ψk are continuous and the sets Rk are
closed, the set X is obviously closed.

To show that X intersects any vertical arc in R0, consider a conti-
nuous mapping ψ such that Dist(f,ψ) < d1, where d1 <d0 (see property
(HCIII)),

λε−d1>ε, and
β

λ
+d1<β. (37)

Let L : [0,1] → Rk be a vertical arc in Rk with endpoints L(0),L(1). We
claim that l=ψ(L) contains a vertical arc in Rk+1. First we note that l⊂
P ′
k+1 ∩{|t |�β}. The inclusion l⊂P ′

k+1 follows from property (HCIII); the
second desired inclusion follows from inequalities (37): if (t ′, v′)=ψ(t, v)∈
l, then

|t ′|� β

λ
+dist(f (t, v),ψ(t, v))<

β

λ
+d1<β.
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If (t ′, v′) is one of the points l0 = ψ(L(0)) and l1 = ψ(L(1)), then we
deduce from the inequalities

|v′|�λε−d1>ε

that l0, l1 /∈Rk+1.
Let (t (s), v(s)), s ∈ [0,1], be a parametrization of L. Consider the

function v′(s), where (t ′(s), v′(s))=ψ(t (s), v(s)).
Assume, for definiteness, that L(0)= (t0, ε) (i.e., L(0) ∈R+

k ). As was
shown above, v′(0) > ε and v′(1) < −ε in this case. Since the function
v′(s) is continuous, there exists a segment [s0, s1]⊂ (0,1) such that v′(s0)=
ε, v′(s1)= −ε, and v′(s) ∈ (−ε, ε) for s ∈ (s0, s1). Thus, L′(s)=ψ(L(s)) ∈
Rk+1, s ∈ [s0, s1], is the desired vertical arc.

Now we consider an arbitrary sequence of continuous mappings {ψk :
k� 0} of T 2 such that Dist(f,ψk)<d1 and a vertical arc L0 : [0,1] → R0.
It was shown above that there exists a segment σ1 ⊂ (0,1) such that L1 =
ψ0(L0(σ1)) is a vertical arc in R1. Applying the same reasoning once more,
we find a segment σ2 ⊂σ1 such that

L2 =�1(L0(σ2))=ψ1 ◦ψ0(L0(σ2))

is a vertical arc in R2, and so on. Obviously, any point z∈L0 correspon-
ding to a point of the infinite intersection of embedded segments

[0,1]⊃σ1 ⊃σ2 ⊃ . . .

belongs to the set X.
The lemma is proved.

Recall that p = p0 belongs to a two-sided component of Wu(r) ∩
Ws(q).

Obviously, there exist numbers λ,�,�1 and an index k1 such that
property (HC) is satisfied for k�k1.

Fix a neighborhood �0 of � in Ws(q) and let �1 be the closure of
�0. We may assume that f k1(�1) is a subset of Cs(�, k1) (see property
(HCII)).

Since k1 is finite, we can introduce coordinates in closed neighbo-
rhoods P ′

k of the points p0, . . . , pk1−1 so that property (HC) is satisfied
for k � 0 and the corresponding “inner” metrics are equivalent to dist
(with multipliers depending on λ,�, k1, etc; for example, one may take
P ′
k1−1 =f−1(P ′

k1
), modify the “induced” coordinates by proper expansions

and contractions, and so on). We denote these metrics by dist as well. In
addition, we assume that �<1/2 and �1 ⊂IntP0.
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For two points z, z′ ∈Wu(r), let us denote by [z, z′]r the segment of
Wu(r) joining z and z′.

By the definition of a two-sided component, we can find points ρ,ρ′ ∈
Wu(r)∩P0 such that the projection of [ρ,ρ′]r (with respect to inner coor-
dinates of P0) belongs to �0 and if ρ= (t, v) and ρ′ = (t ′, v′), then vv′<0.

There exists a number a > 0 such that ρ,ρ′ /∈ R′, where R′ =�1 ×
[−a, a]. Now we find points χ,χ ′ ∈Wu(r)∩R′ with the same properties as
ρ,ρ′ and such that the segments [ρ,χ ]r and [χ ′, ρ′]r do not intersect �1.

Fix ε >0 such that

dist(z,�1)>2ε, z∈ [ρ,χ ]r ∪ [χ ′, ρ′]r . (38)

Taking into account that the inner metrics in P ′
k are equivalent to dist

and applying the same reasoning as above, we can find a number d2 > 0
such that if {ψk : k� 0} is a sequence of continuous mappings of T 2 such
that Dist(f,ψk)<d2, then the set R∗ =�1 × [−ε, ε] contains a closed sub-
set X such that �m−1(z)∈Pm,m> 0, and X intersects any vertical arc in
R∗ (and, of course, the same is true for any vertical arc in R′).

Now we repeat the same procedure with the points pk, k � 0, map-
pings ψk, k<0, and the set [χ,χ ′]r instead of �1.

As a result, we can get a “rectangle” S0 ⊂R′ with “horizontal” axis
[χ,χ ′]r , with “horizontal” sides S1, S2, “parallel” to [χ,χ ′]r , and with
“vertical” sides S3, S4 containing the points χ,χ ′. We take S0 such that
the sides S3, S4 belong to the ε-neighborhoods of the points χ,χ ′ (so that
these sides do not intersect R∗ by inequalities (38)).

For this rectangle S0, we can find numbers �′ ∈ (0,1/2) and d3 > 0
such that if Dist(f−1,ψk)< d3 for k < 0, then S0 contains a closed set Y
with the following properties: if z∈Y , then

ψm ◦ · · · ◦ψ−1(z)∈N(�′, pm), m<0

and Y intersects any arc in S0 that joins the sides S1 and S2.
Denote X′ =X ∩ S0. Any arc L in S0 that joins the sides S3 and S4

can be extended to a vertical arc L′ in R′ by adding parts of the sides
S3, S4 and of the segments [ρ,χ ]r , [χ ′, ρ′]r . Such an arc L′ intersects X.
Inequalities (38) and the choice of S3, S4 imply that L′ ∩X=L∩X ∈X′.
Now we refer to the following topological statement (one can find a proof
in [20]).

Lemma 11. Let K be a square in the plane with sides K1,K2,K3,K4
such that the sides K1 and K3 are opposite. If A (B) is a closed subset of
K such that any arc in K joining K1 and K3 (any arc in K joining K2 and
K4) intersects A (respectively, B), then A∩B �=∅.
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Let d=min(d2, d3). Take a ts.c. d-method � and construct the correspon-
ding sets X′ and Y . By Lemma 11 applied to S0, X′ ∩ Y �= ∅. If we take
the pseudotrajectory ξ ∈G� with x0 ∈X′ ∩Y , then dist(xk,pk)�1/2 by the
choice of � and �′. Hence, ξ is of type (r, q). Lemma 9 is proved.

To complete the proof of Theorem 3, it remains to note that

• if a diffeomorphism f ∈P has a two-sided component of Wu(r)∩
Ws(q), then any diffeomorphism g, C1-close to f , has the same
property;

• there exist such diffeomorphisms f that are not structurally stable.

APPENDIX

Let M=S1 be the circle with coordinate x ∈ [0,1) and let f (x)=x+
a(mod 1), where a is irrational. To show that f does not have the LmSP,
consider any sequence ξ ={xk ∈S1 :k�0} such that

xk+1 =f (xk)+dk(mod 1),

where dk > 0, dk → 0 as k → ∞, and the series
∑
dk diverges. Obviously,

for any point p∈S1, the inequality |f k(p)−xk|>1/4 holds for an infinite
set of indices k>0, so that relation (4) does not hold. Thus, f /∈LmSP.

At the same time, for any sequence ξ = {xk ∈ S1 : k � 0} for which
condition (3) holds, ω(ξ)=S1. Indeed, take any point r ∈S1 and any posi-
tive ε. Let U be the ε-neighborhood of r. Since f is an irrational rotation,
there exists N >0 such that

{f n(x) : 0�n�N}∩U �=∅

for any x ∈S1. Take an index l such that

l+N∑
k=l

|f (xk)−xk+1|<ε.

There exists n∈ [0,N ] such that f n(xl)∈U ; in this case,

|xl+n−f n(xl)| � |xl+n−f (xl+n−1)|+ |f (xl+n−1)−f 2(xl+n−2)|
+ · · · |f n−1(xl+1)−f n(xl)|<ε

(we take into account that the Lipschitz constant of f equals 1). Hence,
|r−xl+n|<2ε. This shows that ω(ξ)=S1. Since ω(p)=S1 for any p∈S1,
f ∈OLmSp.
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