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On a Model for Soft Landing with State-Dependent
Delay
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Automatic soft landing is modeled by a differential equation with state-
dependent delay. It is shown that in the model soft landing occurs for an
open set of initial data, which is determined by means of a smooth invariant
manifold.
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1. INTRODUCTION

This paper deals with a simple model for automatic soft landing.
What we have in mind is an object moving along a line and approach-
ing a particular spot without collision. The control mechanism involves a
nonconstant time lag and can be written as a differential equation with
state-dependent delay. Initial value problems for such equations are not
covered by the established theory of retarded functional differential equa-
tions [3,11], and some basic theory for equations with state-dependent
delay, from well-posedness to linearization and local invariant manifolds
at stationary points, has been developed only recently [17,12,22,21]. The
present paper is a case study which shows how to use the new framework.
Local invariant manifolds, notably a submanifold of the stable manifold,
will be essential in this study.
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In order to achieve soft landing, control by echo is used in the follow-
ing way. The object emits signals which are reflected by the desired land-
ing place and then, after reflection, sensed by the object. The travel time
of the signals is used to compute a position. This computed position may
be different from the true position of the object, due to its motion dur-
ing the signal travel time. Depending on the computed position the object
regulates its acceleration.

Details of the model are as follows. Let u ∈ R denote the position,
assume the desired landing place is at u=0, and let c denote the constant
speed of the signal. Let t denote time, and consider an approach from
above, i. e., with u=u(t)≥0. The equation relating the (true) position and
the signal running time s= s(t) is

c s=u(t− s)+u(t) (1.1)

for a signal emitted at time t−s and arriving after reflection at time t . The
corresponding computed position may be given by

p= c s

2
, (1.2)

since this yields the correct position at least if u(t)= u(t − s). The equa-
tions of motion are

u′ = v, (1.3)

v′ = a(p,p′) (1.4)

with a suitable acceleration function a : R2 →R, which should satisfy

a(0,0)=0

(no acceleration in landing position with speed zero).
Let us agree that soft landing is given by solutions (u, v) with

u(t)>0 for t < t0 ≤∞ and lim
t↗t0

(u(t), v(t))= (0,0). (1.5)

Solutions with u(t0)= 0 for some t0 and negative speed v(t0) < 0 corre-
spond to collisions, which are to be avoided. The main result of this paper
is that for the model (1.1–4) soft landing occurs and is not rare: we find
an open set of initial data for which solutions satisfy the relations (1.5).
This domain of soft landing will contain data with u strictly positive and
v strictly negative, representing initial descent.

Let us describe an obvious obstacle on the way to the open domain
of soft landing. For a local analysis it would certainly be good that the
state of interest, given by u= 0 = v, be an interior point of the domain
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on which one has a semiflow. In the model considered, neighborhoods of
the equilibrium given by u=0=v should contain states with u<0 (we are
not yet precise here what states are). For such, Eq. (1.1) would yield neg-
ative signal travel times s, and the equations of motion (1.3-4) would con-
tain advanced arguments of u (and v) if p (and p′) are replaced using the
right hand sides of Eqs. (1.1 and 2). For differential equations with both
delayed and advanced arguments, however, there seem no basic existence-
and-uniqueness results available, not to speak of linearization and local
invariant manifolds. An immediate idea how to avoid this difficulty is to
replace the term on the right hand side of Eq. (1.1) by

|u(t− s)|+ |u(t)|.
This would yield correct, nonnegative signal travel times also for motion
with u< 0, but lack of smoothness (only Lipschitz continuity properties)
would preclude the application of results on linearization and local invari-
ant manifolds from [12].

The paper is organized as follows. In Section 2, the choice of the
acceleration function a is discussed. The simplest of all possible models for
soft landing, without any delay, are linear vectorfields (u, v) �→ (v, a(u, v))

on the plane. If there is an open domain of soft landing for such a model
then the same may be expected for the model given by the system (1.1–4),
because due to Eq. (1.1) the state-dependent delay is small for positions
close to equilibrium. It should be noticed that even with a linear function
a the model (1.1–4) is nonlinear.

Section 3 recalls basic facts from [12,20,21] about semiflows for
differential equations with state-dependent delay and reformulates the
model (1.1–1.4) appropriately, namely as an initial value problem for an
Equation of the form

x′(t)=f (xt ).
Here f :U→R

2 is a functional on an open subset U of the Banach space

C1
2 =C1([−r,0],R2)

with suitable r >0, and

xt (s)=x(t+ s).
The associated initial value problem yields a semiflow of continuously

differentiable solution operators only for initial data in a positively invari-
ant, infinite-dimensional submanifold Xf ⊂ U . The problems mentioned
above, concerning solutions close to equilibrium, are reflected in the fact
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that the point 0∈C1
2 is not even contained in the domain U ; it lies on the

boundary of U and is a limit point of Xf .
Another aspect is that the definition of f in Section 3 involves a

decision how to interpret the term p′ in Eq. (1.4). Our choice and its con-
sequences for the original model are discussed in Remark 3.1.

In Section 4, the problem how to describe the dynamics close to 0 ∈
C1

2 is overcome by an extension g :V →R
2, V ⊃U, of f so that the asso-

ciated manifold X=Xg ⊂V ⊂C1
2 on which one has a nice semiflow con-

tains the stationary point 0. The extension employs odd continuation of
functions on the initial interval [−r,0] to functions on [−r, r].

Section 5 deals with the position of the tangent space T0X in C1
2 ,

with spectral properties of a linearized solution operator on T0X, and with
decompositions of T0X. These preparations are used in Section 6 where a
locally positively invariant fast manifold W in X helps to find solutions of
the extended equation from Section 4 with soft landing properties similar
to (1.5). The manifold W can be constructed following the steps toward
stable manifolds in Section 3.5 of [12].

In Section 7, the result on the extended equation yields a nonempty
open domain of soft landing for the model equation from Section 3. This
domain contains initial data ψ= (φ, η)∈C1

2 with φ strictly positive and φ′
strictly negative, also η strictly negative, which correspond to descent dur-
ing the whole initial time interval [−r,0].

Related models were proposed and analyzed in [1,2,18–20,23]. Ver-
sions of Eq. (1.1) occur also in models for the classical two-body-problem
of electrodynamics, see Driver’s work [4–10]. Other results on local invari-
ant manifolds for equations with state-dependent delay were obtained
by Krishnan [13,14] (unstable manifolds) and by Krisztin in [12,15,16]
(unstable manifolds, center manifolds).

2. THE ACCELERATION FUNCTION

In order to understand for which acceleration functions a in Eq. (1.4)
there is hope to obtain the desired open domain of soft landing we neglect
the control by echo here and restrict attention to linear systems

u′ = v, (2.1)

v′ = a(u, v), (2.2)

where

a(u, v)=α u+β v (2.3)

with real constants α,β. Trajectories cross the upper part of the vertical
axis from left to right.
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The characteristic equation for the eigenvalues of the system matrix(
0 1
α β

)

is

λ2 −βλ−α=0

with the solutions

λ1 = β

2
−

√
β2

4
+α, λ2 = β

2
+

√
β2

4
+α.

The only parameter configurations for which there exists an open domain
of soft landing, i. e., an open set of inital data so that the corresponding
solutions (u, v) : [0,∞)→R

2 satisfy

u(t)>0 for all t ≥0 and lim
t→∞(u(t), v(t))= (0,0)

are the following two. For

β <0 and − β2

4
<α<0, (2.4)

both eigenvalues λ1<λ2 are negative. The eigenvectors

(1, λj ), j ∈{1,2},
associated with λ1, λ2, respectively, point into the fourth quadrant, with
(1, λ1) lower than (1, λ2). Trajectories cross the right part of the horizontal
axis from top to bottom. The domain of soft landing contains the convex
subset of the right halfplane above the ray R

+(1, λ1); the ray R
+(1, λ2) in

the other eigenspace, in which convergence to (0,0) is weaker, belongs to
this subset.

For

β <0 and α=−β
2

4
,

both eigenvalues λ1 = λ2 = λ< 0 coincide, and there is only a one-dimen-
sional eigenspace R(1, λ), with (1, λ) pointing into the fourth quadrant.
The same set as before, with (1, λ) in place of (1, λ1), is contained in the
domain of soft landing.

In both cases initial data in the open right halfplane below the
ray R

+(1, λ1) produce collisions, i.e., the associated trajectories cross the
vertical axis (u=0) with negative speed (v<0) at some t >0.
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By Eq. (1.1), signal travel times are small for positions close to
landing. It may be expected that close to the stationary point given by u=
0 = v the dynamics of the full model is strongly influenced by that of the
simple system (2.1 and 2). For this reason and in order to keep the model
simple, we restrict attention from now on to the case that the acceleration
function is linear and given by (2.3) and that (2.4) holds, neglecting the
other, less generic of the two preceding cases.

3. THE MODEL

It seems reasonable to restrict attention to positions bounded by

|u|<b
for some b>0. Then Eq. (1.1) yields the a priori bound

2b
c

for the signal travel times s, which is the maximal delay in the system.
For r≥ 2b

c
, let

C=C([−r,0],R) and C2 =C([−r,0],R2)

denote the Banach spaces of continuous functions on the initial interval
[−r,0] with values in R and in R

2, respectively. The norms are given by

‖φ‖C = max
−r≤t≤0

|φ(t)| and ‖ψ‖C2 =‖φ‖C +‖η‖C,

respectively, where φ∈C and η∈C are the components of ψ= (φ, η)∈C2.
Analogously,

C1 =C1([−r,0],R) and C1
2 =C1([−r,0],R2)

denote the Banach spaces of continuously differentiable functions on the
initial interval [−r,0] with values in R and in R

2, respectively. The norms
are given by

‖φ‖C1 =‖φ‖C +‖φ′‖C,‖ψ‖C1
2
=‖φ‖C1 +‖η‖C1 ,

respectively, where ψ = (φ, η)∈C1
2 has first component φ ∈C1 and second

component η ∈ C1. The space C2
2 and its norm are defined accordingly.

The vectorspace of functions [−r,0]→R is denoted by

R
[−r,0].
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Later we shall set

r= 4b
c
.

Let us recall the convention in functional differential equations that
for a map x : I → R

n with [t − r, t ] ⊂ I for some t ∈ R the segment xt :
[−r,0]→R

n is defined by

xt (s)=x(t+ s).
We need some basic facts about semiflows generated by delay differ-

ential equations

x′(t)=f (xt )
with a functional f :U→R

2, U ⊂C1
2 open. Suppose

(S) f is continuously differentiable, each derivative Df (ψ) :C1
2 →R

2, ψ ∈
U , extends to a linear map Def (ψ) :C2 →R

2, and the map

U ×C2 � (ψ,χ) �→Def (ψ)χ ∈R
2

is continuous.
Assume also that the set

Xf ={ψ ∈U :ψ ′(0)=f (ψ)}
is nonempty.

Then Xf is a C1-submanifold of C1
2 of codimension 2, and the con-

tinuously differentiable maximal solutions x=xψ , x: [−r, tψ)→R
2, 0<tψ ≤

∞, of the initial value problems

x′(t)=f (xt ), x0 =ψ ∈Xf ,
constitute a continuous semiflow Ff on Xf , by

Ff (t,ψ)=xψt for ψ ∈Xf and 0≤ t < tψ .
All solution operators Ff (t, ·) on non-empty domains are continu-

ously differentiable, with

D2Ff (t,ψ) :TψXf →TFf (t,ψ)Xf

given by

D2Ff (t,ψ)χ =vψ,χt ,
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where v = vψ,χ is the continuously differentiable solution of the initial
value problem

v′(t)=Df (Ff (t,ψ))vt , v0 =χ ∈TψXf
for the linear variational equation along the solution xψ .
The tangent spaces of the manifold Xf are given by

TψXf ={χ ∈C1
2 :χ ′(0)=Df (ψ)χ}.

For more details and proofs of the preceding statements, see Section
3 in [12] and the references given there, notably [21,22].

We return to the model (1.1–4), with signal speed c>0 given and the
acceleration function as specified in Section 2. Let b > 0 and r ≥ 2b

c
. In

order to rewrite the model in the abstract form above we set

U ={(φ, η)∈C1
2 : 0<φ(t)<b and − c

3
<η(t) on [−r,0],‖φ′‖C <c}.

Solution segments, or initial data ψ = (φ, η) in this open convex
subset of C1

2 correspond to motion which is bounded by b and slower than
the signal speed c. The role of the condition on η will become apparent
when in the next section a functional g is defined.

Notice that, due to the contraction mapping principle, each φ ∈ C1

with 0 ≤φ(t)<b on [−r,0] and ‖φ′‖C <c uniquely determines a solution
s=σ(φ)∈ [0, r) of the equation

c s=φ(−s)+φ(0).
The resulting map

σ : {φ ∈C1 : 0≤φ(t)<b on [−r,0] and ‖φ′‖C <c}→R

has range in [0, r), satisfies

σ(0)=0,

is Lipschitz continuous and is, moreover, continuously differentiable on
the open subset

{φ ∈C1 : 0<φ(t)<b on [−r,0] and ‖φ′‖C <c}
of the space C1, as one can show by means of the Implicit Function The-
orem. For details, see [21].

On the way to a definition of a functional f :U → R
2 correspond-

ing to the equations (1.1–4) we can now use Equation (1.2) to replace the
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term p in Equation (1.4) by c
2σ(ut ). With regard to the term p′ in Equa-

tion (1.4) and in view of Eq. (1.2) we are interested in the derivatives of
the functions

σu : (0, t0)� t �→σ(ut )∈R,

for given continuously differentiable functions u : [−r, t0)→ R, 0< t0 ≤∞,
which satisfy 0 ≤ u(t) < b and |u′(t)|< c everywhere. Applications of the
Implicit Function Theorem to the equation

0=u(t− s)+u(t)− c s
in neighborhoods of the solutions (t1, σ (ut1)), 0< t1 < t0, yield that the
function σu is continuously differentiable on (0, t0). Hence

0=u′(t−σu(t))(1−σ ′
u(t))+u′(t)− c σ ′

u(t)

or

σ ′
u(t)=

u′(t−σ(ut ))+u′(t)
u′(t−σ(ut ))+ c (3.1)

on (0, t0). If t − σ(ut ) ≥ 0 (which holds for t ≥ r) and if there is a
differentiable function v : [−r, t0) → R so that Equation (1.3) holds on
[0, t0) then we have

σ ′
u(t)=

v(t−σ(ut ))+v(t)
v(t−σ(ut ))+ c , (3.2)

which in contrast to Equation (3.1) does not contain derivatives on the
right hand side.

Guided by Eq. (1.1–1.4) and (3.2) we define f :U→R
2 by

f (φ, η)=
(
η(0), a

(
c

2
σ(φ),

c

2
η(−σ(φ))+η(0)
η(−σ(φ))+ c

))
. (3.3)

Remark 3.1.

(i) The component η in the right hand side of the preceding defini-
tion (3.3), instead of the derivative φ′ as suggested by Eq. (3.1),
makes it possible to establish the smoothness property (S) for
the functional f , see proof of Proposition 4.3.

(ii) Concerning the motion under control by echo the choice of η
instead of φ′ means that for initial data ψ = (φ, η), solutions
x = xψ = (u, v) and times t ∈ [0, r) with t − σ(ut ) < 0 and η(t −
σ(ut )) 
=φ′(t−σ(ut )) the value of the acceleration a is not given
by the pair (p,p′) (computed position and its derivative, both at
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time t) but by a pair (p,p∗) where p∗ may differ from p′ and
depends on η(t − σ(ut )), i.e., on the second component of the
initial state, whose physical role is not clear for η(t − σ(ut )) 
=
φ′(t − σ(ut )). The chosen functional f can be interpreted as a
feedback control mechanism which is just a bit different from
the one described in Section 1. Notice that along solutions x=
(u, v) of the initial value problem

x′(t)=f (xt ) for t >0, x0 = (φ, η)∈Xf
both mechanisms coincide at all segments xt with t ≥ r, due to
u′
t = vt . Along solutions starting from special initial data in Xf

with φ′ =η both mechanisms coincide for all t ≥0.
(iii) The following scenario how the control mechanism may be

started was suggested by the anonymous referee. Let −T <−r
and assume u(−T ) and u′(−T ) are known. Choose a smooth
steering function as : [−T ,∞)→R. Then the equation

u′′(t)=as(t)
and the initial data determine position and speed of the mod-
eled object for t ≥−T . Assume that for |t |≤ r we have

0<u(t)<b and − c

3
<u′(t)<c.

Suppose that at t = 0 the object begins to send signals. After
reflection, the returning first signal is received at t = t0 = σ(ut0)
given by the unique solution of the equation

c t0 =u(0)+u(t0),
we have 0< t0 < r. The returning first signal triggers the auto-
matic control mechanism: for t ≥ t0, the motion of the object
is no longer given by u′′ = as , but by the solution of the initial
value problem

x′(t)=f (xt ) for t ≥ t0, xt0 = (ut0 , u′
t0
),

as long as the first component of x remains positive.
(iv) Another possibility to obtain a functional with property (S)

from the original model (1.1–4) is to replace p′ in Eq. (1.4) by
a difference quotient, at the cost of an additional constant time
lag. As we are mainly interested in the dynamical properties of
position control by echo we prefer to avoid additional delays.
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Proposition 3.2.

(i) f (ψ)→0 as ψ→0,
(ii) Xf 
=∅.

Proof. (i) For U � ψ = (φ, η) → 0, σ(φ) → σ(0) = 0, by continuity.
Combine this with the definition of f and η→0 to complete the proof.

(ii) Pick φ ∈C1 with 0<φ(t)< b on [−r,0],‖φ′‖C <c and − c
3 <φ

′(0).
Then σ(φ) > 0. Consider all η ∈ C1 with η(0) = φ′(0) ∈ (− c

3 , c).
Using σ(φ)>0 it is easy to find such a function η which in addi-
tion satisfies

η′(0)=a
(
c

2
σ(φ),

c

2
η(−σ(φ))+η(0)
η(−σ(φ))+ c

)
= c

2
ασ(φ)+ c

2
β
η(−σ(φ))+η(0)
η(−σ(φ))+ c

and − c
3 <η(t) on [−r,0]. Then, ψ = (φ, η)∈U and ψ ′(0)= f (ψ),

which means ψ ∈Xf . ��
Remark 3.3. The problem that values η(t) 
= φ′(t), −r ≤ t < 0, for

initial data ψ = (φ, η)∈Xf have no physical meaning can be avoided by
restricting attention to initial data of the form

ψ= (φ, J (φ))∈Xf

with a fixed map

J : {φ ∈C1 : 0<φ(t)<b on [−r,0], ‖φ′‖C <c}→C1.

Existence of such maps should be obvious from proof of Proposition
3.2 (ii).

4. EXTENSION

We need the vectorspace R
[−r,r] and the Banach spaces C([−r, r],R)

and C1([−r, r],R), which are analogous to the spaces R
[−r,0], C, C1 in the

preceding section, as well as the linear evaluation functional

ev0 : R[−r,0] �φ �→φ(0)∈R

and the nonlinear evaluation map

ev : R[−r,r] × [−r, r]� (φ, t) �→φ(t)∈R,



604 Walther

which has a continuously differentiable restriction to the open subset
C1([−r, r],R)× (−r, r) of the Banach space C1([−r, r],R)×R, with partial
derivatives given by

D1ev(φ, t)φ̃= φ̃(t) and D2ev(φ, t)1=φ′(t).

Notice also that the map

C([−r, r],R)× [−r, r] ev→R

is continuous, due to the estimate

|φ(t)−φ0(t0)|≤ |φ(t)−φ0(t)|+ |φ0(t)−φ0(t0)|≤‖φ−φ0‖+ |φ0(t)−φ0(t0)|.

In order to extend the functional f to a larger domain which contains
0∈C1

2 we begin with the signal travel time functional σ . First, consider the
linear operator

E : R[−r,0] →R
[−r,r]

of odd extension which is given by

(Eφ)(t)=2φ(0)−φ(−t) for 0<t ≤ r
and

(Eφ)(t)=φ(t) for − r≤ t ≤0.

The induced maps

C
E→C([−r, r],R)

and

C1 E→C1([−r, r],R)
are continuous, both with norm equal to 3. Fix

r= 4b
c

from now on. For any given φ∈C1 with ‖φ‖C <b and ‖φ′‖C <c the equa-
tion

c t= (Eφ)(−t)+φ(0) (4.1)
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has a unique solution t = τ(φ)∈ (−r, r). This follows as in proof of Prop-
osition 8 in [21] by means of the Contraction Mapping Principle since

|(Eφ)′(−t)|≤‖φ′‖C <c
and

|(Eφ)(−t)+φ(0)|≤4‖φ‖C <4b.

We obtain a map

τ : {φ ∈C1 :‖φ‖C <b and ‖φ′‖C <c} → (−r, r)⊂R,

which extends σ and is Lipschitz continuous.

Proposition 4.1.

(i) τ(φ)=0 if and only if φ(0)=0, in particular, τ(0)=0.
(ii) τ is continuously differentiable, with

Dτ(φ)φ̃= (Eφ̃)(−τ(φ))+ φ̃(0)
(Eφ)′(−τ(φ))+ c .

Proof. The proof of the equivalence in assertion (i) is immediate from
Eq. (4.1). To prove assertion (ii) we shall apply the Implicit Function The-
orem to Eq. (4.1) in the form

0= (Eφ)(−t)+φ(0)− c t=G(φ, t),
with

G : {φ ∈C1 :‖φ‖C <b and ‖φ′‖C <c}× (−r, r)→R

given by

ev ◦ ((E ◦pr1)× (− id ◦pr2))+ ev0 ◦pr1 − c pr2,
where pr1 and pr2 denote the projections onto the first and second com-
ponent of elements in R

[−r,0] ×R, respectively. It is almost obvious that the
map G is continuously differentiable. At each zero (φ0, t0)= (φ0, τ (φ0)) of
G we have

D2G(φ0, t0)1 = lim
h↘0

1
h
((Eφ0)(−t0 −h)− (Eφ0)(−t0))− c

= −(Eφ0)
′(−t0)− c<0,

so D2G(φ0, t0) is an isomorphism, and the Implicit Function Theorem
yields that for φ close to φ0 the unique solution τ(φ) of Eq. (4.1) is given
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by a continuously differentiable function. The formula for the derivative
follows from

0 = D1G(φ, τ(φ))φ̃+D2G(φ, τ(φ))[Dτ(φ)φ̃]

= D1G(φ, τ(φ))φ̃+Dτ(φ)φ̃ ·D2G(φ, τ(φ))1

= (Eφ̃)(−τ(φ))+ ev0(φ̃)+Dτ(φ)φ̃[−(Eφ)′(−τ(φ))− c]. ��
Consider the linear extensions

Deτ(φ) :C→R, φ ∈C1 with ‖φ‖C <b and ‖φ′‖C <c,
given by

Deτ(φ)φ̂= (Eφ̂)(−τ(φ))+ φ̂(0)
(Eφ)′(−τ(φ))+ c .

The next result shows that τ has the smoothness property (S).

Proposition 4.2. The map

{φ ∈C1 :‖φ‖C <b,‖φ′‖C <c}×C � (φ, φ̂) �→Deτ(φ)φ̂ ∈R

is continuous.

Proof. Use continuity of the maps C([−r, r],R)× (−r, r) ev→ R, C
E→

C([−r, r],R), τ : C1 E→C1([−r, r],R), and

C1([−r, r],R)�φ �→φ′ ∈C([−r, r],R). ��

Now consider the convex open neighborhood

V ={(φ, η)∈C1
2 :‖φ‖C <b,‖φ′‖C <c,− c3 <η(t) on [−r,0]}

of 0∈C1
2 . Notice that the condition

− c
3
<η(t) on [−r,0]

guarantees 0 
= (Eη)(−τ(φ))+ c for (φ, η)∈V . The functional g :V → R
2

given by

g(φ, η)=
(
η(0), a

(
c

2
τ(φ),

c

2
(Eη)(−τ(φ))+η(0)
(Eη)(−τ(φ))+ c

))

satisfies

g(ψ)=f (ψ) on U ⊂V.
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Obviously,

g(0)=0

and

0∈Xg ={ψ ∈V :ψ ′(0)=g(ψ)}.
Incidentally, notice that for ψ= (φ, η)∈Xg,

φ′(0)=η(0)∈
(
− c

3
, c

)
.

Proposition 4.3. The functionals g and f have property (S).

Proof. 1. Consider g. We only show that the map

h :V � (φ, η) �→ (Eη)(−τ(φ))+η(0)
(Eη)(−τ(φ))+ c ∈R

has property (S), as the remaining parts of the proof that g has prop-
erty (S) are almost obvious. Continuous differentiability of h is a conse-
quence of the chain and quotient rules combined with the following facts:
The map C1

2 � (φ, η) �→ η(0)∈ R is linear and continuous, C1([−r, r],R)×
(−r, r) ev→R is continuously differentiable, C1 E→C1([−r, r],R) is linear and
continuous, τ is continuously differentiable. To compute the derivatives of
h, consider first the map

k :V →R

given by

k(φ, η)= (Eη)(−τ(φ))= (ev ◦ ((E ◦ pr2)× (−τ ◦ pr1)))(φ, η),

where pr1 and pr2 denote the projections onto the first and second com-
ponent of elements in V ⊂C1

2 , respectively. The map k is continuously
differentiable, and for (φ, η)∈V and (φ̃, η̃)∈C1

2 we have

D1k(φ, η)φ̃ = −(Eη)′(−τ(φ))(Dτ(φ)φ̃),
D2k(φ, η)η̃ = (Eη̃)(−τ(φ)),

hence

Dk(φ, η)(φ̃, η̃) = D1k(φ, η)φ̃+D2k(φ, η)η̃

= −(Eη)′(−τ(φ))(Dτ(φ)φ̃)+ (Eη̃)(−τ(φ)).
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It follows that

Dh(φ, η)(φ̃, η̃)

= [Dk(φ, η)(φ̃, η̃)+ η̃(0)][k(φ, η)+ c]− [k(φ, η)+η(0)]Dk(φ, η)(φ̃, η̃)
(k(φ, η)+ c)2

= [(Eη)(−τ(φ))+ c]−2{[(Eη̃)(−τ(φ))− (Eη)′(−τ(φ))(Dτ(φ)φ̃)+ η̃(0)]
×[(Eη)(−τ(φ))+ c]− [(Eη)(−τ(φ))+η(0)]
×[(Eη̃)(−τ(φ))− (Eη)′(−τ(φ))(Dτ(φ)φ̃)]}.

For each (φ, η)∈V consider the linear extension

Deh(φ, η) :C2 →R

given by

Deh(φ, η)(φ̂, η̂)

= [(Eη)(−τ(φ))+ c]−2{[(Eη̂)(−τ(φ))− (Eη)′(−τ(φ))(Deτ(φ)φ̂)+ η̂(0)]
×[(Eη)(−τ(φ))+ c]− [Eη)(−τ(φ))+η(0)][(Eη̂)(−τ(φ))

−(Eη)′(−τ(φ))(Deτ(φ)φ̂)]}
for (φ̂, η̂)∈C2. Continuity of the map

V ×C2 � (φ, η, φ̂, η̂) �→Deh(φ, η)(φ̂, η̂)∈R

is a consequence of Proposition 4.2 combined with continuity of the maps

C
ev0→R and C1 ev0→R, k,

{φ ∈C1 :‖φ‖C <b,‖φ′‖C <c}×C � (φ, η̂) �→ (Eη̂)(−τ(φ))∈R

and

V � (φ, η) �→ (Eη)′(−τ(φ))∈R.

Here continuity of the preceding two maps follows by means of
continuity of the evaluation map

C([−r, r],R)× (−r, r) ev→R.

2. Property (S) of f follows from property (S) of g and f =g|U . ��

We obtain that the set

X=Xg ={ψ ∈V :ψ ′(0)=g(ψ)}
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is a continuously differentiable submanifold of the space C1
2 , with codi-

mension 2, and 0∈X. Let F =Fg denote the semiflow on X generated by
the maximal continuously differentiable solutions xψ : [−r, tψ)→R

2 of the
equation

x′(t)=g(xt ), (4.2)

which start at data x0 =ψ ∈X.
Also,

Xf ={ψ ∈U :ψ ′(0)=f (ψ)}=X∩U

is a continuously differentiable submanifold of C1
2 , with codimension 2.

5. LINEARIZATION

This section deals with the tangent space

T0X={ψ ∈C1
2 :ψ ′(0)=Dg(0)ψ}

of X at the stationary point 0 ∈ X of the semiflow F , and with spec-
tral properties of the derivative D2F(r,0) :T0X→T0X. In the next section
these spectral properties will be used to find a locally positively invariant
manifold of the semiflow which helps to separate soft landing from colli-
sions.

Using the map h from the proof of Proposition 4.3, we read off the
derivative

Dg(0,0)(φ, η) =
(
η(0), α

c

2
Dτ(0)φ+β c

2
Dh(0,0)(φ, η)

)

=
(
η(0), α

c

2
2φ(0)

1
c

+β c
2

2η(0)c
c2

)

= (η(0), αφ(0)+βη(0)).

Hence

T0X=
{
ψ ∈C1

2 :ψ ′(0)=
(

0 1
α β

)
ψ(0)

}
.

Let L⊂C1
2 denote the two-dimensional subspace of all linear data ψ ,

ψ(t)= t (a, b)

with (a, b)∈R
2.
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Proposition 5.1.

C1
2 =T0X⊕L

and the projection P :C1
2 →C1

2 along L onto T0X is given by

(Pψ)(t)=ψ(t)− t
(
ψ ′(0)−

(
0 1
α β

)
ψ(0)

)
.

If Pψ= ψ̂ then ψ̂(0)=ψ(0).
Proof. 1. Let ψ ∈T0X∩L. By ψ ∈L, ψ(0)=0. By the equation defin-

ing T0X, ψ ′(0)= 0. By linearity, ψ = 0. Hence T0X∩L={0}, and dimL=
2= codim T0X gives the asserted direct sum decomposition.

2. For ψ ∈C1
2 , define ψL ∈L by

ψL(t)= t
(
ψ ′(0)−

(
0 1
α β

)
ψ(0)

)
.

Then

(ψ−ψL)′(0)−
(

0 1
α β

)
(ψ−ψL)(0)

=ψ ′(0)−
(
ψ ′(0)−

(
0 1
α β

)
ψ(0)

)
−

(
0 1
α β

)
(ψ(0)−0) = 0,

hence ψ−ψL∈T0X. It follows that Pψ=ψ−ψL, which shows the asser-
tion about P . ��

Remark 5.2. It can be shown that for all ψ ∈X, C1
2 = TψX⊕L, but

we shall not need this in the sequel.

Later we shall use that P defines a manifold chart at 0 ∈X, i.e., a
diffeomorphism from an open neighbourhood N of 0 in X onto an open
neighborhood of 0 in the subspace T0X of C1

2 .
Before turning to properties of the derivative D2F(r,0) it is conve-

nient to have a look at the closed subspace

Z={ψ ∈C1
2 :ψ(0)=0}

of codimension 2 and the closed subspace

Q=T0X∩Z
of T0X.
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Proposition 5.3.
PZ=Q and Z=Q⊕L.

Proof. The first equation follows from Q ⊂ T0X = PC1
2 in combination

with the last assertion of Proposition 5.1. We have Q∪L⊂Z and Q∩L⊂
T0X∩L={0}. In order to have also Z⊂Q+L, notice that for ψ ∈Z,

ψ=Pψ+ (id −P)ψ, with Pψ ∈PZ=Q, (id −P)ψ ∈L. ��
The linear variational equation along the zero solution, namely

y′(t)=Dg(0)yt
or equivalently, with y= (w, z), the system

w′(t) = z(t), (5.1)

z′(t) = αw(t)+β z(t), (5.2)

shows that the space Q⊂ T0X is positively invariant under the operators
D2F(t,0), t ≥0, as for initial data in Q trivial continuation

y(t)=0 for all t ≥0,

yields a continuously differentiable solution y : [−r,∞)→R
2.

Remark 5.4. In terminology of linear retarded functional differential
equations with state space C2, solutions which decay to zero for t→∞ faster
than any exponential are called small solutions; solutions of the present var-
iational equation with segments yt ∈Q are small solutions.

Recall that in Section 2 we made the assumption that (2.4) holds. For
j ∈{1,2} define ψj ∈C1

2 by

ψj (t)= eλj t (1, λj )
and set

Gj =Rψj ⊂C1
2 .

From here on, the reader may find it convenient to draw schematic figures
of subspaces and invariant manifolds (Sections 6, and 7) contained in T0X.

Proposition 5.5. For j ∈{1,2} we have

ψj ∈T0X, D2F(r,0)ψj = eλj rψj , kerD2F(r,0)=Q,
and

T0X=Q⊕G1 ⊕G2.
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Proof. 1. The results of Section 2 in combination with the explicit
characterization of T0X and the fact that the linear variational equation
at the zero solution reduces to the ODE (5.1 and 5.2) yield the first two
parts of the assertion. Recall that for initial data ψ ∈Q, D2F(t,0)ψ=0 for
all t≥ r. In particular, Q⊂kerD2F(r,0). The reversed inclusion is obvious
since D2F(r,0)ψ=0 implies (ψ ∈T0X and) ψ(0)= (D2F(r,0)ψ)(−r)=0.

2. Proof of the decomposition. The assertion follows easily from the
inclusion

T0X⊂Q⊕ (Rψ1 +Rψ2)

in combination with the equation

Q∩ (Rψ1 +Rψ2)={0}.
To obtain the preceding inclusion, notice that for ψ ∈T0X given the system

c1ψ1(0)
tr + c2ψ2(0)

tr =ψ(0)tr

has a solution (c1, c2)
tr ∈R

2 since

det(ψ1(0)
tr ψ2(0)

tr )=det
(

1 1
λ1 λ2

)
=λ2 −λ1 
=0.

Then

ψ= (ψ− c1ψ1 − c2ψ2)+ c1ψ1 + c2ψ2

with the term in brackets in Q, and the inclusion follows.
Next, suppose ψ ∈Q∩ (Rψ1 +Rψ2). Then ψ= c1ψ1 + c2ψ2 with reals

c1, c2, and

0=ψ(0)tr = c1ψ1(0)
tr + c2ψ2(0)

tr =
(

1 1
λ1 λ2

)(
c1
c2

)
;

as the determinant of the matrix does not vanish, we get c1 = 0 = c2, and
thereby ψ=0. ��

In order to describe the desired open domain of soft landing we shall
use a somewhat different decomposition of the tangent space. This is pre-
pared in the final result of this section.

Proposition 5.6. There exists ψ∗ = (φ∗, η∗) ∈ T0X with φ∗(0) = 0 <
η∗(0), ‖ψ∗‖C1

2
=1, and

T0X=Q⊕G1 ⊕Rψ∗.
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Proof. For ψ = (φ, η)∈C1
2 with φ(0)= 0<η(0), ψ∗ = (φ∗, η∗)=Pψ ∈

T0X satisfies φ∗(0)=0<η∗(0), due to the last assertion of Proposition 5.1.
We may assume ‖ψ∗‖C1

2
=1. It remains to show that ψ∗ /∈Q⊕G1. Suppose

this is false. Then

ψ∗ =ψQ+ cψ1 with ψQ ∈Q, c∈R,

ψ∗(0)=0+ cψ1(0)= c
(

1
λ1

)
.

Either c= 0 and η∗(0)= 0, or c 
= 0 and φ∗(0) 
= 0, which both contradict
the properties of ψ∗. ��

6. THE FAST MANIFOLD AND APPROACH FROM ABOVE

In this section we find solutions of Eq.(4.2) with the extended func-
tional g which have soft landing properties similar to (1.5). We need a
continuously differentiable and locally positively invariant manifold W ⊂
N ⊂X of the semiflow with tangent space

T0W =Q⊕G1.

Such a manifold can be constructed following the procedure in Section 3.5
of [12], beginning with the invariant decomposition in Proposition 5.5 and
an estimate

‖D2F(r,0)
jψ‖C1

2
≤ cρj‖ψ‖C1

2

for all ψ ∈Q⊕G1 and all j ∈N, with constants ρ∈ (eλ1r , eλ2,r )⊂ (0,1) and
c> 0. The next step is an analog of Proposition 3.5.1 of [12], now about
a locally positively invariant manifold W<⊂T0X with T0W<=Q⊕G1 for
the map F(r, ·) in the local coordinates which are given by the projection
P . Infinitesimal generators which occur at the beginning of Section 3.5 in
[12] are not convenient for the present purpose, and can be avoided.

The fast manifold W which we obtain as just indicated has the prop-
erty that for each ψ ∈W , tψ =∞ and the flowline F(·,ψ) decays to 0 for
t→∞ faster than the exponential t �→ eλ2t . For ψ in some neighborhood
of 0 in W , F(t,ψ)∈W for all t≥0. Also, for each λ∈ (λ1, λ2) given there
is a constant cλ >0 so that data ψ ∈X with tψ =∞ and

‖F(t,ψ)‖C1
2
e−λ t ≤ cλ on [0,∞) (6.1)

belong to W . Fix some λ∈ (λ1, λ2).
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The spectral properties of D2F(r,0) also imply that the stationary
point 0 ∈X is stable and exponentially attracting. This can be shown by
a procedure which is simpler than the construction of the manifold W as
sketched above, or by an application of the Principle of Linearized Stabil-
ity from Section 3.6 in [12].

In addition we need to consider solutions xψ which start from data
ψ ∈ Z ∩X. The next proposition establishes among others that the seg-
ments of such solutions merge into the stationary point at t= r (they are
special small solutions of the nonlinear equation (4.2)), and that a neigh-
borhood of 0 in Z∩X is contained in the manifold W .

Using the result mentioned in Remark 5.2 one can also show that the
inclusion map Z ↪→C1

2 intersects X transversally, which implies that Z∩X
is a continuously differentiable submanifold of Z and of C1

2 . As this will
not be employed in the sequel, we omit the proof here.

Proposition 6.1. For ψ ∈Z∩X, tψ =∞, and for all t ≥0,

xψ(t)=0, x
ψ
t ∈Z∩X, and ‖xψt ‖C1

2
≤‖ψ‖C1

2
.

There exists an open neighborhood N1 ⊂N of 0 in X so that Z ∩N1 ⊂W
and

Q∩PN1 =P(Z∩N1)⊂PW.

Proof. 1. For any ψ = (φ, η)∈Z ∩V , φ(0)= 0, and thereby τ(φ)= 0.
Moreover, g(ψ)= 0. Now let ψ ∈Z ∩X be given. Then ψ ′(0)= g(ψ)= 0.
It follows that x0 =ψ and x(t)= 0 ∈R

2 for all t >0 define a continuously
differentiable function x : [−r,∞)→R

2, x= (u, v), with

‖ut‖C <b, ‖u′
t‖C <c, − c

3
<vt(s) on [−r,0]

for all t≥0. Consequently, xt ∈V ∩Z and x′(t)=0=g(xt ) for all t≥0. Now
the assertion on xψ becomes obvious.

2. The first statement of the proposition shows that for initial data
ψ ∈ Z ∩ X with ‖ψ‖C1

2
sufficiently small the estimate (6.1) holds. This
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implies Z∩N1 ⊂W for some open neighborhood N1 ⊂N of 0 in X. More-
over,

Q∩PN1 = (Z∩T0X)∩PN1 =PZ∩PN1 =P(Z∩N1)⊂PW. ��
In order to define sets above and below W we use the manifold chart

N
P→ PN ⊂ T0X and consider the submanifold PW ⊂ T0X with tangent

space

T0PW =DP(0)T0W =P(T0W)=P(Q⊕G1)=Q⊕G1.

For δ >0 let Qδ and G1,δ denote the open balls of radius δ and center 0
in the subspaces Q⊂T0X⊂C1

2 and G1 ⊂T0X⊂C1
2 , respectively. There exist

δ>0 and ε >0 so that the open box

B=Qδ +G1,δ + (−2ε,2ε)ψ∗ ⊂T0X

has the following properties: B ⊂PN , F([0,∞)×{ψ})⊂W for all ψ ∈W
with Pψ ∈B, and

PW ∩B={ψ+w(ψ)∈T0X :ψ ∈Qδ +G1,δ}
for a continuously differentiable map

w :Qδ +G1,δ → (−ε, ε)ψ∗

which satisfies w(0)=0 and Dw(0)=0. Due to the last assertion of Prop-
osition 6.1 we may assume Qδ ⊂PW , and obtain

w(ψ)=0 for ψ ∈Qδ. (6.2)

The complement B \PW is the union of two nonempty disjoint open sub-
sets w< and w>, with −εψ∗ ∈w< and εψ∗ ∈w>, which are both connected
(due to the bound for w which is half the radius of the Rψ∗-component
of B). Using (6.2) and connectedness we infer

Qδ + (−2ε,0)ψ∗ ⊂w< and Qδ + (0,2ε)ψ∗ ⊂w>.
The subset

w>>={ψ= (φ, η)∈w> :φ(0)>0}⊂B⊂T0X

is open as C1
2 � (φ, η) �→φ(0)∈R is continuous. Let N>> denote the open

subset of N ⊂X given by PN>>=w>>.
By asymptotic stability, there exists an open neighborhood N0 ⊂N1

of 0 in X so that for ψ ∈N0, tψ = ∞ and F(t,ψ)∈N1 for all t ≥ 0, and
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F(t,ψ)→0 as t→∞. We can also achieve PF(t,ψ)∈B⊂T0X for all t≥0
and ψ ∈N0.

The open set

N0 ∩N>>⊂N ⊂X
is nonempty. This follows easily from the fact that for every τ ∈ (0,1] there
exists ρτ >0 with τεψ∗ +ρψ1 ∈w>> for all ρ ∈ (0, ρτ ).

Proposition 6.2. (Soft landing properties for initial data above the fast
manifold). For ψ ∈N0 ∩N>> the solution x= xψ = (u, v) satisfies u(0)> 0,
u(t)≥0 for all t ≥0 and x(t)→0 as t→∞.

Proof. Let ψ ∈N0 ∩N>>, x= xψ = (u, v), yt =Pxt for all t ≥ 0. Then
x(t)→ 0 as t→∞ and yt ∈B for all t ≥ 0, and y0 ∈w>>. Proposition 5.1
yields (Pψ)(0)=ψ(0)= (φ(0), η(0)), and we infer u(0)=φ(0)>0. Asssume
u(t0)<0 for some t0>0. Then there is a smallest t1 ∈ (0, t0) with u(t1)=0;
on [0, t1), u(t)>0.

Case I: v(t1) > 0. Then u′(t1)= v(t1) > 0, hence u(t) < 0 for some t ∈
(0, t1), and we have a contradiction.

Case II: v(t1)= 0. Then F(t1,ψ)= xt1 ∈Z ∩N1. By Proposition 6.1,
xt ∈Z for all t ≥ t1 which contradicts u(t0)<0.

Case III: v(t1)<0. Then ψ̂= (φ̂, η̂)=yt1 =Pxt1 satisfies φ̂(0)=u(t1)=
0>v(t1)= ˆη(0), according to Proposition 5.1. We have

ψ̂− η̂(0)
η∗(0)

ψ∗ ∈Z∩T0X=Q,

hence

ψ̂ ∈Q+ η̂(0)
η∗(0)

ψ∗

and

η̂(0)
η∗(0)

<0.

Using this and ψ̂=yt1 ∈B we get

yt1 = ψ̂ ∈Qδ + (−2ε,0)ψ∗ ⊂w<.
As y0 ∈w>, continuity yields that for some t2 ∈ (0, t1),

yt2 ∈PW ∩B.
By the choice of B, xt ∈W for all t≥ t2. It follows that yt1 =Pxt1 ∈PW ∩B,
which contradicts yt1 ∈w<. ��
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7. INITIAL DESCENT AND SOFT LANDING

In this section, it is first verified that the set N0 ∩N>> ⊂X contains
data ψ= (φ, η) which satisfy

φ(t)>0>φ′(t) and 0>η(t) for − r≤ t ≤0. (7.1)

The inequalities for φ and φ′ describe sinking motion above ground dur-
ing the whole initial interval. Then we shall deduce from Proposition 6.2
that for such initial data the solutions of the model equation

x′(t)=f (xt )
with f :U→R

2 defined by (3.3) have the soft landing properties (1.5).
Choose s0>0 so that for |s|<s0, s ψ2 ∈B∩PN0. For each s∈ (−s0, s0)

define c(s)∈N0 ⊂N ⊂X by Pc(s)= sψ2.

Proposition 7.1. There exists s1 ∈ (0, s0) so that for each s∈ (0, s1)c(s)=
(φ, η) satisfies (7.1).

Proof. The continuously differentiable curve c : (−s0, s0)�s �→c(s)∈C1
2

with trace in N ⊂X satisfies c(0)= 0 and c′(0)=Dc(0)1 ∈ T0X. It follows
that

ψ2 = (P ◦ c)′(0)=Pc′(0)= c′(0).
Consequently, for ε1>0 with 0<ε1<min φ2 and max φ′

2 =max η2<−ε1<

0 there exists s1 ∈ (0, s0) so that for 0<s<s1 and for all t ∈ [−r,0] the point
c(s)= (φ, η) satisfies

ε1|s| ≥ ‖c(s)− c(0)− s c′(0)‖
= ‖c(s)− sψ2‖C1

2

≥ |φ(t)− s φ2(t)|+ |φ′(t)− s φ′
2(t)|+ |η(t)− s η2(t)|.

Dividing by s we infer from the choice of ε1 and from the properties of
ψ2 that φ(t)>0>φ′(t) and 0>η(t). ��

Let Pr :T0X→T0X be the projection along Rψ∗ onto Q⊕G1.

Proposition 7.2.

(id −Pr)ψ2 = λ2 −λ1

η∗(0)
ψ∗,

λ2 −λ1

η∗(0)
>0 and Pr ψ2 
=0.
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Proof. For some ψQ ∈Q and reals a, a∗,

ψ2 =ψQ+a ψ1 +a∗ψ∗.

Using φ2(0)= 1, ψQ = (φQ,ηQ), and φQ(0)= 0, φ1(0)= 1, φ∗(0)= 0, we
infer a=1. Also, η2(0)=λ2, ηQ(0)=0, η1(0)=λ1, η∗(0)>0. It follows that
λ2 =0+1 ·λ1 +a∗η∗(0), or

a∗ = λ2 −λ1

η∗(0)
>0.

We have Pr ψ2 
=0 since otherwise ψ2 ∈Rψ∗, hence φ2(0)=φ∗(0)=0, con-
tradicting φ2(0)=1. ��

Proposition 7.3. There exists s2 ∈ (0, s1) so that for each s∈ (0, s2) and
for all t ∈ [0,1],

t (id −Pr)s ψ2 + (1− t)s ψ2 ∈B \PW.

Proof. 1. The preceding proposition shows that the slope

sl(ψ2)=
‖(id −Pr)ψ2‖C1

2

‖Prψ2‖C1
2

is positive. Using w(0)=0 and Dw(0)=0 we find δ1 ∈ (0, δ) so that for
each ψ ∈Qδ1 +G1,δ1 with ψ 
=0 we have

sl(ψ+w(ψ))=
‖(id −Pr)(ψ+w(ψ))‖C1

2

‖Pr(ψ+w(ψ))‖C1
2

=
‖w(ψ)‖C1

2

‖ψ‖C1
2

<sl(ψ2).

Hence ψ + w(ψ) /∈ Rψ2 for such ψ . Choose s2 ∈ (0, s1) so that
Pr(s ψ2)∈Qδ1 +G1,δ1 for |s|<s2. Let s ∈ (0, s2) be given.

2. Proof of t (id −Pr)s ψ2 + (1− t)s ψ2 ∈B for 0≤ t≤1. As sψ2 ∈B, s ψ2 =
ψQ + a ψ1 + a∗ψ∗ with ‖ψQ‖C1

2
<δ, ‖aψ1‖C1

2
<δ and |a∗|< 2ε. It fol-

lows that (id −Pr)s ψ2 = a∗ψ∗ ∈B. Convexity of B implies the asser-
tion.

3. Proof of t (id −Pr)s ψ2 + (1− t)s ψ2 /∈PW .

3.1. The case t <1. Then

Pr(t (id −Pr)s ψ2 + (1− t)s ψ2)= (1− t)P r(s ψ2) 
=0,
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sl(t (id −Pr)s ψ2 + (1− t)s ψ2) =
‖(id −Pr)(t (id −Pr)s ψ2 + (1− t)s ψ2)‖C1

2

‖Pr(t (id −Pr)s ψ2 + (1− t)s ψ2)‖C1
2

=
‖t (id −Pr)s ψ2 + (1− t)(id −Pr)(s ψ2)‖C1

2

‖(1− t)P r(s ψ2)‖C1
2

= 1
1− t

‖(id −Pr)(s ψ2)‖C1
2

‖Pr(s ψ2)‖C1
2

= 1
1− t sl(s ψ2)= 1

1− t sl(ψ2)>sl(ψ2)

and

Pr(t (id −Pr)s ψ2 + (1− t)s ψ2) = (1− t)P r(s ψ2)∈ (1− t)(Qδ1

+G1,δ1)⊂Qδ1 +G1,δ1 .

By the choice of δ1, sl(ψ)<sl(ψ2) for all ψ ∈ (B ∩PW) \ {0} with Pr ψ ∈
Qδ1 +G1,δ1 . The preceding inequalities and the result of part 2 combined
yield the assertion.

3.2 The case t=1. Then

t (id −Pr)s ψ2 + (1− t)s ψ2 = (id −Pr)(s ψ2)

= s(id −Pr)ψ2 = s λ2 −λ1

η∗(0)
ψ∗ ∈Rψ∗ \ {0}.

By w(0)= 0, (B ∩PW)∩ Rψ∗ = {0}. Part 2 combined with the preceding
relations yields the assertion.

Corollary 7.4. For 0< s < s2, c(s)= (φ, η) satisfies (7.1) and belongs
to N0 ∩N>>.

Proof. Let s ∈ (0, s2) be given. Recall c(s) ∈N0. By Proposition 7.1,
c(s) = (φ, η) satisfies (7.1). By Proposition 7.3, s ψ2 and (id −Pr)s ψ2 ∈
Rψ∗ belong to the same connected component of B \PW . Since

(id −Pr)sψ2 = s(id −Pr)ψ2 = s λ2 −λ1

η∗(0)
ψ∗

and

s
λ2 −λ1

η∗(0)
>0

we have (id −Pr)s ψ2 ∈ w>. It follows that s ψ2 ∈ w>. Moreover, s ψ2 =
s(φ2, η2) and φ2(0)=1>0, and we obtain s ψ2 ∈w�. Hence c(s)∈N�.

��
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Consider f =g|U . Recall that for ψ= (φ, η)∈U ,

φ(t)>0 for all t ∈ [−r,0],

and

Xf =X∩U.
Let

�={ψ ∈N0 ∩N>> : (7.1) holds}.
Corollary 7.5. (Open domain of soft landing) The set � is a nonempty

open subset of the manifold Xf ⊂U , and the maximal continuously differentia-
ble solutions x : [−r, te)→R

2, x= (u, v), of the initial value problems

x′(t)=f (xt ), x0 =ψ ∈�, (7..2)

satisfy u(t)>0 on [−r, te) and

lim
t↗te

(u(t), v(t))= (0,0).

Proof. 1. By Corollary 7.4, � 
=∅. Proof that � is an open subset of
Xf : � is an open subset of the manifold X. We have �⊂X and

�⊂{(φ, η)∈V : 0<φ(t) on [−r,0]}=U,
hence

�⊂X∩U =Xf .
This implies the assertion.

2. Let ψ ∈ �. Proposition 6.2 says that the maximal continuously
differentiable solution x= (u, v) of the initial value problem

x′(t)=g(xt ), x0 =ψ,
satisfies u(0)>0, u(t)≥ 0 on [0,∞), and limt→∞ x(t)= 0. In case u(t)> 0
on [0,∞) we infer from (7.1) that u(t)>0 on [−r,∞). Thereby, xt ∈U for
all t ≥ 0. Consequently, x′(t)= g(xt )= f (xt ) for all t ≥ 0, and x is also a
maximal continuously differentiable solution of the initial value problem
(7.2). In the remaining case there exists t0> 0 with u(t)> 0 on [0, t0) and
u(t0)=0. By (7.1), u(t)>0 on [−r, t0). As u is nonnegative, u′(t0)=0, and
Equation (4.2) yields

v(t0)=u′(t0)=0.
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We obtain xt ∈ U on [0, t0) and limt↗t0(u(t), v(t))= (0,0). As u(t0)= 0,
xt0 /∈U . It follows that x|[−r, t0) is the maximal continuously differentia-
ble solution of the initial value problem (7.2). ��

Remark 7.6. The soft landing model is given by the maximal con-
tinuously differentiable solutions of the initial value problem (7.2), all of
which have strictly positive first components. If we enlarge the model a bit
and include all continuously differentiable solutions x= (u, v) of the initial
value problems

x′(t)=g(xt ) for t >0, x0 =ψ= (φ, η)∈X, φ(t)≥0 on [−r,0]

as long as u remains nonnegative then all solutions which correspond to
soft landing in finite time, i.e., with

u(t0)=0=v(t0) and u(t)>0 on [−r, t0) for some t0 ≥0,

satisfy u(t)=0=v(t) for t ≥ t0 (see Proposition 6.1). So the control mech-
anism does not lead to new motion after landing.

REFERENCES
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