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Entire Solutions with Merging Fronts
to Reaction–Diffusion Equations
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We deal with a reaction–diffusion equation ut = uxx + f (u) which has two
stable constant equilibria, u=0,1 and a monotone increasing traveling front
solution u= φ(x + ct) (c > 0) connecting those equilibria. Suppose that u=
a (0<a<1) is an unstable equilibrium and that the equation allows mono-
tone increasing traveling front solutions u=ψ1(x+ c1t) (c1 < 0) and ψ2(x+
c2t) (c2>0) connecting u=0 with u=a and u=a with u=1, respectively. We
call by an entire solution a classical solution which is defined for all (x, t)∈
R

2. We prove that there exists an entire solution such that for t ≈ −∞ it
behaves as two fronts ψ1(x+c1t) and ψ2(x+c2t) on the left and right x-axes,
respectively, while it converges to φ(x+ct) as t→∞. In addition, if c>−c1,
we show the existence of an entire solution which behaves as ψ1(−x+ c1t)

in x ∈ (−∞, (c1 + c)t/2] and φ(x+ ct) in x ∈ [(c1 + c)t/2,∞) for t≈−∞.

KEY WORDS: reaction–diffusion equation; entire solution; traveling front
wave; bistable nonlinearity; merging fronts.
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1. INTRODUCTION

We are concerned with the following reaction–diffusion equation on R:

ut =uxx +f (u), (1.1)

where f (u) is C2 on an open interval containing [0,1] and

f (0)=f (a)=f (1)=0, f ′(0)f ′(a) �=0, f ′(1)<0. (1.2)
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The condition (1.2) implies that constant solutions u= 0, a,1 are nonde-
generate equilibria of (1.1) and u=1 is stable. If, in addition to (1.2), the
condition

f ′(0)<0, f ′(a)>0,
f (u) �=0 for u∈ (0, a)∪ (a,1) (1.3)

is satisfied, then (1.2) is called a bistable reaction–diffusion equation and it
is used as a simple model describing propagation of species in population
biology or propagation of nerve excitation. It is also known for the bi-
stable case that it allows a traveling wave solution with monotone profile,
called traveling front solution, under the condition

∫ 1

0
f (u)du �=0

(see [1, 2, 4, 7]).
Throughout this paper, we assume that (1.1) with (1.2) possesses a

monotone increasing traveling front u= φ(x + ct) with c > 0, connecting
the two equilibria u= 0 and u= 1, that is, φ(x + ct), ξ = x + ct is solu-
tion of the following boundary value problem of an ordinary differential
equation:

φ′′ − cφ′ +f (φ)=0, φ′(ξ)>0 (ξ ∈R),

lim
ξ→−∞

φ(ξ)=0, lim
ξ→∞

φ(ξ)=1, (1.4)

where ′ = d/dξ, ′′ = d2/dξ2. We note that the reflected one φ(−x + ct) is
a traveling front solution with a monotone decreasing configuration. We
also give a remark that c>0 is realized by the condition

∫ 1

0
f (u)du>0, (1.5)

if the solution of (1.4) exists. A specific example of the reaction–diffusion
equation satisfying the above assumptions is given by

ut =uxx +u(1−u)(u−a), 0<a<1/2, (1.6)

which is often called the Nagumo equation in propagation of nerve
impulse, or the Allen–Cahn equation in a phase transition problem.

In addition to the existence and stability of traveling front solutions,
we can discuss the dynamics for a solution with two fronts to (1.1). For
instance the asymptotic behavior of diverging fronts for an appropriate ini-
tial condition is studied in [7] for a bistable reaction-diffusion equation.
On the other hand the annihilation of two facing fronts is easily proved by



Reaction–Diffusion Equations 843

the comparison principle. Since these asymptotic phenomena are observed
for a large class of initial data, it is natural to suspect that there is a spe-
cial solution describing these phenomena. More precisely we may think if
there are solutions defined for all (x, t) ∈ R

2, which correspond to such
phenomena. We call a classical solution defined for all (x, t) ∈ R

2 by an
entire solution. In fact for (1.1) with (1.2) and (1.3) the existence of an
entire solutions with diverging fronts is proved in [9] while the existence of
an entire solution with the annihilation is proved in [10, 16] (see also [5,
9]). We note that it is difficult to describe analytically the whole dynam-
ics of the entire solutions. For instance the precise analytical description
of the annihilation is still open. Nonetheless, once we notice such entire
solutions are characterized by the asymptotic behavior as t→−∞, we can
prove the existence of the desired entire solution.

In addition to the entire solutions mentioned above we can consider
other entire solutions. Recall the study of [11] where the Fisher-KPP equa-
tion, that is, a monostable reaction–diffusion equation also allows entire
solutions with annihilation (see also [10]). In the Fisher KPP equation
there are a continuous family of traveling front solutions with different
speeds, thus we can construct a family of entire solutions by a combina-
tion of traveling front solutions with different speeds. Coming back to the
bistable case (1.1) with (1.2) and (1.3), if we restrict f (u) in the interval
[0, a], the reaction–diffusion equation has the constant solution u= 0 as
a unique stable equilibrium. Namely the equation can be regarded as a
Fisher-KPP equation in u∈ [0, a]. Thus there exists a family of traveling
front solutions {ψ1(x + c1t)} connecting u= 0 and u= a ([1, 14]). If the
ψ1 is monotone increasing, we see c1<0 and there is the maximum speed
c1,max. This traveling front solution ψ1(ξ), ξ =x+ c1t satisfies

ψ ′′
1 − c1ψ

′
1 +f (ψ1)=0, ψ ′

1(ξ)>0 (ξ ∈R),

lim
ξ→−∞

ψ1(ξ)=0, lim
ξ→∞

ψ1(ξ)=a. (1.7)

Similarly there exists a family of traveling front solutions {ψ2(x + c2t)}
which are given by solving

ψ ′′
2 − c2ψ

′
2 +f (ψ2)=0, ψ ′

2(ξ)>0 (ξ ∈R),

lim
ξ→−∞

ψ2(ξ)=a, lim
ξ→∞

ψ2(ξ)=1. (1.8)

In this case there is the minimum speed c2,min > 0. Applying the results
of [11] (or [10]) yields the existence of entire solutions which converges to
ψ1(x+ c1t) and ψ1(−x+ c̃1t) in the left x-axis and in the right x-axis as
t→−∞, respectively. We can also see that there are entire solutions which
converges to ψ2(−x+ c̃2t) and ψ2(x+c2t) and in the left x-axis and in the
right x-axis as t→−∞, respectively. We note that any combination of the
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speeds is allowed and these entire solution have the annihilation dynamics
as time goes forward.

In this paper, we explore new types of entire solutions to (1.1). Con-
sider a combination of the traveling fronts ψ1(x + c1t) and ψ2(x + c2t)

and suppose that the two fronts emerge from the left axis and right axis,
respectively. Then for the bistable case we can see from a numerical sim-
ulation that two fronts merge and turn to be a single front with the same
configuration of φ(x+ct) (see the snapshots of such a solution in Fig. 1).
Moreover if c >−c1, we can also suspect if there is an entire solution
with a combination of ψ1(−x + c1t) and φ(x + ct). In this case, again
for the bistable case, a numerical simulation suggests that the faster front
φ(x+ ct) eventually catches up ψ1(−x+ c1t) and they merge (see Fig. 2).

The next theorem establishes the existence of entire solutions with
such behaviors as t→−∞.

Theorem 1.1. Consider (1.1) under the conditions (1.2). Let φ(x+ ct)
be a solution of (1.4) with c>0 and let ψ1(x+c1t) and ψ2(x+c2t) be solu-
tions to (1.7) with c1<0 and (1.8) with c2>0, respectively.
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Figure 1. Four snapshots of the dynamics of the exact solution to (1.6) given in Remark
1.3.
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Figure 2. Four snapshots of the dynamics of the numerical solution to (1.1) in Theorem
1.1(ii).

(i) There exists an entire solution �12(x, t) satisfying

lim
t→−∞

{
sup

−∞<x≤(c1+c2)t/2
|�12(x, t)−ψ1(x+ c1t)|

+ sup
(c1+c2)t/2�x<∞

|�12(x, t)−ψ2(x+ c2t)|
}

=0.

(1.9)

Moreover if, in addition, f ′(0)<0, then there is a number θ such
that

lim
t→∞ sup

x∈R

|�12(x, t)−φ(x+ ct+ θ)|=0. (1.10)

(ii) If 0<−c1<c, there exists an entire solution �10(x, t) satisfying

lim
t→−∞

{
sup

−∞<x�(c1+c)t/2
|�10(x, t)−ψ1(−x+ c1t)|

+ sup
(c1+c)t/2�x<∞

|�10(x, t)−φ(x+ ct)|
}

=0

(1.11)
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and

lim
t→∞ inf

x∈R

�10(x, t)=a, lim
t→∞ sup

x∈[−K,∞)

|�10(x, t)−1|=0

(1.12)

for arbitrarily given number K>0.

We remark that the assertion for the asymptotic behavior as t → ∞
of (ii) in Theorem 1.1 is weak compared with (1.10). It is fortunate for (i)
that one can directly apply the result in [7] to determine the asymptotic
behavior as t→∞. As mentioned above the entire solution �10 seems to
converges to a front solution ψ2(x + c2t) in the bistable case. Although
we have many results for the convergence of a solution to the traveling
wave solution if the initial data in the interval [a,1] (see [3, 8, 12, 14, 15]),
the previous results cannot apply to the present case because the solution
takes the values out of the range [a,1]. We will not discuss the conver-
gence of �10 to the front solution as t→∞ in the present paper, though
it is an interesting problem.

Next we are going to the specific equation (1.6). Then the traveling
front solution φ(x+ ct) is explicitly written as

φ(x+ ct) =
exp

[
x/

√
2+ (1/2−a)t

]

1+ exp
[
x/

√
2+ (1/2−a)t

]

= 1
2

+ 1
2

tanh
(
x+ ct
2
√

2

)
, c=

√
2
(

1
2

−a
)
.

In addition since the minimum speed of traveling front solutions ψ1(−x+
c1t) is given by 2

√
f ′(a)=2

√
a−a2, we can determine the condition in (ii)

of Theorem 1.1. The result is as follows:

Corollary 1.2. If 0<a<1−√
6/3, then (1.6) possesses entire solutions

as in Theorem 1.1 (ii).

Remark 1.3. It is known that (1.6) also allows exact traveling front
solutions

ψ̃1(x+ c1t) =
a exp

[
ax/

√
2− (a−a2/2)t

]

1+ exp
[
ax/

√
2− (a−a2/2)t

]

= a

2
+ a

2
tanh

[
a(x+ c1t)

2
√

2

]
, c1 =−2−a√

2
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and

ψ̃2(x+ c2t) =
a+ exp

[
(1−a)x/√2+ (1−a2)t/2

]

1+ exp
[
(1−a)x/√2+ (1−a2)t/2

]

= a+1
2

+ 1−a
2

tanh
[
(1−a)(x+ c2t)

2
√

2

]
, c2 = 1+a√

2
.

Moreover Kawahara–Tanaka [13] found an exact solution of the entire
solution combining ψ̃1 and ψ̃2 as

u(x, t)=
exp

[
x/

√
2+ (1/2−a)t

]
+a exp

[
ax/

√
2− (a−a2/2)t

]

1+ exp
[
x/

√
2+ (1/2−a)t

]
+ exp

[
ax/

√
2− (a−a2/2)t

]

=
exp

[
(1−a)x/√2+ (1−a2)t/2

]
+a

exp
[
−ax/√2+ (a−a2/2)t

]
+ exp

[
(1−a)x/√2+ (1−a2)t/2

]
+1

.

This exact solution certainly exhibits the asymptotic behaviors stated in (i)
of Theorem 1.1. We, however, note that such an expression only allowed
for this specific equation or the specific traveling wave solutions ψ̃1 and
ψ̃2. In addition, as mentioned above, the equation under consideration
admits infinitely many traveling wave solutions ψ1 (resp. ψ2) connecting
between 0 and a (resp. between a and 1). Hence the result (i) of Theorem
1.1 guarantees the existence of the entire solution with any combination
of two fronts ψ1 and ψ2 for the general f (u).

We finally give a remark on the role of entire solutions in the global
dynamics. The study for entire solutions is crucial in the following sense:
firstly it helps us for the mathematical understanding of transient dynam-
ics. As mentioned above, some transient dynamics can be characterized
by the behavior of the past t ≈−∞, even though we cannot describe the
whole transient behavior. On the other hand our result has the implication
that dynamics of two solutions can have distinct histories in the configu-
ration, though their asymptotic profiles as t→∞ coincide. Secondly from
the dynamical system point of view, determining of the dynamical struc-
ture of the maximal invariant set (or the global attractor) is one of the
ultimate goal. To carry out it, we need to seek all the entire solutions or
provide a useful classification of entire solutions as a step. The entire solu-
tions found in the present paper exhibit characteristic dynamical behaviors
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which never arise in the finite interval case. We believe that our study will
be a contribution to the study in this direction.

We organize the rest of the paper as follows: in the next section, we
define a function linking two front solutions of (1.1). In Section 3, using
such a function, we propose a supersolution and a subsolution defined for
every (x, t) ∈ R × (−∞,0], and establish the existence of an entire solu-
tion sandwiched between the supersolution and the subsolution. In Section
4, we explicitly provide the super-subsolution pairs and apply the result
of Section 3 to the two cases of Theorem 1.1. In the last section, we
give remarks on some related works and on the uniqueness of the entire
solutions.

2. SOME FUNCTION LINKING TWO-FRONTS DYNAMICS

Let φj = φj (x + vj t) (j = 1,2) be traveling wave solutions of (1.1)
given by solutions of

φ′′
j (ξ)−vjφ′

j (ξ)+f (φj (ξ))=0, ξ ∈R

φj (−∞)=αj , φj (∞)=ωj (j =1,2), (2.1)

where αj ∈ {0, a,1} and ωj ∈ {0, a,1}. Assume φj (j = 1,2) are strictly
monotone, namely, there exists 	j ∈{0,1} (j =1,2) such that

(−1)	j φ′
j (ξ)>0 (ξ ∈R, j =1,2).

To connect the two fronts solutions, we may assume

ω1 =α2. (2.2)

Namely we consider the combination of the fronts so that φ1 is left to φ2.
We easily see possible combinations of (α1,ω2) and (α2,ω2) are

(α1,ω1, α2,ω2)∈ {(0, a, a,1), (0, a, a,0), (0,1,1, a), (0,1,1,0),
(a,0,0, a), (a,0,0,1), (a,1,1, a), (a,1,1,0),
(1, a, a,1), (1, a, a,0), (1,0,0, a), (1,0,0,1)}.

Considering the direction of traveling wave solutions and the symmetry
with respect to reflection, we can reduce the above cases to

{(0, a, a,1), (1, a, a,1), (1,0,0,1), (0, a, a,0), (a,0,0,1)}. (2.3)

Although the former three cases in (2.3) were already studied in the pre-
vious paper [10] (see also [5, 11]), the argument below can be applied to
all the cases of (2.3).
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By the nondegenerate condition on f there are positive constants
λj ,µj (j =1,2) and M>0 such that

|φ′
j (x+p)|�M exp(λj (x+p)) (x�−p),

|φ′
j (x+p)|�M exp(−µj (x+p)) (x�−p). (2.4)

Moreover there is a positive constant ρ such that

|φ′
j (x+p)|

|φj (x+p)−αj |�ρ (x�−p),
|φ′
j (x+p)|

|φj (x+p)−ωj |�ρ (x�−p).
(2.5)

Instead of (1.1), we consider

Ut =Uxx −vUx +f (U), x ∈R, v= v1 +v2

2
. (2.6)

This equation is equivalent to (1.1) through the transformation u(x, t)=
U(x+vt, t). We easily see that (2.6) has traveling wave solutions

U =φ1(x− c0t), φ2(x+ c0t), c0 := v2 −v1

2
.

Set

F[U ] :=Ut −Uxx +vUx −f (U)
and define the rectangle region D⊂R

2 as

D := Dc\{(α1,ω2)},
Dc :=

[
min{α1,ω1}, max{α1,ω1}

]
×

[
min{α2,ω2}, max{α2,ω2}

]
⊂R

2.

For qj (t) (j =1,2) and Q(y, z)∈C3(D), which are specified later, we put

U =Q(φ1, φ2), φ1 =φ1(x−q1(t)), φ2 =φ2(x+q2(t)).

We abbreviate

Qy = ∂Q

∂y
(φ1, φ2), Qz= ∂Q

∂z
(φ1, φ2), Qyy = ∂2Q

∂y2
(φ1, φ2),

etc. Then

F[Q(φ1, φ2)]=−Qyφ
′
1(q̇1 − c0)+Qzφ

′
2(q̇2 − c0)−B(φ1, φ2)−G(φ1, φ2),

(2.7)
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where

B(φ1, φ2) :=Qyy{φ′
1}2 +2Qyzφ

′
1φ

′
2 +Qzz{φ′

2}2, (2.8)

G(φ1, φ2) :=f (Q)−Qyf (φ1)−Qzf (φ2). (2.9)

Lemma 2.1. If Q(y, z)∈C3(D) allows the expressions

Q(y, z)=
{
y+ (y−α1)(z−α2)R1(y, z)

z+ (y−ω1)(z−ω2)R2(y, z)
(y, z)∈D (2.10)

for appropriate R1,R2 ∈C1(D), then

Qy(y,α2)=1, Qy(y,ω2)=0,
Qz(α1, z)=0, Qz(ω1, z)=1

and

Qyy(y,α2)=Qyy(y,ω2)=Qzz(α1, z)=Qzz(ω1, z)=0

hold for (y, αj ), (y,ωj ), (αj , z), (ωj , z)∈D (j = 1,2). Moreover, there exist
functions Q̃11i , Q̃22i ∈C1(D) (i=1,2) satisfying

Qyy(y, z)= (z−α2)Q̃111(y, z)= (z−ω2)Q̃112(y, z),

Qzz(y, z)= (y−α1)Q̃221(y, z)= (y−ω1)Q̃222(y, z).
(2.11)

We omit the proof of this lemma because of a simple and elementary
computation. With the aid of Lemma 2.1 the function G defined in (2.9)
satisfies

G(φ1, α2)=G(α1, φ2)=G(φ1,ω2)=G(ω1, φ2)=0.

We thereby have the expressions

G(y, z) = (y−α1)(z−α2)G1(y, z)

= (y−ω1)(z−α2)G2(y, z)

= (y−ω1)(z−ω2)G3(y, z) (2.12)

for some continuous functions Gj (j =1,2,3) in D.
Then we have the next lemma.

Lemma 2.2. Let φ1 =φ1(x− q1) and φ2 =φ2(x+ q2) be the traveling
front solutions of (2.6) with the condition (1.2). Given Q(y, z) of (2.10),
suppose that there are positive constants τ >0, δ1 and δ2 such that

A(φ1, φ2) := (−1)	1φ′
1Qy + (−1)	2φ′

2Qz>0 for q1, q2�− τ, (2.13)
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Qy(φ1, φ2) � δ1

A(φ1, φ2) �
|φ′

1|
2
Qy(φ1, φ2)

for x�0, q2�− τ (2.14)

and

Qz(φ1, φ2) � δ2

A(φ1, φ2) �
|φ′

2|
2
Qz(φ1, φ2)

for x�0, q1�− τ (2.15)

hold. In addition, assume that there exists a positive constant C1 satisfying

|Qyz(φ1, φ2)|, |Q̃11i (φ1, φ2)|, |Q̃22i (φ1, φ2)|�C1 for q1, q2�− τ, (2.16)

where Q̃11i , Q̃22i (i= 1,2) are as in (2.11). Then there is a constant K > 0
such that ∣∣∣∣G(φ1, φ2)+B(φ1, φ2)

A(φ1, φ2)

∣∣∣∣�
{
K|φ′

2(x+q2)|, x�0,
K|φ′

1(x−q1)|, x�0 (2.17)

holds.

Proof. First consider the two cases: x�q1 and q1�x�0. For x�q1
we estimate ∣∣∣∣G(φ1, φ2)

A(φ1, φ2)

∣∣∣∣ = |(φ1 −α1)(φ2 −α2)G1|
A(φ1, φ2)

� 2|φ2 −α2||G1|
Qy |φ′

1/(φ1 −α1)|
� 2C1

ρ2δ1
|φ′

2|.
(2.18)

Similarly for q1�x�0,
∣∣∣∣G(φ1, φ2)

A(φ1, φ2)

∣∣∣∣ = |(φ1 −ω1)(φ2 −α2)G2|
A(φ1, φ2)

� 2|φ2 −α2||G2|
Qy |φ′

1/(φ1 −ω1)|
� 2C1

ρ2δ1
|φ′

2|.
(2.19)

Thus (2.18) and (2.19) yield
∣∣∣∣G(φ1, φ2)

A(φ1, φ2)

∣∣∣∣�K1|φ′
2(x+q2)| (x�0) (2.20)

for a constant K1>0.
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Next consider the case 0�x�−q2.

∣∣∣∣G(φ1, φ2)

A(φ1, φ2)

∣∣∣∣ = |(φ1 −ω1)(φ2 −α2)G2|
A(φ1, φ2)

� 2|φ1 −ω1||G2|
Qz|φ′

2/(φ2 −ω2)|

�2|G2||φ1 −ω1|
ρδ2

� 2C1

ρ2δ2
|φ′

1|.
(2.21)

Similarly for x�−q2,

∣∣∣∣G(φ1, φ2)

A(φ1, φ2)

∣∣∣∣ = |(φ1 −ω1)(φ2 −ω2)G3|
A(φ1, φ2)

� 2|φ1 −ω1||G3|
Qz|φ′

2/(φ2 −ω2)|
� 2C1

ρ2δ2
|φ′

1|.
(2.22)

Combining (2.21) and (2.22), we obtain

∣∣∣∣G(φ1, φ2)

A(φ1, φ2)

∣∣∣∣�K1|φ′
1(x−q1)| (x�0). (2.23)

We estimate B/A. For x�0,

∣∣∣∣B(φ1, φ2)

A(φ1, φ2)

∣∣∣∣ �
2
(
|φ′

1|2|Qyy |+2|φ′
1φ

′
2Qyz|+ |φ′

2|2|Qzz|
)

|φ′
1|Qy

�
2
(
|φ′

1||Qyy |+2|φ′
2||Qyz|+ |φ′

2|2|Qzz|/|φ′
1|

)

δ1
.

Applying (2.11) with y = φ1 and z = φ2 an the right-hand side of this
inequality, we see that there is a constant C2>0 such that

∣∣∣∣B(φ1, φ2)

A(φ1, φ2)

∣∣∣∣�2C2

δ1
|φ′

2|. (2.24)

Similarly we can obtain the inequality for x≥0. Hence we get to

∣∣∣∣B(φ1, φ2)

A(φ1, φ2)

∣∣∣∣�
{
K2|φ′

2(x+q2)| (x�0),
K2|φ′

1(x−q1)| (x�0). (2.25)

The desired conclusion follows from (2.20), (2.23) and (2.25).
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3. SUPER-SUBSOLUTIONS

Consider the following ordinary differential equation:

ṗ= c0 +Leσp, −∞<t <0,
p(0)=p0,

(3.1)

where L is a positive constant and σ =min{λ2,µ1}. A simple computation
yields a solution to (3.1) as

p(t)= c0t− 1
σ

log
{
e−σp0 + L(1− eσc0t )

c0

}
(3.2)

with the asymptotics

lim
t→−∞(p(t)− c0t)=− 1

σ
log

(
e−σp0 + L

c0

)
. (3.3)

Similarly we solve the equation

ṙ= c0 −Leσr , −∞<t <0,

r(0)= r0< 1
σ

log
c0

L

(3.4)

to obtain the solution

r(t)= c0t− 1
σ

log
{
e−σr0 − L(1− eσc0t )

c0

}
(3.5)

with the asymptotics

lim
t→−∞(r(t)− c0t)=− 1

σ
log

(
e−σr0 − L

c0

)
. (3.6)

By virtue of (3.3) and (3.6)

lim
t→−∞(p(t)− r(t))=0

implies

p0 =− 1
σ

log
(
e−σr0 − 2L

c0

)
,

r0<
1
σ

log
c0

2L+ c0
.

(3.7)

Furthermore we can easily verify that under the condition (3.7)

0<p(t)− r(t)�N1e
σ1t , σ1 := c0σ (t�0) (3.8)

holds for a positive number N1.
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Next we consider a system of ordinary differential equations

ṗ1 = c0 −Leσp1

ṗ2 = c0 +Leσp1 (p1(0),p2(0))= (p10, p20), t�0. (3.9)

The solutions are given by

p1(t)= c0t− 1
σ

log
{
e−σp10 − L(1− eσc0t )

c0

}
,

p2(t)= c0t+ 1
σ

log
{
e−σp10 − L(1− eσc0t )

c0

}
+p10 +p20

(3.10)

with the asymptotics

lim
t→−∞(p1(t)− c0t)=− 1

σ
log

(
e−σp10 − L

c0

)
,

lim
t→−∞(p2(t)− c0t)= 1

σ
log

(
e−σp10 − L

c0

)
+p10 +p20.

(3.11)

In this case there is a number N2>0 such that

0<p2(t)−p1(t)�N2e
σ1t (t�0) (3.12)

holds if

σ

2
(p10 +p20)+ log

(
e−σp10 − L

c0

)
=0,

p10<
1
σ

log
c0

L

(3.13)

are satisfied.
Now we provide a lemma for the existence of supersolutions and sub-

solutions to (2.6).

Lemma 3.1. Consider all the cases of (2.3) under the same assump-
tions in Lemma 2.2. Assume c0 = (v2 − v1)/2 > 0. Let p(t), r(t), and
(p1(t), p2(t)) be solutions to (3.1), (3.4), and (3.9), respectively, and assume
r0<p0<−τ and p10<p20<−τ . Take L large so that L>KM holds, where
M and K are as in (2.4) and (2.17), respectively.

(i) For (α1,ω1, α2,ω2)= (a,0,0,1), the functions defined by

U(x, t) :=Q(φ1(x−p(t)), φ2(x+p(t))),
U(x, t) :=Q(φ1(x− r(t)), φ2(x+ r(t))) (3.14)
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are a supersolution and a subsolution to (2.6) for t�0, respec-
tively. If (3.7) is satisfied, then

U(x, t)<U(x, t) (x ∈R, t�0),
supx∈R(U(x, t)−U(x, t))�κeσ1t (t�0)

(3.15)

hold for some constants κ >0, where σ1 is as in (3.8). In addition
the cases (α1,ω1, α2,ω2)= (1,0,0,1), (1, a, a,1) allow the same
assertions for the functions as defined by (3.14).

(ii) For (α1,ω1, α2,ω2)= (0, a, a,1), the functions

U(x, t) :=Q(φ1(x−p1(t)), φ2(x+p2(t))),

U(x, t) :=Q(φ1(x−p2(t)), φ2(x+p1(t)))
(3.16)

are a supersolution and a subsolution to (2.6) for t�0, respec-
tively. If (3.13) is satisfied, then (3.15) holds.

(iii) For (α1,ω1, α2,ω2)= (0, a, a,0), the function defined by

U(x, t) :=Q(φ1(x− r(t)), φ2(x+ r(t))),
U(x, t) :=Q(φ1(x−p(t)), φ2(x+p(t))) (3.17)

are a supersolution and a subsolution to (2.6) for t�0, respec-
tively. If (3.7) is satisfied, then (3.15) holds.

Proof. We prove that U of (3.14) is a supersolution. In this case 	1 =
1, 	2 =0. From (2.4) we see

|φ′
2(x+p)|�M exp(λ1(x+p))�M exp(λ1p) (x�0),

|φ′
1(x−p)|�M exp(−µ2(x−p))�M exp(µ2p) (x�0).

Using this and Lemma 2.2 yields

|B(φ1, φ2)+G(φ1, φ2)|�A(φ1, φ2)M exp(σp). (3.18)

By (2.7), (3.1), and (3.18) we obtain

F[U ] = −Qyφ
′
1(ṗ− c0)+Qzφ

′
2(ṗ− c0)−B(φ1, φ2)−G(φ1, φ2)

≥ A(φ1, φ2)(Le
σp−KMeσp)≥0.

Similarly F[U ]≤0 for U of (3.14).
Next we show (3.15) in (i). We verify

U −U = Q(φ1(x−p),φ2(x+p))−Q(φ1(x− r), φ2(x+ r))
=

∫ 1

0
A(φ1(x− θp− (1− θ)r), φ2(x+ θp+ (1− θ)r))dθ · (p− r)

≥ 0 (t�0)
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since p(t)�r(t) (t�0). The second inequality follows from

U −U =
∫ 1

0
A(φ1(x− θp− (1− θ)r), φ2(x+ θp+ (1− θ)r))dθ · (p− r)

and (3.8).
Next consider U of (3.16). Notice 	1 =	2 =0. We easily obtain

|φ′
2(x+p2)|�M exp(λ1p2) (x�0),

|φ′
1(x−p1)|�M exp(µ2p1) (x�0)

and then

|B(φ1, φ2)+G(φ1, φ2)|�A(φ1, φ2)M exp(σp1)

by virtue of p1(t)<p2(t)<0. This yields

F[U ] = −Qyφ
′
1(ṗ1 − c0)+Qzφ

′
2(ṗ2 − c0)−B(φ1, φ2)−G(φ1, φ2)

≥ A(φ1, φ2)(Le
σp1 −KMeσp1)≥0.

Similarly, as for U of (3.16), we easily verify F[U ] ≤ 0. The inequality
(3.15) can be shown in the same way as done for the former case by using
(3.12). We omit the detail.

We leave the proof for the other cases to the readers, since those can
be easily shown by the similar argument.

The next proposition follows from applying the same argument found
in [9, 10].

Proposition 3.2. Let U and U be a super-subsolutions pair with (3.15)
of Lemma 3.1. Then there exists a unique entire solution ũ(x, t) to (1.1) and
(1.2) satisfying

U(x+vt, t)< ũ(x, t)<U(x+vt, t), x ∈R, t�0, (3.19)

where v= (v1 +v2)/2.

4. PROOF OF THEOREM 1.1

We first prove the first part of Theorem 1.1 by providing Q(y, z)

explicitly. We apply (ii) of Lemma 3.1 and Proposition 3.2 with φ1(x +
v1t)=ψ1(x+ c1t) and φ2(x+v2t)=ψ2(x+ c2t). Set

Q(y, z) := (1−a)yz
y(z−a)+a(1− z) = (1−a)yz

yz+a(1−y− z) . (4.1)
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Let (α1,ω1) = (0, a), (α2,ω2) = (a,1). Namely φ1(ξ), ξ = x + v1t, and
φ2(ξ), ξ =x+v2t are monotone increasing. Then we can write

Q(y, z) =y+y(z−a)
{

1−y
y(z−a)+a(1− z)

}

= z+ (y−a)(z−1)
{ − z
y(z−a)+a(1− z)

}

and

Qy(y, z)= a(1−a)z(1− z)
{y(z−a)+a(1− z)}2

Qz(y, z)= a(1−a)y(1−y)
{y(z−a)+a(1− z)}2

from which A(φ1, φ2)>0 (0<φ1, φ2<1) follows.
By

0<φ2(x+q2)−a�M
ρ
eλ2q2 (x�0),

there exist numbers r, δ1>0 such that

Qy�δ1 (x�0) for q2�− τ,
while by

0<a−φ1(x−q1)�
M

ρ
eµ1q1 (x�0),

there exist r, δ2>0 such that

Qz�δ2 (x�0) for q1�− τ.
We also easily check

Qyy = (φ2 −a)(φ2 −1)
2a(1−a)φ2

{φ1(φ2 −a)+a(1−φ2)}3
,

Qyz= a(1−a){(2a−1)φ1φ2 +a(1−φ1 −φ2)}
{φ1(φ2 −a)+a(1−φ2)}3

,

Qzz=φ1(φ1 −a) 2a(1−a)(φ1 −1)
{φ1(φ2 −a)+a(1−φ2)}3
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so that Q̃11i , Q̃22i and Qyz are bounded, because

{(φ1(x−q1), φ2(x+q2)) | x ∈R, q1, q2 ≤−τ }
is included compactly in D. This implies that the assertion of Proposition
3.2 holds for the super-subsolution pair through (4.1), hence we obtain
(1.10).

The asymptotic behavior as t→∞ of (1.9) immediately follows from
Theorem 3.1 of [7].

Next we prove the second part (ii) of Theorem 1.1. We apply (i) of
Lemma 3.1 and Proposition 3.2 with φ1(x+v1t)=ψ1(−x+c1t) and φ2(x+
v2t)=φ(x+ct). In this case (α1,ω1)= (a,0), (α2,ω2)= (0,1), thus 	1 =	2 =
0. In fact φ1(ξ), ξ = x + v1t (v1 < 0), and φ2(ξ), ξ = x + v2t (v2 > 0) are
monotone decreasing and increasing, respectively.

Set

Q(y, z) := a(y+ z)− (1+a)yz
a−yz . (4.2)

Then we can write

Q(y, z) =y+ (y−a)z
{
y−1
a−yz

}

= z+y(z−1)
{
z−a
a−yz

}

and

Qy(y, z)= a(a− z)(1− z)
(a−yz)2 ,

Qz(y, z)= a(a−y)(1−y)
(a−yz)2 .

Since 0<φ1<a and 0<φ2<1, Qz>0. It is not clear that Qy >0. However
by

0<φ2�
M

ρ
eλ2(x+q2)�M

ρ
eλ2q2 (x�0)

there are positive constants r, δ1 such that

Qy�δ1 (x�0) for q2�− r.
On the other hand, by

0<φ1�
M

ρ
e−µ1(x−q1)�M

ρ
eµ1q1 (x�0)
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there are positive constants r, δ2 such that

Qz�δ2 (x�0) for q1�− r.
We may assume φ2(0)=a. Then we can check

A(φ1, φ2)�




−φ′
1Qy (x�0),

φ′
2Qz (0�x�−q2),

1
2
φ′

2Qz (x�−q2),

where we used |φ′
1|�M exp(µ1p1) (x�0) and 1 − φ2�ρφ′

2 (x� − q2) to
obtain the last inequlity. Moreover we have

Qyy = (φ2 −1)φ2
2a(φ2 −a)
(a−φ1φ2)

3
,

Qyz= −a{(φ1 −a)(φ2 −a)+a(φ1 −1)(φ2 −1)}
(a−φ1φ2)

3
,

Qzz= (φ1 −1)φ1
2a(φ1 −a)
(a−φ1φ2)

3
.

We can take r so that 0<a− φ1φ2 < 1/2, which leads us to the required
conditions on Q. Hence the existence of the entire solution enjoying (1.12)
was proved.

To prove asymptotic behavior (1.11), we notice that there are numbers
sj (j =1,2) such that

U(x,T )>φ1(x− c0T + s1), φ2(x+ c0T + s2)
holds for some T � −1. This implies that φ1, φ2 are subsolutions which
bound the entire solution from below for all t�T . The assertion of (1.11)
immediately follows from this fact by considering the asymptotic behavior
of the traveling fronts φ1, φ2.

5. CONCLUDING REMARKS

The existence of a super-subsolution pairs satisfying (3.15) for the
cases (α1,ω1, α2,ω2)= (1,0,0,1), (1, a, a,1), (0, a, a,0) in Lemma 3.1 was
proved in the previous results; for instance [11] for the Fisher-KPP equa-
tion [9, 16] for the Nagumo equation (1.6) and [5, 10] for the general
case of f (u) satisfying (1.2). (Note that by the transformation U = 1 −V
the last case (0, a, a,0) is converted into the case (1, b, b,1), b= 1 − a if
f ′(0)<0.) However, we emphasize that our result of Lemma 3.1 provides
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a systematic way of the construction for the super-subsolution pairs; it
covers the old cases as well as the ones studied here.

The readers might suspect if the invariant manifold theory could be
applied to the existence of the entire solutions instead of the comparison
principle. If the equation is bistable, this approach was carried out in [16]
to prove the existence of the entire solution for the case (1,0,0,1). We can
also see that some additional argument to the result in [6] leads us to the
existence of such an entire solution. However, since their approaches cru-
cially depends on the nondegenerate condition of the linearized stability
problem around the traveling wave solution, it is difficult to apply their
results if a traveling wave solution connects an unstable equilibrium with
the stable one.

The uniqueness of the entire solution in Proposition 3.2 is only estab-
lished in the class of functions sandwiched between the super-subsolutions.
On the other hand Chen-Guo [5] established the uniqueness in quite a
larger class of functions if f ′(0) < 0 holds in addition to (1.2) (see also
[16]). Unfortunately their argument cannot directly apply to the present
cases. Indeed if u=a is unstable equilibrium, both traveling fronts ψ1,ψ2
are solutions to Fisher-KPP equations as mentioned in the introduction.
Therefore to prove the similar uniqueness as in [5], we need more careful
consideration. It would be a future work.

ACKNOWLEDGMENT

The second author was supported in part by the Grant-in-Aid for Sci-
entific Research (C) No. 18540147, Japan Society for the Promotion of
Science.

REFERENCES

1. Aronson, D. G., and Weinberger, H. F. (1975). Nonlinear diffusion in population genet-
ics, combustion, and nerve pulse propagation. In Goldstein J. A. (ed.), Partial Differential
Equations and Related Topics. Lecture Notes in Math., Vol. 446, Springer. Berlin, pp. 5–49.

2. Aronson, D. G., and Weinberger, H. F. (1978). Multidimensional nonlinear diffusion aris-
ing in population genetics. Adv. Math. 30, 33–76.

3. Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to traveling
waves, Mem. Am. Math. Soc. 44, (285).

4. Chen, X. (1997). Existence, uniqueness, and asymptotic stability of traveling waves in non-
local evolution equations. Adv. Diff. Eq. 2, 125–160.

5. Chen, X., and Guo, J.-S. (2005). Existence and uniqueness of entire solutions for a reac-
tion-diffusion equation, J. Diff. Eq. 212, 62–84.

6. Ei, S. (2000). The motion of weakly interacting pulses in reaction-diffusion systems.
J. Dynam. Diff. Eq. 14, 85–137.



Reaction–Diffusion Equations 861

7. Fife, P. C., and McLeod, J. B. (1977). The approach of solutions of nonlinear diffusion
equations to travelling front solutions. Arch. Ration. Mech. Anal. 65, 335–361.

8. Freidlin, M. (1985). Limit theorems for large deviations and reaction-diffusion equations.
Ann. Probab. 13, 639–675.

9. Fukao, Y., Morita, Y., and Ninomiya, H. (2004). Some entire solutions of the Allen-Cahn
equation. Taiwan. J. Math. 8, 15–32.

10. Guo, J.-S., and Morita, Y. (2005). Entire solutions of reaction-diffusion equations and an
application to discrete diffusive equations Discrete Contin. Dyn. Syst. 12, 193–212.

11. Hamel, F., and Nadirashvili, N. (1999). Entire solutions of the KPP equation. Commun.
Pure Appl. Math. 52, 1255–1276.

12. Kametaka, Y. (1976). On the nonlinear diffusion equation of Kolmogorov-Petrovskii-
Piskunov type. Osaka J. Math. 13, 11–66.

13. Kawahara, T., and Tanaka, M. (1983). Interactions of traveling fronts: An exact solutions
of a nonlinear diffusion equations. Phys. Lett. 97A, 311–314.

14. Kolmogorov, A., Petrovsky, I., and Piskunov, N. (1937). Etude de l’équation de la diffu-
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