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Perturbation Theory for Approximation of Lyapunov
Exponents by QR Methods
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Motivated by a recently developed backward error analysis for QR methods,
we consider the error in the Lyapunov exponents of perturbed triangular sys-
tems. We consider the case of stable and distinct Lyapunov exponents as well
as the case of stable but not necessarily distinct exponents. We illustrate our
analytical results with a numerical example.
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1. INTRODUCTION

Lyapunov exponents are often employed in the numerical study of non-
linear dynamical systems and are probably the most widely used quanti-
ties for detecting chaos, estimating dimensions of attractors, entropy (e.g.,
see [2, 3, 7, 21]). However, there is little error analysis of the techniques
used to approximate Lyapunov exponents; the works [8, 11, 17, 19] are
the only works of which we know dealing precisely with error analysis for
approximation of Lyapunov exponents. In this paper, we provide quanti-
fiable error bounds for Lyapunov exponents approximated by QR tech-
niques.

We recall that, to approximate Lyapunov exponents for a linear non-
autonomous system ẋ =A(t)x, the basic idea of QR methods consists in
first triangularizing (via the QR factorization) an underlying fundamental
matrix solution X: X =QR, and then extracting the Lyapunov exponents
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from the diagonal of the transformed triangular system: Ṙ = BR, with
B triangular. This basic approach is common in analytical works on the
subject (see [12, 15, 20]) and it is also the most common approach for
numerical methods to approximate Lyapunov exponents (see [4, 8, 9] and
references therein).

In the recent work [11], we gave a backward error analysis for QR

methods used to approximate Lyapunov exponents. Our analysis showed
that, by QR methods (i.e., by a numerical realization of QR methods),
one obtains an exact triangularization of a fundamental matrix solution
of a perturbed triangular problem with coefficient function B +E, instead
of B. We were also able to give quantitative bounds on the perturba-
tion E and showed that in principle this perturbation can be made arbi-
trarily small by controlling the accuracy of the computation. Now, for
systems with stable Lyapunov exponents (a necessary condition for try-
ing to approximate them), small perturbations reflect in small errors in the
Lyapunov exponents (e.g., see [1] for necessary and sufficient conditions
for the stability of Lyapunov exponents). In this paper, we clarify, and
quantify, the error induced by a small perturbation E on the Lyapunov
exponents.

We consider both the case of stable distinct and stable but not dis-
tinct Lyapunov exponents. In the former case, there are essentially two
steps involved in our analysis: first, we restrict to consider perturbed diag-
onal problems as opposed to perturbed triangular problems, then we show
the existence of a uniformly (in time) near identity orthogonal change of
variables that transforms the perturbed diagonal problem to triangular.
This allows us to bound the error between the true Lyapunov exponents
and those of the perturbed problem. At leading order in the size of the
perturbation, we bound this error by a multiple of the size of the per-
turbation, the key factors contributing to this multiple depending on the
degree of integral separation in the system and the condition number of
the diagonalizing transformation. In this light, our result may be viewed
as a time dependent analogue of the Bauer–Fike Theorem for perturba-
tion of eigenvalues of non-normal matrices (see [13]). In the case of stable
and not distinct exponents, we proceed along similar lines, but in a block
sense.

This paper is outlined as follows. In Section 2, we review the basics
of Lyapunov exponents and QR methods. We also recall the backward
error result of [11] and further – under the assumption of integral sepa-
ration – specialize to diagonal and perturbed diagonal systems. Our main
result for the case of stable distinct Lyapunov exponents is in Section 3.
We first show that the perturbed diagonal system can be transformed to
triangular by an orthogonal change of variables that stays uniformly close
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to the identity and then quantify the perturbation in the Lyapunov expo-
nents. In Section 4, we present an analysis for the case of stable but not
distinct Lyapunov exponents. The technique is based upon a block version
of the argument for distinct Lyapunov exponents with some key differ-
ences together with a Gronwall type bound due to Vinograd to control the
Lyapunov exponents within a block which gives equal exponents. Finally,
in Section 5, we illustrate our analysis with a numerical result.

2. BACKGROUND

Consider the non-autonomous linear system

ẋ =A(t)x, t �0, (2.1)

where we will assume that the function A: IR+ →IRn×n is bounded. Let X

be a fundamental matrix solution of (2.1) and consider

λi = lim sup
t→∞

1
t

ln ||X(t)ei ||, i =1, . . . , n, (2.2)

where the ei ’s are the standard unit vectors. Here, and everywhere else in
this work, the norm is the 2-norm for vectors and the induced norm for
matrices. When

∑n
i=1 λi is minimized with respect to all possible funda-

mental matrix solutions, then the λi ’s are called Lyapunov exponents, and
the corresponding fundamental matrix solution is called normal (see [16]).

The Lyapunov exponents are said to be stable if they are continuous
with respect to perturbations in the coefficient matrix. That is, if “for any
ε >0, there exists δ(ε)>0 such that supt∈IR+ ||F(t)||<δ(ε) implies

|λi − λ̂i |<ε, i =1, . . . , n, (2.3)

where the λ̂i ’s are the (ordered) Lyapunov exponents of the perturbed sys-
tem ẋ = [A(t)+F(t)]x”.

Our aim in this paper is to determine the dependence of δ on ε.
If the Lyapunov exponents are distinct, then the exponents are sta-

ble (see [1]) if and only if X is an integrally separated fundamental matrix
solution. X is integrally separated if for i = 1, . . . , n − 1, there exist a > 0
and 1�d >0 such that

||X(t)ei ||
||X(s)ei || · ||X(s)ei+1||

||X(t)ei+1||
�dea(t−s) , (2.4)

for all t, s: t � s �0.
A commonly used technique for the approximation of Lyapunov

exponents involves determining a time-dependent othogonal change of
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variables Q that transforms the given fundamental matrix solution
(equivalently, the associated coefficient matrix function) to upper triangu-
lar. It has been shown in [9, 10] that stable Lyapunov exponents may be
determined as appropriate time averages of the diagonal elements of the
upper triangular coefficient matrix function. It is well known (e.g., see [9])
that such Q is unique and satisfies

Q̇=Q(t)S(Q,A), Q(0)=Q0 , (2.5)

where we have set S :=QT (t)Q̇(t), with entries

S(Q(t),A(t))ij =





(QT (t)A(t)Q(t))ij , i >j,

0, i = j,

−(QT (t)A(t)Q(t))ji , i <j.

(2.6)

So, if Q is known, then R satisfies the transformed system

Ṙ =B(t)R, R(0)=R0 , (2.7)

where we have set

B(t) :=QT (t)A(t)Q(t)−QT (t)Q̇(t) (2.8)

and B is upper triangular by the way that S has been defined. Stable
Lyapunov exponents are then obtained (see [10]) from the diagonal D(t)

of B(t) as

λi = lim sup
t→∞

1
t

∫ t

0
Bii(s)ds. (2.9)

Finally, we notice that integral separation (2.4) can be rephrased in terms
of integral separation of the diagonal D of the coefficients B:

∫ t

s

(
Dii(τ )−Di+1,i+1(τ )

)
dτ �a(t − s)+ ln(d), t � s, (2.10)

where a >0 and 0<d �1, for all t, s : t � s �0.
QR-based methods for the approximation of Lyapunov exponents

(see [8]) are a numerical realization of the transformation to the form
(2.7). Unavoidably, this cannot be done exactly, since the relevant differ-
ential equations cannot be integrated exactly. Furthermore, it is unreason-
able to expect that the differential equations can be integrated so to obtain
globally accurate approximations (recall that we are interested in the limit
t →+∞). So, we can only expect to be able to control the local error on
each step. Recall that this is the error committed on one single integration
step. Here below, we let η be a bound on the local error encurred upon
during numerical integration of the differential equations.
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The backward error result obtained in [11] is summarized next. For
precise statements we refer to the original work, here we are content with
the general flavor of the result.

Summary 2.1. With a numerical realization of the QR methods, in
the limit as t → +∞, we are not obtaining the Lyapunov exponents of the
triangular system (2.7 and 2.8), but rather the Lyapunov exponents of the
perturbed system

˙̂
R = (B(t)+F(t)) R̂, (2.11)

where B is given in (2.8), and F is bounded as

‖F‖� cη+O(η2) (2.12)

with the main contribution to the magnification factor c being the departure
from normality of the exact triangular factor R.

Next, consider the unperturbed and perturbed triangular systems

Ṙ =B(t)R,
˙̂
R = [B(t)+F(t)]R̂, (2.13)

where we will assume that ‖F‖� δ. Now, write R =RD +RU , where RD is
the diagonal part of R and RU is the (strictly) upper part of R, so that
R = (I + RUR−1

D )RD =: ZRD. Accordingly, we have the unperturbed and
perturbed diagonal systems

ṘD =D(t)RD,
˙̂

RD = [D(t)+E(t)]R̂D, (2.14)

where D(t)=diag(B(t)) and E =Z−1FZ.

Lemma 2.1. If the systems in (2.14) are integrally separated, then the
Lyapunov exponents of the systems with A(t) = B(t) and A(t) = D(t) are
equal and the Lyapunov exponents of the systems with A(t) = B(t) + F(t)

and A(t)=D(t)+E(t) are also equal.

Proof. The first statement is a consequence of [9, Theorem 5.1]. The
second statement follows from the fact that Z(t) is a Lyapunov transfor-
mation.

In the next section, we quantify the error in the Lyapunov exponents
by working with the diagonal systems (2.14). We let ω :=‖E‖, and observe
that
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ω � ‖F‖cond(Z)� δ cond(Z)

where cond(Z)= sup
t�0

‖Z(t)‖ · ‖Z−1(t)‖ . (2.15)

Remark 2.1. A uniform bound on ‖Z(t)‖ can be obtained using
results in [10]. Consider the upper triangular system in (2.13) with coeffi-
cient matrix function B. Suppose |Bij (t)| � M for i < j and suppose for
k − i = j �1,

∫ t

s

Bii(r)−Bkk(r)dr �aj (t − s)−dj , t � s. (2.16)

Let Kj = edj /aj . Then using Lemma 4.1 and Theorem 4.2 of [10], if
j = k − i, then the change of variables Z(t) enjoys the following uniform
bound

|Zik(t)|�Kj [M +M2Kj−1 +· · ·+MjK1]=:ωj (2.17)

and for ω := max{1,ω1, . . . , ωn−1}, ‖Z(t)‖ � ω. A similar bound may be
obtained for ‖Z−1(t)‖.

3. FORWARD ERROR ANALYSIS – THE STABLE DISTINCT CASE

Consider the time dependent, homogeneous linear ODE with piece-
wise continuous coefficient matrix function,

ẋ =A(t)x, A(t)=D(t)+E(t), (3.1)

where D(t)=diag(D11(t), . . . ,Dnn(t)), supt ||D(t)||�M, and supt ||E(t)||�
ω. We will assume that the diagonal matrix function D is integrally sepa-
rated (see (2.10)) and for i <j we set

∫ t

s

Dii(τ )−Djj (τ )�aij (t − s)−dij , t � s, (3.2)

where aij >0 and dij �0. Define a>0 and d �0 as aij and dij , respectively,
that maximize edij/aij for i <j .

Let {µi}ni=1 be the Lyapunov exponents of (3.1) and {λi}ni=1 the
Lyapunov exponents of the unperturbed system ẋ =D(t)x. We show that
there exists an orthogonal change of variables to upper triangular satis-
fying (2.5) with A(t) = D(t) + E(t) that remains, under reasonable con-
ditions, a small perturbation of the identity given the initial condition
Q(0)=Q0 = I . Of course, we notice that if ||E||�ω, then ||QT EQ||�ω.
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Lemma 3.1. If ω<ω+(α,K,M), then |Qij (t)|�ρ for i �=j and all t �0,
where ρ =β ·ω, β =αK, α >1, K = ed/a, and

ω+(α,K,M) :=
(√

a2
1 +4(α −1)a2 −a1

)

/(2a2), (3.3)

where a2 =n2β2[Mβ +2] and a1 =nβ[2Mβ +1].

Proof. For i <j we have

Q̇ij =−Qij [Dii −Djj ]+
(
Qij [Dii −Djj ]+ eT

i (Q[S(Q,D)+S(Q,E)])ej

)

=:−Qij [Dii −Djj ]+qij (t,Q,ω) (3.4)

and a similar formula for i >j . We want to show that if the conditions of
the theorem are satisfied and Q(0)= I , then |Qij (t)|�ρ for all i �= j and
t �0. The proof involves applying [14, Theorem IV.2.1].

Using the non-linear variation of constants formula we have for
Q(0)= I and i <j ,

Qij (t) =
∫ t

0
e− ∫ t

τ (Dii (r)−Djj (r))drqij (τ,Q(τ),ω)dτ

�
∫ t

0
e−a(t−τ)+d |qij (τ,Q(τ),ω)|dτ. (3.5)

Thus, supt |Qij (t)|�K supt |qij (t,Q(t),ω)| where K = ed/a. We have

|qij (t,Q,ω)| � |qij (t,Q,ω)−qij (t, I,ω)|+ |qij (t, I,ω)|
� η(ρ,ω)ρ +N(ω), (3.6)

where since S(I,D)=0 and S(I,E)=EL −ET
L where EL is the strict lower

triangular portion of E, N(ω)�ω. To bound η(ρ,ω) write

qij (t,Q,ω) =qD
ij (t,Q,ω)+qE

ij (t,Q,ω)

:=
(
Qij [Dii −Djj ]+ eT

i QS(Q,D)ej

)
+ eT

i QS(Q,E)ej (3.7)
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and first consider qD
ij (t,Q,ω). We have, writing Q(t)= [q1(t)| · · · |qn(t)],

qD
ij (t,Q,ω)−qD

ij (t, I,ω)

=qD
ij (t,Q,ω)=Qij [Dii −Djj ]+



−
j−1∑

k=1

Qikq
T
k +

n∑

k=j+1

Qikq
T
k



Dqj

=Qij

[
Dii −Djj

]+
n∑

l=1

Dll



Qlj ·




−

j−1∑

k=1

QikQlk +
n∑

k=j+1

QikQlk










=Dii



Qij ·




1−

j−1∑

k=1

Q2
ik +

n∑

k=j+1

Q2
ik










+Djj



−Qij +Qjj ·




−

j−1∑

k=1

QikQjk

n∑

k=j+1

QikQjk










+
∑

l �=i,j

Dll



Qlj ·




−

j−1∑

k=1

QikQlk +
n∑

k=j+1

QikQlk








 . (3.8)

By orthogonality we have

1=
n∑

k=1

Q2
ik and QijQjj =−

∑

k �=j

QikQjk, (3.9)

so for i <j ,

qD
ij (t,Q,ω) = Dii



Qij



Q2
ij +2

n∑

k=j+1

Q2
ik









+Djj



−Qij (1−Q2
jj )+2Qjj

n∑

k=j+1

QikQjk





+
∑

l �=i,j

Dll



Qlj



−
j−1∑

k=1

QikQlk +
n∑

k=j+1

QikQlk







 . (3.10)
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Thus,
∣
∣
∣qD

ij (t,Q,ω)−qD
ij (t, I,ω)

∣
∣
∣

�Mρ
[
(2(n− j)+1)ρ2 + (n−1)ρ2 +2(n− j)ρ

+ (n−2)(n−1)ρ2
]
ρ

�Mρ
[
(n2 −2j +2)ρ2 +2(n− j)ρ

]

�Mρ
(
n2ρ2 +2nρ

)
. (3.11)

For the term qE
ij (t,Q,ω), using (2.6), we have for i < j (and similarly for

i >j )

qE
ij (t,Q,ω)−qE

ij (t, I,ω) = [QS(Q,E)−S(I,E)]ij

= −
j−1∑

k=1

QikS(Q,E)jk +
n∑

k=j+1

QikS(Q,E)kj +Eji

= Eji(1−Qjj +
n∑

k �=i,k=1

Q2
ikQjj )

− Qii

n∑

(l,m)�=(j,i),l,m=1

QljElmQmi

+
n∑

k=j+1

QikS(Q,E)kj . (3.12)

Thus,

|qE
ij (t,Q,ω)−qE

ij (t, I,ω)| � ρω[1+ (n−1)ρ + (n2 −1)ρ +n− j ]

� ρωn[1+ (n+1)ρ]

� ρωn[1+2nρ]=:ρηE
ij . (3.13)

So, we have

η(ρ,ω)�Mρ[n2ρ +2n]+ωn[1+2nρ] (3.14)

and finally from (3.6) we obtain

sup
t

|Qij (t)|�K (ω+η(ρ,ω)ρ).
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Theorem IV.2.1 of [14] may be applied if K[η(ρ,ω)ρ + N(ω)] < ρ.
Using the bound on η(ρ,ω) in (3.14) and the form for ρ =βω, this con-
dition is equivalent to a2ω

2 + a1ω + (1 − α) < 0 or ω < ω+(α,K,M) with
ω+(α,K,M) given in (3.3).

Remark 3.1. If we fix α=2 (as suggested by a small calculation), we
obtain the value of ω+(α,K,M)

ω+ = 1
4nKXβ

(√
1+4X/(4Mβ +1)−1

)
, X = Mβ +2

2Mβ +1
. (3.15)

The asymptotic regimes are of interest.

• If Mβ ≈0 (i.e., K ≈0, that is a is large) then X≈2 and ω+ ≈1/4nK,
that is ω+ can be large. This is the case when there is strong sep-
aration in the diagonal of the coefficient matrix B. It is the most
benign case.

• If Mβ �1, then X≈1/2, and ω+ ≈ 1
(2nK)(4Mβ+1)

�1. This is the case
when either the coefficients are very large or there is weak integral
separation in the diagonal of B. This is the hardest case.

• The case of Mβ ≈1 gives ω+ ≈1/2nK, which may be either large or
not depending on K (and n).

In all cases, there is a O(1/n) dependence in ω+. This is unavoidable given
the global point of view we adopted. Perhaps, a different analysis using
integral separation constants ak, dk that correspond to the integral separa-
tion between diagonal elements i and j with k = i − j could be performed
to remove this dependence on the dimension of the problem.

Using Lemma 3.1, we obtain our main result.

Theorem 3.2. Assume that the principal matrix solutions associated to
both unperturbed and perturbed systems in (3.1) are integrally separated.
Then, with same notation and assumptions of Lemma 3.1, if ω<ω+(α,K,M)

where ω+ is given (3.3), then

|µi −λi |�ρ2
∑

k �=i

γik +ω, (3.16)

where ρ =β ·ω, β =αK, K = ed/a, and γik = supt |Dii(t)−Dkk(t)|.
Proof. We have for i =1, . . . , n that

(QT AQ)ii −Dii = (Q2
ii −1) ·Dii +

∑

k �=i

Q2
kiDkk + (QT EQ)ii . (3.17)
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Then

µi −λi := lim sup
t→∞

1
t

∫ t

0
(QT AQ)ii(τ )dτ − lim sup

t→∞
1
t

∫ t

0
Dii(τ )dτ

� lim sup
t→∞

1
t

∫ t

0



(Q2
ii −1) ·Dii +

∑

k �=i

Q2
kiDkk + (QT EQ)ii



dτ

= lim sup
t→∞

1
t

∫ t

0




∑

k �=i

Q2
ki(Dkk −Dii)+ (QT EQ)ii



dτ (3.18)

and the result follows since ||QT EQ||=‖E‖�ω.

4. THE NON-INTEGRALLY SEPARATED CASE

Here we consider the case of non-distinct Lyapunov exponents. As a
starting point we employ block analogues of the previous results. The argu-
ments are even more technical than before, in part because the character-
ization of stability for the exponents is more complicated than in the case
of stable and distinct exponents. We will review this characterization next.

We need some definitions before stating the theorem due to Bylov and
Izobov [5] and Millionshchikov [18] on stability of Lyapunov exponents.

Definition 4.1. [1]. Bounded, measurable functions, l(t) and u(t),
defined on IR+, are said to be lower and upper functions for (3.1) if for
any solution x of (3.1) and any ε >0 there exist positive constants dl,ε and
Du,ε such that

dl,ε exp
(∫ t

s

(l(τ )− ε)dτ

)

� ||x(t)||
||x(s)|| �Du,ε exp

(∫ t

s

(u(τ )+ ε)dτ

)

(4.1)

for t � s �0 and the quantities dl,ε,Du,ε are independent of t and s.

For (3.1), we define the following two quantities:

�= inf
u

{

lim sup
t→∞

1
t

∫ t

0
u(s)ds

}

, (4.2)

where the infimum is taken over all upper functions, called upper central
exponent in [1], and

ω̄= sup
l

{

lim sup
t→∞

1
t

∫ t

0
l(s)ds

}

, (4.3)

where the supremum is taken over all lower functions.
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We are ready to state the stability theorem for Lyapunov exponents
in the case of non-distinct Lyapunov exponents.

Theorem 4.1. [5, 18], [1, Theorem 5.4.9]. The Lyapunov exponents of
ẋ =A(t)x are stable if and only if there exists a Lyapunov transformation T

that transforms ẋ =A(t)x to the block diagonal form

ż=diag[B11(t), . . . ,Bmm(t)]z, (4.4)

where each Bkk(t) is upper triangular of dimension nk, k = 1, . . . ,m. More-
over, for each block system żk =Bkk(t)zk, k =1, . . . ,m, we have:

(i) all solutions of the block have the same Lyapunov exponents, �k,
and ω̄k =�k =�k;

(ii) for any bi an arbitrary diagonal element of Bii and bi+1 an arbi-
trary diagonal element of Bi+1,i+1, bi and bi+1 are integrally sep-
arated.

Now, recall that we are interested in studying the difference in the
exponents of the unperturbed and perturbed triangular systems (2.13):

Ṙ =B(t)R,
˙̂
R = [B(t)+F(t)]R̂, ‖F‖� δ.

Let us partition R, B, and F , in a block way, with the partitioning
inherited by the integral separation in the system, and furthermore write
R = RD + RU , where RD is the block diagonal part of R and RU is the
block upper part of R. That is: RD = diag[R11(t), . . . ,Rmm(t)], and so
forth. Again, we can write R = (I + RUR−1

D )RD =: ZRD. Accordingly, we
have the unperturbed and perturbed diagonal systems as we did in (2.14):

ṘD =D(t)RD,
˙̂

RD = [D(t)+E(t)]R̂D, (4.5)

where D(t) = diag[B11(t), . . . ,Bmm(t)] (see (4.4)). In the present context,
we replace the condition of integral separation (2.4) by the following block
condition (which follows easily from point (ii) of Theorem 4.1)

‖R−1
ii (t)Rii(s)‖ ‖R−1

i+1,i+1(s)Ri+1,i+1(t)‖� ed̃e−ã(t−s), t � s, (4.6)

where ã >0 and d̃ �0, for all t, s : t � s �0, and i =1, . . . ,m−1.
With these preparations, the block analog of Lemma 2.1 still holds,

and again we have that ω := ‖E‖ is bounded as in (2.15), the difference
being that Z is now a block matrix.

Next, we want to show that there is an orthogonal change of variables
that brings D + E (where D is upper triangular blocks on the diagonal)
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to block upper triangular, though not necessarily anymore with triangu-
lar diagonal blocks. The basic idea to achieve our goal is to use a block
form of the construction that we used in the integrally separated case
together with a careful choice for certain entries of the skew-symmetric
matrix function S(Q,D).

Write the equations for the orthogonal change of variables in block
form, where the size of the blocks is determined by the integral separation
in the system, as

Q̇(ij) =
∑

k

Q(ik)S(kj), Q(ij), S(ij) ∈ IRni×nj . (4.7)

For j < i, with obvious notation, we have

S(ij) ≡S
(ij)
D +S

(ij)
E := [QT DQ](ij) +S

(ij)
E

=
∑

k

(
QT

)(ik)

D(kk)Q(kj) +S
(ij)
E

=
∑

k

(
Q(ki)

)T

D(kk)Q(kj) +S
(ij)
E (4.8)

and for i <j , S(ij) is determined by skew-symmetry; that is: S(ij) =−S(ji)T ,
for i <j . We have yet to determine the S(jj). The obvious choice would be
to set S(jj) =0, but below we will adopt a more useful choice.

For i <j we write the equation for Q̇(ij) as

Q̇(ij) = −
(
D(ii)T Q(ij) −Q(ij)D(jj)T

)

+
[
(
D(ii)T Q(ij) −Q(ij)D(jj)T

)
+
∑

k

Q(ik)S(kj)

]

(4.9)

and for i >j we write

Q̇(ij) = −
(
Q(ij)D(jj) −D(ii)Q(ij)

)
+
[(

Q(ij)D(jj) −D(ii)Q(ij)
)

+
∑

k

Q(ik)S(kj)

]

. (4.10)

Next we consider the block analogues of (3.8) and (3.10) and the orthogo-
nality condition (3.9) with the key difference in this block case being that
the term Djj

[
−Qij (1−Q2

jj )
]

in (3.10) is replaced by the term
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−Q(ij)
[
D(jj)T −Q(jj)T D(jj)T Q(jj)

]

=Q(ij)
[
D(jj)T

(
Q(jj) − I

)
+
(
Q(jj)T − I

)
D(jj)T

+
(
Q(jj)T − I

)
D(jj)T

(
Q(jj) − I

)]
. (4.11)

To ensure that this term is sufficiently small, we must have Q(jj) ≈ I uni-
formly in t and this motivates finding a choice S(jj) �=0. To understand the
choice we make in (4.13) below, observe that for all p=1, . . . ,m, we have

d

dt

(
Q(pp) − I

)
= −

(
Q(pp) − I

)
+
[

(Q(pp) − I )+Q(pp)S(pp)

+
∑

k �=p

Q(pk)S(kp)

]

. (4.12)

Now, we want the term in brackets in (4.12) to be of O(ρ2) if the terms
Q(pk) and (Q(pp) − I ) are O(ρ). We notice that by the form of S(kj)

in (4.8) the term
∑

k �=p Q(pk)S(kp) in (4.12) is O(ρ2), while if the terms
S(jj) and Q(ij) are O(ρ), then the terms Q(ij)S(jj) in (4.9) and (4.10) are
also O(ρ2). Therefore, the term that requires attention is the first term in
brackets in (4.12): (Q(pp) − I )+Q(pp)S(pp).

We are ready to select a useful choice for S(pp). For k > l, define

S
(pp)
kl =−Q

(pp)
kk Q

(pp)
kl (4.13)

with the remaining portion of S(pp) determined by skew-symmetry. To see
why this is a judicious choice, from (4.12) we see that in order to ensure
Q(pp) ≈ I uniformly in t we need to show that if |Q(pp)

ij |�ρ for all i �= j ,
then |[(Q(pp) − I )+Q(pp)S(pp)]kl |�Cρ2 for all k, l and some constant C.
Now, we have

[Q(pp)(I +S(pp))]kl =
∑

j

Q
(pp)
kj

(
I +S(pp)

)

j l

=
∑

j>l

Q
(pp)
kj

(
I +S(pp)

)

j l
+Q

(pp)
kl

(
I +S(pp)

)

ll
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+
∑

j<l

Q
(pp)
kj

(
I +S(pp)

)

j l

= −
np∑

j=l+1

Q
(pp)
kj Q

(pp)
jj Q

(pp)
jl +Q

(pp)
kl

+
l−1∑

j=1

Q
(pp)
kj Q

(pp)
ll Q

(pp)
lj (4.14)

There are three cases to consider: k > l, k = l, and k < l. If k > l, then

[
Q(pp)(I +S(pp))

]

kl
= Q

(pp)
kl

(
1− (Q

(pp)
kk )2

)

−
np∑

j=l+1,j �=k

Q
(pp)
kj Q

(pp)
jj Q

(pp)
jl

+Q
(pp)
ll

l−1∑

j=1

Q
(pp)
kj Q

(pp)
lj . (4.15)

If k = l, then

[
Q(pp)

(
I +S(pp)

)]

kk
= 1+

(
Q

(pp)
kk −1

)

−
np∑

j=k+1

Q
(pp)
kj Q

(pp)
jj Q

(pp)
jk

+Q
(pp)
kk

k−1∑

j=1

(
Q

(pp)
kj

)2
(4.16)

and observe that for Q
(pp)
kk �= −1, Q

(pp)
kk − 1 = ((Q

(pp)
kk )2 − 1)/(Q

(pp)
kk + 1). If

k < l, using the orthogonality condition (used relatively to the entire Q)

n∑

j=1

QkjQlj =0, (4.17)
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we have

[
Q(pp)(I +S(pp))

]

kl
= Q

(pp)
kl

(
1− (Q

(pp)
ll )2

)
−

np∑

j=l+1

Q
(pp)
kj Q

(pp)
jj Q

(pp)
jl

−Q
(pp)
ll

n∑

j=1

Qkj �=Q
(pp)
kj

Qlj �=Q
(pp)
lj

QkjQlj . (4.18)

Formulas (4.15, 4.16, 4.18) will be needed in the proof of Theorem
4.3. Also the following Lemma will be needed in the proof, in which case
the matrices A and B of the lemma will be the triangular matrices which
are the diagonal blocks of the coefficient matrix D in (4.5).

Lemma 4.2. Consider

Ẇ (t)=−[A(t)W(t)−W(t)B(t)]+F(t), (4.19)

where W(t),F (t) ∈ IRp×q, A(t) ∈ IRp×p, and B(t) ∈ IRq×q with A and B

both bounded, piecewise continuous. If there exists ã >0 and d̃ �0 such that
(recall (4.6))

||X−1(t) X(s)|| · ||Y−1(s) Y (t)||� ed̃−ã(t−s) , t � s (4.20)

for fundamental matrix solutions X,Y satisfying Ẋ = XA and Ẏ = YB,
then there exists a solution to (4.19) such that supt�0 ‖X−1(t)[

∫ t

0 X(s)F (s)

Y−1(s)ds]Y (t)‖�K · supt ‖F(t)‖ where K = ed̃/ã.

Proof. By the variation of constants formula with W(0)=0 we have

‖W(t)‖ =
∥
∥
∥
∥X

−1(t)

[∫ t

0
X(s)F (s)Y−1(s)ds

]

Y (t)

∥
∥
∥
∥

�
∥
∥
∥X−1(t)

∥
∥
∥

[∫ t

0
‖X(s)‖‖F(s)‖

∥
∥
∥Y−1(s)

∥
∥
∥

]

‖Y (t)‖

�
∫ t

0
ed̃−ã(t−s)ds sup

t
‖F(t)‖ . (4.21)

Remark 4.1. The constants ã and d̃ can be bounded in terms of the
integral separation constants between the diagonal elements of different
blocks as in part (ii) of Theorem 4.1 and the quantities ε, dl,ε,Du,ε that
bound the upper and lower functions for the blocks. Using Theorems 5.1
and 5.2 of [10] we can quantify the quantities that characterize the upper
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and lower functions in terms of so-called Lillo conditions and bounds on
the off diagonal elements within the block.

We are now ready to state and prove a theorem providing the exis-
tence of an orthogonal change of variables that stays uniformly close to
the identity and brings the perturbed diagonal system in (4.5) to block
upper triangular, though the diagonal blocks are not necessarily triangu-
lar.

Theorem 4.3. For i, j =1, . . . ,m, let

κij (t)=
∥
∥
∥Q(ij)(t)

∥
∥
∥ , for i �= j, and κjj (t)=

∥
∥
∥Q(jj)(t)− I

∥
∥
∥ .(4.22)

Let β =αK, with α>1, K =max{ed̃/ã,1} with ã and d̃ as in (4.20), ρ =β ·ω,
where ω is a bound on supt ‖E(t)‖, E in (4.5), and let Mjj = supt ‖D(jj)(t)‖,
and M = maxj Mjj . Finally, let a1 = β[c1β + m], and a2 = β2[2m2 +
βc2], where c1 =max

(
4M(m−1)+ (nmax

j −1), 2M(m−1)+2nnmax
j )

)
, where

nmax
j =maxj nj , and c2 =M(m−1)max (7, m).

Then, for Q(0)= I , if

ω<ω+ :=
(√

a2
1 +4(α −1)a2 −a1

)

/(2a2) (4.23)

then κij (t)<ρ for all t �0 and all i, j =1, . . . ,m.

Proof. Using the equation for Q̇(ij) in (4.7) together with the defi-
nition for S(ij) in (4.8) and the definition for S(jj) in (4.13), we have for
i <j using (4.9) (and similarly for i >j using (4.10)),

Q̇(ij) =−
(
D(ii)T Q(ij) −Q(ij)D(jj)T

)
+q(ij)(t,Q,ω), (4.24)

where

q(ij)(t,Q,ω)=
(
D(ii)T Q(ij) −Q(ij)D(jj)T

)
+
∑

k

Q(ik)S(kj). (4.25)

For i = j , using (4.12), we have

d

dt

(
Q(jj) − I

)
=−

(
Q(jj) − I

)
+q(jj)(t,Q,ω), (4.26)

where

q(jj)(t,Q,ω)=
(
Q(jj) − I

)
+
∑

k

Q(jk)S(kj). (4.27)
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By the non-linear variation of constants formula for i < j (and simi-
larly for i >j ),

Q(ij)(t) = Y (ii)(t)

[∫ t

0
(Y (ii)(τ ))−1q(ij)(τ,Q(τ),ω)(Z(jj)(τ ))−1dτ

]

Z(ii)(t)

� Kij sup
t

∥
∥
∥q(ij)(t,Q(t),ω)

∥
∥
∥ , (4.28)

where Y (ii) is a fundamental matrix solution for Ẏ (ii) =Y (ii)D(ii)T , Z(jj) is
a fundamental matrix solution for Z(jj) = Z(jj)D(jj)T , and Kij � ed̃/ã by
Lemma 4.2.

For i = j , from (4.12) we have

Q(jj)(t)− I = e−t

∫ t

0
eτ q(jj)(τ,Q(τ),ω)dτ �Kjj sup

t
‖q(jj)(t,Q(t),ω)‖

(4.29)

with Kjj �1.
Let K =maxi,j K(ij).
For i <j , and similarly for i >j , we can write

∥
∥
∥q(ij)(t,Q,ω)

∥
∥
∥ �

∥
∥
∥q(ij)(t,Q,ω)−q(ij)(t, I,ω)

∥
∥
∥

+
∥
∥
∥q(ij)(t, I,ω)

∥
∥
∥�η(ρ,ω)ρ +N(ω), (4.30)

where N(ω)�ω. To bound η(ρ,ω), write

q(ij)(t,Q,ω) = q
(ij)
D (t,Q,ω)+q

(ij)
E (t,Q,ω)

:=
[

(D(ii)T Q(ij) −Q(ij)D(jj)T )+
∑

k

Q(ik)S
(kj)
D

]

+
∑

k

Q(ik)S
(kj)
E , (4.31)
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where S
(kj)
D and S

(kj)
E are as in (4.8). Then, analogously to (3.8)–(3.10), for

i <j we have

q
(ij)
D (t,Q,ω)

=






I −
j−1∑

k=1

Q(ik)Q(ik)T



D(ii)T +



m∑

k=j+1

Q(ik)Q(ik)T



D(ii)



Q(ij)

−Q(ij)
[
D(jj)T −Q(jj)T D(jj)T Q(jj)

]

+
m∑

k=j+1

Q(ik)Q(ik)T
(
D(jj)T +D(jj)

)
Q(jj)

−
∑

l �=i,j




j−1∑

k=1

Q(ik)Q(lk)T D(ll)T Q(lj) −
m∑

k=j+1

Q(ik)Q(lk)T D(ll)Q(lj)





+Q(ij)S
(jj)
D . (4.32)

Using (4.11),

I −∑j−1
k=1 Q(ik)Q(ik)T =Q(ij)Q(ij)T +∑m

k=j+1 Q(ik)Q(ik)T and

Q(jj) = (
Q(jj) − I

)+ I
(4.33)

and so we have

∥
∥
∥q

(ij)
D (t,Q,ω)

∥
∥
∥ �



(κ2
ij +2

m∑

k=j+1

κ2
ik)Mii +2κjjMjj



κij

+2
m∑

k=j+1

κ2
ikMjj (1+κjj )

+
∑

l �=i,j





(1+κii)κliκlj + (1+κll)κilκlj +

m∑

k=1
k �=i,l,j

κikκlkκlj







×Mll +κij sj , (4.34)

where sj = supt ‖S(jj)
D (t)‖.
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For i = j , using (4.27) and (4.8), we have

q
(jj)
D (t,Q,ω) =

[
Q(jj)(I +S

(jj)
D )− I

]
+
∑

k �=j

Q(jk)S
(kj)
D

=
[
Q(jj)(I +S

(jj)
D )− I

]

−
∑

l




j−1∑

k=1

Q(jk)Q(lk)T D(ll)T Q(lj)

−
m∑

k=j+1

Q(jk)Q(lk)T D(ll)Q(lj)



 . (4.35)

Thus,
∥
∥
∥q

(jj)
D (t,Q,ω)

∥
∥
∥ �

∥
∥
∥[Q(jj)(I +S

(jj)
D )− I ]

∥
∥
∥

+Mjj

(
1+κjj

)∑

k �=j

κ2
jk +

∑

l �=j

κjl (1+κll)Mllκlj

+
∑

l �=j

∑

k �=j,l

κjkκlkMllκlj . (4.36)

Next we find bounds for sj and, using (4.15)–(4.18), for ‖Q(jj)(I +
S

(jj)
D ) − I‖. If ‖Q(jj) − I‖ � ρ, given the way the entries of S(jj) have

been defined (see (4.13)), we easily obtain sj � (nj − 1)ρ. The bound on
‖Q(jj)(I +S

(jj)
D )− I‖ is trickier, and it is convenient to consider the vari-

ous contributions within this term separately.
For the lower entries (k > l) we can use (4.15) to obtain a bound on

each entry as
∣
∣
∣
(
Q(jj)

(
I +S

(jj)
D

))

kl

∣
∣
∣�2ρ2 + (nj −2)ρ2 =njρ

2

and thus a bound on all the lower part of Q(jj)(I +S
(jj)
D ) is

∑

k>l

(
Q(jj)

(
I +S

(jj)
D

))2

kl
�n2

j ρ
4 nj (nj −1)

2
.

For the diagonal entries (k= l), we can use (4.16) and (4.17) to obtain that
∣
∣
∣
(
Q(jj)(I +S

(jj)
D )− I

)

kk

∣
∣
∣� (n−1)ρ2 + (nj −1)ρ2 = (n+nj −2)ρ2
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so that
∑

k

(
Q(jj)(I +S

(jj)
D )

)2

kk
�njρ

4(n+nj −2)2 .

Finally, for the upper part (k <l) we can use (4.18) and (4.17) to obtain a
bound on each entry as

∣
∣
∣
(
Q(jj)(I +S

(jj)
D )

)

kl

∣
∣
∣�2ρ2 + (nj − l)ρ2 + (n−nj )ρ

2 �nρ2

and thus a bound on all the upper part of Q(jj)(I +S
(jj)
D ) is

∑

k<l

(
Q(jj)(I +S

(jj)
D )

)2

kl
�n2ρ4 nj (nj −1)

2
.

Thus, we obtain
∥
∥
∥Q(jj)

(
I +S

(jj)
D

)
− I

∥
∥
∥�ρ2

[
nj (n+nj −2)2 + (n2 +n2

j )nj (nj −1)/2
]1/2

and since

nj (n+nj −2)2 +n2nj (nj −1)/2�4n2nj (nj +1)/2

and
[
n2

j nj (nj −1)/2+4n2nj (nj +1)/2
]1/2

�2nnj ,

we have
∥
∥
∥Q(jj)(I +S

(jj)
D )− I

∥
∥
∥�2ρ2nnj . (4.37)

If κij �ρ and Mij �M, we have for i <j from (4.34),
∥
∥
∥q

(ij)
D (t,Q,ω)

∥
∥
∥ � ρ2M[ρ +2(m− j)ρ +2+2(m− j)(1+ρ)

+2(m−2)(1+ρ)+ (m−3)ρ]+ (nj −1)ρ2

= ρ2M[ρ(7m−4j −6)+ (4m−2j −2)]+ (nj −1)ρ2

� ρ2M(7ρ +4)(m−1)+ (nj −1)ρ2

=: ηD
ij (ρ,ω)ρ (4.38)

that is ηD
ij (ρ,ω)=ρM(7ρ +4)(m−1)+ (nj −1)ρ.

For i = j , instead, from (4.36) and (4.37) we have
∥
∥
∥q

(jj)
D (t,Q,ω)

∥
∥
∥ � ρ2 [2nnj +M(m−1) (2(1+ρ)+ (m−2)ρ)

]

=: ηD
jj (ρ,ω)ρ. (4.39)
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Now, let ηD(ρ,ω) :=max
i,j

ηD
ij (ρ,ω) and note that

ηD(ρ,ω)�ρ2c2 +ρc1,

where c1 =max
(
4M(m−1)+ (nj −1), 2M(m−1)+2nnj

)
and c2 = (m−1)M

max (7,m).
So, using the bound for ‖q(ij)

E (t,Q,ω)− q
(ij)
E (t, I,ω)‖ from (3.13) we

set

η(ρ,ω)=ηD(ρ,ω)+ωm[1+2mρ] (4.40)

and the result follows by applying Theorem IV.2.1 of [14] provided
K[η(ρ,ω)ρ + N(ω)] < ρ. Using the bound on η(ρ,ω) in (4.40) and the
form for ρ = βω, this condition is equivalent to a2ω

2 + a1ω + (1 − α) < 0
or ω<ω+(α,K,M) with ω+(α,K,M) given in (4.23).

Following [6] (see Theorems 5.1.2 and 5.1.3 in [1]) we have the follow-
ing result which bounds the perturbation in the exponents within each of
the diagonal blocks.

Theorem 4.4. Suppose for an upper triangular block T , the assump-
tions of Theorem 4.1 hold. Let ε >0 be given, define Dε :=max{Du,ε,1/dl,ε}
and δ := ε/(4Dε). Consider the systems u̇ = T (t)u with n Lyapunov expo-
nents equal to λ and u̇= [T (t)+E(t)]u with supt ‖E(t)‖� δ and Lyapunov
exponents {µ(i)}n

i=1. Then
∣
∣
∣µ(i) −λ

∣
∣
∣�4Dεδ (4..41)

for i =1, . . . , n.

Now we state our main perturbation result in the case of non-distinct
Lyapunov exponents.

Theorem 4.5. Assume that ω<ω+(α,K,M) where ω+ is given (4.23).
Consider the ith block, if ni >1, then

∣
∣
∣µ

(j)
i −λi

∣
∣
∣�4Di,ε



Mii(ρ
2 +2ρ)+

∑

k �=i

Mkkρ
2 +ω+ si



 (4.42)

for j =1, . . . , ni where ρ =β ·ω, β =αK, K =max{ed̃/ã,1}. If ni =1, then

|µ(1)
i −λi |�ρ2

∑

k �=i

[Mkk +Mii ]+ω. (4.43)
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Proof. By Theorem 4.2 in [10] there exists a Lyapunov transforma-
tion that transforms the block upper triangular system to block diagonal
without changing the diagonal blocks.

We have for i =1, . . . ,m that

(QT AQ)(ii) −D(ii) = Q(ii)T D(ii)Q(ii) −D(ii)

+
∑

k �=i

Q(ki)T D(kk)Q(ki)

+(QT EQ)(ii) −S(ii). (4.44)

If ni =1, then (4.43) follows by the argument in the proof of Theorem 3.2
but with the term

∑
k �=i Q

2
ki(Dkk −Dii) replaced by

∑

k �=i

Q(ki)T [D(kk)Q(ki) −Q(ki)D(ii)]. (4.45)

If ni >1, then result follows from Theorem 4.4 using (4.44) by writing

Q(ii)T D(ii)Q(ii) −D(ii) = (Q(ii)T − I )D(ii)(Q(ii) − I )

+(Q(ii)T − I )D(ii) +D(ii)(Q(ii) − I ). (4.46)

5. NUMERICAL EXAMPLE

We build an example where we vary the strength of the integral sepa-
ration, whether the exponents there are all distinct or some are equal, and
the departure from normality of the exact triangular factor. Take the fol-
lowing upper triangular function B(t)=D(t)+U(t), with

D(t)=diag(D11(t),D22(t),D33(t),D44(t)) , (5.1)

where we take D11(t)=10+ sin(t), D22(t)=ζ cos(t), D33(t)=λ3 −ζ cos(t),
D44(t)=−10+ sin(t), and

U(t)=κ






0 cos(t) sin(t) cos(t)
0 0 cos(t) sin(t)

0 0 0 cos(t)
0 0 0 0




 . (5.2)

We will adjust the parameter κ to change the degree to which there is non-
normality in the upper triangular part and the parameters λ3 and ζ to
change the degree to which there is integral separation as well as allow-
ing for the case of non-distinct exponents.
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Then, we rotate B, and consider the linear system (2.1) with

A(t)=Q(t)B(t)QT (t)+ Q̇(t)QT (t)

and

Q(t)=diag(1,Qβ(t),1) ·diag(Qη(t),Qη(t)).

We set

Qγ (t)=
(

cos(γ t) sin(γ t)

− sin(γ t) cos(γ t)

)

, η=1, β =
√

2.

Regardless of the value of κ in (5.2), this is a regular system with stable
Lyapunov exponents given by the limits of

λi(t) := 1
t

∫ t

0
Dii(s)ds, i =1,2,3,4 i.e. : {λ1, λ2, λ3, λ4}={10,0, λ3,−10}.

We will consider the case of distinct exponents by setting λ3 =−1
and the case of two equal exponents by setting λ3 = 0. All results on
this problem have been obtained using the code leslis, which we
wrote and is public domain and can be downloaded from our websites:
http://www.math.gatech.edu/∼dieci and http://www.math.
ku.edu/∼evanvleck. In particular, we employ the continuous QR

method using the projected fifth-order scheme (IPAR(8)=0 in LESLIS),
with local error control on the Q-factor and the exponents (IPAR(10)=
10 in LESLIS), and TOL is the value of the local error tolerance.

In Table I, we report on experiments that have been carried out up
to T = 104, and we show the errors ei :=|λi −λc

i (T )| where λc
i (T ) are the

computed values at T of λi(T ), i = 1,2,3,4. Scientific notation is used
throughout. Given that we use TOL=1.E-4, and that we compute up to
T = 104, we cannot expect to see errors better than about 1.E-4, and
this would correspond to the case in which the errors are indeed of size
TOL. [Increasing the length of the interval on which we compute does not
increase the accuracy, as we observed in [11].]

We observe that if the coefficient matrix is normal (that is, κ = 0),
and there is a sufficient degree of integral separation (that is, ζ =5), then
the exponents are accurate regardless of whether or not they are distinct
(λ3 =−1 or λ3 = 0). The exponents remain reasonably accurate even with
κ = 10, as long as there is sufficient integral separation (ζ = 5), but are
much more accurate when λ3 =0 than when λ3 =−1. This illustrates very
clearly the difference between having distinct exponents in a system with
weak integral separation versus having equal exponents with strong inte-
gral separation in a block sense. When we further weaken integral separa-
tion (ζ =10) also in the block sense, then the exponents are no longer all
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Table I. Error in the exponents changing the degree of non-normality, integral separation,
and distinct or non-distinct.

κ λ3 ζ e1 e2 e3 e4

0 −1 5 2.4E-4 1.1E-4 1.3E-4 1.3E-4
0 −1 10 2.4E-4 1.5E0 1.5E0 1.4E-4
10 −1 5 2.6E-4 8.5E-1 8.5E-1 6.8E-5
10 −1 10 2.5E-4 3.8E0 3.8E0 4.5E-5
0 0 5 2.4E-4 8.5E-3 8.5E-3 1.2E-4
0 0 10 2.3E-4 2.0E0 2.0E0 1.4E-4

10 0 5 2.6E-4 2.6E-4 1.9E-4 5.9E-5
10 0 10 2.4E-4 2.4E0 2.4E0 1.7E-4
10 0 20 3.4E-1 8.2E0 7.3E0 1.2E0

TOL = 1.E-4, T =104.

accurate, regardless of whether or not they are distinct, although the first
and last exponents remain accurate. This betrays the fact that it may be
possible to do a more refined component-wise analysis of the error in each
exponent, based upon the varying degrees of integral separation within the
upper triangular system. Finally, in the last row of Table 1 we weaken the
integral separation to the point that all the exponents are poorly approx-
imated.

6. CONCLUSION

The backward error analysis result of [11] said that – by QR methods –
one will compute the Lyapunov exponents of a perturbed triangular sys-
tem. Here, we examined the impact of this perturbation on the accuracy
of the exponents. First, we performed a reduction from perturbed trian-
gular to perturbed diagonal systems, then, under the assumption of stable
Lyapunov exponents, we proved the existence of near identity orthogonal
change of variables to upper triangular form. This allowed us to obtain pre-
cise bounds on the error in the Lyapunov exponents. The numerical results
suggest the importance of further improvements of this type of analysis to
provide a componentwise analysis of the error in the exponents based upon
the varying degrees of integral separation within the given system (see also
Remark 3.1).
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