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Taylor Approximation of Integral Manifolds
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Integral manifolds generalize invariant manifolds to nonautonomous ordinary
differential equations. In this paper, we develop a method to calculate their
Taylor approximation with respect to the state space variables. This is of
decisive importance, e.g., in nonautonomous bifurcation theory or for an
application of the reduction principle in a time-dependent setting.
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1. INTRODUCTION

In the local analysis of (autonomous) dynamical systems, there are
two canonical ways to simplify a given nonlinear problem: (1) eliminate
the nonlinearity as far as possible, and (2) reduce its dimension. Both lines
of approach are fairly classical and led to the rigorous development of
mathematical techniques like normal forms and center manifold reduction,
respectively. The normal form theory dates back to Poincaré in the late
19th century already, while the center manifold theorem in finite dimen-
sions has been proved in [32] (cf. also [8, 11, pp. 317, 41, pp. 89–169]).
These techniques are the most important, generally available methods in
local investigations of dynamical systems, and they form the basic for, e.g.,
a local dynamic bifurcation theory.

Over the last decades, nonautonomous dynamical systems became a
popular and important field of research, since they frequently arise in
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applications (e.g., in the development of more realistic models) and inner-
mathematical areas (e.g., to investigate the behavior of equations close
to fixed nonconstant reference solutions of, e.g., almost periodic, homo-
clinic and heteroclinic type). Nevertheless, until now, the two classical
approaches to simplify dynamical systems mentioned above are still fairly
underdeveloped for explicitly time-dependent problems. Actually, a normal
form theory for such systems is of quite recent origin (cf. [40]). On the
other hand, a center manifold reduction for nonautonomous systems splits
into two problems: first of all, one needs an appropriate reduction prin-
ciple, which states that the essential dynamics of a given system is cap-
tured by the behavior on the center manifold. Second, one needs to know
the center manifold or at least a suitable approximation of it. A reduc-
tion principle for nonautonomous ordinary differential eqautions (ODEs)
can be found in [3] (or see [36] for a corresponding nonautonomous center
manifold theory). The paper at hand addresses the question how to deter-
mine a Taylor approximation of the occurring center manifolds.

More precisely, our setting is broader and not limited to center
manifolds: We present an approach to compute higher order local approxi-
mations of pseudo-hyperbolic integral manifolds near steady states for non-
autonomous ODEs (see also the so-called “branch manifolds” introduced
in [36]). The integral manifolds under consideration canonically general-
ize invariant manifolds to explicitly time-dependent right-hand sides and
include the full hierarchy of strongly stable, stable, center-stable, as well as
the corresponding unstable manifolds as special cases. We point out that
our approach is not limited to the periodic or almost-periodic case. In our
time-dependent situation, the Taylor coefficients are determined by bounded
solutions of a linear ODE in a multilinear mapping space. Furthermore,
we provide an explicit expression for these solutions in terms of so-called
Lyapunov–Perron integrals (cf. Theorem 4.1). The same technique has been
used in [38] for the purpose of a smooth linearization for vector fields.

For autonomous ODEs, such approximations via Taylor expansions
are widely studied, e.g., in the monograph [28, pp. 172–187, Section 5.4] or
the papers [7, 16, 21]. In this case, the situation is simpler, since the Taylor
coefficients of invariant manifolds are (uniquely) determined by algebraic
equations, the so-called multilinear Sylvester equations. In a different con-
text [18], use Taylor series to obtain algebraic (polynomial) approximations
of global attractors.

The framework for our investigations are nonautonomous ODEs in
Banach spaces. Even though their state space is allowed to be infinite
dimensional, differing from abstract evolution equations, we make the
restriction that the operators involved are bounded and, concerning their
linear part, everywhere defined.
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The outline of the paper is as follows. First, we establish our basic
terminology and a crucial result on the existence of bounded solutions
for linear ODEs in spaces of multilinear mappings. Section 3 sets up the
necessary theoretical background on local pseudo-stable/-unstable integral
manifolds; in particular, it addresses the question of their uniqueness. In
Section 4, we derive a linear ODE for the Taylor coefficients of the inte-
gral manifolds and solve it analytically. We demonstrate our results in
Section 5 by two examples. The first one is the celebrated Lorenz equa-
tion with nonautonomously perturbed parameters. We are able to prove
that a nonautonomous bifurcation of pitchfork type occurs in the sense
of pullback attractors. Second, we calculate approximations of the cen-
ter-stable and center-unstable integral manifolds for a system occurring in
the investigation of traveling wave solutions for a modified Korteweg-de
Vries equation. For the reader’s convenience, two appendices contain a
theorem on global integral manifolds and an existence result for pullback
attractors.

We close this introduction by reviewing different approaches to the
numerical computation of invariant manifolds for autonomous ODEs: [19]
is based on the graph transform method, [20] apply a PDE approach to
obtain global invariant manifolds and [22] use invariant foliations. While
differentiability of the right-hand side is essential in our approach and
applications, the paper [26] provides a method to approximate non-smooth
center manifolds based on a discretization of the Lyapunov–Perron oper-
ator. Furthermore, [15] work with subdivision techniques to obtain global
approximations and [5, 6] generalize this to nonautonomous ODEs.

After all, we refer to [33] for related results and further references in
the discrete case of nonautonomous difference equations, where the meth-
ods are partially parallel to the present paper, and consequently, we can
shorten some proofs here. Nonetheless, because of the following reasons
and distinctions, we think it is not legitimate to consider our present ODE
treatment as direct consequence of the corresponding investigation in [33]:

• Due to the invertibility of transition operators for the ODEs under
consideration, the present treatment of exponential dichotomies
appears simpler. One does not need to assume invertibility of the
linear part restricted to its pseudo-unstable invariant subspace, in
order to obtain a robust nonautonomous hyperbolicity concept (in
form of an exponential dichotomy).

• In addition, integral manifolds of ODEs need to satisfy certain con-
tinuity assumptions for their partial derivatives (cf. (H4) in Section
4) w.r.t. the time variable. By the trivial topology of the integers,
this is redundant for difference equations.
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• Finally, the invariance equation for integral manifolds is a first-
order partial differential equation (see (3.4)), while the correspond-
ing theory of difference equations leads to a nonlinear functional
equation. Hence, a priori it is not clear whether the methods devel-
oped for the discrete case simply carry over to our setting, or if
different techniques have to be employed. Indeed, one needs sup-
plementary tools (e.g., the Leibniz rule from Lemma 2.1) in our
analysis, yielding another homological equation (see (4.3)), which is
structurally different from the related discrete object (see [33, (4.4)]).

In addition, the difference equations paper [33] illustrates the obtained
results via critical problems from stability theory; more precisely, we
applied a nonautonomous reduction principle to various biological mod-
els. In this paper, however, our bias is different and on a nonautonomous
bifurcation scenario in some parametrically perturbed Lorenz system.

To conclude this introduction, we think it is useful and interesting to
show that the algebraic problems from the well-known autonomous the-
ory become tasks related to perturbation theory of ODEs in a nonau-
tonomous setting. Moreover, having a nonautonomous bifurcation theory
available (cf. the approaches of [23–25, 30, 31, 34, 37]), it is our hope that
the introduced methods in connection with, for instance [40], can be help-
ful to simplify problems.

2. PRELIMINARIES

Above all, let us introduce some notation. N stands for the set of pos-
itive integers, R for the real and C for the complex field. Throughout this
paper, the real (F=R) or complex (F=C) Banach spaces X ,Y are allowed
to be infinite dimensional, and their norm is denoted by ‖·‖. In such a
normed space, Bρ is the open ball with center 0 and radius ρ>0; beyond
that, Uρ(V )⊆X is the open ρ-neighborhood of V ⊆X . Such a subset V is
called star-shaped w.r.t. 0, if one has {hx ∈X : h∈ [0,1]}⊆V for all x ∈V .

We write IX for the identity mapping on X , and for an n-tuple of
the same vector x ∈X we use the abbreviation xn := (x, . . . , x)∈X n. With
n∈N,Ln(X ;Y) is the Banach space of symmetric n-linear bounded opera-
tors from X n to Y,Ln(X ) :=Ln(X ;X ) and L(X ) :=L1(X ); all these spaces
are equipped with their canonical norm. For a mapping X∈Ln(X ;Y), we
abbreviate Xx1, . . . , xn := X(x1, . . . , xn). With a closed subspace X1 ⊆ X
and T ∈L1(X1;X ), we define XT ∈Ln(X1;Y) by

XT x1, . . . , xn :=X(T x1, . . . , T xn) for all x1, . . . , xn ∈X1

and obtain the norm estimate (cf. [1, p. 62])
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‖XT ‖�‖T ‖n ‖X‖ for all n∈N . (2.1)

The range of T is denoted by R(T ) :=T (X1).
During the rest of the paper, I denotes a real interval unbounded

above.
Let U ⊆X be nonempty and open. We say a mapping F :U×I→Y is

uniformly bounded if it maps bounded subsets of U into bounded sets (uni-
formly in I), i.e., if for any bounded �⊆U , there exists an M�0 such that
‖F(x, t)‖�M for all x∈�, t ∈ I. We write DF̄ for the Fréchet derivative of
a mapping F̄ :U→Y , and if F :U×I→Y depends differentiably on the first
variable, then its partial derivative is denoted by D1F . For integers m�0,
the higher order derivatives DmF̄ or Dm1 F are defined inductively, and F

is said to be uniformly Cm-bounded, if Dm1 F is uniformly bounded and the
functions Dn1F(0, ·):I→Ln(X ;Y) are bounded for n∈{1, . . . ,m−1}. Thus,
for a set U star-shaped w.r.t. 0, the mean value theorem implies the uni-
form boundedness of Dn1F for n∈{1, . . . ,m}.

Now we quote a version of the Leibniz (product) rule and the chain
rule for higher order Fréchet derivatives. To achieve a compact and conve-
nient notation, we use (ordered) partitions of finite sets. These partitions
consist of tuples of subsets of a given finite set. More precisely, with j, l∈
N, we write

Pj (l) :=
⎧
⎨

⎩
(N1, . . . ,Nj )

∣
∣
∣
∣
∣
∣

Ni ⊆{1, . . . , l} for i ∈{1, . . . , j} ,
N1 ∪· · ·∪Nj ={1, . . . , l} ,
Ni ∩Nk =∅ for i �=k, i, k∈{1, . . . , j}

⎫
⎬

⎭

for the partitions of {1, . . . , l} with length j . Moreover, the ordered parti-
tions of {1, . . . , l} with length j are given by

P<j (l) :=
{

(N1, . . . ,Nj )∈Pj (l)
∣
∣
∣
∣
Ni �=∅ for i ∈{1, . . . , j} ,
maxNi <maxNi+1 for 1�i <j

}

.

In case of a set N ={n1, . . . , nk}⊆ {1, . . . , l} for k ∈ N, k�l, we abbreviate
DkF̄ (x)xN :=DkF̄ (x)xn1 , . . . , xnk for x ∈U,x1, . . . , xl ∈ X , where F̄ :U→Y
is assumed to be k-times differentiable. At last, #N is the cardinality of a
finite set N ⊂N.

Lemma 2.1. (Leibniz rule). Given m,n∈ N, an open set U ⊆X , x ∈U ,
Banach spaces Y1, . . . ,Yn,Z and mappings fi :U→Yi , i ∈ {1, . . . , n}, which
are m-times differentiable. Then for any bounded multilinear mapping M :
Y1×· · ·×Yn→Z, also the mapping g : U→Z, g(x) :=M(f1(x), . . . , fn(x))
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is m-times differentiable, and for l ∈ {1, . . . ,m}, the derivatives possess the
representation

Dlg(x)x1, . . . , xl =
∑

(N1,...,Nn)∈Pn(l)
M(D#N1f1(x)xN1 , . . . ,D

#Nnfn(x)xNn)

for any x1, . . . , xl ∈X .

Proof. See [1, pp. 95–96 and p. 112, Example 2.4C].

To reveal the efficiency of this notation, we consider the following
simple example, as well as Example 2.4 below.

Example 2.2. For l=2 and n=3, we obtain the partition

P3(2) = {(∅,∅, {1,2}), (∅, {1,2} ,∅), ({1,2} ,∅,∅), (∅, {1} , {2}),
(∅, {2} , {1}), ({1} ,∅, {2}), ({1} , {2} ,∅), ({2} , {1} ,∅),
({2} ,∅, {1})}

and in case of a bounded 3-linear mapping M, the above Lemma 2.1
yields

D2g(x)x1x2x3

=M(f1(x), f2(x),D
2f3(x)x1x2)+M(f1(x),D

2f2(x)x1x2, f3(x))

+M(D2f1(x)x1x2, f2(x), f3(x))+M(f1(x),Df2(x)x1,Df3(x)x2)

+M(f1(x),Df2(x)x2,Df3(x)x1)+M(Df1(x)x1, f2(x),Df3(x)x2)

+M(Df1(x)x1,Df2(x)x2, f3(x))+M(Df1(x)x2,Df2(x)x1, f3(x))

+M(Df1(x)x2, f2(x),Df3(x)x1) .

Lemma 2.3. (chain rule). Given m∈ N, open sets U,V ⊆X , x ∈U and
mappings f :V→X , g :U→X , which are m-times differentiable and satisfy
g(U)⊆V . Then the composition f ◦g :U→X is m-times differentiable, and
for l ∈{1, . . . ,m}, the derivatives possess the representation

Dl(f ◦g)(x)x1, . . . , xl

=
l∑

j=1

∑

(N1,... ,Nj )∈P<j (l)
Djf (g(x))D#N1g(x)xN1 , . . . ,D

#Nj g(x)xNj

for any x1, . . . , xl ∈X .

Proof. See [35, Theorem 2].
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Example 2.4. To clarify Lemma 2.3 in case, e.g., l= 3, we obtain the
ordered partitions

P<1 (3) = {({1,2,3})} ,
P<2 (3) = {({1} , {2,3}), ({1,2} , {3}), ({2} , {1,3})} ,
P<3 (3) = {({1} , {2} , {3})}

and therefore, the third-order derivative of the composition f ◦g reads as

D3(f ◦g)(x)
=Df (g(x))D3g(x)x1x2x3 +D2f (g(x))Dg(x)x1D

2g(x)x2x3

+D2f (g(x))D2g(x)x1x2Dg(x)x3 +D2f (g(x))Dg(x)x2D
2g(x)x1x3

+D3f (g(x))Dg(x)x1Dg(x)x2Dg(x)x3 .

Since we are dealing with nonautonomous differential equations, it is
advantageous to have some further notions available. Any subset S⊆ I×X
is called a nonautonomous set, and the sets S(t) :={x∈X : (t, x)∈S} for t ∈I

are its t-fibers.
For a differentiable function φ : I→X , I ⊆ I is an interval, its deriva-

tive is denoted by φ̇ : I→X . We use the notation

ẋ=f (x, t) (2.2)

to denote the ODE ẋ(t) = f (x(t), t) with right-hand side f :U×I→X ,
where U is an open subset of the Banach space X and f satisfies con-
ditions guaranteeing existence and uniqueness of solutions. A differentia-
ble function φ:I→X is said to solve (2.2) on I ⊆ I if φ(t)∈U and φ̇(t)≡
f (φ(t), t) holds for all t ∈ I. Let ϕ stand for the general solution of (2.2),
i.e., ϕ(·; t0, x0) is the unique noncontinuable solution of (2.2) satisfying the
initial condition ϕ(t0; t0, x0)=x0 for t0 ∈ I, x0 ∈U .

Given a continuous coefficient function A:I→L(X ), we define the
transition operator �(t, τ )∈L(X ), τ, t ∈ I, of the linear ODE

ẋ=A(t)x (2.3)

in X as solution of the L(X )-valued initial value problem Ẋ=A(t)X,X(τ)=
IX (cf. [14, p. 101]). A projection-valued function P−:I→L(X ) is said to
be an invariant projector of (2.3) supposed that

�(t, τ )P−(τ )=P−(t)�(t, τ ) for all t, τ ∈ I . (2.4)
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The complementary projector P+ : I→L(X ), defined by P+(t) := IX −P−(t)
for all t ∈I, is also an invariant projector. One can show that invariant pro-
jectors are continuously differentiable, and they satisfy the linear ODE

Ṗ±(t)=A(t)P±(t)−P±(t)A(t) for all t ∈ I , (2.5)

here the symbol P± simultaneously stands for P+ or P−, respectively. We
proceed similarly with our further notation throughout the paper.

As mentioned in section 1, a crucial tool in our analysis will be a par-
ticular class of linear ODEs in spaces of n-linear mappings. The remaining
section features some preliminaries on this aspect. More precisely, we are
interested in linear differential equations in Ln(X ) of the form

ẊP±(t)=LA(t)XP±(t) (2.6)

with a coefficient function LT ∈L(Ln(X )) given by (cf. [38, p. 1066])

(LT X)x1, . . . , xn :=TXx1, . . . , xn−
n∑

j=1

Xx1, . . . , xj−1T xjxj+1, . . . , xn

for T ∈L(X ) and vectors x1, . . . , xn∈X . It is worth mentioning that these
equations are not ODEs of the form (2.2), since the projectors P±(t) are
noninvertible in general. It is easy to see that, given τ ∈ I and initial state
�∈Ln

(X ;R(P∓(τ ))
)

with �P±(τ )≡� ,

�±(t, τ )� :=�(t, τ )��(τ,t)P±(t), for all t ∈ I, (2.7)

defines the uniquely determined solution �±(·, τ )� of Eq. (2.6) satisfying
the relation (�±(t, τ )�)P±(t)=�±(t, τ )� for t ∈ I .

In order to discuss integral manifolds of nonautonomous ODEs, we
need an appropriate, i.e., robust hyperbolicity notion for their linear part.

Hypothesis. Assume the continuous function A : I→L(X ) satisfies:

(H1) Hypothesis on linear part: The linear ODE (2.3) possesses an
exponential dichotomy, i.e., there exists an invariant projector
P− : I→L(X ) such that for all t, τ ∈ I, the estimates

‖�(t, τ )P+(τ )‖�K+eα(t−τ) ,
‖�(τ, t)P−(t)‖�K−eβ(τ−t) (2.8)

for all τ�t hold with real constants K+,K−�1, α<β.
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Remark 2.5.

(1) In the autonomous case, i.e., if A0 :=A(t) does not depend on
t ∈ I, it is sufficient to assume that the spectrum σ(A0)⊆ C of
A0 ∈L(X ) can be separated into a “pseudo-stable” spectral part
σ+ with 
σ+<α, and a disjoint “pseudo-unstable” part σ− with
β <
σ+. Then P± are constant (in t ∈ I) and given by the spec-
tral projectors related to σ±, respectively (cf. [14, pp. 72–73]).

(2) For a T -periodic differential equation (2.3), T > 0, an exponen-
tial dichotomy is implied by the fact that σ(�(τ + T , τ)), τ ∈ I

fixed, can be separated into a “pseudo-stable” spectral part σ+
with |σ+|<α, and a disjoint “pseudo-unstable” part σ− satisfy-
ing β < |σ−| (cf. [14, p. 203, Theorem 2.1]).

(3) Further sufficient conditions for an exponential dichotomy can
be found in [13].

Our first result deals with perturbations of linear systems (2.6) in
Ln(X ). For this, the notion of quasiboundedness is convenient. With reals
γ and a fixed τ ∈ I, we say a function φ : I→X is γ -quasibounded if

‖φ‖τ,γ := sup
t∈I

‖φ(t)‖ eγ (τ−t) <∞,

holds. Obviously, 0-quasiboundedness coincides with the classical notion
of boundedness.

Lemma 2.6. (quasibounded solutions). Suppose that (H1) is satisfied,
let n∈ N, τ ∈ I, γ ∈ R, and assume H± : I → Ln(X ) is γ -quasibounded with
H±(t)∈Ln

(X ;R(P∓(t))
)

for t ∈ I. Then for the ODE

ẊP±(t)=LA(t)XP±(t)+H±(t)P±(t) (2.9)

in Ln(X ), the following holds:

(a) In case γ <β−nα, there exists a unique γ -quasibounded solution

+ : I→Ln(X ) of (2.9) with


+(t)=
+(t)P+(t) ∈Ln
(X ;R(P−(t))

)
for all t ∈ I , (2.10)

given by


+(t) :=−
∫ ∞

t

�(t, s)H+(s)�(s,t)P+(t) ds (2.11)

and satisfying the estimate ‖
+‖τ,γ � K−Kn+
β−γ+nα

∥
∥H+∥∥

τ,γ
.
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(b) In case I=R and γ >α−nβ, there exists a unique γ -quasibound-
ed solution 
− : R→Ln(X ) of (2.9) with 
−(t) = 
−(t)P−(t) ∈
Ln
(X ;R(P+(t))

)
for all t ∈R, given by


−(t) :=
∫ t

−∞
�(t, s)H−(s)�(s,t)P−(t) ds

and satisfying the estimate ‖
−‖τ,γ � K+Kn−
γ+α−nβ

∥
∥H−∥∥

τ,γ
.

Proof. Let τ ∈ I. We only prove the assertion (a), since (b) can be
shown similarly.

(I) We first consider the special case H+(t)≡ 0 on I. Then Eq. (2.9)
coincides with (2.6). Let 
+ : I→Ln(X ) be a γ -quasibounded solution of
(2.9) satisfying (2.10). Taking the limit t→∞ in the inequality

‖
+(τ )‖ (2.7)= ∥
∥�(τ, t)
+(t)�(t,τ )P+(τ )

∥
∥

(2.10)
� ‖�(τ, t)P−(t)‖

∥
∥
+(t)�(t,τ )P+(τ )

∥
∥

(2.1)
� ‖�(τ, t)P−(t)‖‖
+(t)‖‖�(t, τ )P+(τ )‖n

(2.8)
� K−Kn

+e
(nα+γ−β)(t−τ) ‖
+‖τ,γ

for all t�τ yields 
+(τ )=0. Since τ ∈ I was arbitrary, the zero solution of
(2.9) is the only γ -quasibounded solution satisfying (2.10).

(II) We now omit the restriction on H+ and note that the function

+ from (2.11) is well-defined, since the estimate

‖
+(t)‖
(2.11)
�

∫ ∞

t

∥
∥�(t, s)P−(s)H+(s)�(s,t)P+(t)

∥
∥ ds

(2.1)
�
∫ ∞

t

‖�(t, s)P−(s)‖
∥
∥H+(s)

∥
∥‖�(s, t)P+(t)‖n ds

(2.8)
� K−Kn

+e
γ (t−τ) ∥∥H+∥∥

τ,γ

∫ ∞

t

e(s−t)(γ+nα−β) ds

= K−Kn+
β−nα−γ

∥
∥H+∥∥

τ,γ
eγ (t−τ) for all t ∈ I,

holds, which in turn yields the claimed estimate for ‖
+‖τ,γ . Moreover, it
is easy to see that 
+ satisfies (2.10). 
+ is a solution of (2.9), since the
Leibniz rule (Lemma 2.1) yields
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̇+(t)P+(t)≡�(t, t)H+(t)�(t,t)P+(t)−A(t)
∫ ∞

t

�(t, s)H+(s)�(s,t)P+(t) ds

−
n∑

j=1

∫ ∞

t

�(t, s)H+(s)
(

�(s, t)P+(t), . . . ,
d

dt
(�(s, t)P+(t))

︸ ︷︷ ︸
j th position

, . . . ,�(s, t)P+(t)
)

(2.5)≡ H+(t)P+(t)+A(t)
+(t)−
n∑

j=1


+(t)
(
IX , . . . , A(t)

︸︷︷︸
j th position

, . . . , IX
)

≡LA(t)
+(t)P+(t)+H+(t)P+(t) on I .

Finally, the uniqueness statement results from step (I), because the differ-
ence of any two γ -quasibounded solutions of (2.9) is a γ -quasibounded
solution of (2.6) and therefore, identically vanishing.

3. PROPERTIES OF INTEGRAL MANIFOLDS

In the following, we introduce and summarize some fundamental
facts on integral manifolds of ODEs. For the autonomous and center
manifold situation (e.g., [12, pp. 1–48, Chapter 1, 41, pp. 89–169) or 8] are
good references), whereas the general nonautonomous setting is treated in
[4] or [36, 39]. We consider nonautonomous ODEs of the form

ẋ=A(t)x+F(x, t) (∗)F
with a mapping F :U0×I→X , where U0 ⊆ X is open and star-shaped
w.r.t. 0∈X .

Hypothesis. Let m∈ N. Assume the continuous mapping F :U0×I→X
satisfies:

(H2) Hypothesis on nonlinearity: F is m-times continuously Fréchet
differentiable in the first argument, F(0, t)≡0 on I, we have the
limit relation

lim
x→0

‖D1F(x, t)‖=0 uniformly in t ∈ I (3.1)

and F is uniformly Cm-bounded.

Remark 3.1. One typically obtains (∗)F from (2.2) as equation of per-
turbed motion. Thereto, let φ : I→X be a fixed reference solution of (2.2),
and one is interested in the behavior close to φ. Hence, instead of (2.2),
one investigates (∗)F with

A(t) := D1f (φ(t), t),
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F(x, t) := f (x+φ(t), t)−f (φ(t), t)−D1f (φ(t), t)x

and assumes that the partial derivatives Dn1f exist, are continuous and
uniformly bounded for n∈{0, . . . ,m}, and that one has

lim
x→0

‖D1f (x+φ(t), t)−D1f (φ(t), t)‖=0, uniformly in t ∈ I .

Next, we introduce a nonautonomous version of an invariant mani-
fold for (∗)F . Let P± : I→L(X ) be the invariant projector of (2.3) from
(H1),U ⊆U0 is open star-shaped w.r.t. 0 and ϕ denotes the general solu-
tion to (∗)F . Assume s± : U×I→X is a mapping continuously Fréchet
differentiable and satisfying

s±(0, t) ≡ 0 on I , lim
x→0

∥
∥D1s

±(x, t)
∥
∥=0, uniformly in t ∈ I , (3.2)

s±(x, t)= s±(P±(t)x, t)∈R(P∓(t)) (3.3)

for all t ∈ I, x ∈X . Then the nonautonomous set given by the graph

S± :={(τ, ξ + s±(ξ, τ ))∈ I×X : ξ ∈R(P±(τ ))∩U
}

is called a local integral manifold of the nonlinear ODE 3.1 if

(t0, x0)∈S± ⇒ (t, ϕ(t; t0, x0))∈S± for all t ∈JU(t0, x0)

holds, where JU(t0, x0)⊆ I is the maximal interval of existence for ϕ(·; t0, x0)

w.r.t. U . One speaks of a Cm-integral manifold of (∗)F if the partial deriv-
atives Dn1 s

± exist and are continuous for n∈{1, . . . ,m}. In case U=X , we
say that S± is a global integral manifold of (∗)F . Geometrically, conditions
(3.2) and (3.3) imply that S± contains the zero solution of (∗)F , and S± is
fiber-wise tangent to the vector bundle {(τ, ξ)∈ I×X : ξ ∈R(P±(τ ))}, while
(3.3) yields that each t-fiber S±(t) is a graph over R(P±(t))∩U .

Local integral manifolds satisfy the following nonlinear first-order
partial differential equation, named as invariance equation

A(t)s±(ξ, t)+P∓(t)F (ξ + s±(ξ, t), t)
=D1s

±(ξ, t)
(
A(t)ξ +P±(t)F (ξ + s±(ξ, t), t))+D2s

±(ξ, t) (3.4)

for all t ∈ I, ξ ∈R(P±(t))∩U such that ξ + s±(ξ, t)∈U0.
S+ and S− are denoted as pseudo-stable and pseudo-unstable inte-

gral manifolds of (∗)F , respectively. To be more specific, S+ describes a
center-stable integral manifold in case β > 0, a stable integral manifold in
the hyperbolic situation α<0<β and a strongly stable integral manifold in
case β <0. Under the additional assumption I=R,S− describes a center-
unstable integral manifold in case α < 0, an unstable integral manifold in
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the hyperbolic situation α<0<β and a strongly unstable integral manifold
in case α>0. In the light of Remark 2.5, this terminology corresponds to
the autonomous situation of invariant manifolds considered, e.g., in [12].

Concerning the existence of smooth local integral manifolds, due to
our general Banach space setting, we have to impose the assumption that
X is a Cm-Banach space; that is, the norm on X is of class Cm away from
0. A characterization of such spaces, as well as concrete examples, can be
found in [27, pp. 127–152, Section 13]; e.g., Hilbert spaces are C∞-Banach
spaces. Then, on X , there exists a Cm-cut-off function (or bump function)
χ :X→ [0,1] with the properties

χ(x)≡1 on x ∈B1, χ(x)≡0 on x ∈X \B2 (3.5)

(cf. [1, p. 473, Lemma 4.2.13]). This is of crucial importance for the proof
of

Theorem 3.2 (existence of local integral manifolds). Suppose (H1) and
(H2) hold and that X is a Cm-Banach space. Then there exists a ρ0>0 such
that one has with U =Bρ0 :

(a) Under the gap condition

mα<β (3.6)

the ODE (∗)F possesses a local pseudo-stable Cm-integral mani-
fold S+,

(b) for I=R and under the gap condition

α<mβ (3.7)

the ODE (∗)F possesses a local pseudo-unstable Cm-integral man-
ifold S−,

(c) for the corresponding mapping s± : U×I→X , there exist reals
γ0, . . . , γm�0 such that

∥
∥Dn1 s

±(x, t)
∥
∥�γn for all x ∈U, t ∈ I, n∈{0, . . . ,m} (3.8)

(d) if the (∗)F mappings A and F are periodic in t with period θ >0,
then

s±(x, t+ θ)= s±(x, t) for all x ∈X , t ∈ I

and if is autonomous, then the mapping s± is independent of t ∈ I,
i.e., the set

{
ξ + s±(ξ)∈X : ξ ∈R(P±)∩U

}
is a locally invariant

manifold of (∗)F .
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Proof. One obtains the local integral manifolds as restriction of
global integral manifolds by suitably modifying the ODE (∗)F outside
a small neighborhood of 0 with a Cm-cut-off function. Using this fairly
standard cut-off technique, one can apply Theorem A.1 to the modified
equation (∗)F and deduce the assertions of the present Theorem 3.2.

The integral manifolds defined above are constructed as perturbations
of the invariant vector bundles for the corresponding linear system (2.3),
which are global objects. Therefore, it is reasonable that solutions of (∗)F
lying in the corresponding integral manifolds inherit the dynamical proper-
ties of the linearization at least locally. For instance, interpreting the stable
integral manifold S+ as domain of attraction for the zero solution of (∗)F ,
it is desirable that the domain of definition for s+(·, t) does not shrink
to 0 for t → ∞. Moreover, referring to an application of the reduction
principle in critical stability problems, one needs the existence of a center-
unstable integral manifold S− on a set of the form R×Bρ0 . However, one
cannot expect that this uniformity in time persists if one weakens the limit
relation (3.1) in assumption (H2) to uniform convergence on compact sets,
i.e.,

lim
x→0

‖D1F(x, t)‖=0, uniformly in t ∈K (3.9)

for every compact subset K ⊂ I. This is demonstrated by the following
example.

Example 3.3. Let I := [1,∞), and consider the nonautonomous ODE
(2.2) with scalar right-hand side f : R×I→R, given by

f (x, t) :=− 1
2x+F(x, t), F (x, t) :=

∫ x

0
ψ(u, t) du ,

where ψ : R×I→R is a bounded C1-function, defined by

ψ(u, t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for |u|�1, t,

exp
(

−
(

1
|u| − t

)2
)

for 0< |u|<1/t,

0 for u=0.

The nonlinearity F does not fulfill (3.1) in assumption (H2), whereas (3.9)
holds, since one has D1F(x, t)=ψ(x, t). Assume, there exists an η> 0 so
that

lim
t→∞ϕ(t+ τ ; τ, η)=0 for all τ ∈ I . (3.10)
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Due to limt→∞
∫ η

0 ψ(u, t) du=η, there exists a t0 = t0(η)>1 with
∫ η

0 ψ(u, t)

du�2/3η for all t�t0. This implies

f (t, η)�− 1
2
η+ 2

3
η>0 for all t�t0 .

Hence, one has ϕ(t; τ, η)�η for all t�τ�t0, which contradicts (3.10).
Therefore, the trivial solution of (2.2) is not uniformly attractive, thus not
even uniformly asymptotically stable in the sense of Lyapunov (see, e.g.,
[14, p. 279]), although the linearization ẋ=−1/2x is actually exponentially
stable. This example shows that notions of uniform stability do not persist
under nonlinearities F satisfying only (3.9).

Remark 3.4. We point out that it is straight forward to set up a the-
ory of integral manifolds for (∗)F , where the uniformity in limit relation
(3.1) is relaxed to the fact for all ε > 0, there exists a continuous � :
I→(0,∞) such that x ∈B�(t) implies ‖D1F(x, t)‖<ε for all t ∈ I. Using a
time-dependent cut-off technique in the proof of Theorem 3.2, the fibers
of the resulting integral manifolds are given as graphs of functions s±(·, t)
defined on open neighborhoods U(t)⊆X of 0, whereupon U(t) is allowed
to shrink to {0} for t→∞. However, for the above reasons, we do not fol-
low this approach.

It is well known that, even under Hypotheses (H1) and (H2), e.g.,
center-unstable integral manifolds are not unique in general (cf. [12,
pp. 30–31, Example 3.5] for instance). Still, they can be obtained as
restrictions of uniquely determined global integral manifolds of appropri-
ately modified ODEs and calculated using Taylor expansions. Technically,
this is guaranteed under our

Hypothesis. Let X be a Cm+1-Banach space and assume

(H3) A : I→L(X ) is bounded.

Proposition 3.5 (global integral manifolds). Suppose (H1)–(H3) hold,
and let S± denote a Cm+1-integral manifold, where the corresponding map-
ping s± : U×I→X is uniformly Cm+1-bounded. In case S+ is considered,
assume (3.6) holds, and in case of S−, assume I =R and (3.7). Then there
exist a real ρ>0, as well as mappings Fρ :X×I→X and s±ρ :X×I→X such
that the following holds:

(a) The graph S±
ρ := {(τ, ξ + s±ρ (ξ, τ ))∈ I×X : ξ ∈R(P±(τ ))

}
defines

a global Cm-integral manifold of (∗)Fρ ,
(b) Fρ(x, t)≡F(x, t) on Bρ×I ,
(c) s±ρ (x, t)≡ s±(x, t) on Bρ×I, and S±

ρ ∩ (I×Bρ)=S± ∩ (I×Bρ) .
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Proof. First of all, for an arbitrary subset V ⊆X we define

V±(V ) :={(τ, ξ)∈ I×X : ξ ∈R(P±(τ ))∩V }
assume �⊆U0 is a neighborhood of zero and fix a Cm+1-cut-off function
χ : X→ [0,1] satisfying (3.5) as introduced above. Choose a real number
r > 0 so small that B2r ⊆� and B3r ⊆U0. The following proof is divided
into two parts:

(I) We start by proving a special case and suppose that V±(�) is a
local integral manifold of (∗)F ; that is, V±(�) is represented as graph of
the mapping s± :�×I→X , s±(x, t)≡0. Then the invariance equation (3.4)
for (∗)F boils down to

P∓(t)F (ξ, t)=0 for all t ∈ I, ξ ∈R(P±(t))∩�.
We define the extended mapping Fr :X×I→X by

Fr(x, t) :=
{
χ
(
x
r

)
F(x, t) for x ∈B2r ,

0, else
(3.11)

and obtain

P∓(t)Fr(ξ, t)=0 for all t ∈ I, ξ ∈R(P±(t)) (3.12)

since P∓(t)F (ξ, t)= 0 for ξ ∈ R(P±(t)) ∩ B2r and χ
(
x
r

)= 0 for ‖x‖�2r
(cf. (3.5)). Since (3.12) coincides with the invariance equation for s±(x, t)≡0,
the set V±(X ) is invariant under the modified ODE (∗)Fr . Moreover, due
to (3.1), we are able to diminish r >0 such that sup(x,t)∈X×I

‖D1Fr(x, t)‖ is
sufficiently small to satisfy Hypothesis (ii) of Theorem A.1. This yields a
unique global integral manifold S±

r for (∗)Fr , representable as graph over
the nonautonomous set V±(X ). Hence, S±

r =V±(X ), and furthermore, the
assertions of Proposition 3.5 are evidently satisfied with s±r (x, t)≡ 0 and
ρ= r.

(II) Now consider the general situation, when S± is a local integral
manifold for (∗)F given by a C1-mapping s±:U×I→X satisfying (3.2) and
(3.3). We first define the extended mapping s±r :X×I→X by

s±r (x, t) :=
{
χ
(
x
r

)
s±(x, t) for x ∈B2r ,

0, else,
, (3.13)

which, by assumption, possesses continuous globally bounded partial
derivatives Dn1 s

±
r for n ∈ {1, . . . ,m+1}; from (3.2) we obtain the limit

relation

lim
r↘0

sup
(x,t)∈X×I

∥
∥D1s

±
r (x, t)

∥
∥=0 . (3.14)
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Particularly, it is possible to choose r >0 sufficiently small that
∥
∥D1s

±
r (x, t)

∥
∥<1/2 for all x ∈X , t ∈ I (3.15)

holds. Next, we define a Cm+1-diffeomorphism �t :X→X by

�t(x) :=x− s±r (x, t) for all t ∈ I,

whose inverse �−1
t :X→X is given by �−1

t (x)= x + s±r (x, t). Under the
change of variables x �→�t(x), the ODE (∗)F takes the form (∗)G with a
continuous function G :B2r×I→X , which is of class Cm in the first argu-
ment and given by

G(x, t) : = A(t)s±r (x, t)+F(x+ s±r (x, t), t)
−D1s

±
r (x, t)

(
A(t)(x+ s±r (x, t))+F(x+ s±r (x, t), t)

)

−D2s
±
r (x, t). (3.16)

Please note that G(·, t) is defined on B2r , since the mean value inequality
implies

∥
∥x+ s±r (x, t)

∥
∥

(3.2)
� ‖x‖+∥∥s±r (x, t)− s±r (0, t)

∥
∥

(3.15)
� 3

2 ‖x‖<3r for all x ∈B2r , t ∈ I

and therefore, the inclusion x + s±r (x, t) ∈U0 is fulfilled. Moreover, from
the invariance equation (3.4) we have

G(x, t) = F(x+ s±(x, t), t)−P∓(t)F (P±(t)x+ s±(x, t), t)−D1s
±(x, t)

×A(t)(P∓(t)x+ s±(x, t))−D1s
±(x, t)

(
F(x+ s±(x, t), t)

−P±(t)F (P±(t)x+ s±(x, t), t)) (3.17)

for all x∈Br and t ∈I. Accordingly, (3.2) implies G(0, t)≡0 on I. Likewise,
(H3) and (3.1) and (3.2) lead to limx→0 ‖D1G(x, t)‖=0 uniformly in t ∈ I.
It is easy to see that in each t-fiber, we have �t(S±(t))∩B2r =V±(B2r )(t),
and consequently, V±(B2r ) is a local integral manifold of (∗)G, and the
results from Step (I) imply that V±(X ) is the unique global integral man-
ifold of (∗)Gr with Gr :X×I→X given by

Gr(x, t) :=
{
χ
(
x
r

)
G(x, t) for x ∈B2r ,

0 else,

If we now apply the inverse transformation x �→�−1
t (x) to (∗)Gr , one gets

an ODE of the form (∗)F̄r with F̄r :X×I→X ,
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F̄r (x, t) : = −A(t)s±r (x, t)+Gr(x− s±r (x, t), t)
+D1s

±
r (x, t)

(
A(t)(x− s±r (x, t))+Gr(x− s±r (x, t), t)

)

+D2s
±
r (x, t). (3.18)

Due to the properties of Gr and s±r , we obtain from (H3) that the par-
tial derivatives Dn1 F̄r , n∈{1, . . . ,m}, are continuous and globally bounded.
Using (3.4) in order to rewrite (3.18) as in (3.17), we see that sup(x,t)∈X×I

‖D1Gr(x, t)‖ can be made smaller than any given positive number and it
is possible to diminish r > 0 such that Hypothesis (ii) of Theorem A.1 is
fulfilled w.r.t. (∗)F̄r .

Finally, choose a real ρ∈ (0, r) so small that the inclusion Bρ⊆�−1
t (Br)

holds for all t ∈ I, which is possible due to (3.2) and the uniformity in t ∈ I.
Substituting (3.16) into (3.18) gives us the identity F̄ρ(x, t)≡ F(x, t) on
Bρ×I. From (3.13), it is obvious that s±ρ (x, t)≡ s±(x, t) on Bρ×I. Hence,
S±
ρ ∩ (I×Bρ)=S± ∩ (I×Bρ). Since V±(X ) is the unique global integral man-

ifold of (∗)Gρ and �−1
t (V±(X )(t))= S±

ρ (t), the set S±
ρ is invariant under

(∗)F̄ρ . We apply Theorem A.1, which yields that S±
ρ is the unique global

integral manifold of (∗)Fr . This finishes the proof of this proposition.

Our next proposition states that all integral manifolds S± of (∗)F
possess the same Taylor series w.r.t. their state space variable up to order
m. Moreover, it enables us in the following Section 4 to calculate integral
manifolds using approximate solutions of the invariance Eq. (3.4).

Proposition 3.6 (Taylor expansion). Suppose that (H1)–(H3) hold and
let S± denote a Cm-integral manifold with corresponding uniformly Cm-
bounded mapping s±:U×I→X . In case S+ is considered, assume (3.6) holds,
and in case of S−, assume I = R and (3.7). If a C1-function σ :X×I→X
is (m+ 1)-times continuously differentiable in the first variable, uniformly
Cm+1-bounded and satisfies

(i) σ(0, t) ≡ 0 on I, limx→0 ‖D1σ(x, t)‖ ± 0 uniformly in t ∈ I and
σ(x, t)=σ(P±(t)x, t)∈R(P∓(t)) for t ∈ I, x ∈X ,

(ii) for reals r > 0 so small that x+ σ(x, t)∈U0 for all x ∈Br, t ∈ I,
the mapping Mt σ :Br→X given by

(Mt σ )(x) : = A(t)σ (x, t)+P∓(t)F (P±(t)x+σ(x, t), t)
−D1σ(x, t)

(
A(t)P±(t)x+P±(t)F (P±(t)x+σ(x, t), t))

−D2σ(x, t)

fulfills Dn(Mt σ )(0)=0 for all n∈{1, . . . ,m} , t ∈ I,

then we have Dn1σ(0, t)=Dn1 s±(0, t) for all t ∈ I, n∈{0, . . . ,m}.
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Proof. Using Proposition 3.5, the proof can be done similarly to [33,
Theorem 3.4].

4. TAYLOR APPROXIMATION

Since the integral manifold S± of (∗)F is graph of a function s±
smooth in its state space variable, and with the aid of Proposition 3.6,
it is natural to approximate s± by its Taylor expansion. In this section,
we derive necessary equations, the corresponding Taylor coefficients need
to satisfy, and prove that they are uniquely solvable if the gap conditions
(3.6) or (3.7) on the linear part of (∗)F are satisfied. Thanks to our com-
pact notation, the actual derivation will be quite short.

For this, we assume that, in addition to (H1) and (H2), the following
assumption is satisfied, which in particular holds if A : I→L(X ) is a Cm-
mapping and F :U0×I→X is of class Cm+1 (cf. Theorem A.1).

Hypothesis. Let m�2 and suppose:

(H4) The partial derivatives Dn1 s
±(0, ·) are differentiable for every n∈

{2, . . . ,m}.
We are interested in local approximations for the mapping s±. Here

Taylor’s Theorem (cf. [1, Theorem 2.6.05, p. 93]) together with (3.2)
implies the representation

s±(x, t)=
m∑

n=2

1
n!
s±n (t)x

n+R±
m(x, t) (4.1)

with coefficient functions s±n : I→Ln(X ) given by s±n (t) :=Dn1 s
±(0, t) and

a remainder R±
m satisfying limx→0

R±
m(x,t)

‖x‖m = 0. Proposition 3.6 guarantees
that the coefficient s±n (t) is uniquely determined by the mapping from
Theorem 3.2. Due to (3.8), the functions s±n are bounded, i.e., one has∥
∥s±n (t)

∥
∥�γn for t ∈ I and n∈{2, . . . ,m}. Before proceeding, we need some

handy notational preparations:

• We introduce S± :U×I→X , S±(x, t) :=P±(t)x+ s±(x, t) satisfying

D1S
±(0, t) (3.2)= P±(t),Dn1S

±(0, t)=Dn1 s±(0, t) for all t ∈ I

and n∈{2, . . . ,m}. Hence, for S±
n (t) :=Dn1S±(0, t), we have the esti-

mates

∥
∥S±

1 (t)
∥
∥

(2.8)
� K±,

∥
∥S±
n (t)

∥
∥

(3.8)
� γn for all n∈{2, . . . ,m} . (4.2)
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• We abbreviate g±(x, t) :=A(t)P±(t)x +P±(t)F (S±(x, t), t), and the
chain rule from Lemma 2.3 yields that the partial derivatives
g±
n (t) :=Dn1g±(0, t) are given by (cf. (3.1) and (3.2))

g±
1 (t)x1

(2.4)= A(t)P±(t)x1,

g±
n (t)x1, . . . , xn =

n∑

l=2

∑

(N1,... ,Nl)∈P<l (n)
P±(t)Dl1F(0, t)S

±
#N1

(t)P±(t)

xN1 , . . . , S
±
#Nl
(t)P±(t)xNl

for all x1, . . . , xn ∈X and n∈ {2, . . . ,m}. Moreover, (H2)–(H3) and
the estimates (2.8) and (4.2) imply that g±

n : I→Ln(X ) is a bounded
function.

Directly from the invariance equation (3.4) and (3.3), we get

A(t)s±(x, t)+P∓(t)F (P±(t)x+ s±(x, t), t)
=D1s

±(x, t)
(
A(t)P±(t)x+P±(t)F (P±(t)x+ s±(x, t), t))+D2s

±(x, t)

and using the notation introduced above, this reads as

D2s
±(x, t)=A(t)s±(x, t)+P∓(t)F (S±(x, t), t)−D1s

±(x, t)g(x, t)

for all t ∈ I, x ∈U with S±(x, t)∈U0. If we differentiate this identity using
Lemmas 2.1 and 2.3 and set x=0, one gets the equation

ṡ±n (t)P±(t)x1, . . . , xn=A(t)s±n (t)P±(t)x1, . . . , xn

+P∓(t)
n∑

j=2

∑

(N1,... ,Nj )∈P<j (n)
D
j

1F(0, t)S
±
#N1

(t)P±(t)xN1 , . . . , S
±
#Nj

(t)xNj

−
∑

(N1,N2)∈P2(n)
N1,N2 �=∅

s±#N1+1(t)P±(t)xN1 ·g±
#N2

(t)P±(t)xN2

for n∈{2, . . . ,m} and x1, . . . , xn∈X . Therefore, the function s±n : I→Ln(X )
is a solution of the linear ODE

ẊP±(t)=LA(t)XP±(t)+H±
n (t)P±(t) (4.3)

in Ln(X ), denoted as homological equation for S± with inhomogeneities
H±
n : I→Ln(X ),



Taylor Approximation of Integral Manifolds 447

H±
n (t)x1, . . . , xn :=P±(t)Dn1F(0, t)x1, . . . , xn

+P∓(t)
n−1∑

j=2

∑

(N1,... ,Nj )∈P<j (n)
D
j

1F(0, t)S
±
#N1

(t)xN1 , . . . , S
±
#Nj

(t)xNj

−
∑

(N1,N2)∈P2(n)
0<#N1<n−1

N2 �=∅

s±#N1+1(t)xN1 ·g±
#N2

(t)xN2 . (4.4)

Obviously, one has H±
2 (t) = P∓(t)D2

1F(0, t), and for n ∈ {3, . . . ,m}, the
values H±

n (t) only depend on s±2 , . . . , s
±
n−1. Therefore (4.3) represents a

hierarchy of linear differential equations for the coefficients s±n . These
equations have to be solved step by step, starting with n=2, and increas-
ing n by 1 at each step. The solutions are given by the following

Theorem 4.1. Suppose (H1)–(H4) hold, and consider a mapping s± :
U×I→X from Theorem 3.2. Then the following holds:

(a) The coefficients s+n : I→Ln(X ), n ∈ {2, . . . ,m}, in the Taylor
expansion (4.1) of the mapping s+ :U×I→X can be determined
recursively from the Lyapunov–Perron integrals

s+n (t)=−
∫ ∞

t

�(t, s)H+
n (s)�(s,t)P+(t) ds for all n∈{2, . . . ,m} .

(4.5)

(b) In case I = R, the coefficients s−n : R→Ln(X ), n ∈ {2, . . . ,m}, in
the Taylor expansion (4.1) of the mapping s− :U×R→X can be
determined recursively from the Lyapunov–Perron integrals

s−n (t)=
∫ t

−∞
�(t, s)H−

n (s)�(s,t)P−(t) ds for all n∈{2, . . . ,m} .
(4.6)

Proof. In the explanations preceding Theorem 4.1, we have seen that
s±n : I→Ln(X ) is a bounded solution of the homological equation (4.3).
Moreover, it follows from (4.4), (2.8), (H2), and (4.2) that each inhomoge-
neity H±

n is bounded, i.e., 0-quasibounded. Consequently, due to the gap
conditions (3.6) and (3.7), it follows from Lemma 2.6 that s±n possesses the
claimed appearance.

Remark 4.2.

(1) For an autonomous ODE (∗)F , the functions (4.5) and (4.6) are
constant and given as stationary solutions of the homological
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equation (4.3). Then (4.3) reduces to the algebraic problem dis-
cussed (e.g., in [7]).

(2) In general, the Lyapunov–Perron integrals from Theorem 4.1 can
be evaluated only numerically. In order to achieve this, we briefly
sketch the appropriate procedure:

(i) It suffices to represent the mappings H±
n (t) as

n-linear forms in the space Ln(R(P±(t));X ).
Under the assumption N := dim X < ∞ and
k± := dim R(P±(t))�N (referring to (2.4), note that
k± is constant in time) we know that the space
Ln(R(P±(t));X ) has dimension K± := N

(
k±+n−1

n

)

and is canonically isomorphic to F
K± (cf. [33] for

details). Using this representation, instead of working
with the sum over (ordered) partitions in (4.4), we
recommend to derive the homological equation (4.3)
for sn directly from the invariance equation (3.4) by
means of computer algebra to calculate the necessary
derivatives.

(ii) Since the integrands in (4.5) and (4.6) are exponentially
decaying, at least in principle, it is not difficult to obtain
error estimates for their finite-interval approximations.

However, in concrete examples, the crucial problem is to obtain
the invariant projectors P± from Hypothesis (H1). Provided they
are known, as well as the transition operator �(t, s) of (2.3), a
recursive scheme to approximate s±n (t) can be implemented on a
computer, according to the suggestions made above.

5. EXAMPLES

In this section, we illuminate our results using two examples. The first
is a nonautonomous bifurcation problem to illustrate a reduction on a
center-unstable integral manifold.

Example 5.1. We consider a nonautonomous version of the well-
known Lorenz equations (cf., e.g., [29] or [28, pp. 188, 291]), given by a
3-dimensional system

ẋ1 =σε(t)(x2 −x1),

ẋ2 =ρε(t)x1 −x2 −x1x3,

ẋ3 =−βε(t)x3 +x1x2,

(5.1)

which obviously can be written in the form (2.2) with right-hand side
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fε(x, t)=
⎛

⎝
σε(t)(x2 −x1)

ρε(t)x1 −x2 −x1x3
−βε(t)x3 +x1x2

⎞

⎠ .

As discussed in [29], the Lorenz equations are a simplified toy model
of Raleigh–Bernard thermal convection. To incorporate an external forc-
ing into this model, it is interesting when all three parameters σε, ρε, βε
are perturbed nonautonomously, i.e., we assume the functions σε, ρε, βε :
R→(0,∞) are given by

σε(t)=σ0 + εσ (t), ρε(t)=1+ρ0 + ερ(t), βε(t)=β0 + εβ(t)
with real constants σ0, β0 > 0, ρ0 ∈ R, bounded C3-functions σ,ρ,β, and
ε∈R, which will serve as bifurcation parameter. It is our goal to study the
stability of the equilibrium x= 0 of (5.1) for different values of ε. From
the linearization

D1f0(0, t)=
⎛

⎝
−σ0 σ0 0

1+ρ0 −1 0
0 0 −β0

⎞

⎠ ,

we see that in case ε = 0 the origin is asymptotically stable for ρ0 ∈
[
−
(
σ0+1
2σ0

)2
,0
)

and unstable for ρ0 > 0. More interesting is the nonhy-
perbolic case ρ0 = 0, where a pitchfork bifurcation occurs as ρ0 passes
through 0. To mimic this situation, we assume ρ0 = 0 from now on.
Before proceeding, we augment the original system (5.1) by considering
the parameter ε as an additional state space variable satisfying ε̇= 0 and
– to simplify our calculations – apply the linear transformation

⎛

⎜
⎝

y1
y2
y3
y4

⎞

⎟
⎠ :=

⎛

⎜
⎝

−σ0 0 1 0
1 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

x1
x2
x3
ε

⎞

⎟
⎠

to the resulting equation ẋ=fε(x, t), ε̇=0. This implies the 4-dimensional
system

ẏ=Ay+F(y, t) (5.2)

with A :=diag(−σ0 −1,−β0,0,0) and the nonlinearity

F(y, t) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

σ0
σ0+1y1y2 − σ(t)+σ0(σ (t)+ρ(t))

σ0+1 y1y4 − 1
σ0+1y2y3 + ρ(t)

σ0+1y3y4

−σ0y
2
1 + (1−σ0)y1y3 −β(t)y2y4 +y2

3

σ 2
0

σ0+1y1y2 + σ(t)+σ0(σ (t)−σ0ρ(t))
σ0+1 y1y4 − σ0

σ0+1y2y3 + σ0ρ(t)
σ0+1 y3y4

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.



450 Pötzsche and Rasmussen

Thus, we can apply Theorem 3.2 to (5.2) to show that there exists a
center-unstable manifold S− ⊆R×R

3 with 2-dimensional fibers. The ansatz

s−(y3, y4, t)=
2∑

i=0

y2−i
3 yi4

(
s1

2−i,i (t)
s2

2−i,i (t)

)

+O
(√

y2
3 +y2

4

3)

yields that Eq. (5.2) reduced to the center-unstable manifold S− is given
by

ẏ3 = σ0

σ0 +1

(
ερ(t)y3 − s2

2,0(t)y
3
3

)
+O(εy2

3 , ε
2y3, y

4
3 ) .

Using Theorem 4.1, we obtain s2
2,0(t)≡ 1

β0
, and consequently, the bifurca-

tion equation is

ẏ3 = σ0

σ0 +1

(
ερ(t)y3 − 1

β0
y3

3

)
+ r(y3, t, ε) , (5.3)

where the remainder r satisfies the three limit relations

lim
y3→0

sup
ε∈(−|y3|3,|y3|3)

sup
t∈R

|r(y3, t, ε)|
|y3|3

= 0 , (5.4)

lim
ε→0

sup
y3∈(−|ε|,|ε|)

sup
t∈R

|r(y3, t, ε)|
|ε|2 = 0 , (5.5)

lim
ε→0

1
ε

lim sup
y3→0

sup
t∈R

|r(y3, t, ε)|
|y3|

= 0 . (5.6)

To motivate our nonautonomous bifurcation result, we again recapitulate
the autonomous situation. Assuming the functions ρ,σ,β are constant
and ρ(t)≡ ρ̄ for some ρ̄ >0, we get that (5.3) has the form

ẏ3 = σ0

σ0 +1

(
ερ̄y3 − 1

β0
y3

3

)
+O(εy2

3 , ε
2y3, y

4
3 ) . (5.7)

It is easy to check that this equation admits a pitchfork bifurcation, i.e.,
the equilibrium 0 is stable for ε�0 and unstable for ε > 0 . For small
ε > 0, there are two additional stable equilibria branching from the ori-
gin, denoted by y−

ε <0<y+
ε . The compact interval enclosed by these two

equilibria forms an attractor of (5.7): let φε denote the local flow gener-
ated by (5.7). Then

[
y−
ε , y

+
ε

]
is invariant, and there exists a γε > 0 such

that
[
y−
ε , y

+
ε

]=⋂t�0 φε(t,Uγε ([y
−
ε , y

+
ε ])). Thus, in addition to the pitch-

fork bifurcation, the autonomous system undergoes an attractor transition
from a nontrivial attractor to a trivial attractor in the limit ε↘0.
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To establish a nonautonomous generalization of this scenario, we
omit the autonomous restriction on σ,ρ,β, i.e., they are allowed to be
bounded C3-functions, and we suppose

lim inf
t→−∞ |ρ(t)|>0. (5.8)

We will show that under this assumption, the nonautonomous equation
(5.3) admits a bifurcation of pullback attractors (see, also Appendix B).
For our purpose, we make use of a local version of such a pullback attrac-
tor. A local pullback attractor of (2.2) is given by a nonempty nonauton-
omous set A⊆R×X fulfilling the following three properties:

• A is invariant, i.e., its fibers satisfy ϕ(t; τ,A(τ))=A(t) for all t, τ ∈
R .

• A is compact, i.e., A(t) is compact for all t ∈R .
• A is locally pullback attracting, i.e., there exists a γ >0 with

lim
t→−∞d

(
ϕ
(
τ ; t,Uγ (A(t))

)
,A(τ)

)=0 for all τ ∈R .

Here, d means the Hausdorff semi-distance, which for nonempty sets
A,B⊆X is defined by d(A,B) := supx∈A infy∈B ‖x−y‖.

We obtain the subsequent nonautonomous bifurcation result.

Proposition 5.2. For the bifurcation equation (5.3), the following state-
ments hold:

(a) In case lim inf t→−∞ ρ(t)> 0, there exists an ε̂ > 0 such that for
all ε ∈ (0, ε̂) there exists a nontrivial local pullback attractor Aε
of (5.3), and we have

lim
ε↘0

d(Aε(t), {0})=0 for all t ∈R . (5.9)

Furthermore, R×{0} is a local pullback attractor of (5.3) for ε∈
(−ε̂,0].

(b) In case lim supt→−∞ ρ(t)< 0, there exists an ε̂ > 0 such that for
all ε∈ (−ε̂,0) there exists a nontrivial local pullback attractor Aε
of (5.3), and we have

lim
ε↗0

d(Aε(t), {0})=0 for all t ∈R .

Furthermore, R×{0} is a local pullback attractor of (5.3) for ε∈
[0, ε̂).
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Proof. We only treat case (a), since (b) can be shown analogously. Let
ϕε denote the general solution of the bifurcation equation (5.3). Due to
(5.4) and the boundedness of ρ, there exists an s1>0 such that

∣
∣
∣
∣
σ0ερ(t)y3

σ0 +1
+ r(y3, t, ε)

∣
∣
∣
∣�

σ0

2β0(σ0 +1)
|y3|3 for all t ∈R, |y3|�s1

and |ε|< |y3|3. This implies

g
(
− 3

√
ε, t,

ε

2

)
>0>g

(
3
√
ε, t,

ε

2

)
for all t ∈R, ε∈ (0, s3

1) , (5.10)

where g denotes the right-hand side of (5.3). In the following, we fix ε∈
(0, 1

2 s
3
1) and define a nonautonomous set Nε by its fibers

Nε(t) := [−2 3
√
ε,2 3

√
ε
]

for all t ∈R .

Due to (5.10), the relation ϕε(τ ; τ − t,Nε(τ − t))⊆Nε(τ) for all τ ∈R, t�0
holds. Hence, Theorem B.1 implies the existence of a pullback attractor Aε
with attraction universe {Nε}. It is easy to check that Aε is also a local
pullback attractor. Please note that Aε ⊆Nε . In connection with the con-
tinuity of ϕε, this guarantees the limit relation (5.9). We show now that
the sets Aε are nontrivial for sufficiently small ε > 0. Due to (5.8), there
exist ρ−>0 and t− ∈R such that

ρ(t)>ρ− for all t�t− .

Furthermore, due to (5.5), there exists an ε̃∈ (0, 1
2 s

3
1) such that

∣
∣
∣
∣
∣
− σ0y

3
3

β0(σ0 +1)
+ r(y3, t, ε)

∣
∣
∣
∣
∣
� σ0ρ

−

2(σ0 +1)
|ε|2 for all t ∈R, |ε|�ε̃

and |y3|< |ε|. This implies

g
(
−ε

2
, t, ε

)
<0<g

(ε

2
, t, ε

)
for all t�t−, ε∈ (0, ε̃) .

Hence, we have Aε(t)⊇
[−ε/2, ε/2] for all t�t−. Now we consider neg-

ative values of ε. Due to (5.6), there exist ε̂ ∈ (0, ε̃) such that for all ε ∈
(−ε̂,0), there exists an s2>0 with

|r(y3, t, ε)|�− σ0ρ
−ε

2(σ0 +1)
|y3| for all |y3|�s2 .

Therefore, we have

g(y3, t, ε)<
σ0ρ

−ε
2(σ0 +1)

y3 for all y3 ∈ (0, s2), t�t−

and
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g(y3, t, ε)>
σ0ρ

−ε
2(σ0 +1)

y3 for all y3 ∈ (−s2,0), t�t− .

This implies that R×{0} is a local pullback attractor for ε∈ (−ε̂,0). With
similar arguments, one can see that also in case ε= 0, this set is a local
pullback attractor (note that this is the autonomous case and the origin of
(5.1) is asymptotically stable as discussed earlier). This finishes the proof.

Remark 5.3. Not only the reduced equation (5.3) admits a nonauton-
omous bifurcation of this type but also the Lorenz equation (5.1) itself.
This is due to an asymptotic phase property of the center-unstable mani-
fold (cf. Theorem A.1(b) or [3, Theorem 4] for a global version), i.e., every
solution of (5.1) in a neighborhood of the manifold approaches exponen-
tially a solution on the center-unstable manifold in forward time. There-
fore, for small ε > 0, there also exists a local pullback attractor of (5.1)
shrinking down to {0} for ε↘0 .

Our second, relatively simple example is primarily of an illustrative
nature.

Example 5.4. Consider the following modified Korteweg-de Vries
equation

ut +uxxx +a(t)u2ux =0 ,

where we assume the coefficient a : R→R is a smooth bounded function. The
investigation of traveling wave solutions having the structure U(x − c2t)=
u(x, t), c>0, leads to the 3-dimensional nonautonomous ODE

ẋ1 =x2 , ẋ2 =x3 , ẋ3 = c2x2 −a(t)x2
1x2 . (5.11)

Then its linearization along the trivial solution does not depend on t and
has the eigenvalues −c,0, c. Thus, (5.11) can be transformed into a system
with decoupled linear part via a constant linear transformation. For sim-
plicity, we consider this transformed system from now on. Theorem 3.2 is
applicable, yielding center-stable and center-unstable manifolds S+ and S−
with 2-dimensional fibers, respectively. If we assume their representation

Dn(1,2)s
±(0,0, t)

(
h1
h2

)n

=
n∑

i=0

s±j−i,i (t)h
j−i
1 hi2 for all h1, h2 ∈R

then Theorem 4.1 yields D2
(1,2)s

±(0,0, t)≡0 and the following expressions

s+30(t) = − 1
2c

∫ ∞

t

e4c(t−s)a(s)ds , s−30(t)=0 ,
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s+21(t) = − 1
2c

∫ ∞

t

e3c(t−s)a(s)ds , s−21(t)=− 1
2c

∫ t

−∞
e−2c(t−s)a(s)ds ,

s+12(t) = − 1
2c

∫ ∞

t

e2c(t−s)a(s)ds , s−12(t)=− 1
2c

∫ t

−∞
e−3c(t−s)a(s)ds ,

s+03(t) = 0 , s−03(t)=− 1
2c

∫ t

−∞
e−4c(t−s)a(s)ds

for the third-order Taylor coefficients of s+ and s−. Higher-order Taylor
coefficients can be obtained successively. Choosing c=1 and an oscillatory
damping a(t)= e−|t | sin(t) – purely to avoid numerical integrations – we
have computed a sixth-order approximation of the center-stable manifold
S+ and center-unstable manifold S− for the system (5.11). Note, that the
special structure of (5.11) allows to apply our results for only continuous
functions a. Figure 1 visualizes the fibers S±(t) for t ∈{0, π4 , π2 , π

}
in the

box [−2,2]3.

Figure 1. It is apparent that S±(t) becomes smoother as t evolves. This is due to our par-
ticular choice for the function a to be exponentially decaying. Therefore, (5.11) is asymptot-
ically autonomous and asymptotically linear. The fibers S±(t) approach the center-unstable
and center-stable subspaces for the linearization of (5.11) as t→±∞.
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APPENDIX A: GLOBAL INTEGRAL MANIFOLDS

To make our approach more accessible to readers not familiar with
the nonautonomous theory, we state our global existence theorem for inte-
gral manifolds in this appendix. It can be considered as abstraction of the
classical Hadamard–Perron theorem and is quoted often in the main text.
We remark that its general assumptions make it a quite flexible tool.

Theorem A.1 (global existence of integral manifolds). Let m ∈ N and
I ⊆ R be an interval unbounded above. Assume the continuous functions A :
I→L(X ) and F :X×I→X satisfy:

(i) The linear ODE ẋ=A(t)x possesses an exponential dichotomy, i.e.,
there exists an invariant projector P− : I→L(X ) such that for all
t, τ ∈ I the estimates

‖�(t, τ )P+(τ )‖�K+eα(t−τ) , ‖�(τ, t)P−(t)‖�K−eβ(τ−t)

for all τ�t hold with real constants K+,K−�1, α<β.
(ii) We have the identity F(0, t)≡ 0 on I and the partial derivatives

Dn1F exist and are continuous for n ∈ {1, . . . ,m} with globally
bounded partial derivatives

|F |n := sup
(x,t)∈X×I

∥
∥Dn1F(x, t)

∥
∥<∞.

Moreover, with K :=K+ +K− +K+K− max {K+,K−} we require

|F |1<
β−α
4K

,

choose a fixed δ∈
(

2K |F |1 , β−α
2

)
and define 
 := (α+ δ, β− δ).

Then, denoting the general solution of the ODE

ẋ=A(t)x+F(x, t) (A.1)

by ϕ, the following holds for all γ ∈
:

(a) The global pseudo-stable manifold of (A.1), given by

S+ :=
{

(τ, x0)∈ I×X : sup
τ�t

‖ϕ(t; τ, x0)‖ eγ (τ−t) <∞
}

is independent of γ ∈
 and possesses the representation

S+ ={(τ, ξ + s+(ξ, τ ))∈ I×X : τ ∈ I, ξ ∈R(P+(τ ))
}

with a C1-mapping s+ :X×I→X . It satisfies:
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(a1) Under the gap condition

mα<β,

the partial derivatives Dn1 s
+ : X×I→X exist and

are continuous with

sup
(x,t)∈X×I

∥
∥Dn1 s

+(x, t)
∥
∥<∞ for all n∈{1, . . . ,m} ,

if furthermore the derivatives Dm−1A,Dk2D
n
1F exist

and are continuous for 0� k < m,0� k + n�m,
then s+ is m-times continuously differentiable,

(a2) in case I=R, the nonautonomous set S+ possesses
an asymptotic (backward) phase, i.e., there exists
a continuous mapping π+ : X×R→X such that for
all τ ∈ R, π+(·, τ ) : X→S+(τ ) is a retraction onto
S+(τ ) with
∥
∥ϕ(t; τ, x0)−ϕ(t; τ,π+(x0, τ ))

∥
∥�C+ ‖x0‖ eγ (t−τ)

for all t�τ, x0 ∈X and some real C+�0.

(b) In case I=R, the global pseudo-unstable manifold of (A.1), given
by

S− :=
{

(τ, x0)∈ I×X : sup
t�τ

‖ϕ(t; τ, x0)‖ eγ (τ−t) <∞
}

is independent of γ ∈
 and possesses the representation

S− ={(τ, ξ + s−(ξ, τ ))∈ I×X : τ ∈ I, ξ ∈R(P−(τ ))
}

with a C1-mapping s− :X×I→X . It satisfies:

(b1) Under the gap condition

α<mβ

the partial derivatives Dn1 s
− : X×I→X exist and are

continuous with

sup
(x,t)∈X×I

∥
∥Dn1 s

−(x, t)
∥
∥<∞ for all n∈{1, . . . ,m} ;

if furthermore the derivatives Dm−1A,Dk2D
n
1F exist

and are continuous for 0�k<m,0�k+n�m, then s−
is m-times continuously differentiable,
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(b2) the nonautonomous set S− possesses an asymptotic
(forward) phase, i.e., there exists a continuous map-
ping π− : X×R→X such that for all τ ∈ R, π−(·, τ ) :
X→S−(τ ) is a retraction onto S−(τ ) with
∥
∥ϕ(t; τ, x0)−ϕ(t; τ,π−(x0, τ ))

∥
∥�C− ‖x0‖ eγ (t−τ)

for all τ�t, x0 ∈X and some real C−�0.

(c) The nonautonomous set S± is invariant in the sense that its
fibers satisfy S±(t)= ϕ(t; τ,S±(τ )) for all t, τ ∈ R, one has the
representation

s±(x0, τ )= s±(P±(τ )x0, τ )∈R(P∓(τ )) for all τ ∈ I, x0 ∈X
and the invariance equation

P∓(t)ϕ(t; τ, x0)= s±(P±(t)ϕ(t; τ, x0), t) for all t ∈ I, (τ, x0)∈S±.

(d) One has the identity s±(0, τ )≡0 on I, and in case I=R, only the
zero solution of (A.1) is contained both in S+ and S−, i.e.,

S+ ∩S− =R×{0} ;
hence, the zero solution is the only γ -quasibounded solution of
(A.1).

(e) If the ODE (A.1) and P− are T -periodic for some T > 0, then
also s±(·, x0) and the fibers S±(·) are T -periodic for all x0 ∈ X .
In particular, for an autonomous equation (A.1), the fibers S±(t)
are constant in t ∈ I and each S±(t) is an invariant manifold of
(A.1).

Proof. The verification of Theorem A.1 is technically involved, in par-
ticular concerning the smoothness assertions. We therefore, give only a
sketch how the main ingredients can be assembled. In addition, we restrict
to the literature on nonautonomous equations. Prototypes of Theorem A.1
can be found in [36] for almost periodic equations and [4] for measurable
time-dependence. Concerning the asymptotic phase of S±, we refer to the
work of [3, Theorem 4]. A comprehensive account to the differentiability
properties can is given in [39]; smoothness in the state space is also consid-
ered by Chicone and Latushkin [10]. Both [4, 39] suppose the linear part
of (A.1) is in block diagonal form, whereas we — similarly to [10] – make
the exponential dichotomy assumption (i). Hence, the smoothness claims,
as well as the asymptotic phase properties, can be obtained by combining
the methods in [10, 39].



458 Pötzsche and Rasmussen

APPENDIX B. PULLBACK ATTRACTORS

Since 1990s, the attractivity of nonautonomous sets is intensively dis-
cussed. In particular, the notion of pullback attractor has been introduced
(see, e.g., [9]). Please note that the so-called random attractors are closely
related to pullback attractors (see, e.g., [2, 17]).

In Example 5.1, we used the notion of a local pullback attractor,
which has been developed in [34]. Local pullback attractors are special
cases of pullback attractors with an attraction universe. For the reader’s
convenience, the definition and an existence result for such pullback
attractors are presented.

Let D be a collection of nonautonomous sets (often, D consists of
fiberwise-constant bounded nonautonomous sets). Then a pullback attrac-
tor of (2.2) with attraction universe D is given by a nonempty nonauton-
omous set A⊆R×X fulfilling the three properties:

• A is invariant, i.e., its fibers satisfy ϕ(t; τ,A(τ))=A(t) for all t, τ ∈
R.

• A is compact, i.e., A(t) is compact for all t ∈R.
• A is pullback attracting w.r.t. D, i.e., for all D∈D, we have

lim
t→−∞d

(
ϕ(τ ; t,D(t)),A(τ))=0 for all τ ∈R .

Here, d means the Hausdorff semi-distance.

It is easy to see that a nonempty nonautonomous set A is a local
pullback attractor if and only if there exists a γ > 0 such that with the
nonautonomous set D, defined by its t-fibers D(t) :=Uγ (A(t)),A is pull-
back attractor with attraction universe {D}.

The following existence result for pullback attractors plays a crucial
role in proof of Proposition 5.2.

Theorem B.1. Consider a collection of nonautonomous sets D, and let
B ⊂ R×X be a compact pullback absorbing set, i.e., all fibers of B are
compact and for all D ∈ D and τ ∈ R, there exists a t∗ < τ such that
ϕ(τ ; t,D(t))⊆B(τ) for all t�t∗. Then, there exists a pullback attractor A
with attraction universe D, which fulfills the representation

A(τ)=
⋂

t∗�τ

⋃

t�t∗
ϕ(τ ; t,B(t)) for all τ ∈R .

If, in addition, A∈D, then A is uniquely determined. In case B∈D, the rela-
tion A⊆B is fulfilled.

Proof. See [17, Theorem 3.5].



Taylor Approximation of Integral Manifolds 459

ACKNOWLEDGMENTS

The authors wish to thank Professor George R. Sell for many help-
ful comments and pointing out additional relevant literature. Moreover, we
are grateful to the referees for their constructive criticism, which led to
a further improvement of the paper. Research supported by the “Grad-
uiertenkolleg: Nichtlineare Probleme in Analysis, Geometrie und Physik”
(GK 283) and the DFG.

REFERENCES

1. Abraham, R. H., Marsden, J. E., and Ratiu, T. (1988). Manifolds, Tensor Analysis, and
Applications, Springer, New York.

2. Arnold, L. (1998). Random Dynamical Systems, Springer, Berlin, Heidelberg, New York.
3. Aulbach, B. (1982). A reduction principle for nonautonomous differential equations.

Arch. Math. 39, 217–232.
4. Aulbach, B., and Wanner, T. (1996). Integral manifolds for carathéodory type differen-
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