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A Non-Newtonian Fluid with Navier Boundary
Conditions
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We consider in this paper the equations of motion of third grade fluids on a
bounded domain of R

2 or R
3 with Navier boundary conditions. Under the

assumption that the initial data belong to the Sobolev space H 2, we prove
the existence of a global weak solution. In dimension two, the uniqueness of
such solutions is proven. Additional regularity of bidimensional initial data is
shown to imply the same additional regularity for the solution. No smallness
condition on the data is assumed.
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1. INTRODUCTION

Recently, the class of non-Newtonian fluids of differential type has received
a special attention, mainly because it includes the family of second grade
fluids which are very interesting for several reasons. First of all, these
equations were deduced by Dunn and Fosdick [9] from physical principles.
Later on, another interpretation was found by Camassa and Holm [7], see
also [11, 12]: the one-dimensional version of these equations can be used
as a model for shallow water and the generalization to higher dimension
uses an interesting geometric property involving geodesics, similar to the
one that is well-known for the Euler equations. Finally, these equations
were found to be useful in turbulence theory (see [8]).
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Fluids of grade three are a generalization of second grade fluids and
constitute the next step in the modeling of fluids of differential type.
Roughly speaking, if for second grade fluids the stress tensor is polyno-
mial of degree two in the first two Rivlin–Ericksen tensors (see [16]), for
third grade fluids the stress tensor is polynomial of degree three in the first
three Rivlin–Ericksen tensors. The particular form of the stress tensor was
deduced from physical principles by Fosdick and Rajagopal [10] and the
associated partial differential equation can be written under the following
form:

∂t (u−α1�u)−ν�u+ curl(u−α1�u)∧u

−(α1 +α2)
(
A�u+2div

[∇u(∇u)t
])−βdiv(|A|2A)=f −∇p, div u=0.

(1)

Here, ∧ denotes the exterior product, u(t, x) is the velocity vector field,
f (t, x) is the forcing applied to the fluid, p(t, x) is a scalar function repre-
senting the pressure, A= (aij )i,j is the matrix whose coefficients are given
by aij (u) = ∂iuj + ∂jui, |A|2 =∑

i,j a2
ij and ν,α1, α2, β are some material

coefficients which must satisfy the following hypotheses:

ν �0, α1 >0, β �0 and |α1 +α2|� (24νβ)1/2. (2)

We refer to Fosdick and Rajagopal [10] for further details concerning the
modeling of this equation. Note that the case β = 0 corresponds to the
equation of second grade fluids. We also observe that, as in [5], the last
inequality in (2) will not be used here.

Here, we consider Eq. (1) on a smooth bounded domain � of R
2 or

R
3 and we supplement it with the following Navier boundary conditions:

u ·n=0 and (An)tan =0 on ∂�, (3)

where n denotes the exterior unitary normal to the boundary and (An)tan
is the tangential part of the vector An. The Navier boundary conditions
can be traced back to the original paper of Navier [15], are mentioned
in the work of Serrin [18] and were used (in a slightly different form) to
model a free boundary for the Navier–Stokes equations (see [19–21] and
the references therein). We also mention that these conditions were also
obtained by Jäger and Mikelić [13, 14] by means of homogenization over
a rough boundary. Let us finally note that second grade fluids with Navier
boundary conditions were studied in [6].

There are several works on the mathematical theory of third grade
fluids on bounded domains (see [2, 3, 17]). These results consider the case
of homogeneous Dirichlet boundary conditions and prove global existence
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and uniqueness of solutions for small initial data in H 3 or W 2,r with r >3,
and local existence and uniqueness for large data.

In [5], see also [4], the authors took advantage of the observation that
the nonlinear term – div(|A|2A) has a good sign and is more regularizing
than the viscosity term – �u. Nevertheless, since this term is nonlinear,
its derivatives do not have the same special structure. Consequently, it
is not trivial to use this term in higher order energy estimates, like for
example the H 2 estimates. However, in the absence of boundaries, some
special integrations by parts were performed in [4, 5] and it was possi-
ble to exploit the symmetry of the term – div(|A|2A). This resulted in
a global existence theorem without any smallness assumption and, more-
over, for less regular initial data (H 2 instead of H 3 as in the bounded
domain case). Uniqueness and additional regularity in dimension two was
also proved. Unfortunately, the proofs from [4, 5] do not extend to the
bounded domain case since the integrations by parts performed yield some
boundary terms which are not vanishing and cannot be estimated in a
satisfactory manner.

Here we are able to extend the approach of [4, 5] to bounded
domains in the case of Navier boundary conditions. More precisely, we
prove the following theorem:

Theorem 1 (Existence, uniqueness and regularity). Let � be a smooth
bounded domain of R

2 or R
3, u0 ∈H 2(�) a divergence free vector field ver-

ifying the Navier boundary conditions (3), f ∈L2
loc([0,∞);L2(�)) and sup-

pose that β > 0. Then there exists a global solution u∈L∞
loc([0,∞);H 2(�))

with initial data u0. Furthermore, if the space dimension is two, then this
solution is unique. Finally, also in the case of the dimension two, if u0 ∈
H 3(�) and f ∈L2

loc([0,∞);H 1(�)) then this additional regularity of the ini-
tial data is preserved, i.e., u∈L∞

loc([0,∞);H 3(�)).

From a technical point of view, the advantage of the Navier boundary
conditions over the Dirichlet ones is that if u verifies (3), then, as it was
observed in [6], �u is almost tangent to the boundary in the sense that
it can be expressed in terms of derivatives of order 1 of u. This is very
important if we want to make H 2 estimates. Indeed, making H 2 estimates
requires to multiply equation (1) by �u and if we do so we end up with
a nonvanishing pressure term

∫
�

∇p · �u. If we want to avoid estimat-
ing the pressure (which we do not know how to estimate), then we need
�u to be tangent to the boundary in order to conclude that the pressure
term vanishes. As noticed above, this is almost true for Navier boundary
conditions but definitely wrong in the case of Dirichlet boundary condi-
tions. For this reason, we cannot prove Theorem 1 in the case of Dirichlet



360 Busuioc and Iftimie

boundary conditions. The global existence of solutions for large data in
this case remains a very interesting open problem.

We finally note that although in the statement of Theorem 1 only the
H 3 regularity is shown to be propagated by the equation, it is easy to
show that other regularities are propagated, too. Indeed, once we have the
control over the H 3 norm we have the control over the Lipschitz norm of
the solution and this easily implies that other regularities are propagated.

The structure of the paper is the following. In the next section, we
introduce the notation and prove some identities and inequalities related
to the Navier boundary conditions. Section 2 contains the proof of the
global existence of H 2 solutions. And in Sections 3 and 4, we consider the
case of the dimension two and prove first the uniqueness of H 2 solutions,
and second the propagation of the H 3 regularity of the initial data.

2. NOTATIONS AND PRELIMINARY RESULTS

The partial derivative with respect to xi is denoted by ∂i . We gener-
ically denote by C a constant that may change its value from one line
to another. The constants C1,C2, . . . , and K1,K2, . . . , are fixed once
introduced. In the following, we will denote by n: � → R

d some smooth
extension to � of the exterior unitary normal to ∂�. Consequently, the
notation for the normal derivative ∂n =∑

i ni∂i makes sense not only on
the boundary but also in the interior of the domain. For a vector field u

we denote by L = L(u) it is gradient matrix L = L(u) = ∇u = (∂jui)i,j so
that A=A(u)=L(u)+L(u)t . We will use the notations

|∇2u|2 =
∑

i,j,k

(∂j ∂kui)
2 and |∇A(u)|2 =

∑

i,j,k

|∂iajk(u)|2.

We denote by D(u)= (u,∇u) the vector of R
d2+d whose components are

the components of u and the first-order derivatives of these components.
Similarly, Dk(u) = (u,∇u, . . . ,∇ku), is the vector of R

dk+1+···+d2+d whose
components are the components of u together with the derivatives of
order up to k of these components. We say that a function F =F(Dk(u))

(possibly vector-valued) is of form k if it can be expressed as a linear com-
bination of the components of Dk(u) with coefficients polynomials in n

and its derivatives.
The equivalence sign � applies to two quantities such that the ratio lies

between two strictly positive constants depending only on the domain �.
The divergence of a matrix M = (mij ) is the vector whose ith compo-

nent is given by (divM)i =
∑

j ∂jmij . We denote by Wk,p(�) the standard
Sobolev space of functions whose derivatives up to the order k belong to
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Lp and set Hk = Wk,2. The operator P denotes the Leray projector, i.e.,
the orthogonal projection in (L2(�))3 on the subspace of divergence free
vector fields tangent to the boundary.

We will use in the sequel the following three versions of the Sobolev
norms H 1,H 2, and H 3:

|‖u‖|H 1 =
(
‖u‖2

L2 +2α1‖D(u)‖2
L2

)1/2
,

|‖u‖|H 2 =
(
|‖u‖|2

H 1 +‖P(u−α1�u)‖2
L2

)1/2

and

|‖u‖|H 3 = (|‖u‖|2
H 1 +‖curl(u−α1�u)‖2

L2)
1/2.

Here, D(u)= 1
2A(u) denotes the deformation tensor. Note that the norms

‖ · ‖H 1 and |‖ · ‖|H 1 are equivalent by the Korn inequality, while the norm
‖ · ‖H 2 , respectively ‖ · ‖H 3 , is equivalent to the norm |‖ · ‖|H 2 , respectively
|‖ · ‖|H 3 , as a consequence of Corollary 6.

2.1. Some Identities

We prove now some identities related to the Navier boundary condi-
tions. First recall that it was proved in [6, Proposition 2] that

v ·n|∂� =F1(D(u))|∂�, v =u−α1�u (4)

for some function F1 of form 1. Next, we show the following lemma:

Lemma 2. Let u be a divergence free vector field verifying the Navier
boundary conditions (3) and define λ,µ :�→R by:

λ=〈A(u)n, n〉, µ= ∂n(u ·n). (5)

Then the following relations hold true:

An=λn, ∇(u ·n)=µn, ∂nu= (λ−µ)n+
∑

j

uj∇nj on ∂�. (6)

Moreover, there exist a finite number of functions G� and H� of form 1 such
that

∂n(|A|2)=
∑

�

G�(D(u))H�(D(u)) on ∂�. (7)
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Proof. Since (An)tan = 0 on ∂�, we know that there exists some λ̃:
∂�→R

d such that An= λ̃n on ∂�. Taking the scalar product with n we
get 〈An,n〉 = λ which implies at once that λ = λ̃ on the boundary. Simi-
larly, we know that u ·n∣∣

∂�
=0 which implies that ∇(u ·n)

∣
∣
∂�

is normal to
the boundary. As above we obtain that ∇(u ·n)=µn on the boundary. The
relation for ∂nu follows at once from the first two relations together with
the following identity that holds true for an arbitrary vector field u:

∂nu=An−∇(u ·n)+
∑

j

uj∇nj . (8)

This completes the proof of relation (6). To prove (7), observe first that,
by the symmetry of A,

∂n(|A|2)=4
∑

i,j

aij ∂n(∂iuj )=4
∑

i,j

aij ∂i(∂nuj )−4
∑

i,j,k

aij ∂ink∂kuj .

The last term is of the required form. Next, if we introduce F0(u) =∑
j uj∇nj , then we saw above that

∂nuj − (λ−µ)nj −F0,j (u)=0 on ∂�,

where F0,j denotes the j th component of F0. The gradient of the above
function is therefore normal to the boundary and we infer that there exists
γj : ∂�→R such that

∇[∂nuj − (λ−µ)nj −F0,j (u)]=γjn on ∂�. (9)

Taking the scalar product with n yields

γj = ∂n[∂nuj − (λ−µ)nj −F0,j (u)] on ∂�. (10)

Using (9) and (6) we obtain that, on the boundary of �,
∑

i,j

aij ∂i(∂nuj ) =
∑

i,j

aij [γjni + ∂i(λ−µ)nj ]+
∑

i,j

aij [(λ−µ)∂inj + ∂iF0,j (u)]

= λ[n ·γ + ∂n(λ−µ)]+
∑

i,j

aij [(λ−µ)∂inj + ∂iF0,j (u)],

where we used that An=λn on ∂�. The last sum is obviously the sum of
products of two functions of form 1. According to what is proved above,
to complete the proof it suffices to show that n · γ + ∂n(λ − µ) can be
expressed on the boundary as a function of form 1. From (10) we get that

n ·γ =n · ∂2
nu−|n|2∂n(λ−µ)− λ−µ

2
∂n(|n|2)−n · ∂nF0(u) on ∂�,
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so
n ·γ + ∂n(λ−µ)=n · ∂2

nu− λ−µ

2
∂n(|n|2)−n · ∂nF0(u) on ∂�

It remains to prove that n ·∂2
nu
∣∣
∂�

can be expressed as a function of form
1 and this follows at once from (4). Indeed, suppose for example, that
the space dimension is two and let τ = (n2,−n1) be the tangential vector.
It is a simple calculation to show that (� − ∂2

n − ∂2
τ )u can be expressed

as a function of form 1, so in order to conclude it suffices to show that
n · ∂2

τ u
∣
∣
∂�

can be expressed as a function of form 1. This is obvious as it
is clear that [n · ∂2

τ u− ∂2
τ (u ·n)]

∣
∣
∂�

can be expressed as a function of form
1 and ∂2

τ (u ·n)
∣∣
∂�

≡0 since u is tangent to the boundary and ∂τ is a tan-
gential derivative. This completes the proof.

The following lemma is a simple exercise of differential geometry.

Lemma 3. Let u : �→R
d be a vector field tangent to the boundary of

�. Then the vector field (u ·∇)n−∑j uj∇nj is normal to the boundary.

Proof. Let x0 ∈ ∂�. Since ∂� is a hypersurface, there exist a neighbor-
hood V of x0 and a smooth function φ : V → R such that φ

∣∣
∂�∩V

≡0 and
there exists some smooth scalar function δ : ∂�∩V →R such that n= δ∇φ.
Note that since u is tangent to the boundary, u · ∇ is a tangential deriva-
tive, so (u · ∇)n

∣∣
∂�

is independent of the extension of n. Moreover, choos-
ing another extension n of the unitary exterior normal results in adding a
multiple of the normal to the boundary to each of the ∇nj , so the tangen-
tial part of the vector field

∑
j uj∇nj is independent of the extension of

n. Therefore, the tangential part of the vector field (u · ∇)n−∑j uj∇nj is
independent of the extension of the exterior normal. We choose to extend
n to V by n= δ̃∇φ, where δ̃ is an arbitrary smooth extension of δ initially
defined only on the boundary. We can now write

(u ·∇)n−
∑

j

uj∇nj = (u ·∇)(δ̃∇φ)−
∑

j

uj∇(δ̃∂jφ)

= [(u ·∇)δ̃]∇φ −∇ δ̃(u ·∇)φ.

The first term is obviously normal to ∂�. The second one vanishes since
u · ∇ is a tangential derivative and φ vanishes on the boundary. We
infer that the vector field (u · ∇)n −∑

j uj∇nj is normal to the bound-
ary on ∂�∩V , in particular in x0. Since x0 was arbitrary, the conclusion
follows.

We finally recall the following Green formula (see [6, Lemma 3]):
∫

�

�u · ũ=−2
∫

�

D(u) ·D(̃u), (11)
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where u and ũ are two divergence free vector fields such that u verifies the
Navier boundary conditions (3) and ũ is tangent to the boundary.

2.2. Some Inequalities

First observe that the following identity

2∂j ∂kui = ∂jaik(u)+ ∂kaij (u)− ∂iajk(u)

holds for any vector field u. Consequently,

|∇2u|� 3
2
|∇A(u)|. (12)

Next, let us recall the Korn inequality (see, for instance [22]): for every p∈
(1,∞), there exists a constant K0(p,�) such that for every vector field u

we have that

‖u‖W 1,p �K0(p,�)(‖u‖Lp +‖A(u)‖Lp). (13)

We prove now the following lemma.

Lemma 4. Let � be a smooth bounded domain of R
2. There exist con-

stants K1 =K1(�) and K2 =K2(�) such that for all f ∈H 2(�) one has that

‖f ‖L∞(�) �
K1√

ε
‖f ‖1−ε

H 1(�)
‖f ‖ε

H 2(�)
f or all ε ∈ (0,1]

and

‖f ‖L4(�) �K2‖f ‖1/2
L2(�)

‖f ‖1/2
H 1(�)

.

Proof. Let E be an extension operator E:H 2(�)→H 2(R2) such that
there exists a constant C′

1 such that for all h∈H 2(�),

E(h)
∣∣
�

=h, ‖E(h)‖H 2(R2) �C′
1‖h‖H 2(�), ‖E(h)‖H1(R

2) �C′
1‖h‖H 1(�)

and ‖E(h)‖L2(R2) �C′
1‖h‖L2(�).

The existence of such an extension operator is well-known (see for instance
[1, Theorem 4.26]). Let us also recall that the embedding H 1+ε(R2) ↪→
L∞(R2) holds with norm � C′

2√
ε
, for some constant C′

2 independent of ε (for
a simple proof see [4, Proposition 1]). Using also the standard interpolation
inequality

‖ · ‖H 1+ε(R2) �‖ · ‖1−ε

H 1(R2)
‖ · ‖ε

H 2(R2)
,

we can write
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‖f ‖L∞(�) �‖E(f )‖L∞(R2) �
C′

2√
ε
‖E(f )‖H 1+ε(R2)

�
C′

2√
ε
‖E(f )‖1−ε

H 1(R2)
‖E(f )‖ε

H 2(R2)

�
C′

1C
′
2√

ε
‖f ‖1−ε

H 1(�)
‖f ‖ε

H 2(�)
.

Similarly, using the embedding H
1
2 (R2) ↪→L4(R2) with norm denoted by

C′
3, we obtain that

‖f ‖L4(�) � ‖E(f )‖L4(R2) �C′
3‖E(f )‖

H
1
2 (R2)

�C′
3‖E(f )‖1/2

L2(R2)
‖E(f )‖1/2

H 1(R2)

� C′
1C

′
3‖f ‖

1
2
L2(�)

‖f ‖1/2
H 1(�)

. �

Lemma 5. Let u :�→R
d be a smooth divergence free vector field veri-

fying the Navier boundary conditions (3) and set v =u−α1�u. Then for all
r ∈ (1,∞), there exist constants K3 = K3(r,�) and K4 = K4(r,�) indepen-
dent of the vector field u and such that

‖v −Pv‖Lr �K3‖u‖W 1,r (14)

and

‖v −Pv‖W 1,r �K4‖u‖W 2,r . (15)

Proof. From the definition of the Leray projector, we know there is
some φ such that v − Pv =∇φ. Taking the divergence of this relation we
obtain that

�φ =div∇φ =div(v −Pv)=0.

Taking now the scalar product with n, restricting to the boundary and
using relation (4) we get

∂nφ
∣∣
∂�

=n ·∇φ
∣∣
∂�

=n ·v∣∣
∂�

=F1(D(u))
∣∣
∂�

.

The two required estimates follow now immediately from standard trace
estimates and the regularity theory for the Neumann problem for the
laplacian. We also observe that the explicit expression for F1(D(u))

obtained in [6] involves only tangential derivatives of u on the boundary
and not normal derivatives. Indeed, in the case d = 2 we have from [6,
Proposition 1] that F1(D(u))=2α1∂τ (u ·∂τ n), ∂τ =n1∂2 −n2∂1, while in the
case d =3 the explicit formula contained in the proof of [6, Proposition 2]
can be written under the form F1(D(u))=α1n · [∇τ × (2n×∑3

i=1 ui∇τ ni)]+
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α1(∇τ ·u)(∇τ ·n), where ∇τ is the following vector of tangential derivatives:
∇τ =n×∇. Since F1(D(u)) involves only tangential derivatives of u, we see
that the trace of F1(D(u)) on ∂� is well defined if u∈W 1,r (�). We finally
note that inequality (14) can also be obtained from a straightforward inte-
gration by parts.

We obtain immediately the following corollary.

Corollary 6. Let u:�→R
d be a smooth divergence free vector field ver-

ifying the Navier boundary conditions (3) and set v=u−α1�u. We have the
following equivalent quantities for the H 2 and H 3 norms:

‖u‖H 2 �‖u‖H 1 +‖Pv‖L2 (16)

and

‖u‖H 3 �‖u‖H 1 +‖curl v‖L2 . (17)

Moreover, there exists a constant K5 = K5(�) independent of u such
that

‖u‖W 1,12 �K5(‖u‖H 1 +‖A(u)‖L12). (18)

Proof. We know from [6, Proposition 3], see also [21], that ‖u‖H 2 �
‖v‖L2 . On the other hand

‖v‖L2 �‖Pv‖L2 +‖v −Pv‖L2 �‖Pv‖L2 +K3(2,�)‖u‖H 1 ,

where we have used (14). This proves (16) since the reverse inequality fol-
lows trivially using that P is an orthogonal projection in L2. Next, we note
that (17) is proved in [6, Proposition 6]. To prove (18), we use the Korn
inequality (13) for p =12 to write

‖u‖W 1,12 �K0(‖u‖L12 +‖A‖L12). (19)

If the dimension is 2, then (18) simply follows from the embedding
H 1(�) ↪→L12(�). In dimension 3, an additional step is necessary. We use
the embeddings H 1(�) ↪→L6(�) and W 1,12(�) ↪→L∞(�) with norms C′

4,
respectively, C′

5 to deduce that

K0‖u‖L12 � K0‖u‖1/2
L6 ‖u‖1/2

L∞ �K0C
′1/2
4 C

′1/2
5 ‖u‖1/2

H 1 ‖u‖1/2
W 1,12

� 1
2 ‖u‖W 1,12 + K2

0 C′
4C

′
5

2
‖u‖H 1 .

Plugging this relation in (19) implies at once (18).
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3. GLOBAL EXISTENCE FOR LARGE H 2 DATA

In order to get H 2 estimates for u, the natural way would be to multi-
ply (1) by u−α1�u and to integrate. Unfortunately, this does not work as
the pressure term will not vanish. Therefore, one has to multiply by P(u−
α1�u) instead and this results in estimates on ‖P(u − α1�u)‖L2 only. In
view of (16), we also need to estimate the H 1 norm of u.

Let us recall that the equation for the velocity can be written under
the following equivalent form (see [5])

∂tv −ν�u+ (u ·∇)v +
∑

j

vj∇uj − (α1 +α2)div(A2)+βK(u)=f −∇p′,

(20)

where we used the notations

v =u−α1�u, K(u)=−div(|A|2A) and A=A(u).

The first step in making H 2 estimates are the H 1 estimates.

3.1. H 1 a priori Estimates

Let us multiply (20) by u and integrate in space to obtain that

1
2

d

dt

(
‖u‖2

L2 +2α1‖D(u)‖2
L2

)
+2ν‖D(u)|2

L2 +β

∫

�

K(u) ·u

=−
∫

�

(u ·∇)v ·u−
∑

j

∫

�

vj∇uj ·u+
∫

�

(α1 +α2)div(A2) ·u+
∫

�

f ·u,

where we used the Green formula (11). We classically have that
∫

�

(u ·∇)v ·u+
∑

j

∫

�

vj∇uj ·u=
∫

�

∑

i,j

∂i(uiuj vj )=
∫

∂�

n ·u u ·v =0,

where we used the Stokes formula together with the fact that u is diver-
gence free and tangent to the boundary. Next, an integration by parts
shows that

∫

�

K(u) ·u = −
∫

�

div(|A|2A) ·u=
∫

�

|A|2A ·∇u

−
∫

∂�

|A|2(An) ·u= 1
2

∫

�

|A|4,
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where we used the symmetry of the matrix A and the Navier boundary
conditions to deduce that the boundary term vanishes. Similarly

(α1 +α2)

∫

�

div(A2) ·u = −(α1 +α2)

∫

�

A2 ·∇u+ (α1 +α2)

∫

∂�

(A2n) ·u
� |α1 +α2|‖A2‖L2‖∇u‖L2

� β

4

∫

�

|A|4 +C(α1, α2, β)‖u‖2
H 1 .

Finally,
∫

�

f ·u�‖f ‖L2‖u‖L2 � 1
2 ‖f ‖2

L2 + 1
2 ‖u‖2

H 1 .

We conclude that the following differential inequality holds

d

dt
|||u|||2

H 1 + β

2
‖A‖4

L4 �‖f ‖2
L2 +C1|‖u‖|2

H 1 (21)

for some constant C1. The Gronwall lemma now implies that

|‖u‖|2
H 1 + β

2

∫ t

0
‖A‖4

L4 � eC1t

(
|‖u0‖|2H 1 +

∫ t

0
‖f ‖2

L2

)
.

We infer that

|‖u(t)‖|H 1 � e
c1t

2
(|‖u0‖|H 1 +‖f ‖L2((0,t)×�)

) def= M0(t) (22)

and

‖A‖L4((0,t)×�) �
(

2
β

)1/4

e
c1t

4
(|‖u0‖|H 1 +‖f ‖L2((0,t)×�)

)1/2
.

From the Sobolev embedding H 1(�)↪→L4(�) with norm constant denoted
by C2 we get that

‖u‖L4((0,t)×�) �C2‖u‖L4(0,t;H 1) �C2t
1/4e

c1t

2
(|‖u0‖|H 1 +‖f ‖L2((0,t)×�)

)
.

The Korn inequality (13) together with the two previous relations now
imply that

‖u‖L4(0,t;W 1,4) � K0(4,�)e
c1t

4

[(
2
β

)1/4

+C2t
1/4e

c1t

4

]

× (1+|‖u0‖|H 1 +‖f ‖L2((0,t)×�)

)

def= M1(t) (23)
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and from the Sobolev embedding W 1,4(�) ↪→L∞(�) with norm constant
C3 we get that

‖u‖L1(0,t;L∞) � t3/4‖u‖L4(0,t;L∞) �C3t
3/4M1(t)

def= M2(t). (24)

3.2. A priori Estimate for ‖Pv‖L2

The heart of the matter is now the estimate for Pv. Let us multiply
equation (20) by Pv and integrate in space to obtain that

1
2

d

dt
‖Pv‖2

L2 +β

∫

�

K(u) ·Pv = ν

∫

�

�u ·Pv −
∑

j

∫

�

vj∇uj ·Pv

+(α1 +α2)

∫

�

div(A2) ·Pv −
∫

�

(u ·∇) ·Pv

+
∫

�

f ·Pv. (25)

The most important point in these a priori estimates is the estimate of the
K-term. It is precisely this part of the proof that allows us to obtain the
global existence for large data.
Estimate of the K-term. We first write

∫

�

K(u) ·Pv =
∫

�

K(u) ·v
︸ ︷︷ ︸

I1

+
∫

�

K(u) · (Pv −v)

︸ ︷︷ ︸
I2

. (26)

To estimate I1, we start with an integration by parts:

I1 =−
∫

�

div(|A|2A) ·v =
∫

�

|A|2A ·∇v −
∫

∂�

|A|2An ·v

= 1
2

∫

�

|A|2A ·A(v)−
∫

∂�

|A|2An ·v

Since, A(v)=A−α1�A, one has that
∫

�

|A|2A ·A(v)=
∫

|A|4 −α1

∫

�

|A|2A ·�A.

A second integration by parts shows that
∫

�

|A|2A ·�A=−
∑

i

∫

�

∂i(|A|2A) · ∂iA+
∫

∂�

|A|2A · ∂nA
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But it is just a simple computation to note that
∑

i

∫

�

∂i(|A|2A) · ∂iA=
∫

�

|A|2|∇A|2 + 1
2

∫

�

|∇(|A|2)|2.

Putting together the above relations we infer that

I1 = 1
2

∫

�

|A|4 + α1

2

∫

�

|A|2|∇A|2 + α1

4

∫

�

|∇(|A|2)|2

−α1

2

∫

∂�

|A|2A · ∂nA

︸ ︷︷ ︸
I11

−
∫

∂�

|A|2An ·v
︸ ︷︷ ︸

I12

. (27)

We now have to estimate the boundary terms I11 and I12. To bound I12, we use
the Navier boundary conditions together with relations (4) and (6) to write

I12 =
∫

∂�

|A|2An ·v =
∫

∂�

|A|2λn ·v =
∫

∂�

|A|2λF1(D(u)), (28)

where λ is given in relation (5). By the Stokes formula, we can return to
an integral on � and write

I12 =
∫

∂�

n ·
[
n|A|2λF1(D(u))

]
=
∫

�

div
[
n|A|2λF1(D(u))

]

=
∫

�

div n|A|2λF1(D(u))+
∫

�

∂n(|A|2)λF1(D(u))

+
∫

�

|A|2∂nλF1(D(u))+
∫

�

|A|2λ∂nF1(D(u)).

We observe that each of the integrands above can be expressed as a sum
of terms of two types:

• either a product of two components of A times a function of form
1 times a function of form 2;

• or a product of some component of A times a second order deriv-
ative of u times two functions of form 1.

Consequently, one can bound

|I12|�C

∫

�

(
|A|2|D(u)|2 +|A||∇2u||D(u)|2

)
.

By the Sobolev embedding H 1(�) ↪→L6(�) we can further write

C

∫

�

|A|2|D(u)|2 �C‖|A|2‖L3‖D(u)‖L6‖D(u)‖L2

�C‖|A|2‖L6‖D(u)‖L6‖D(u)‖L2 � ε‖A‖4
L12 +C(ε)‖u‖2

H 2‖u‖2
H 1 ,

where ε is a sufficiently small parameter to be chosen later. Next,
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C

∫

�

|A||∇2u||D(u)|2 �C‖|A||∇2u|‖L2‖D(u)‖L12‖D(u)‖
L

12
5

� C‖|A||∇2u|‖L2
(‖u‖H 1 +‖A‖L12

)‖D(u)‖L3 (29)

� C‖|A||∇2u|‖L2
(‖u‖H 1 +‖A‖L12

)‖u‖1/2
H 1 ‖u‖1/2

H 2

� ε‖|A||∇2u|‖2
L2+ε‖A‖4

L12+ε‖u‖4
H 1+C(ε)‖u‖2

H 1‖u‖2
H 2,

where we used relation (18), the interpolation inequality ‖ · ‖L3 �
‖ · ‖1/2

L2 ‖ · ‖1/2
L6 , the embedding H 1(�) ↪→ L6(�) and the Young inequality

xyz� x2

2 + y4

4 + z4

4 . Combining the two previous inequalities results in the
following bound for I12:

|I12|� ε‖|A||∇2u|‖2
L2 +2ε‖A‖4

L12 + ε‖u‖4
H 1 +C(ε)‖u‖2

H 1‖u‖2
H 2 . (30)

To estimate I11 we simply use (7) and write

−α1

2
I11 =−α1

4

∑

�

∫

∂�

|A|2G�(D(u))H�(D(u)).

The right-hand side is quite similar to the last term in (28), so the estimate
for I11 is exactly the same as for I12:

|α1|
2

|I11|� ε‖|A||∇2u|‖2
L2 +2ε‖A‖4

L12 + ε‖u‖4
H 1 +C(ε)‖u‖2

H 1‖u‖2
H 2 . (31)

To complete the estimate for the K-term, it remains to estimate the inte-
gral I2. We have that

|I2|=
∣∣∣∣

∫

�

div(|A|2A) · (v −Pv)

∣∣∣∣ �C

∫

�

|A|2|∇2u||v −Pv)|

�CK3(12/5,�)‖|A||∇2u|‖L2‖A‖L12‖u‖
W 1, 12

5
,

where we used the Hölder inequality together with relation (14) for
r =12/5. The last term is entirely similar with an intermediate term from
relations (29), so the same estimate holds for I2:

|I2|� ε‖|A||∇2u|‖2
L2 + ε‖A|4

L12 + ε‖u|4
H 1 +C(ε)‖u|2

H 1‖u|2
H 2 . (32)

The final estimate for the K-term now follows from relations (26), (27),
(30)–(32) and reads
∫

�

K(u) ·Pv � 1
2

∫

�

|A|4 + α1

2

∫

�

|A|2|∇A|2 + α1

4

∫

�

|∇(|A|2)|2

−3ε‖|A||∇2u|‖2
L2 −5ε‖A‖4

L12 −3ε‖u‖4
H 1 −C(ε)‖u‖2

H 1‖u‖2
H 2

(33)

for some constant C(ε).
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Let us now estimate the other terms in (25). First,

(α1 +α2)

∫

�

div(A2) ·Pv

� |α1 +α2|‖div(A2)‖L2‖Pv‖L2 � ε‖|A||∇2u|‖2
L2 +C(ε)‖v‖2

L2 . (34)

Next,

−
∑

j

∫

�

vj∇uj ·Pv =−
∑

j

∫

�

vj∇uj ·v +
∑

j

∫

�

vj∇uj · (v −Pv).

The first term can be estimated as in [5, Relations (8)–(13)] by

−
∑

j

∫

�

vj∇ujv =−
∫

�

(v ·∇)u ·v � ε‖|A||∇A|‖2
L2 +C(ε)‖v‖2

L2 .

To bound the second term, we use (14) together with Hölder’s inequality

∑

j

∫

�

vj∇uj · (v −Pv)�
∑

j

‖vj‖L2‖∇uj‖L4‖Pv −v‖L4 �C‖v‖2
L2+C‖u‖4

W 1,4.

Therefore,

−
∑

j

∫

�

vj∇uj ·Pv �4ε‖|A||∇2u|‖2
L2 +C(ε)‖v‖2

L2 +C‖u‖4
W 1,4 . (35)

We go to the following term to estimate. One has that

−
∫

�

(u ·∇)v ·Pv =
∫

�

(u ·∇)(Pv −v) ·v �‖u‖L∞‖∇(Pv −v)‖L2‖v‖L2

� C‖u‖L∞‖u‖2
H 2 , (36)

where we used (15).
We finally estimate

∫

�

f ·Pv �‖f ‖L2‖Pv‖L2 � 1
2 ‖f ‖2

L2 + 1
2 ‖v‖2

L2 (37)

and

ν

∫

�

�u ·Pv �ν‖�u‖L2‖Pv‖L2 �C‖u‖2
H 2 . (38)
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Collecting estimates (25), (33)–(38) results in

1
2

d

dt
‖Pv‖2

L2 + β

2

∫

�

|A|4 + α1β

2

∫

�

|A|2|∇A|2 + α1β

4

∫

�

|∇|(|A|2)|2

� ε(3β +5)

∫
|A|2|∇2u|2 +5εβ‖A‖4

L12

+C(ε)(1+‖u‖L∞ +‖u‖2
H 1)‖u‖2

H 2 +C‖u‖4
W 1,4 + 1

2
‖f ‖2

L2 . (39)

Observe next that if we denote by C4 the constant from the Sobolev
embedding H 1(�) ↪→L6(�), then we can further bound

‖A‖4
L12 =‖|A|2‖2

L6 �C2
4‖|A|2‖2

H 1 =C2
4

∫

�

|A|4 +C2
4

∫

�

|∇(|A|2)|2.

We now choose

ε =min

(
1

20C2
4

,
α1

40C2
4

,
α1β

9(3β +5)

)

and note that, according to (12) and to the above inequalities, for this
choice of ε one has that

ε(3β +5)

∫
|A|2|∇2u|2 � α1β

4

∫

�

|A|2||∇A|2

and

5εβ‖A‖4
L12 � β

4

∫

�

|A|4 + α1β

8

∫

�

|∇(|A|2)|2.

Using these bounds in (39) and adding the result to (21) yields the follow-
ing differential inequality for the H 2 norm of u:

d

dt
‖|u|‖2

H 2 +β

∫

�

|A|4 + α1β

2

∫

�

|A|2|∇A|2 + α1β

4

∫

�

|∇(|A|2)|2

�C5

(
1+‖u‖L∞ +‖|u‖|2

H 1

)
‖|u‖2

H 2 +C5‖u‖4
W 1,4 +2‖f ‖2

L2

for some constant C5. Gronwall’s lemma now implies that

‖|u(t)|‖2
H 2 +min

(
β,

α1β

4

)∫ t

0
‖|A|2‖2

H 1 + α1β

2

∫ t

0

∫

�

|A|2|∇A|2

� e
C5(t+

∫ t
0 ‖u‖L∞+∫ t

0 |‖u|‖2
H1 )

(
‖|u0|‖2

H 2 +2
∫ t

0
‖f ‖2

L2 +C5

∫ t

0
‖u‖4

W 1,4

)
(40)

� e
C5

(
t+M2(t)+tM2

0 (t)
) (

‖|u0|‖2
H 2 +2

∫ t

0
‖f ‖2

L2 +C5M
4
1 (t)

)

def= M3(t),



374 Busuioc and Iftimie

where we used the notation introduced in relations (22)–(24). The above
bound is an a priori H 2 estimate. These estimates imply the global exis-
tence of a weak solution of (3) which belongs to L∞

loc([0,∞);H 2) in the
same way as in [5] with the obvious modifications specific to bounded
domains with Navier boundary conditions as was done in [6] (in partic-
ular, one has to replace the Friedrichs approximation procedure from [5]
with the Galerkin method with a special basis from [6]).

4. UNIQUENESS IN DIMENSION TWO

To prove uniqueness of solutions we follow the same approach as in
[5]. The difficulty here is to show that the boundary terms that show up in
the integrations by parts can be controlled. In fact, we will show that they
all vanish. Let u and ũ be two solutions belonging to L∞

loc

(
[0,∞);H 2

)

with the same initial data. It was observed in [5] that the equation of
motion of a third grade fluid can be written under the following form

∂t (u−α1�u)+ (u ·∇)u−ν�u+divN(u)+βK(u)=f −∇p′,

where

N(u)=−α1(u ·∇A+LtA+AL)−α2A
2.

We will use in the following the notations

w =u− ũ, A=A(u), Ã=A(ũ), L=L(u), L̃=L(ũ).

Subtracting the equations for u and ũ and multiplying the result by w

gives

1
2

d

dt
‖|w|‖2

H 1 +2ν‖D(w)‖2
L2 −β

∫

�

div(|A|2A−|Ã|2Ã) ·w

=−
∫

�

[(u ·∇)u− (ũ ·∇)ũ] ·w −
∫

�

div[N(u)−N(ũ)] ·w. (41)

Since (|A|2A−|Ã|2Ã)n
∣∣
∂�

is proportional to n and w
∣∣
∂�

is orthogonal to
n, we see that

−
∫

�

div(|A|2A−|Ã|2Ã) ·w =
∫

�

(|A|2A−|Ã|2Ã) ·∇w

+
∫

∂�

[(|A|2)A−|Ã|2Ã)n] ·w

= 1
2

∫

�

(|A|2A−|Ã|2Ã) ·A(w)

= 1
4

∫

�

(|A|2 −|Ã|2)2+1
4

∫

�

|A(w)|2(|A|2 +|Ã|2).
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The first term on the right-hand side of (41) can be estimated as in [5]:
∫

�

[(u ·∇)u− (ũ∇)ũ] ·w =
∫

�

(w ·∇)u ·w �‖w‖2
L4‖∇u‖L2 �C‖w‖2

H 1‖u‖H 2 .

The last term in (41) is integrated by parts as follows:

−
∫

�

div[N(u)−N(ũ)] ·w =
∫

�

[N(u)−N(ũ)] ·∇w −
∫

∂�

[(N(u)−N(ũ))n] ·w].

Since A2n
∣
∣
∂�

is proportional to n and w
∣
∣
∂�

is tangent to ∂�, we have that

[N(u)n] ·w∣∣
∂�

=−α1
[(

(u ·∇)A+LtA+AL
)
n
] ·w. (42)

We now show that the above boundary terms vanish. First note that since
An=λn on ∂�, we have that

(LtAn)i = λ(Ltn)i =λ
∑

j

∂iujnj =λ∂i(u ·n)−λ
∑

j

uj ∂inj

= [λµn−λF0(u)]i on ∂�,

where we used (6) and the notation F0(u)=∑j uj∇nj . On the other hand,
we see immediately that Ln= ∂nu, so

ALn=A∂nu=A[(λ−µ)n+F0(u)]=λ(λ−µ)n+AF0(u) on ∂�.

We deduce that

(LtA+AL)n=λ2n+ (A−λI)F0(u) on ∂�. (43)

Next, we write

[(u ·∇)A]n = (u ·∇)(An)−A(u ·∇)n

= (u ·∇)(An−λn)+ (u ·∇)(λn)−A(u ·∇)n

on the boundary. Now, An−λn= 0 on ∂� and since u is tangent to the
boundary, u · ∇ is a tangential derivative so (u · ∇)(An − λn) = 0 on the
boundary. Moreover, (u ·∇)(λn)=λ(u ·∇)n+n(u ·∇)λ. We therefore deduce
that

[(u ·∇)A]n=n(u ·∇)λ− (A−λI)(u ·∇)n. (44)

Collecting relations (42)–(44) we find that

[N(u)n] ·w∣∣
∂�

=−α1[λ2 + (u ·∇)λ]n ·w −α1{(A−λI)[F0(u)− (u ·∇)n]} ·w.

The right-hand side above vanishes: the first term is zero since w is tan-
gent to the boundary and the second term vanishes since by Lemma 3
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and the Navier boundary conditions we can deduce that the vector field
(A−λI)[F0(u)− (u ·∇)n] is normal to the boundary. This shows that there
are no boundary terms when integrating by parts the term coming from
N(u). Once this fact proved, one can continue the proof exactly like in [5]
starting from Eq. (28) of [5]. Indeed, the only other integrations by parts
performed after relation (28) in [5] require only the condition of tangency to
the boundary. It would be useless to reproduce those estimates here, so we
refer to Busuioc and Iftimie [5] for what is left in the proof of the uniqueness.

5. ADDITIONAL H 3 REGULARITY IN DIMENSION TWO

In the same spirit as in [4], we prove now that in dimension 2, the H 3

regularity of the initial data is propagated.
Let us apply the curl operator to the equation of v under the form

given in (20) and take the L2 scalar product with curl v to obtain that

1
2

d

dt
‖curlv‖2

L2 =ν

∫

�

curlv � curlu−β

∫

�

curlv curlK(u)+
∫

�

curlf curlv

−
∫

�

curl[(u ·∇)v] curlv−
∑

j

∫

�

curl (vj∇uj ) curlv+(α1+α2)

∫

�

curl [div(A2)] curlv.

︸ ︷︷ ︸
I

We remark that all the integrands composing the part I above can be writ-
ten as a sum of two type of terms:

• either a function of form 1 times two functions of form 3,
• or a function of form 3 times two functions of form 2,

plus one term in which we can find fourth-order derivatives of u. This
additional term is

∫
�
(u ·∇) curl v curl v. However, this term vanishes by a

well-known cancellation property together with the fact that u is tangent
to the boundary. Consequently, we can bound

|I | ≤ C

∫

�

|D(u)||D3(u)||D3(u)|+C

∫

�

|D2(u)||D2(u)||D3(u)|
≤ C‖D(u)‖L∞‖u‖2

H 3 +C‖D2(u)‖2
L4‖u‖H 3

≤ C√
ε
‖u‖1−ε

H 2 ‖u‖2+ε

H 3 +C‖u‖H 2‖u‖2
H 3

≤ C√
ε
‖u‖1−ε

H 2 ‖u‖2+ε

H 3 ,

where ε ∈ (0,1] is to be chosen later, the constant C is independent of ε

and we have used Lemma 4. Next,
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ν

∫

�

curl v � curl u≤ν‖u‖2
H 3

and
∫

�

curl f curl v ≤‖ curl f ‖L2‖ curl v‖L2 ≤ 1
2
‖ curl f ‖2

L2 + 1
2
‖u‖2

H 3 .

We now estimate the trilinear term. After expanding curl K(u) =
− curl div(|A|2A) we observe that we can bound

−β

∫

�

curl K(u) curl v ≤C

∫

�

|A|2|D3(u)|2 +C

∫

�

|A‖D2(u)|2|D3(u)|.

As above, we use Lemma 4 and the fact that H 2(�) is an algebra to
deduce that

C

∫

�

|A||D2(u)|2|D3(u)|

�C ‖A‖L∞‖D2(u)‖2
L4‖D3(u)‖L2�

C√
ε

‖u‖2−ε

H 2 ‖u‖2+ε

H 3

and

C

∫

�

|A|2|D3(u)|2 �‖A2 ‖L∞‖u‖2
H 3

� C√
ε

‖A2 ‖1− ε
2

H 1 ‖A2 ‖
ε
2
H 2‖u‖2

H 3�
C√
ε

‖A2 ‖1− ε
2

H 1 ‖u‖2+ε

H 3 .

Putting together all the above relations, we conclude that

d

dt
‖ curl v ‖2

L2 � C√
ε

‖u‖2+ε

H 3

(
‖u‖1−ε

H 2 +‖u‖2−ε

H 2 +‖A2 ‖1− ε
2

H 1

)

+(1+2ν)‖u‖2
H 3 +‖ curlf ‖2

L2

� C√
ε
(1+‖u‖2

H 3)
1+ ε

2

(
1+‖u‖2

H 2 +‖A2 ‖H 1

)
+‖ curlf ‖2

L2

for some constant C independent of ε.
Adding this relation to (21) we get the following differential inequality

for the H 3 norm of u:

d

dt
|||u|||2

H 3 � C6√
ε
(1+|||u|||2

H 3)
1+ ε

2

(
1+|||u|||2

H 2+‖A2 ‖H 1

)
+‖f ‖2

H 1

for some constant C6 independent of ε. Let

B(t)= C6

2
(1+|||u|||2

H 2+‖A2 ‖H 1) and h(t)=1+|||u|||2
H 3 .
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From (40) we infer that the following bound holds for the time integral of B:

∫ t

0
B(τ)dτ � C6

2

⎡

⎣t + tM3(t)+
(

tM3(t)

min(β,
α1β

4 )

)1/2
⎤

⎦ def= M4(t).

Since h verifies the differential inequality

h′ �2
B(t)√

ε
h1+ ε

2 +‖f ‖2
H 1 ,

one has that

(
h− ε

2

)′
�− ε

2h1+ ε
2

(
2
B(t)√

ε
h1+ ε

2 +‖f ‖2
H 1

)
�−√

ε(B+‖f ‖2
H 1).

After integration

h− ε
2 (t)�h− ε

2 (0)−√
ε

(
M4(t)+

∫ t

0
‖f (τ)‖2

H 1 dτ

)
. (45)

We now fix t and choose ε0 = ε0(t) such that

ε0 �1 and ε
− 1

2
0 (1+|||u0|||2H 3)

− ε0
2 �2

(
M4(t)+

∫ t

0
‖f (τ)‖2

H 1 dτ

)
.

Note that such an ε0 exists as the limit when ε → 0 of the left-hand side
is +∞. Moreover, ε0 can be made explicit but this is not very useful here.
In view of (45), we deduce that

h− ε0
2 (t)� h− ε0

2 (0)

2
,

that is,

|||u(t)|||2
H 3 �4

1
ε0

(
1+|||u0|||2H 3

)
.

These are H 3 a priori estimates for ‖u‖H 3 . As in Section 2, one can
consider the Galerkin method with the special basis adapted to the Navier
boundary conditions. The above H 3 a priori estimates will hold true for
the sequence of approximate solutions. Therefore, the approximating solu-
tions will be bounded in L∞

loc([0,∞);H 3(�)) and the limit solution must
also belong to this class. We conclude that there exists a (unique) global
solution belonging to L∞

loc([0,∞);H 3(�)).
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