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Analysis of Newton’s Method to Compute Travelling
Waves in Discrete Media
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We present a variant of Newton’s method for computing travelling wave
solutions to scalar bistable lattice differential equations. We prove that the
method converges to a solution, obtain existence and uniqueness of solu-
tions to such equations with a small second order term and study the lim-
iting behaviour of such solutions as this second order term tends to zero.
The robustness of the algorithm will be discussed using numerical examples.
These results will also be used to illustrate phenomena like propagation fail-
ure, which are encountered when studying lattice differential equations. We
finish by discussing the broad application range of the method and illustrate
that higher dimensional systems exhibit richer behaviour than their scalar
counterparts.
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1. INTRODUCTION

The main purpose of this paper is to analyze a numerical method to solve
families of scalar bistable differential difference equations of the form

−γφ′′(ξ)− cφ′(ξ)=F(φ(ξ), φ(ξ + r1), . . . , φ(ξ + rN), ρ). (1.1)

Here γ � 0 is a fixed parameter, c is an unknown wavespeed, ρ can
be thought of as a detuning parameter and the diagonal function
−F(x, . . . , x, ρ) is an N-shaped function which depends C1- smoothly on
ρ. The numbers ri are shifts which may have either sign.
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The algorithm we discuss consists of a combination of a Newton-type
method with parameter continuation techniques and is based upon ideas
proposed in [1,2,16]. Our main contribution here is to give a detailed anal-
ysis of the method. In particular, we shall show that the algorithm con-
verges to a solution of (1.1) and use numerical examples to discuss some
of the issues involved when solving (1.1). In addition, we shall obtain
existence and uniqueness of connecting solutions to (1.1) and prove that
these solutions depend C1-smoothly on the detuning parameter ρ. These
results extend earlier results obtained by Mallet-Paret in [28], where the
γ =0 case was treated. To relate this interesting and widely studied case to
the numerically feasible situation where γ > 0, we shall also prove that a
sequence of solutions to (1.1) with γ tending to zero converges to a solu-
tion with γ =0.

Equation (1.1) arises naturally when studying travelling wave solu-
tions to so-called lattice differential equations, which are infinite systems
of ordinary differential equations indexed by points on a spatial lattice. As
an example we mention the infinite system

u̇i,j =α(LDu)i,j −f (ui,j , ρ), (i, j)∈Z2, α∈R, (1.2)

on the lattice Z2. Here f : R × (−1,1)→ R typically is a bistable nonlin-
earity of the form

f (u, ρ)= (u−ρ)(u2 −1) (1.3)

for some parameter −1<ρ < 1 and LD is a discrete Laplacian, which is
often given by

(LDu)i,j = (∆+u)i,j ≡ui+1,j +ui−1,j +ui,j+1 +ui,j−1 −4ui,j . (1.4)

The lattice differential equation (1.2) with α = h−2 arises when one
discretizes the two dimensional reaction diffusion equation,

ut =∆u−f (u, ρ), (1.5)

on a rectangular lattice with spacing h. In the analysis of the PDE (1.5),
travelling wave solutions of the form u(x, t)=φ(k · x− ct) have played a
crucial role and thus have been studied extensively, starting with the clas-
sic work by Fife and McLeod [18]. The unit vector k indicates the prop-
agation direction of the wave and c is the unknown wavespeed which has
to be determined along with the waveprofile φ. Following this approach,
we can also study travelling wave solutions to Eq. (1.2). Substituting the
travelling wave ansatz ui,j (t)=φ(ik1 + jk2 − ct) into (1.2), we arrive at a
forward–backward differential difference equation of the form
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−cφ′(ξ) = α(φ(ξ +k1)+φ(ξ −k1)+φ(ξ +k2)+φ(ξ −k2)−4φ(ξ))

−f (φ(ξ), ρ), (1.6)

which is a special case of (1.1) with γ = 0. In [10] results are given con-
cerning the asymptotic stability of travelling wave solutions to (1.2), show-
ing that it is indeed worth while to study this class of solutions.

It is by now well known that away from the continuous limit, i.e., for
small positive values of α, the dynamical behaviour of (1.2) is quite differ-
ent than that of its continuous counterpart (1.5). A feature which is imme-
diately visible from (1.6) is the presence of lattice anisotropy, which means
that the wavespeed c of a travelling wave solution to (1.2) depends on the
vector of propagation through the lattice k. This is illustrated in Fig. 1,
where we set k= (cos θ, sin θ) and give a plot of the wavespeed c(θ) for
travelling wave solutions to the system

u̇i,j = (LDu)i,j −10(u2
i,j −1)(ui,j −ρ), (i, j)∈Z2, (1.7)

which satisfy the limits

lim
ξ→±∞

φ(ξ)=±1. (1.8)

The results, which can also be found in [16], were obtained with the
numerical method discussed in this paper by adding a small term −γφ′′(ξ)
to the left hand of (1.6), where γ=10−5. The polar plots clearly reveal
the anisotropy of the lattice for small values of the detuning parame-
ter ρ. After substituting the travelling wave ansatz into the PDE (1.5), it
is clear that this feature of lattice anisotropy vanishes in the continuous
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Figure 1. A plot of the wavespeed c(θ) as a function of the propagation angle θ of travel-
ling waves solutions to (1.7). (b) is just a magnification of (a) to illustrate the behaviour for
small values of the wavespeed c in greater detail.
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limit. Another interesting example of a property which distinguishes lat-
tice differential equations from their continuous counterparts, is the phe-
nomenon of propagation failure. In the discrete case (1.6), a nontrivial
interval of the detuning parameter ρ can exist in which the wavespeed sat-
isfies c = 0. This means the waveform φ(ξ) does not propagate and thus
the solution ui,j (t)=φ(ik1 + jk2 − ct)=φ(ik1 + jk2) to (1.2) remains con-
stant in time. This behaviour does not occur for the reaction diffusion
equation (1.5). This phenomenon has been studied extensively in [7], where
one replaces the cubic nonlinearity f by an idealized nonlinearity to obtain
explicit solutions to (1.6). For each propagation angle θ , the quantity
ρ∗(θ) is defined to be the supremum of values ρ > 0 for which the wave-
speed satisfies c(ρ, θ)=0. It is proven that this critical value ρ∗(θ) typically
satisfies ρ∗>0, depends continuously on θ when tan θ is irrational and is
discontinuous when tan θ is rational or infinite. Numerical investigations
in [16] and the present work suggest that the phenomenon of propagation
failure is not just an artifact of the idealized nonlinearity f, but also occurs
in the case of a cubic nonlinearity. This has recently been confirmed by
Mallet-Paret in [29].

The ability to incorporate nonlocal interactions into a model together
with the relatively rich structure of lattice differential equations present
a strong motivation for the study of such systems. At present, models
involving lattice differential equations can be found in many scientific dis-
ciplines, including chemical reaction theory [17,25], image processing and
pattern recognition [11], material science [4,6] and biology [5,23]. Early
papers on the subject by Chi et al. [9] and by Keener [24] were fol-
lowed by many others which developed the basic theory; see, for example,
[7,10,19,21,22,26,28,30,35,36,38]. As a particular example we mention here
the work of Bates [3], who analyzed a model which incorporates infinite
range interactions. The early work by Chi et al. [9] already contained com-
putations of solutions to lattice differential equations and Elmer and Van
Vleck have performed extensive calculations on equations of the form (1.1)
in [13–16]. In their early works [13,14], the nonlinearity f was replaced
by an idealized nonlinearity, but this restriction was lifted in [16], where
a larger class of bistable functions f is considered. At present, they are
pursuing a collocation approach to solve a class of functional differen-
tial equations which includes the family (1.1) [1]. We note here that when
applying the methods in [1,16] to (1.1), one essentially performs a series
of Newton iterations of the same type as those studied in this paper,
which means that the theory developed here can be directly applied to
this situation. Our results should thus be seen as a first step towards
establishing a general theoretical background for the numerical analysis
of (1.1).
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Notice that (1.6) contains no second derivative term, in contrast to
the family (1.1) where γ may be strictly positive. As we have seen above
while discussing the phenomenon of propagation failure, very interest-
ing features of lattice differential equations arise when γ = 0 and the
wavespeed c satisfies c≈ 0. Unfortunately, the possible lack of continu-
ity properties of the solutions in this regime makes it extremely difficult
to numerically solve (1.1) directly, as all known methods would require
handling singularly perturbed boundary value problems. However, set-
ting γ >0 in (1.1) has a smoothening effect on solutions, ensuring every
solution to be at least twice differentiable. This allows the succesfull appli-
cation of numerical techniques to solve (1.1) even as c→ 0, but imme-
diately raises the question if the rich behaviour in the limit γ, c→ 0 can
still be uncovered. In this paper, we give rigorous theoretical and numer-
ical evidence that this is indeed the case. In particular, we prove in The-
orem 3.10 that solutions to (1.1) with increasingly small γ converge to a
solution with γ = 0. We strengthen the argument in Sections 5 and 6 by
discussing a number of numerical examples which clearly exhibit the phe-
nomenon of propagation failure. These examples also illustrate the impor-
tant fact that the convergence proved in Theorem 3.10 already occurs at
numerically feasible values of γ .

In addition to the technical reasons mentioned above, there is also a
physical reason to introduce a second order term in (1.1). Such a term
arises naturally if we consider systems which have local as well as nonlocal
interactions and it allows us to perform continuation from systems with a
continuous Laplacian to systems with a discrete Laplacian. As an example
in solid-state physics, we mention the Frenkel-Kontorova type equations
discussed in [33,34].

The numerical method discussed in this paper combines the mer-
its of both the strategies employed in [1,16]. In particular, we remark
here that the direct collocation technique employed in [1] is numerically
robuster than the method used in [16], but also requires significantly more
computer time and storage space to execute a Newton iteration step. In
Section 4 we show that away from the continuous limit, i.e., for small val-
ues of α in (1.6), the approach in [16] can be expected to work best. In
Section 5 this information is combined with our continuation techniques
to give a more thorough investigation into the phenomenon of propaga-
tion failure than previously possible. On the other hand, in Section 6.2
we numerically solve a two dimensional periodic diffusion problem, which
requires the robustness of the direct collocation technique along with our
path following strategies.

This paper is organized as follows. In Section 2 we recall the gen-
eral Fredholm theory developed in [27] for linear functional equations of
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mixed type and apply it to scalar second order equations. In Section 3,
we set out to establish existence and uniqueness of solutions to (1.1). We
introduce the operator G:W 2,∞

0 × R × V →L∞ associated with (1.1) and
given by

G(φ, c, ρ)(ξ)=−γφ′′(ξ)− cφ′(ξ)−F(φ(ξ), φ(ξ + r1), . . . , φ(ξ + rN), ρ).
(1.9)

Solutions to (1.1) correspond to zeroes of G. In the first part of
Section 3, Theorem 2.5 is used to prove that the Frechet derivative D1,2G
of G, evaluated at a solution (φ, c) to (1.1) at some parameter ρ0, is, in
fact, an isomorphism from W

2,∞
0 ×R to L∞ (Proposition 3.7). This allows

us to make a smooth local continuation (φ(ρ), c(ρ)) of solutions around
ρ = ρ0. In the second part of Section 3, we establish the uniqueness of
solutions and prove Theorem 3.10. This enables us to turn the local con-
tinuation from the first part into a global continuation. In order to obtain
the existence of solutions, we solve an explicit equation of the form (1.1)
and use a homotopy of systems to extend this solution to an arbitrary
family (1.1).

Having developed the underlying theory, we discuss the algorithm in
Section 4 and we prove its convergence to a solution of (1.1). The algo-
rithm is a modified Newton iteration, which uses the inverse of a linear
operator D1,2F that is closely related to the operator D1,2G, but with a
relaxation on the shifted terms. Our analysis of the method relies heavily
on the isomorphism result in Proposition 3.7, which can be extended to
the operator D1,2F . In Section 5, we use our algorithm to calculate solu-
tions to a specific family (1.1). The results are used to illustrate some of
the technical difficulties involved in the application of our method. Con-
siderable attention is devoted to the phenomenon of propagation failure
and the issue of approaching the solutions in the singular perturbation
limit γ →0 and c→0.

Finally, in the last section, we address some issues connected to a
possible generalization of the theory developed in this paper. In particu-
lar, the numerical method can handle a broader class of equations than
those analyzed here. We illustrate this by numerically computing solutions
to a differential difference equation that arises when studying Ising mod-
els, which are very important for applications in the material sciences [4].
In addition, we discuss higher dimensional systems of the form (1.1) and
show numerically that here the uniqueness of solutions breaks down, indi-
cating that higher dimensional systems have a richer structure than their
one dimensional counterparts. In future work this will be analyzed in a
more theoretical setting.
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2. LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS
OF MIXED TYPE

In this section, we apply the results obtained in [27] to second order
scalar linear functional differential equations of mixed type

−γ x′′(ξ)− cx′(ξ)=
N∑

j=0

Aj(ξ)x(ξ + rj )+h(ξ). (2.1)

Here x,Aj and h represent real valued functions and the parameter γ is
assumed to satisfy γ �= 0 throughout this section. In the homogeneous case
we have h=0 and (2.1) reduces to

−γ x′′(ξ)− cx′(ξ)=
N∑

j=0

Aj(ξ)x(ξ + rj ). (2.2)

Linear equations of the form (2.1) arise when one considers the
linearization of (1.1) around a particular solution φ(ξ). In order to
investigate the nonlinear equation (1.1) it will turn out to be crucial to
understand the properties of the associated linear differential difference
equation. Results in this direction will be given in this section, after we
have introduced the terminology we shall need.

Throughout this section we will assume that the coefficients Aj :J →R

are measurable and uniformly bounded on some (usually infinite) interval
J and that the inhomogeneity h :J→R is locally integrable. The quantities
rj , the so-called shifts, can have either sign. As a technical restriction we
shall assume r0 =0 and ri �= rj whenever i �=j . For convenience we demand
that N � 1. It should be noted that in this case this is not a restriction
on (2.1), as we can always take any coefficient Aj to vanish identically
on J .

Following the standard notation for differential difference equations
as introduced in [27], we define the quantities

rmin =min{rj | j =0 . . .N},
rmax =max{rj | j =0 . . .N} (2.3)

and observe that rmin � 0 � rmax and rmin<rmax. We also define the state
xξ ∈C([rmin, rmax],R) of a solution by xξ (θ)= x(ξ + θ) for θ ∈ [rmin, rmax].
This allows us to rewrite (2.1) as

−γ x′′(ξ)− cx′(ξ)=L(ξ)xξ +h(ξ). (2.4)
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Here L(ξ), for almost every ξ ∈J , denotes the bounded linear functional

L(ξ)φ=
N∑

j=0

Aj(ξ)φ(rj ), φ ∈C([rmin, rmax],R) (2.5)

from C([rmin, rmax],R) into R. When the function h is absent, we have the
homogeneous system

−γ x′′(ξ)− cx′(ξ)=L(ξ)xξ . (2.6)

A special case of (2.5) occurs when all the matrix functions Aj(ξ) are con-
stants, giving rise to the constant coefficient operator

L0(φ)=
N∑

j=0

Aj,0φ(rj ) (2.7)

and the homogeneous constant coefficient system

−γ x′′(ξ)− cx′(ξ)=L0xξ . (2.8)

Definition 2.1. A solution to equation (2.4) on an interval J is a
continuously differentiable function x:J# →R, defined on the larger inter-
val

J# ={ξ + θ | ξ ∈J and θ ∈ [rmin, rmax]}, (2.9)

such that both x and x′ are absolutely continuous on J and x satisfies
(2.4) for almost every ξ ∈J .

From now on we shall assume J = R, unless explicitly stated other-
wise. We will be particularly interested in the spaces

W 1,∞ ={f ∈L∞ |f is absolutely continuous and f ′ ∈L∞},
W 2,∞ ={f ∈L∞ |f is absolutely continuous and f ′ ∈W 1,∞}, (2.10)

where we have used the shorthand L∞ =L∞(R,R).
Associated to the homogeneous equation (2.6) we have the bounded

linear operator �c,γ,L:W 2,∞ →L∞ defined by

(�c,γ,Lx)(ξ)=−γ x′′(ξ)− cx′(ξ)−L(ξ)xξ . (2.11)

The adjoint equation of (2.6) is given by

−γy′′(ξ)+ cy′(ξ)=−L∗(ξ)yξ , (2.12)
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in which

L∗(ξ)φ=−
N∑

j=0

Aj(ξ − rj )φ(−rj ), φ ∈C([−rmax,−rmin],R). (2.13)

The corresponding adjoint operator �∗
c,γ,L :W 2,∞ →L∞ is defined by

(�∗
c,γ,Ly)(ξ)=−γy′′(ξ)+ cy′(ξ)+L∗(ξ)yξ (2.14)

and one can indeed easily verify that for test functions x and y we have
(x,�c,γ,Ly)= (�∗

c,γ,Lx, y), where ( , ) denotes the standard inner product
(x, y)= ∫∞

−∞ x(ξ)y(ξ)dξ .
Associated to the constant coefficient system (2.8) is the characteristic

equation, given by

	c,γ,L0(s)=0, (2.15)

where 	c,γ,L0 , called the characteristic function, is given by

	c,γ,L0(s)=−γ s2 − cs−
N∑

j=0

Aj,0e
srj . (2.16)

We recall that a number λ∈C is an eigenvalue of the constant coefficient
system (2.8) if and only if it satisfies the characteristic equation, i.e.,
	c,γ,L0(λ)=0. Elementary solutions y(ξ) of the constant coefficient system
(2.8) corresponding to the eigenvector λ can be written as y(ξ)=Re eλξp(ξ),
for some complex polynomial p. We will also refer to these solutions as
eigensolutions.

Definition 2.2. The constant coefficient system (2.8) is called hyper-
bolic in case 	c,γ,L0(iη) �= 0 for all η∈R, i.e., there are no eigenvalues on
the imaginary axis.

We shall often write the operator L(ξ) in (2.5) as a sum

L(ξ)=L0 +M(ξ) (2.17)

of a constant coefficient operator L0 and a perturbation operator
M(ξ):C([rmin, rmax],R)→R and we will be specially interested in cases
where M(ξ) vanishes as ξ→±∞.

Definition 2.3. The system (2.6) (or more simply L) is asymptotically
autonomous at ±∞ if there exist L0 and M as in (2.17), for which

lim
ξ→±∞

‖M(ξ)‖=0. (2.18)
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In this case (2.8) is called the limiting equation at ±∞. If in addition this
limiting equation is hyperbolic, then we say that (2.6) is asymptotically
hyperbolic at ±∞. If (2.6) is asymptotically autonomous or hyperbolic at
both ±∞, then we simply drop the suffix “at ±∞”.

We are now ready to state the main theorem of this section, which
establishes useful properties of the operator �c,γ,L. In addition, two
important propositions concerning the asymptotic behaviour of solutions
to (2.4) are included. These results can be seen as extensions of the main
results from [27] to second order scalar systems and are derived in [20] by
embedding the second order equation (2.1) into a first order two-dimen-
sional system which is covered by the results in [27].

Theorem 2.1 (The Fredholm Alternative). Assume the homogeneous
equation (2.6) is asymptotically hyperbolic. Then the operator �c,γ,L from
W 2,∞ to L∞ is a Fredholm operator and its range R(�c,γ,L)⊆L∞ is given
by

R(�c,γ,L)=
{
h∈L∞ |

∫ ∞

−∞
y(ξ)h(ξ)dξ =0 for all y ∈K(�∗

c,γ,L)

}
. (2.19)

In particular,

dim K(�∗
c,γ,L) = codim R(�c,γ,L), dim K(�c,γ,L)= codim R(�∗

c,y,L),

ind(�c,γ,L) = −ind(�∗
c,γ,L), (2.20)

where ind denotes the Fredholm index. Furthermore, the Fredholm index
of �c,γ,L depends only on the limiting operators L±, namely the limits of
L(ξ) as ξ → ±∞. Finally, if Lρ for −1 � ρ � 1 is a continuously varying
one-parameter family of hyperbolic constant coefficient operators (2.7) with
L±1 =L±, then ind(�c,γ,L)=0.

The next proposition will turn out to be extremely useful when
obtaining asymptotic estimates on solutions to (1.1). It enables us to turn
the detailed information about the eigenvalues of (2.6) which we shall
obtain for our class of differential difference equations into very precise
statements concerning the decay rate of the solutions. However, this result
does not rule out the existence of solutions which decay superexponential-
ly, as defined below.

Definition 2.4. Let x:J →R be a continuous function on the interval
J = [τ,∞) for some τ ∈R. Then we say x decays superexponentially or has
superexponential decay at +∞ if

lim
ξ→∞

ebξ x(ξ)=0 (2.21)
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for every b∈R. We define superexponential decay at −∞ analogously. We
will drop the distinction “at ±∞” if this is clear from the context.

Proposition 2.2. Let x:J# →R be a solution to Eq. (2.6) on the inter-
val J = [τ,∞) for some τ ∈R. Assume that x does not decay superexponen-
tially and that (2.6) is asymptotically autonomous at +∞, with L written
as in (2.17). Also assume for some real number a and some number k > 0,
that

x(ξ)=O(e−aξ ), x′(ξ)=O(e−aξ ), ‖M(ξ)‖=O(e−kξ ), ξ→∞.

(2.22)

Then there exist b�a and ε >0 such that

x(ξ) =y(ξ)+O(e−(b+ε)ξ ), ξ→∞,

x′(ξ) =y′(ξ)+O(e−(b+ε)ξ ), ξ→∞,
(2.23)

where y is a nontrivial eigensolution of the limiting equation (2.8) corre-
sponding to the nonempty set of eigenvalues with Re λ=−b.

In light of Proposition 2.2, the following lemma will be useful when
studying the asymptotic behaviour of solutions to the linear homogeneous
equation (2.6).

Lemma 2.3. Consider a real-valued function x : [τ,∞)→R of the form

x(ξ)=y(ξ)+O(e−(b+ε)ξ ), ξ→∞, (2.24)

for some b ∈ R and ε > 0, where y is a nontrivial solution of the con-
stant coefficient system (2.8) with γ �= 0, given by a finite sum of eigen-
solutions corresponding to a set � of eigenvalues λ, all of which satisfy
Re λ=−b. If Im λ �=0 for all λ∈�, then there exist arbitrarily large ξ for
which x(ξ)>0 and arbitrarily large ξ for which x(ξ)<0. On the other hand,
if �={−b}, then x(ξ) �=0 for all large ξ . The analogous result for ξ→−∞
also holds.

The next proposition shows that solutions to (2.6) which are in W 2,∞
decay exponentially. Note that it is not required here that the coefficients
Aj(ξ) approach their asymptotic limits exponentially fast.

Proposition 2.4. Assume that Eq. (2.4) is asymptotically hyperbolic at
+∞. Then there exist positive quantities K,K ′ and a such that for all pairs
of functions x ∈W 2,∞ and h∈L∞ which satisfy �Lx=h, the estimate

(
x(ξ)2 +x′(ξ)2

) 1
2 �Ke−aξ

(
‖x ‖ 2

L∞+‖x′ ‖2
L∞
) 1

2 +K ′ ‖h‖L∞ (2.25)

holds for all ξ �0.
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Due to the conditions we impose on our nonlinear equation (1.1), the
linear equations (2.1) encountered in the sequel often satisfy the following
conditions.

Assumption 2.1. The parameter γ satisfies γ > 0 and the function
h:J → R is a continuous function satisfying h(ξ)� 0 for all ξ ∈ J . In addi-
tion, for every 0 � j �N , the function Aj(ξ) is continuous on J and there
exist constants αj , βj such that

αj �Aj(ξ)�βj , ξ ∈J. (2.26)

In addition, we have αj >0 for 1� j �N.

The final theorem of this section concerns homogeneous equations
(2.2) that satisfy the above conditions and will be the main ingredient for
establishing the results in the next section. The proof is deferred to Appen-
dix A, where the necessary machinery is developed.

Theorem 2.5. Consider the homogeneous linear equation (2.2) and sup-
pose that Assumption (2.1) is satisfied. Assume that Eq. (2.2) is asymptoti-
cally autonomous and that in addition the limiting equations are approached
at an exponential rate, so

|Aj(ξ)−Aj±|=O(e−k|ξ |), ξ→±∞, j =0 . . .N (2.27)

for some k>0. Also assume that each of the sums A�± given below, of the
limiting coefficients at ±∞, is negative, namely

A�± =
N∑

j=0

Aj±<0. (2.28)

Finally, assume that there exists a nontrivial solution x = p(ξ) ∈W 2,∞ to
(2.2) which satisfies p(ξ)� 0 for all ξ ∈ R. Then equation (2.2) is asymp-
totically hyperbolic and the associated operator �c,γ,L:W 2,∞ → L∞ is a
Fredholm operator. In addition, we have

dim K(�c,γ,L)=dimK(�∗
c,γ,L)= codimR(�c,γ,L)=1, ind(�c,γ,L)=0.

(2.29)

The element p∈K(�c,γ,L) is strictly positive,

p(ξ)>0, ξ ∈R (2.30)

and there exists an element p∗ ∈K(�∗
c,γ,L) which is strictly positive,

p∗(ξ)>0, ξ ∈R. (2.31)
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3. GLOBAL STRUCTURE

In this section we study the family of autonomous differential differ-
ence equations introduced in the introduction,

−cx′(ξ)−γ x′′(ξ)=F(x(ξ + r0), x(ξ + r1), x(ξ + r2), . . . , x(ξ + rN), ρ),
(3.1)

in which γ >0. As in the previous section, we demand that r0 =0, ri �= rj
if i �= j and ri �=0 for i=1 . . .N , where N �1. Here we take ρ ∈V to be a
parameter, where V is an open subset of R. We shall prove existence and
uniqueness of solutions to (3.1) under certain conditions and establish the
C1-dependence of the solutions on the parameter ρ.

We start out by making precise the requirements given in the intro-
duction and give a list of conditions on the function F which we will
assume to hold throughout this section.

(b1) The nonlinearity F : RN+1 ×V →R is C1-smooth in RN+1 and V .
(b2) The derivative D1F : RN+1 ×V → RN+1 with respect to the first

argument v ∈RN+1 is locally Lipschitz in v .
(b3) For each ρ ∈ V and for j = 1, . . . ,N , we have, writing v =

(v0, v1, . . . , vN)∈RN+1, that either

∂F (v , ρ)
∂vj

≡0, or
∂F (v , ρ)
∂vj

>0, (3.2)

that is, either F is totally independent of vj or is strictly increas-
ing in vj . Furthermore, for each ρ∈V there is at least one j , sat-
isfying 1�j�N , for which the nonlinearity F is not totally inde-
pendent of vj .

(b4) Let �: R×V →R be defined as

�(φ,ρ)=F(φ,φ, . . . , φ, ρ). (3.3)

Then for some quantity q=q(ρ)∈ [−1,1] we have that

�(−1, ρ)=�(q(ρ), ρ)=�(1, ρ)=0,

�(φ,ρ)>0, φ ∈ (−∞,−1)∪ (q,1), (3.4)

�(φ,ρ)<0, φ ∈ (−1, q)∪ (1,∞).

In case ρ ∈V we demand q(ρ)∈ (−1,1).
(b5) We have for q=q(ρ) that

D1�(−1, ρ)<0 if q �=−1,
D1�(q,ρ)>0 if q ∈ (−1,1),
D1�(1, ρ)<0 if q �=1,

(3.5)
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with D1 denoting the derivative with respect to the first argu-
ment x ∈R.

Condition (b3) allows us to consider families in which the shifts rj
may vary with ρ, by adding extra shifts rj which do not affect the value
of F for certain values of ρ.

In (3.1) the wavespeed c is an unknown parameter. From the above
conditions we see that Eq. (3.1) has exactly three constant equilibrium
solutions, namely x=±1 and x= q(ρ). We will be interested in solutions
to (3.1) joining the two equilibrium points ±1. As (3.1) is autonomous, we
see that all translates of a solution x(ξ) to (3.1) are also solutions. We can
use this freedom to demand that x(0)= 0. It will turn out that after this
normalization the solution to (3.1) is unique. We thus seek our solutions
in the space

W
2,∞
0 ={x ∈W 2,∞ |x(0)=0}. (3.6)

It will be useful to introduce the operator G :W 2,∞ ×R×V →L∞ defined
by

G(φ, c, ρ)(ξ)=−γφ′′(ξ)−cφ′(ξ)−F(φ(ξ + r0), φ(ξ + r1), . . . , φ(ξ + rN), ρ).
(3.7)

We are now ready to define the concept of a connecting solution to (3.1).

Definition 3.1. Given ρ ∈ V , a connecting solution to the nonlinear
autonomous differential difference equation (3.1) is a pair (φ, c)∈W 2,∞

0 ×R

that satisfies (3.1) and joins the two equilibrium solutions ±1, i.e., for which
the limits

lim
ξ→±∞

φ(ξ)=±1 (3.8)

hold.

Please note that we will continue to use the term “solution” to indi-
cate a function x ∈W 2,∞ satisfying Eq. (3.1), but not necessarily joining
the two equilibria ±1 and not necessarily having x(0)=0.

We are now in a position to state the main theorem of this section.

Theorem 3.1. Consider a family of autonomous differential difference
equations (3.1) that satisfies the conditions (b1) through (b5). There exist
C1-smooth functions c :V → R and P :V →W

2,∞
0 such that for all ρ0 ∈V ,

the pair (P (ρ0), c(ρ0)) is a connecting solution to Eq. (3.1). Moreover, these
are the only connecting solutions to (3.1).
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Before proceeding with the proof of the main theorem, let us consider
the differential difference equation (3.1) with fixed parameters c, γ and ρ.
If x1 and x2 are two bounded solutions of this equation (3.1), then the
difference y(ξ)= x1(ξ)− x2(ξ) satisfies the linear homogeneous equation
(2.6) with coefficients given by

Aj(ξ)=
∫ 1

0

∂F (u,ρ)

∂uj

∣∣∣∣
u=tπ(x1,ξ)+(1−t)π(x2,ξ)

dt. (3.9)

Here π is the state projection

π(φ, ξ)= (φ(ξ + r0), . . . , φ(ξ + rN))∈RN+1. (3.10)

This can easily be seen by using the formula

F(v, ρ)−F(w,ρ) =
∫ 1

0

dF(tv+ (1− t)w,ρ)
dt

dt

=
N∑

j=0

(∫ 1

0

∂F (tv+ (1− t)w,ρ)
∂uj

dt

)
(vj −wj).

(3.11)

Similarly, suppose that x : R → R is any solution to (3.1) for some ρ ∈V .
Then x′(ξ) is a solution of the linearization around x, that is, the linear
equation (2.6) with coefficients

Aj(ξ)= ∂F (u,ρ)

∂uj

∣∣∣∣
u=π(x,ξ)

. (3.12)

The linearization around the three equilibria x=±1 and x=q(ρ) are con-
stant coefficient equations given by (2.8). We shall write L+,L− and L�
for the associated linear operators (2.7) and shall refer to the correspond-
ing constant coefficients as

Aj±(ρ)= ∂F (u,ρ)

∂uj

∣∣∣∣
u=κ(±1)

,

Aj�(ρ)= ∂F (u,ρ)

∂uj

∣∣∣∣
u=κ(q(ρ))

, (3.13)

where κ is the diagonal map κ(x) = (x, . . . , x) ∈ RN+1. Upon defining
A�± =∑N

j=0Aj±, we have the identity

A�± =D1�(±1, ρ). (3.14)
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Note that when ρ ∈ V , condition (b5) in combination with Lemma A.4
implies that the linearization of (3.1) around x = ±1 is asymptotically
hyperbolic at ±∞.

The proof of Theorem 3.1 will be given in two parts. First we shall
concentrate on the existence of functions P(ρ) and c(ρ) as in the state-
ment of Theorem 3.1 in a small neighbourhood of the detuning param-
eter ρ0, given a connecting solution (P0, c0) for ρ = ρ0. After we have
established the existence of this local continuation in Proposition 3.2, we
show that it can be extended to all ρ∈V and thus prove the existence and
uniqueness claims in the statement of Theorem 3.1.

Proposition 3.2. Let (P0, c0) ∈W 2,∞
0 × R be a connecting solution to

(3.1) for some ρ0 ∈V and for some c0 ∈ R. Then for each ρ near ρ0 there
exists an unique (P, c)= (P (ρ), c(ρ))∈W 2,∞

0 ×R, that depends C1-smoothly
on ρ, for which G(P (ρ), c(ρ), ρ)= 0, with c(ρ0)= c0 and P(ρ0)=P0. This
function P(ρ) satisfies the boundary conditions limξ→±∞ P(ρ)(ξ)=±1 and
thus (P (ρ), c(ρ)) is a connecting solution to (3.1).

Our approach to proving the result above will be to invoke the
implicit function theorem on the operator G defined by (3.7). Conse-
quently, in Proposition 3.7 we study the Frechet derivative of G, which is
given by

D1,2G(P0, c0, ρ0)(ψ, b)(ξ)=−bP ′
0(ξ)+ (�c0,γ,Lψ)(ξ), (3.15)

where �c0,γ,L is the linear operator associated to the linearization of
(3.1) around the solution P0. We shall establish that Theorem 2.5 applies
to the operator �c0,γ,L and that the derivative P ′

0 is strictly positive
(Lemma 3.6). In particular, this means that P ′

0 /∈ R(�c0,γ,L) and in addi-
tion K(�c0,γ,L)∩W 2,∞

0 = ∅. From this it is easy to see that D1,2G is an
isomorphism from W

2,∞
0 × R onto L∞, which legitimizes the use of the

implicit function theorem.
We shall need the following technical lemma to prove that solutions

to (3.1) which are close to connecting solutions in the W 2,∞ norm are in
fact also connecting solutions. The proof of this result closely follows the
corresponding argument for γ = 0 and we therefore refer to [20] for the
details.

Lemma 3.3. Let x : R → R be a solution to (3.1) for some ρ ∈V and
c∈R. Define

µ− = inf
ξ∈R

x(ξ), µ+ = sup
ξ∈R

x(ξ), (3.16)
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and assume that both µ± are finite. Then

µ− ∈ [−1, q(ρ)]∪{1}, µ+ ∈{−1}∪ [q(ρ),1]. (3.17)

The same conclusion (3.17) holds for

µ− = lim inf
ξ→∞

x(ξ), µ+ = lim sup
ξ→∞

x(ξ) (3.18)

and similarly for the lim inf and lim sup at −∞.

Corollary 3.4. If (P, c) ∈W 2,∞
0 × R is a connecting solution to (3.1),

then

−1<P(ξ)<1, ξ ∈R. (3.19)

Proof. Lemma 3.3 implies that −1�P(ξ)�1 for all ξ ∈R. The strict
inequalities now follow from an application of Lemma A.8.

Lemma 3.5. Let (P0, c0)∈W 2,∞
0 ×R be a connecting solution to (3.1).

Then for some quantities C±>0 and ε >0 we have that

P0(ξ)=
{

−1+C−eλ
u−ξ +O(e(λu−+ε)ξ ), ξ→−∞,

1−C+eλ
s+ξ +O(e(λs+−ε)ξ ), ξ→∞,

(3.20)

where λu− ∈ (0,∞) is the unique positive eigenvalue of the linearization of
(3.1) about x = −1 and λs+ ∈ (−∞,0) is the unique negative eigenvalue of
the linearization about x= 1. The formulae for P ′(ξ) obtained by formally
differentiating (3.20) also hold.

Proof. We consider only the limit ξ→∞, as the proofs of the results
for ξ → −∞ are similar. Defining y(ξ)= 1 −P(ξ), we see that y satisfies
the linear equation (2.2) with coefficients Aj(ξ) given by (3.9) with x1 =1
and x2 =P . Note that limξ→∞Aj(ξ)=Aj+(ρ), thus this linear equation
is asymptotically hyperbolic. Proposition 2.4 now implies that y(ξ) decays
exponentially. Using the expression (3.9) together with the Lipschitz con-
dition (b2) on the derivative of F , it follows that the coefficients Aj(ξ)
approach their limits exponentially fast. One can now proceed as in the
proof of Theorem 2.5 to establish the claim.

Lemma 3.6. If (P, c)∈W 2,∞
0 ×R is a connecting solution to (3.1), then

P ′(ξ)>0 for all ξ ∈R.

Proof. We note that it is sufficient to prove that P ′(ξ)�0 for all ξ ∈R,
since Corollary A.7 then immediately implies the strict positivity P ′(ξ)>0.

By (3.20) we see that there exists τ > 0 such that P ′(ξ)> 0 whenever
|ξ |� τ and such that P(−τ)<P (ξ)<P (τ) whenever |ξ |<τ . From this we
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have P(ξ +k)>P (ξ) for all ξ ∈R, provided that k�2τ . Now suppose that
P ′(ξ)<0 for some ξ and set

k0 = inf {k>0 |P(ξ +k)>P (ξ) for all ξ ∈R} . (3.21)

Certainly k0 > 0. Also, k0 � 2τ and P(ξ + k0) � P(ξ) for all ξ ∈ R. If
0<k<k0 then P(ξ+k)�P(ξ) for some ξ , where necessarily |ξ |�τ . There-
fore, there exists some ξ0, with |ξ0|� τ , for which P(ξ0 + k0)=P(ξ0), We
can now define x1(ξ)=P(ξ + k0) and x2(ξ)=P(ξ). Because x1(ξ)� x2(ξ)

for all ξ ∈R and x1(ξ0)=x2(ξ0), Lemma A.8 implies that P(ξ +k0)=P(ξ)
for all ξ ∈R. This is a contradiction, because P ′(ξ)>0 for all large |ξ |.

Proposition 3.7. Let (P0, c0) ∈W 2,∞
0 × R be a connecting solution to

(3.1) for some ρ0 ∈V and for some c0 ∈R. Consider the linearization (2.2)
of Eq. (3.1) about P0 and let �c0,γ,L denote the associated linear operator
from W 2,∞ to L∞. Then the derivative of G,

D1,2G(P0, c0, ρ0):W
2,∞
0 ×R→L∞, (3.22)

at the solution (P0, c0), with respect to the first two arguments, is given by

D1,2G(P0, c0, ρ0)(ψ, b)(ξ)=−bP ′
0(ξ)+ (�c0,γ,Lψ)(ξ) (3.23)

and is an isomorphism from W
2,∞
0 ×R onto L∞.

Proof. The fact that G is C1-Frechet differentiable follows from the
fact that F is a C1-function and the explicit formula (3.23) follows by
direct differentiation of (3.7). The operator �c0,γ,L can be easily seen to
satisfy all the conditions of Theorem 2.5. In particular, x(ξ)=P ′

0(ξ) sat-
isfies the linear equation (2.2), which by Lemma 3.6 gives the strictly
positive p=P ′

0 ∈ Kc0,γ,L in the statement of Theorem 2.5. Thus, by The-
orem 2.5, the kernel Kc0,γ,L of �c0,γ,L is precisely the one-dimensional
span of P ′

0. The strict positivity P ′
0(0) > 0 implies that P ′

0 /∈W 2,∞
0 , hence

K(�c0,γ,L) ∩W 2,∞
0 = ∅. In addition, the presence of the strictly positive

p∗ ∈ K(�∗
c0,γ,L

) guarantees P ′
0 /∈ R(�c0,γ,L) by Theorem 2.1, which estab-

lishes the claim.

Proof of Proposition 3.2. The local continuation follows from the
implicit function theorem, together with Lemma 3.7. The limit at +∞
follows from the observation that the quantity µ−(ρ) in (3.18) for P(ρ)
varies continuously with ρ, together with µ−(ρ0) = 1 and the identity
(3.17). The limit at −∞ follows similarly.
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We now set out to give the proof of Theorem 3.1. Lemma 3.8 estab-
lishes the uniqueness claim in Theorem 3.1. Theorem 3.10 will allow us to
extend the local continuation in Proposition 3.2 to a global continuation
for all ρ ∈V , by proving that limits of connecting solutions are connect-
ing solutions to the limiting differential difference equation. This means
that once we have established the existence of a connecting solution to
(3.1) for one value of the detuning parameter, ρ0 ∈V , we know that (3.1)
has a connecting solution for all values ρ ∈ V . This is why we give an
explicit solution to a prototype differential difference equation in Lemma
3.11. By constructing a new family (3.1), which mixes the original differ-
ential difference equation and the prototype system, we can combine The-
orem 3.10 and Proposition 3.2 to establish the existence of a connecting
solution to our original family (3.1) at one value of the detuning param-
eter ρ, as required.

We merely state the following lemma and refer to [20] for the complete
proof, which closely follows the corresponding argument for the γ =0 case.

Lemma 3.8. For each ρ ∈V there exists at most one value c ∈ R such
that equation (3.1) possesses a monotone increasing solution x=P(ξ), sat-
isfying the boundary conditions

lim
ξ→±∞

x(ξ)=±1. (3.24)

For each c∈R and ρ∈V there exists at most one solution x=P(ξ) of (3.1),
up to translation, satisfying the boundary conditions (3.24).

The following result, concerning the linearization around the (unsta-
ble) equilibrium q(ρ), will prove to be useful in establishing the boundary
conditions x(±∞)=±1 for limits of connecting solutions xn.

Lemma 3.9. For every ρ ∈V,γ ∈ R�0 and c∈ R there do not exist two
monotone increasing solutions x± : R→R of equation (3.1) such that

limξ→−∞ x−(ξ)=−1, limξ→∞ x−(ξ)=q(ρ),
limξ→−∞ x+(ξ)=q(ρ), limξ→∞ x+(ξ)=1. (3.25)

Proof. The case where γ = 0 was considered in [28, Lemma 7.1], so
we will assume γ >0. First notice that

	c,γ,L�(ρ)(0)=−A��(ρ)=−D1�(q(ρ), ρ)<0, (3.26)

which by Lemma A.5 implies that there do not simultaneously exist eigen-
values λu�<0<λs� for the constant coefficient system L� defined in (3.13).
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Now assume that there exist monotone increasing x− and x+ satisfying
conditions (3.25). Consider y(ξ) = q(ρ) − x−(ξ), which is a monotone
decreasing function on the real line, satisfying (2.2) with coefficients given
by (3.9), with x1 = q(ρ) and x2 = x−(ξ). This linear equation satisfies all
the assumptions of Lemma A.1 and thus reasoning as in the proof of this
lemma we see that for all ξ ∈R and for some B>0,

y′(ξ)�−By(ξ). (3.27)

Now take any sequence ξn → ∞, and let zn(ξ) = y(ξ + ξn)/y(ξn). Then
each zn also satisfies z′n(ξ)�−Bzn(ξ) on R. As zn(0)=1, we conclude that
the sequence of functions zn is uniformly bounded and equicontinuous on
each compact interval and so without loss we have that zn(ξ)→ z(ξ) uni-
formly on compact intervals. From the differential equation (3.1) we see
that we can use the uniform bound on z′n to obtain a uniform bound
on z′′n(ξ), thus concluding that also z′n(ξ) is equicontinuous on each com-
pact interval. One now easily sees that z satisfies the autonomous limit-
ing constant coefficient equation associated to L�. Moreover, −Bz(ξ)�
z′(ξ)� 0 for all ξ ∈ R, with z(0)= 1, so z(ξ) > 0 and z does not decay
faster than exponentially. We may now apply Proposition 2.2 to the solu-
tion z. We conclude that z(ξ)=w(ξ)+O(e−(b+ε)ξ ) as ξ →∞, where w is
a nontrivial sum of eigensolutions corresponding to a set of eigenvalues
with Re λ=−b�0. The positivity of z, together with Lemma 2.3, implies
that the linearization about x = q(ρ) possesses a nonpositive eigenvalue
λs� � 0. Since 	c,γ,L�(ρ)(0) < 0 we have λs� < 0. We can use similar rea-
soning applied to x+(ξ) to conclude that the linearization about x=q(ρ)
must also possess a positive eigenvalue λu�>0. This yields a contradiction.

Remark 3.1. In the above proof we could not apply Proposition
2.2 directly to the function y(ξ), as it may not be the case that y(ξ)
approaches its limits y(±∞) exponentially fast.

The next theorem enables us to take limits of connecting solu-
tions, which will be crucial in establishing global existence of solu-
tions.

Theorem 3.10. Let ρn ∈ V and γn ∈ R>0 be two sequences satisfying
γn→γ0 and ρn→ρ0 as n→∞, possibly with γ0 =0. Let (Pn(ξ), cn) denote
any connecting solution to (3.1) with ρ=ρn and γ =γn. Then, after possibly
passing to a subsequence, the limit

lim
n→∞Pn(ξ)=P0(ξ) (3.28)



Computation of Travelling Waves in Discrete Media 543

exists pointwise and also the limit

lim
n→∞ cn= c0 (3.29)

exists, with |c0|<∞. Furthermore, P0(ξ) satisfies the limiting differential
difference equation

−γ0P
′′
0 (ξ)− c0P

′
0(ξ)=F(P0(ξ),P0(ξ + r1), . . . , P0(ξ + rN), ρ0) (3.30)

almost everywhere. In addition, we have the limits

lim
ξ→±∞

P0(ξ)=±1. (3.31)

Proof. Using the fact that the functions Pn(ξ) satisfy P ′
n > 0, we

may argue in a standard fashion that, after passing to a subsequence,
the pointwise limit P0(ξ) = limn→∞ Pn(ξ) exists for all ξ ∈ R. Due to
the limits limn→∞ Pn(ξ)= ±1, we have

∫∞
−∞ P ′

n(s)ds = 2. Writing F(ξ)=
lim infn→∞ P ′

n(ξ) we obtain, using Fatou’s Lemma,
∫ ∞

−∞
F(s)ds�2. (3.32)

In particular, this implies that the measure of the set for which F(s)=∞
is zero. Letting βn be any sequence with βn→ 0 as n→∞, we have that,
if we choose ξ0 appropriately,

lim inf
n→∞ βn

(
P ′
n(ξ)−P ′

n(ξ0)
)=0 almost everywhere. (3.33)

Now suppose that lim infn→∞ |cn|=∞. Without loss assume cn >0. Write
q0 =q(ρ0) and fix a point

q∗ ∈ (q0,1). (3.34)

Let xn(ξ)=Pn(cnξ + ξn), where ξn ∈R is such that Pn(ξn)=q∗. Then (3.1)
in integrated form gives us

−γnc−2
n (x′

n(ξ)−x′
n(ξ0))− (xn(ξ)−xn(ξ0))

=
∫ ξ

ξ0

F(xn(s), xn(s+ r1c−1
n ), . . . , xn(s+ rNc−1

n ), ρn)ds. (3.35)

Again, because the xn are monotonically increasing functions, we can
pass to a subsequence for which the pointwise limit x(ξ)= limn→∞ xn(ξ)

exists and is continuous at all but countably many points. We have seen
above that lim infn→∞ βnc

−1
n x′

n(ξ)= 0 almost everywhere, for a sequence
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βn → 0. After taking the limit lim infn→∞ we thus obtain, using βn =
c−1
n →0,

−(x(ξ)−x(ξ0))=
∫ ξ

ξ0

F(x(s), x(s), . . . , x(s), ρ0) ds, (3.36)

which holds almost everywhere. By redefining x on a set of measure zero,
which does not affect the right hand side of (3.36), we can assume this
identity to hold everywhere. From this identity we also see that x(ξ) is
differentiable and satisfies

−x′(ξ)=�(x(ξ), ρ0). (3.37)

Since x(ξ)�q∗ for almost all ξ�0, we cannot have x(ξ)=1 for some ξ , as
this would imply x(ξ)=1 for all ξ . Now xn(ξ)�q∗ for all ξ�0, hence also
1>x(ξ)� q∗ for ξ � 0 and thus x′(ξ)= −�(x(ξ), ρ0) < 0 whenever ξ � 0.
On the other hand, x′

n(ξ)>0, hence x′(ξ)�0, for all ξ . This contradiction
implies that lim infn→∞ |cn|<∞. Thus, after passing to a subsequence, the
limit c0 = limn→∞ cn exists.

Integration of (3.1) yields

−γn(P ′
n(ξ)−P ′

n(ξ0))− cn(Pn(ξ)−Pn(ξ0))

=
∫ ξ

ξ0

F(Pn(s),Pn(s+ r1), . . . , Pn(s+ rN), ρn) ds. (3.38)

Consider the case where γ0 > 0. Notice that yn(ξ)= 1 − Pn(ξ) is a
monotone decreasing function on the real line, which satisfies the linear
equation (2.1) with coefficients given by (3.9), with x1 = 1 and x2 = Pn.
Referring to these coefficients as Aj,n(ξ), we see that (2.2) satisfies the
conditions of Lemma A.1 and we hence obtain from the proof of this
lemma

y′
n(ξ)�−Bnyn(ξ), Bn=

√
c2
n

4γ 2
n

− α0,n

γn
+ cn

γn
. (3.39)

Now there exists α0 such that 0 � α0,n � α0, as the functions yn(ξ) are
uniformly bounded and D1F is a continuous function, which attains its
maxima and minima on compact sets. This means that the constants Bn
are bounded, 0 � Bn � B for some B. From (3.39) we now see that y′

n

and hence P ′
n are uniformly bounded. From the differential equation (3.1)

it now also follows that the functions P ′′
n are uniformly bounded. Thus

P ′
n is an equicontinuous family, allowing us to pass to a subsequence

for which P ′
n(ξ)→P ′

0(ξ) and Pn(ξ)→P0(ξ) uniformly on compact inter-
vals.
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Thus, taking the limit lim infn→∞ in (3.38), we now obtain for all
γ0 �0

−γ0(P
′
0(ξ)−P ′

0(ξ0))− c0(P0(ξ)−P0(ξ0))

=
∫ ξ

ξ0

F(P0(s),P0(s+ r1), . . . , P0(s+ rN), ρ0)ds, (3.40)

which holds for all ξ ∈ R if γ0 �= 0 and almost everywhere if γ0 = 0. In
case γ0 = 0 and c0 �= 0 we can again by redefining P0 on a set of mea-
sure zero ensure that (3.40) holds for all ξ ∈R. After differentiation we see
that P0(ξ) satisfies the differential difference equation stated in the theo-
rem.

We now set out to prove the limits (3.31). Because P0(ξ) is a bounded
monotonically increasing function, the limits limξ→±∞ P0(ξ) exist. We will
refer to these limits as P0(±∞). When c0 �= 0, the function P ′

0(ξ) decays
exponentially, and when γ0 �= 0, the function P ′′

0 (ξ) decays exponentially.
Taking the limits ξ→±∞ in Eq. (3.30) we obtain

0=F(P0(±∞),P0(±∞), . . . , P0(±∞), ρ0)=�(P0(±∞), ρ0), (3.41)

which implies that

P0(±∞)∈{−1, q(ρ0),1}. (3.42)

Since we know that Pn(ξ)<0 if ξ <0 and Pn(ξ)>0 if ξ >0, we have that
P0(ξ)�0 if ξ <0 and P0(ξ)�0 if ξ >0 almost everywhere. In particular, if
q(ρ0)= ±1 then the proof is complete as then necessarily P0(±∞)= ±1.
Thus assume that q(ρ0) ∈ (−1,1). Fix any points q1 and q2 that satisfy
−1<q1<q(ρ0)<q2<1 and let ξn, ζn ∈R be such that

Pn(ξ)�q1 for ξ <ζn, q1 �Pn(ξ)�q2 for ζn <ξ <ξn,

Pn(ξ)�q2 for ξ >ξn. (3.43)

Without loss (we may always pass to a subsequence) we may assume that the
limits ξn→ ξ0 and ζn→ ζ0 both exist, although they may possibly be infinite. It
is enough to show that the difference ξn− ζn is bounded. Indeed, if this is the
case, and if ξn and hence also ζn are bounded themselves, so that ξ0 and ζ0 are
both finite, then P0(ξ)� q1 for all ξ < ζ0 and P0(ξ)� q2 for all ξ > ξ0, which
with (3.42) implies the limits (3.31). The case ξ0 = ζ0 =±∞ cannot occur, since
then either P0(ξ)�q1 or P0(ξ)�q2, hence P0(ξ)=±1 for all ξ ∈R, which is a
contradiction.

To prove that ξn− ζn is bounded, assume ξn− ζn→∞ and define

xn+(ξ)=Pn(ξ + ξn), xn−(ξ)=Pn(ξ + ζn). (3.44)
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Upon passing to a subsequence and taking limits xn± →x± as above, we obtain
solutions of (3.30) which satisfy the four boundary conditions in (3.25) with
q(ρ0) replacing q(ρ). However, this is impossible by Lemma 3.9.

Lemma 3.11. Suppose that the function q :V → R associated to (3.1)
satisfies q(ρ∗)= 0 for some ρ∗ ∈V . Then (3.1) with ρ=ρ∗ has a connect-
ing solution (P (ξ), c) for some c∈R.

Proof. First we consider the specific equation for some k>0,

−γ x′′(ξ)−x′(ξ)=β−1(x(ξ −k)−x(ξ))−f (x(ξ)), (3.45)

in which f is given by

f (x)= βx(x2 −1)
1−βx +2γ x(x2 −1), β= tanh k, (3.46)

for x∈ [−1,1]. Outside this interval f is modified to be a nonzero C1 func-
tion on the real line. It is routine to check that x= tanh ξ satisfies (3.45).

Now let g: [0,1]→ [0,1] be any C1 smooth function satisfying g( 1
4 )=0

and g( 3
4 )=1 and consider the family of equations

−γ x′′(ξ)− cx′(ξ) = (1−g(ρ))(β−1(x(ξ −k)−x(ξ))−f (x(ξ)))

+g(ρ)F (x(ξ + r0), . . . , x(ξ + rN), ρ∗) (3.47)

for ρ ∈ [0,1]. It is easy to see that this family satisfies the conditions (b1)
through (b5), with q(ρ)=0 for all ρ∈ [0,1]. We know that at ρ= 1

4 Eq. (3.47)
has a connecting solution, namely c=1, x= tanh ξ . Due to Proposition 3.2,
we see that solutions to (3.47) exist in a neighbourhood of ρ= 1

4 and The-
orem 3.10 allows us to extend this continuation to the interval (0,1). This
proves the claim, as at ρ= 3

4 the system reduces to the specified Eq. (3.1)
with ρ=ρ∗.

In case there is no value ρ∗ for which q(ρ∗)=0, the following lemma
shows that we can choose an arbitrary value ρ0 ∈V and embed the differ-
ential difference equation (3.1) with ρ=ρ0 into a new family which does
have q(ρ∗)= 0 for some ρ∗. We can then apply the same reasoning as in
the proof of Lemma 3.11 to the new family to obtain a connecting solu-
tion to our original family at ρ=ρ0.

Lemma 3.12 (see [28, Lemma 8.6]). Consider the system

−γ x′′(ξ)− cx′(ξ)=F0(x(ξ + r0), . . . , x(ξ + rN)) (3.48)

satisfying the conditions (b1) through (b5) without the parameter ρ.
Assume that q=q0 ∈ (−1,1) for the quantity in condition (b5). Then there
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exists a family (3.1), with V = (−1,1) and q(ρ)= ρ, satisfying the condi-
tions (b1) through (b5), which reduces to (3.48) at ρ=q0.

We now have all the ingredients to complete the proof of Theorem
3.1.

Proof of Theorem 3.1. One can use Lemmas 3.11 and 3.12 to estab-
lish the existence of a solution at some parameter ρ∗ ∈ V , after which a
global continuation for all ρ ∈V of this solution can be constructed using
Theorem 3.10 and Proposition 3.2. Uniqueness follows from Lemma 3.8.
Here we have assumed V is connected, if not, use this construction for
each connected component of V .

4. THE ALGORITHM

In this section, we present and analyze a numerical method for solv-
ing the nonlinear autonomous differential difference equation

−γ x′′(ξ)− cx′(ξ)=F(x(ξ), x(ξ)), (4.1)

where we have defined φ(ξ)=(φ(ξ+r1), φ(ξ+r2), . . . , φ(ξ + rN))∈ RN . As
in the previous section, we demand that γ > 0, ri �= rj if i �= j and ri �= 0
for i= 1 . . .N , where N � 1. Throughout this section we will also assume
F satisfies the conditions (b1) through (b5) from Section 3.

Following Definition 3.1, a connecting solution to (4.1) is a pair
(φ, c)∈W 2,∞

0 ×R that satisfies (4.1) and has the limits

lim
ξ→±∞

φ(ξ)=±1. (4.2)

Solutions to (4.1) correspond to zeroes of the operator G defined in (4.3),
which in the present notation is given by

G(φ, c)(ξ)=−γφ′′(ξ)− cφ′(ξ)−F(φ(ξ), φ(ξ)). (4.3)

The numerical method we use to solve the differential difference equation
(4.1) consists of applying a variant of Newton’s method to find a zero of
the operator G which satisfies the boundary conditions (4.2). Normally,
applying Newton’s method to seek a zero of G would involve an iteration
step of the form

(φn+1, cn+1)= (φn, cn)− [D1,2G(φn, cn)]−1G(φn, cn). (4.4)

To execute this step one would have to solve the linear differential differ-
ence equation

D1,2G(φn, cn)(φn+1, cn+1)=D1,2G(φn, cn)(φn, cn)−G(φn, cn). (4.5)
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Since this is a computationally expensive procedure due to the presence of
the shifted arguments [1], we want to reduce their contribution as much as
possible. To this end, we fix a relaxation parameter µ∈ [0,1] and introduce
the linear operator D1,2Fµ:W 2,∞ ×R→L∞, given by

D1,2Fµ(φ, c)(ψ, b)(ξ)= − γψ ′′(ξ)− cψ ′(ξ)−D1F(φ,φ)ψ(ξ)

− µD2F(φ,φ)ψ(ξ)−bφ′(ξ). (4.6)

Here D1F(x, x) denotes the derivative of F with respect to the first un-
shifted argument and D2F(x, x) denotes the derivative with respect to the
shifted arguments. This operator D1,2Fµ(φ, c) will play an important role
in the variant of Newton’s method we employ to solve (4.1). In particular,
the iteration step in our method consists of solving the linear differential
difference equation

D1,2Fµ(φn, cn)(φn+1, cn+1)=D1,2Fµ(φn, cn)(φn, cn)−G(φn, cn). (4.7)

We note here that when µ=1, the iteration step (4.7) is equivalent to the
Newton iteration defined in (4.4). However, when µ= 0, (4.7) is just an
ordinary differential equation, which can be solved efficiently using stan-
dard techniques.

It will be useful to rewrite (4.7) in the form

(φn+1, cn+1)= (φn, cn)− [D1,2Fµ(φn, cn)]−1G(φn, cn). (4.8)

At this point it is not yet clear if this iteration step is well-defined.
In particular, we will show that for µ close enough to 1, the operator
D1,2Fµ(φ∗, c∗) is invertible for all pairs (φ∗, c∗) sufficiently close to the
solution (φ, c). The main theorem of this section roughly states that the
numerical method introduced above converges to a solution of (4.1). In
order to make this precise, we need to define what we mean by a point
of attraction of the Newton iteration (4.7).

Definition 4.1. A pair (φ, c)∈W 2,∞
0 ×R is a point of attraction of the

Newton iteration (4.7) if there is an open neighbourhood S ⊆W 2,∞
0 × R,

with (φ, c)∈S, such that for any (φ0, c0)∈S, the iterates defined by (4.7)
all lie in W

2,∞
0 ×R and converge to (φ, c).

Theorem 4.1. Let (φ, c) ∈W 2,∞
0 × R be a connecting solution to the

nonlinear autonomous differential difference equation (4.1). Then there
exists ε >0 such that (φ, c) is a point of attraction for the Newton iteration
(4.7) for all µ satisfying |µ−1|<ε.
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Theorem 4.1 will be proved in a number of steps. We first prove that
the Newton iteration (4.7) is well-defined for appropriate choices of the
parameter µ and the initial condition (φ0, c0). Then we will consider the
linearization of (4.8) around the solution (φ, c) and prove that the spectral
radius of this linearized operator is smaller than one, which will allow us
to complete the proof.

The first two lemma’s use the fact that D1,2G(φ, c) is an isomorphism
to show that this also holds for the operator D1,2Fµ(φ∗, c∗), for pairs
(φ∗, c∗) sufficiently close to (φ, c).

Lemma 4.2. Let (φ, c) ∈W 2,∞
0 × R be a connecting solution to (4.1).

Then there exists ε >0 such that D1,2Fµ(φ, c) is an isomorphism for all µ
satisfying |µ−1|<ε.

Proof. We start out by noting that D1,2F1(φ, c)=D1,2G(φ, c), which
is an isomorphism from W

2,∞
0 × R onto L∞. It follows from [31, Theo-

rem 5.10] that [D1,2G(φ, c)]−1 is a bounded linear operator. We can thus
write v=‖ [D1,2G(φ, c)]−1 ‖ and since D1,2G(φ, c) is a nontrivial operator,
0<v<∞ must hold. Noticing that

‖ [D1,2Fµ1(φ, c)]− [D1,2Fµ2(φ, c)]‖= |µ1 −µ2| ‖D2F(φ,φ)‖ (4.9)

and using the fact that ‖D2F(φ,φ)‖<∞ as φ is bounded, we see that we
can choose ε >0 such that

‖ [D1,2Fµ(φ, c)]− [D1,2G(φ, c)]‖< 1
2v

(4.10)

whenever |µ− 1|< ε. Now fix µ∈ (1 − ε,1 + ε) and let I be the identity
operator on W

2,∞
0 ×R. Since

‖ I − [D1,2G(φ, c)]−1[D1,2Fµ(φ, c)]‖
=‖ [D1,2G(φ, c)]−1([D1,2G(φ, c)]− [D1,2Fµ(φ, c)])‖� 1

2v
v= 1

2
<1,

(4.11)

Neumann’s Lemma implies that [D1,2G(φ, c)]−1[D1,2Fµ(φ, c)] is invert-
ible and hence D1,2Fµ(φ, c) has a left inverse. Because D1,2G(φ, c) is
an isomorphism, it has a left and right inverse and so by an analogous
argument involving the identity operator on L∞ the existence of a right
inverse for D1,2Fµ(φ, c) can be established. This completes the proof that
D1,2Fµ(φ, c) is an isomorphism.

For convenience, we define open balls Bψ,b,δ in W
2,∞
0 ×R given by

Bψ,b,δ ={(φ∗, c∗)∈W 2,∞ ×R | ‖ (ψ, b)− (φ∗, c∗)‖<δ}. (4.12)
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Lemma 4.3. Let (φ, c) ∈W 2,∞
0 × R be a connecting solution to (4.1).

Then there exists ε >0, such that for all µ∈ R with |µ− 1|<ε, there is an
open ball B=Bφ,c,δ, for some δ>0, with the property that the linear oper-
ator D1,2Fµ(φ∗, c∗) is an isomorphism for all (φ∗, c∗)∈B.

Proof. The proof is analogous to the proof of Lemma 4.2. One
uses the fact that D1,2Fµ(φ, c) is invertible and the observation that
‖ D1,2Fµ(φ̃, c̃) ‖ is continuous with respect to (φ̃, c̃) in the norm on
W

2,∞
0 × R. To establish this, one needs the local Lipschitz condition (b2)

on the derivatives of F, which implies the global Lipschitz continuity of
D1F on compact subsets of RN+1. Together with the boundedness of all
φ∗ ∈W 2,∞

0 , this establishes that for fixed φ∗ and for φ∗∗ with ‖φ∗∗ −φ∗ ‖�
C, we have |D1F(φ∗, φ∗)(ξ)D1F(φ∗∗, φ∗∗)(ξ)| �D ‖ (φ∗ − φ∗∗) ‖ for some
D<∞. With this estimate and a similar one for D2F , the continuity is
easily established.

We remark that Lemma 4.3 guarantees that for µ close enough to
1, there exists δ > 0 such that the Newton iteration step given by (4.7)
is well-defined whenever (φn, cn)∈Bφ,c,δ. We can now define the operator
Hµ : Bφ,c,δ → W

2,∞
0 ×R given by

Hµ(φ∗, c∗)= (φ∗, c∗)− [D1,2Fµ(φ∗, c∗)]−1G(φ∗, c∗). (4.13)

Lemma 4.4. Let (φ, c) ∈W 2,∞
0 × R be a connecting solution to (4.1).

Then there exists ε >0 such that for all µ satisfying |µ−1|<ε, the opera-
tor Hµ defined by (4.13) is Frechet differentiable at (φ, c). For these values
of µ, the corresponding derivative with respect to φ∗ and c∗ at this point is
given by

D1,2H
µ(φ, c)= I − [D1,2Fµ(φ, c)]−1D1,2G(φ, c). (4.14)

Proof. From Lemma 4.2 we know that there exists ε > 0 such that
for all µ satisfying |µ− 1|<ε,D1,2Fµ(φ, c) is an isomorphism. From the
proof of Lemma 4.2 we also know that for such µ we have the inequality
‖ I − [D1,2G(φ, c)]−1D1,2Fµ(φ, c)‖<1. Now fix µ satisfying |µ−1|<ε.

Fix β > 0. We know that G is Frechet-differentiable at (φ, c), hence
there exists δ1 such that

‖G(φ∗, c∗)−G(φ, c)−D1,2G(φ, c)[(φ∗, c∗)− (φ, c)]‖
�β ‖ (φ∗, c∗)− (φ, c)‖ (4.15)

for all (φ∗, c∗) ∈ Bφ,c,δ1 . From Lemma 4.3 we know that there exists δ2
such that D1,2Fµ(φ∗, c∗) is an isomorphism for all (φ∗, c∗)∈Bφ,c,δ2 . In the
proof of Lemma 4.3 we have seen that ‖D1,2Fµ(φ∗, c∗)‖ is continuous in
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φ∗ and c∗. Using this and the continuity of the inverse, we see that there
exists δ3>0 such that

‖
[
[D1,2Fµ(φ, c)]−1 − [D1,2Fµ(φ∗, c∗)]−1

]
[D1,2G(φ, c)]‖�β (4.16)

whenever ‖ (φ, c)− (φ∗, c∗) ‖< δ3. From (4.16) it also follows that when
‖ (φ, c)− (φ∗, c∗)‖<δ3 we have

‖ [D1,2Fµ(φ∗, c∗)]−1[D1,2G(φ, c)]‖
�β+‖ [D1,2Fµ(φ, c)]−1[D1,2G(φ, c)]‖=β+C (4.17)

for some finite constant C. Using the identity

[D1,2Fµ(φ∗, c∗)]−1= [D1,2Fµ(φ∗, c∗)]−1[D1,2G(φ, c)][D1,2G(φ, c)]−1,

(4.18)

we see that ‖ [D1,2Fµ(φ∗, c∗)]−1 ‖�D(β +C) for some finite constant D,
whenever ‖ (φ, c)− (φ∗, c∗)‖<δ3.

Now choose δ= min(δ1, δ2, δ3). Using the fact that (φ, c)=Hµ(φ, c)

we obtain for all (φ∗, c∗)∈Bφ,c,δ
‖Hµ(φ∗, c∗)−Hµ(φ, c)−[I−[D1,2Fµ(φ, c)]−1D1,2G(φ, c)][(φ∗, c∗)−(φ, c)]‖

=‖ [D1,2Fµ(φ, c)]−1D1,2G(φ, c)[(φ∗, c∗)− (φ, c)]
−[D1,2Fµ(φ∗, c∗)]−1G(φ∗, c∗)‖

�‖[D1,2Fµ(φ∗, c∗)]−1 [G(φ∗, c∗)−G(φ, c)−D1,2G(φ, c)[(φ∗, c∗)−(φ, c)]
]‖

+‖
[ [
D1,2Fµ(φ, c)

]−1

− [
D1,2Fµ(φ∗, c∗)

]−1
] [
D1,2G(φ, c)[(φ∗, c∗)− (φ, c)]

] ‖
� (D(β+C)β+β)‖ (φ∗, c∗)− (φ, c)‖ . (4.19)

This completes the proof that Hµ is Frechet differentiable.

We can now use the fact that D1,2Fµ(φ, c) is an isomorphism to
establish the crucial fact that the spectral radius of the linear operator
D1,2H

µ(φ, c) is less than one.

Lemma 4.5. Let (φ, c) ∈W 2,∞
0 × R be a connecting solution to (4.1).

Let σ̂ µ denote the spectral radius of D1,2H
µ(φ, c). Then there exists ε >0,

such that for all µ satisfying |µ−1|<ε, we have σ̂ µ <1.

Proof. Writing out the eigenvalue problem for D1,2H
µ(φ, c), we

obtain the equation

(1−µ)[D1,2Fµ(φ, c)]−1[D2F(φ,φ)ψ ]−λ(ψ, b)= (0,0), (4.20)
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where λ is the eigenvalue and (ψ, b) are the eigenfunctions. After applying
D1,2Fµ(φ, c) and using the explicit form of D1,2Fµ this is equivalent to

−D1,2F µ̄(λ)(φ, c)(ψ, b)=0, (4.21)

in which

µ̄(λ)=µ+ 1−µ
λ

(4.22)

We know from Lemma 4.2 that there exists δ > 0 such that D1,2Fµ(φ, c)

is an isomorphism for all µ satisfying |µ−1|<δ. If we now choose ε= δ
2 ,

we see that for all µ satisfying |µ−1|<ε and for all |λ|�1.

|µ̄(λ)−1|� δ

2
+ δ

2
|λ|−1 � δ. (4.23)

In particular, this means that for these µ and λ Eq. (4.21) has only the
zero solution, as D1,2F µ̄(λ)(φ, c) is an isomorphism. Thus for these µ

there cannot be any eigenvalues λ with |λ|�1, proving that σ̂ µ <1.

We are now ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Fix β > 0 such that for all µ that satisfy
|µ − 1| < β, we have that the operator Hµ is well-defined in a neigh-
bourhood of (φ, c) and Frechet differentiable at (φ, c), together with the
inequality σ̂ µ < 1, where σ̂ µ is the spectral radius of D1,2H

µ(φ, c). Now
fix µ satisfying |µ− 1|<β, write H =Hµ and σ̂ = σ̂ µ and choose ε > 0
such that σ̂ + ε < 1. Let Hp be the p-fold iterate of H . Since H is Fre-
chet-differentiable at (φ, c), so is Hp. From the chain rule it follows that
D1,2H

p(φ, c)=D1,2H(φ, c)
p.

From the Gelfand and Mazur formula [32, Theorem 10.13] for the
spectral radius σ̂ , it follows that we may choose p such that

‖ [D1,2H(φ, c)]p ‖� (σ̂ + ε)p <1− ε. (4.24)

Let s be an integer. From the Frechet-differentiability of Hs we know that
there exists δ>0, such that for all (φ∗, c∗)∈Bφ,c,δ and for all 1� s�p,

‖Hs(φ∗, c∗)−Hs(φ, c)− [D1,2H(φ, c)]
s [(φ∗, c∗)− (φ, c)]‖

� ε ‖ (φ∗, c∗)− (φ, c)‖ . (4.25)

With this we can compute

‖Hs(φ∗, c∗)− (φ, c)‖ � ‖Hs(φ∗, c∗)−Hs(φ, c)

−[D1,2H(φ, c)]
s [(φ∗, c∗)− (φ, c)]‖

+‖ [D1,2H(φ, c)]
s ‖‖ (φ∗, c∗)− (φ, c)‖

� (‖ [D1,2H(φ, c)]
s ‖+ ε)‖ (φ∗, c∗)−(φ, c)‖. (4.26)
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Writing

w=max(ε,max{‖ [D1,2H(φ, c)]
s ‖| s=1 . . . p}), (4.27)

we see that we can ensure Hs(φ0, c0)∈Bφ,c,δ∗ . for s= 1 . . . p by choosing
(φ0, c0)∈Bφ,c,δ∗/2w. For s=p Eq. (4.26) reduces to

‖Hp(φ∗, c∗)− (φ, c)‖� [(σ̂ + ε)p+ ε]‖ (φ∗, c∗)− (φ, c)‖ . (4.28)

Combining everything, we see that by choosing (φ0, c0)∈Bφ,c,δ/2w all the
Newton iterates lie in the ball Bφ,c,δ. Now choosing δ>0 so small that H
is well-defined on Bφ,c,δ, we see that the Newton process is well-defined
and satisfies

lim
n→∞‖ (φn, cn)− (φ, c)‖� lim

n→∞(2w)((σ̂ + ε)p+ ε)� np � ‖ (φ0, c0)− (φ, c)‖=0.

(4.29)

This concludes the proof of the theorem.

Remark 4.1. It is not clear if Theorem 4.1 holds for µ=0. Setting µ=0
in the Newton iteration step (4.7) is easily seen to be equivalent to mak-
ing the approximation φn+1 = φn. Intuitively, this approximation should
become increasingly accurate as the iterates φn converge to the solution of
(4.1). In addition, the equations (4.9) and (4.10) from the proof of Lemma
4.2 give us information about the values of ε which satisfy the claim in
Theorem 4.1. In particular, smaller values of ‖D2F ‖ give us larger possi-
ble values for ε. Referring back to (1.6), we see there that ‖D2F ‖ is pro-
portional to the parameter α. Since we are interested in solutions to (1.6)
far from the continuous limit, i.e., for small values of the parameter α, these
observations lead us to believe we can take µ=0 in many cases of interest.
See Section 5 for a further discussion and some numerical examples.

5. EXAMPLES

In this section we present some numerical results obtained by our
algorithm in order to illustrate some of the key phenomena encountered in
the qualitative study of lattice differential equations, together with some of
the technical difficulties involved with the numerical computation of solu-
tions to such equations. We note here that all the Newton iteration steps
(4.7) which were executed in order to obtain the results in this section were
performed with µ = 0.

In the literature, it has by now become somewhat classic to study
travelling wave solutions to the spatially discretized reaction diffusion
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equation (1.2). The simplest corresponding differential difference equation
is given by

−cφ′(ξ)=α(φ(ξ +1)+φ(ξ −1)−2φ(ξ))− (φ(ξ)2 −1)(φ(ξ)−ρ), (5.1)

where α > 0 and ρ ∈ (−1,1) is a detuning parameter. It has been widely
studied both numerically and theoretically [1,5,10,14,16,24,36,37]. The rel-
ative simplicity of (5.1) and the fact that solutions exhibit many of the
interesting features mentioned in the introduction ensure that this equa-
tion is an ideal test problem for any differential difference equation solver.

In [20] (5.1) was solved numerically by adding a small diffusion term
−γφ′′(ξ) to the left-hand side of (5.1) and our results were compared to
previously established solutions in [1,16]. In particular, we remark that our
implementation allows us to choose γ = 3 × 10−10, while up to now the
smallest possible choice for γ was given by γ =10−6 [1]. The phenomenon
of propagation failure is clearly visible from the results for α=0.1 and the
corresponding wave profiles already reach their limiting forms at γ =10−5.

We wish to empasize here that, in contrast to the presentation in [16],
the formulation of the algorithm given in the previous section allows us to
consider differential difference equations which involve a nonlinear mixing
of shifted terms and ordinary terms. In this section we illustrate this fea-
ture by numerically studying the differential difference equation

−γφ′′(ξ)− cφ′(ξ)
=α tanh(φ(ξ +1)+φ(ξ −1)−2φ(ξ))−f (φ(ξ), ρ). (5.2)

Here γ,α>0 are two positive parameters and f is the cubic nonlinearity
given by

f (x, ρ)= (x2 −1)(x−ρ), (5.3)

where ρ ∈ (−1,1) is a continuation parameter. The solutions of (5.2) were
required to satisfy the limits

lim
ξ→−∞

φ(ξ)=−1, lim
ξ→∞

φ(ξ)=1 (5.4)

and were normalized to have φ(0)= 0. Equations similar to (5.2) play an
important role when studying Glauber type Ising models [12] in material
science.

It is easy to verify that the family (5.2) satisfies all the requirements
(b1) through (b5). Also note that if φ(ξ) is a solution to the problem (5.2)
satisfying the limits (5.4) at some parameter ρ=ρ0 with wavespeed c= c0,
then ψ(ξ)=−φ(−ξ) is a solution to the same problem with ρ=−ρ0 and
wavespeed c=−c0 and also satisfies the limits (5.4).
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Figure 2. In (a) the waveprofiles φ(ξ) have been plotted for solutions to the differential
difference equation (5.2) with γ = 10−6 and α = 0.1, at different values of the detuning
parameter ρ. For presentation purposes the curves have been shifted by different amounts
along the ξ -axis. In (b) the ρ(c) relation has been plotted, i.e., for each value of the detuning
parameter ρ the corresponding wavespeed c is given. The solid dots represent the wavespeeds
corresponding to the curves in (a), which have been continued to ρ<0, using the observation
that ψ(ξ)=−φ(−ξ) is a connecting solution with wavespeed −c if φ(ξ) is a connecting solu-
tion with wavespeed c. From (b) it is easily seen that there exists a nontrivial interval of ρ in
which c ∼ 0, hence propagation failure occurs.

The phenomenon of propagation failure has been studied extensively
in [28]. In particular, in Corollary 2.5 of [28] it is shown that for our fam-
ily (5.2) with γ =0, there exist quantities −1�ρ− �ρ+ �1, such that (5.2)
only has connecting solutions with wavespeed c = 0 for ρ− � ρ � ρ+. It
may happen that ρ−<ρ+, that is, that there is a nontrivial interval of the
detuning parameter ρ for which the wavespeed vanishes. In this region one
generally expects the solutions to become discontinuous. However, since all
the numerical computations were performed with γ > 0, which forces the
solutions to remain continuous, it is a priori not clear if one can accu-
rately reproduce the solution profiles at γ = 0 and thus actually uncover
the propagation failure. The essential tool here is Theorem 3.10, which
establishes that if we have a sequence of solutions Pn(ξ) to (3.1) with γ = γn,
where γn → 0, a subsequence of the functions Pn will convergence to a
solution at γ =0. Ideally, this convergence should occur at a value for the
parameter γ which can be handled numerically and the solution curves
should remain computationally stable below this value. This was the case
for the solutions to (5.1) calculated in [20] and we show here that the same
property holds for the problem (5.2) currently under investigation.

In Fig. 2, the calculated solutions to (5.2) are presented, together with
their wavespeeds. One sees clearly from Fig. 2(b) that there is a nontrivial
interval of the detuning parameter ρ for which the wavespeed c vanishes.
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Looking at Fig. 2(a), one sees that the solutions for these values of ρ
exhibit step-like behaviour. In the calculations we used γ = 10−6, which
thus indicates that for γ small enough, one can be confident that the
effects of propagation failure will be observed and accurate predictions
can be made about the parameter values at which it will occur. Propaga-
tion failure does not occur at each value of α, as the ρ(c) curve in Fig.
3(b) shows. Notice that the solutions in Fig. 3(a) indeed remain smooth as
ρ→0. We remark here that the wavespeed necessarily satisfies c=0 when
ρ= 0, but it is clear that for this specific system (5.2), the solutions only
exhibit discontinuous behaviour when the wavespeed vanishes for a non-
trivial interval of the detuning parameter ρ.

In Fig. 4(a) the solution curves to (5.2) have been plotted for a num-
ber of different values of γ , ranging from γ =10−2 to γ =3×10−10. The
transition from smooth to steplike solutions is clearly visible and already
occurs at γ ≈ 10−3. Notice that the solution curves remain stable for γ =
10−5 to γ = 3 × 10−10, while the curve for γ = 10−4 does not differ too
much. One sees here that in this example computations with γ ∼10−5 will
provide an excellent approximation to the actual solutions with γ = 0. In
particular, the computations indicate that the discontinuous behaviour due
to propagation failure, which occurs at γ = 0 and c= 0, is already visi-
ble at γ = 10−5. Indeed, upon recalculation of the curves in Fig. 2 using
γ =10−8, the results were observed to remain exactly the same.

When we take µ= 0 in the Newton iteration (4.7), we are neglecting
the presence of the shifted terms D2F . In particular, referring to (4.9) in

-25 -20 -15 -10 -5 0 5 10 15

-1.0

-0.5

0.0

0.5

1.0

ρ = 0.90

ρ = 0.54

ρ = 0.36

ρ = 0.20

ρ = 0.10

ρ = 0.08

ρ = 0.00

φ(
ξ)

ξ

(a)
(b)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ρ(
c)

c

Figure 3. In (a) the waveprofiles φ(ξ) have been plotted for solutions to (5.2) with γ =10−4

and α = 5, at different values of the detuning parameter ρ. The wavespeeds for these solu-
tions are given in (b), The calculations to obtain the solution curves in this figure were per-
formed on the finite interval [−20, 20]. Notice that in (b) there is no nontrivial interval of ρ
for which c = 0. Indeed, the solution curves in (a) remain continuous as ρ→0.
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Figure 4. In (a) waveprofiles y(ξ) for solutions to (5.2) at different values of γ are given, for
fixed ρ=0 and α=0.1, demonstrating the robust convergence in the γ →0 limit and showing that
already at γ =10−5 the waveform has attained its limiting profile. In (b) solutions y(ξ) to (5.2) at
α = 5 and α = 10 in the critical case ρ = 0 are given. The parameter γ was fixed at 10−4.

the proof of Lemma 4.2, one expects that when the norm of the shifted
term D2F becomes large, problems will arise with the invertibility of the
operator D1,2Fµ and hence with the convergence of the algorithm. In our
case, the importance of the shifted term is given by the parameter α. For
large α, the hyperbolic tangent term in (5.2) becomes increasingly impor-
tant. Nevertheless, by using a suitable continuation scheme, we are able to
obtain solutions to (5.2) for α=5 and α=10 at γ =10−4 and ρ=0. These
solutions have been plotted in Fig. 4(b). At these levels of α the shifted
term has become the dominant term. If one wishes to increase α even fur-
ther, it no longer suffices to take µ=0 in (4.7). It is however quite satisfac-
tory that this choice for µ can be used for practical purposes up to these
levels of α, which are already far from the interesting case α≈0.1.

6. EXTENSIONS

Although all the theory developed in this paper applies only to one
dimensional families (1.1) that satisfy the conditions (b1) through (b5),
it turns out that the application range of the numerical method is much
broader. In addition, interesting models exist which lead to differential
difference equations that violate the above assumptions. To gain some
insight into these issues, we numerically study two important systems that
are not covered by the theory developed in this paper, which both give rise
to novel dynamical behaviour.

6.1. Ising Models

In this subsection, we numerically study the differential difference
equation given by
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−γφ′′(ξ)−cφ′(ξ)= α (−1
4φ(ξ−2)+φ(ξ−1)+φ(ξ+1)− 1

4φ(ξ +2)− 3
2φ(ξ))

− f (φ(ξ), ρ), (6.1)

where f denotes the bistable cubic nonlinearity f (x, ρ)= (x2 − 1)(x − ρ)

for some parameter ρ ∈ (−1,1) and α > 0 is a strictly positive parame-
ter. We again impose the limits φ(±∞)=±1 and the normalization con-
dition φ(0)= 0 and again take µ= 0 when performing the iteration steps
(4.7). The interesting feature in (6.1) is that the coefficients in front of the
shifted terms φ(ξ ± 2) are now negative, which implies that this equation
does not satisfy the assumption (b3) introduced in Section 3. In particular,
we no longer have any guarantee that (6.1) in fact has a solution or that
the numerical method will be able to find it.

Equation (6.1) with γ = 0 is an example of a class of differential
difference equations which was proposed in [4] to provide a discrete con-
volution model for Ising-like phase transitions. The equation was derived
by considering groups of atoms arranged on a lattice and computing the
gradient flow of a Helmholtz free energy functional. This energy func-
tional takes into account interactions within each group of atoms together
with interactions between groups, thus incorporating both local and non-
local effects into the model. Due to the nature of the physical forces
involved, the long-range interaction coefficients can be both positive and
negative.

Unnormalized solutions to (6.1) with γ = 0, c= 0, fixed ρ and suffi-
ciently small α>0 were analyzed in [4]. In particular, for each sufficiently
small α> 0 it was shown that there exist three intervals Ij (α) for 1 � j �
3, such that for any two disjoint sets S1, S2 ⊂ Z, there exists a unique
(unnormalized) solution u to (6.1) that satisfies u(x)∈Ii whenever �x�∈Si,
for all 1 � i � 3. Here we have defined S3 = Z\(S1 ∪ S2). We remark here
that −1∈ int(I1) and 1∈ int(I2). From this, it is clear that the set of solu-
tions to (6.1) with γ = c=0 has a rich structure.

In Fig. 5 the results of an application of the numerical method to
(6.1) with γ = 10−6 and α = 0.042 are displayed. The transition from
smooth solution curves to discontinuous step functions as ρ approaches
the critical value ρ=0 is clearly illustrated. Notice that in contrast to the
results from the previous section, the solution curves are no longer mono-
tonic and in addition are no longer restricted to the interval [−1, 1]. The
values taken by the step functions in Fig. 5 are in agreement with the
predictions from [4] and these results again illustrate that the algorithm is
robust enough to be able to uncover some of the behaviour at γ =0.
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6.2. Higher Dimensional Systems

Up to now all the theory has been developed for scalar differential
difference equations of the form (3.1). The question of course immediately
arises if the results can be extended to higher dimensional systems and if
the numerical method is able to handle them as well. In this subsection
we briefly discuss some of the issues involved, using a bistable reaction-
diffusion equation on a one dimensional lattice with spatially varying
diffusion coefficients as an example. Specifically, we will study the system

u̇j (t)=αj (uj+1(t)+uj−1(t)−2uj (t))− (u2
j (t)−1)(uj (t)−ρ), j ∈Z,

(6.2)

where ρ ∈ (−1,1) is a detuning parameter and the coefficients αj are peri-
odic with period two, i.e., we have αj+2 =αj for all j ∈Z.

Lattice differential equations of the form (6.2) arise naturally when
modelling diffusion processes in discrete systems which are spatially peri-
odic. As a specific biological example we mention a model that describes
the behaviour of nerve fibers by employing an electrical circuit model for
the excitable fiber membrane [23, Sec 9.3]. One considers myelinated nerve
fibers that have periodic gaps, called nodes, in their coating. Assuming a
one dimensional grid of nodes and writing Vj for the voltage at node j ,
one derives the equations [23]

p
(
CV̇j + Iion(Vj )

)= 1
µjLR

(Vj+l +Vj−1 −2Vj ), j ∈Z. (6.3)
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Figure 5. In (a) the waveprofiles φ(ξ) have been plotted for solutions to (6.1) with γ =10−6

and α = 0.042, at different values of the detuning parameter ρ. The corresponding wavespe-
eds for these solutions are given in (b).
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Figure 6. Waveprofiles φo(ξ) and φe(ξ) have been plotted for solutions to (6.4) with αo =
1.5, αe =1.7 and γ =10−5. In addition to the global shift for different values of ρ, the curves
for φe in (a) have been shifted by 1 along the ξ -axis relative to their accompanying φo curves.
This additional shift has not been applied to the curves in (b).

Here p is the perimeter length of the fibre, C is the capacitance, L is the
length of myelin sheath between nodes, R is the resistance per unit of
length and µj is the length of node j . Allowing the node length µj to
vary periodically among nodes and remarking that a cubic nonlinearity is
a natural form for the ionic current Iion(V ), one sees that (6.3) transforms
into a system of the form (6.2).

As in previous sections, we numerically analyze the system (6.2) by
adding a small artificial diffusion term and looking for travelling wave
solutions. In particular, the points on the lattice are split into two groups,
called even and odd, which admit their own waveforms φe, φo and diffu-
sion coefficients αe, αo. Substituting the travelling wave anszatz u2k(t)=
φe(2k − ct) and u2k+1 = φo(2k + 1 − ct) into (6.2), we arrive at the two
dimensional differential difference equation






−γφ′′
o(ξ)− cφ′

o(ξ)=αo(φe(ξ +1)+φe(ξ −1)−2φo(ξ))

−15
(
φ2

o(ξ)−1
)
(φo(ξ)−ρ),

−γφ′′
e (ξ)− cφ′

e(ξ)=αe(φo(ξ +1)+φo(ξ −1)−2φe(ξ))

−15
(
φ2

e (ξ)−1
)
(φe(ξ)−ρ).

(6.4)

In addition, we impose the asymptotic limits φo(±∞)=±1, φe(±∞)=±1
and introduce the phase condition φo(0)=0 in order to control the trans-
lational invariance of (6.4).

In contrast to previous sections, it was necessary to take µ= 1 when
performing the Newton iterations (4.7) needed to numerically solve (6.4).
The results can be found in Fig. 6, where solution curves to (6.4) with
αo = 1.5, αe = 1.7 and γ = 10−5 have been plotted for various values of
the detuning parameter ρ. The corresponding wavespeeds can be found in
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Fig. 7(a). It is clear from the latter wavespeed plot and the steplike behav-
iour exhibited in Fig. 6(b) that propagation failure can occur for the dis-
crete periodic diffusion system (6.2). We also mention the interesting fact
that as the norm of the detuning parameter ρ increases, the two wavepro-
files φe and φo become increasingly alike, indicating that the significance
of the diffusion term in (6.4) decreases as |ρ|→1.

At the moment it is unclear if we have existence and uniqueness of
solutions to equations of the form (6.4) and if the convergence theory
established in this paper for the Newton iteration (4.7) continues to hold.
Some of the arguments used to derive the current results are strictly one
dimensional in nature and do not generalize trivially to higher dimensions.
It will be a topic of future research to address these issues, but for the
moment we finish by numerically illustrating that extending the theory to
higher dimensions is not simply an exercise in bookkeeping.

Note that when αo = αe, (6.4) is guaranteed to have at least one solu-
tion. This can be seen by choosing φo =φe and applying Theorem 3.1 to
the resulting equation. However, in [15,20] the two dimensional system






−γφ′′
o(ξ)− coφ

′
o(ξ)=α (φe(ξ +1)+φe(ξ −1)−2φo(ξ))

−15
(
φ2

o(ξ)−1
)
(φo(ξ)−ρ) ,

−γφ′′
e (ξ)− ceφ

′
e(ξ)=α (φo(ξ +1)+φo(ξ −1)−2φe(ξ))

−15
(
φ2

e (ξ)−1
)
(φe(ξ)−ρ) .

(6.5)
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Figure 7. In (a) the wavespeed plot for the solutions to (6.4) with αo =1.5, αe =1.7 and γ =
10−5 is given. Notice the nontrivial interval of the detuning parameter ρ for which c = 0,
indicating that propagation failure occurs for the periodic diffusion problem (6.2). In (b) the
wavespeed plot for the constant diffusion system (6.5) with α = 1.6 and γ = 10−5 is given.
Notice the existence of two regions for which ce �=co. We call these regions period two bifur-
cation regions. The presence of these regions demonstrates that, unlike one dimensional sys-
tems, higher dimensional systems do not necessarily have unique solutions.
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was analyzed with the boundary conditions φ∗(±∞)= ±1 and φ∗(0)= 0
for ∗=o, e. A corresponding wavespeed plot can be found in Fig. 7(b) and
the interesting feature is the presence of solutions with co �= ce, indicating
that for the two dimensional system (6.5) uniqueness of solutions is lost.

APPENDIX A: PROOF OF THEOREM 2.5

The aim of this section is to provide some basic results on the
class of scalar differential difference equations encountered when studying
(1.1) and to use these results to prove Theorem 2.5. We will mainly be
concerned with the subclass of linear equations (2.1) that arises when line-
arizing (1.1) around solutions. However, we shall also provide a number of
comparison principles for solutions to the nonlinear equation (1.1) which
can directly be applied to the linear equations mentioned above. The
first result gives conditions under which (2.2) admits no positive solutions
which decay superexponentially. This is especially useful in combination
with Proposition 2.2, as in the absence of superexponentially decaying
solutions this Proposition allows us to obtain asymptotic descriptions of
the solutions to (2.2).

Lemma A.1. Consider Eq. (2.2) and let x:J# → R be a solution to
this equation on J = [τ,∞) for some τ ∈ R. Suppose that Assumption 2.1
holds, possibly with αj = 0 for one or more 1 � j �N . Assume further that
x(ξ)� 0 for all ξ ∈ J#, but that there does not exist an R > 0 such that
x(ξ)=0 for all ξ �R. Then x does not decay superexponentially. The anal-
ogous result for J = (−∞, τ ] also holds.

Proof. Without loss we shall also assume J = [τ,∞), as the case of
J = (−∞, τ ] can be treated by a change of variables ξ →−ξ , which does
not change the sign of γ . For convenience, we introduce the quantity ã0 =
min(α0,

c2

4γ − ε), where ε >0 is an arbitrary number.
We start out by noting that we can rescale equation (2.6) by defining

y(ξ)= eλξ x(ξ), where λ can be chosen appropriately. It is easy to see that
y(ξ) satisfies the following differential difference equation

y′′(ξ)=
(

2λ− c

γ

)
y′(ξ)−λ

(
λ− c

γ

)
y(ξ)− 1

γ

N∑

j=0

Aj(ξ)e
λrj y(ξ + rj ). (A.1)

Since y(ξ)�0 for all ξ ∈J#, we have the inequality

y′′(ξ)�
(

2λ− c

γ

)
y′(ξ)+

(
−λ(λ− c

γ
)− α̃0

γ

)
y(ξ). (A.2)
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Now choosing λ= c
2γ we obtain

y′′(ξ)�By(ξ), ξ ∈ J, (A.3)

in which B= c2

4γ 2 − α̃0
γ
>0. Using a standard argument for ordinary differ-

ential equations which can be found in [20, Lemma A.l], one sees that for
arbitrary ξ0 ∈J,

y(ξ)�C1e
√
B(ξ−ξ0)+C2e−√

B(ξ−ξ0) (A.4)

holds for all ξ�ξ0. The coefficients C1 and C2 in this expression are given
by

C1 = 1
2
√
B

(
y′(ξ0)+

√
By(ξ0)

)
,

C2 = 1
2
√
B

(
−y′(ξ0)+

√
By(ξ0)

)
.

(A.5)

From the nonnegativity of y(ξ) we see that we must have C1 � 0, as oth-
erwise (A.4) would imply that y(ξ)< 0 for sufficiently large ξ . From this
we conclude

y′(ξ0)�−
√
By(ξ0), ξ0 ∈J, (A.6)

which immediately implies that y(ξ) and hence x(ξ) cannot have superex-
ponential decay.

The following lemma will be crucial to establish comparison princi-
ples for solutions to the nonlinear equation (1.1). It can be easily derived
by employing the scaling argument introduced in the proof of Lemma A.l.

Lemma A.2. Let x : J# → R be a solution to (2.1) on J = [τ,∞) for
some τ ∈R and suppose that Assumption 2.1 holds, possibly with αj =0 for
one or more 1� j �N . Assume further that x(ξ)�0 for all ξ ∈J#. Then if
x(ξ0)=0 for some ξ0 ∈J , we have x(ξ)=0 for all ξ � ξ0.

We now restrict ourselves to constant coefficient equations

−γ x′′(ξ)− cx′(ξ)−L0(xξ )=0 (A.7)

that satisfy Assumption 2.1. Our goal will be to obtain detailed infor-
mation about the eigenvalues of such systems. This will allow us to give
precise asymptotic descriptions of solutions to the nonautomatous linear
equation (2.6) and to provide conditions for which (A.7) is hyperbolic. To
this end, we introduce the quantity

A� =−	c,γ,L0(0)=
N∑

j=0

Aj,0, (A.8)
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associated to the constant coefficient operator L0. The following lemma
relates the existence of complex eigenvalues of (A.7) to the sign of the
characteristic function 	c,γ,L0(s) for real values of s.

Lemma A.3. Consider the constant coefficient equation (A.7), suppose
that Assumption 2.1 holds and in addition assume that A� <0. Consider an
arbitrary a∈R. If 	c,γ,L0(a)�0, then there do not exist any eigenvalues λ∈
C such that Re λ=a except possibly λ=a itself.

Proof. Note that A0,0 < 0, since A� < 0 and Aj,0 > 0 for 1 � j �N .
Writing λ=a+ iη with a, η∈R, we compute

|cλ+γ λ2 +A0,0|2 = |ca+γ a2 −γ η2 +A0,0 + i(2aγ η+ cη)|2
= |ca+γ a2 +A0,0|2

+η2(η2γ 2 +2aγ c+2a2γ 2 + c2 −2γA0,0)

= |ca+γ a2 +A0,0|2 +η2p(a),

where p is a second degree polynomial. It is elementary to see that

p(a)� 1
2c

2 +η2γ 2 −2γA0 �η2γ 2 �0.

We thus have

|cλ+γ λ2 +A0,0|� |ca+γ a2 +A0,0|, (A.9)

with equality if and only if λ=a.
Now suppose that λ= a+ iη satisfies 	c,γ,L0(λ)= 0 for some real η

and that 	c,y,L0(a)�0.
Then using (A.9), we arrive at

|ca+γ a2 +A0,0|� |cλ+γ λ2 +A0,0 | =
∣∣∣∣∣∣

N∑

j=1

Aj,0eλrj

∣∣∣∣∣∣
�

N∑

j=1

Aj,0earj

� −(ca+γ a2 +A0,0). (A.10)

By examining the first and last terms in (A.10), we see that the three
inequalities have to be equalities. This can only be if λ= a, from which
the claim immediately follows.

Notice that under the assumptions of the previous lemma, we have
	c,λ,L0(0)>0 and 	′′

c,γ,L0
<0. The behaviour of the characteristic function

is thus easy to analyze on the real line and we can use the result above to
establish the following two claims about the eigenvalues of (A.7).
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Lemma A.4. Consider the equation (A.7) and suppose that A�<0 and
Assumption 2.1 is satisfied. Then Eq. (A.7) is hyperbolic. Furthermore, there
exists precisely one real positive eigenvalue λ+ ∈(0,∞) and precisely one real
negative eigenvalue λ− ∈ (−∞,0) and each of these eigenvalues is simple.
The eigenvalues λ− and λ+ depend C1 smoothly on c and the coefficients
Aj,0. In addition, we have that

∂λ−

∂c
<0 and

∂λ+

∂c
<0. (A.11)

All the remaining eigenvalues satisfy

Re λ∈ (−∞, λ−)∪ (λ+,∞), Imλ �=0. (A.12)

Lemma A.5. Consider Eq.(A.7) and suppose that A� >0 and Assump-
tion 2.1 is satisfied. Then either all real eigenvalues of (A.7) lie in (0,∞),
or else they all lie in (−∞,0).

We now shift our focus to nonlinear differential difference equations
of the form

−γ x′′(ξ)− cx′(ξ)=G(ξ, x(ξ), x(ξ + r1), . . . , x(ξ + rN)). (A.13)

In the autonomous case we write

−γ x′′(ξ)− cx′(ξ)=F(x(ξ), x(ξ + r1), . . . , x(ξ + rN)). (A.14)

We will impose the following conditions on (A.13).

Assumption A.1. The parameter γ satisfies γ > 0 and the shifts sat-
isfy ri �= rj when i �= j and ri �= 0. There is at least one shifted argument,
i.e. N � 1. The function G : R × RN+1 → R, written as G(ξ,u), where u=
(u0, u1, . . . , uN), is C1 smooth and the derivative D2G of G with respect to
the second argument u∈RN+1 is locally Lipshitz in u. In addition, for every
ξ ∈R we have that

∂G(ξ, u)

∂uj
>0, u∈RN+1, 1� j �N. (A.15)

The following lemma roughly states that solutions to (A.14) are
uniquely specified by their initial conditions. The proof is almost com-
pletely analogous to that in [28], so we omit it.

Lemma A.6. Let xj : J → R for j = 1,2 be two solutions of equation
(A.13) with the same parameters c and γ on some interval J. Suppose that
Assumption A.1 holds and that
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x1(ξ)=x2(ξ), τ + rmin � ξ � τ + rmax, (A.16)

for some τ ∈J for which [τ + rmin, τ + rmax]⊆J . Then

x1(ξ)=x2(ξ), ξ ∈J#. (A.17)

We remark here that in combination with Lemma A.2 the above
result yields the following useful corollary.

Corollary A.7. Consider the linear differential difference equation (2.1)
and suppose that Assumption 2.1 holds. Let xi : J → R for j = 1,2 be two
solutions to (2.1) with the same parameters c and γ on the interval J =
[τ,∞) for some τ ∈R. If for all ξ ∈J# we have

x1(ξ)�x2(ξ), (A.18)

with equality x1(ξ0)=x2(ξ0) for some ξ0 ∈J , then we have

x1(ξ)=x2(ξ), ξ ∈J#. (A.19)

Suppose that x1 and x2 are both bounded solutions of the nonlinear aut-
onomous differential difference equation (A.14) with the same parame-
ters c and γ , where γ > 0. We have seen in Section 3 that the difference
y(ξ)= x1(ξ)− x2(ξ) satisfies the linear homogeneous equation (2.2) with
coefficients given by

Aj(ξ)=
∫ 1

0

∂F (u)

∂uj

∣∣∣∣
u=tπ(x1,ξ)+(1−t)π(x2,ξ)

dt. (A.20)

If Assumption A.1 holds for Eq. (A.14), it is easy to see that Aj(ξ) > 0
for all ξ ∈ R and for all 1 � j �N . Since the derivatives ∂F (u)

∂uj
are contin-

uous, we can use the fact that x1(ξ) and x2(ξ) are uniformly bounded to
establish that the coefficients Aj(ξ) are uniformly bounded for 0 � j �N .
The continuity of these coefficients follows from the Lipschitz condition
on the partial derivatives of F . This means that our linear equation (2.2)
with coefficients (A.20) satisfies all the assumptions of Lemma A.2. Apply-
ing this result to the difference x1(ξ)−x2(ξ) and invoking Lemma A.6, we
obtain the following useful comparison principle.

Lemma A.8. Let xi : J# → R for j = 1,2 be two bounded solutions of
the nonlinear differential difference equation (A.14) with the same param-
eters γ = γj and c= cj on the interval J = [τ,∞) for some τ ∈ R. Suppose
also that Assumption A.1 holds and that
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x1(ξ)�x2(ξ), ξ ∈J#. (A.21)

Then if x1(ξ0)=x2(ξ0) for some ξ0, we have x1(ξ)=x2(ξ) for all ξ ∈J#.
In order to establish uniqueness of solutions to (1.1), we shall need a

comparison principle for solutions to (A.14) which have different wavespe-
eds.

Lemma A.9. Let xj : J# → R for j = 1, 2 be two bounded solutions
of the nonlinear autonomous differential difference equation (A.14) with
parameters γ = γj and c= cj on some interval J = [τ,∞) for some τ ∈ R.
Suppose that Assumption A.1 holds and that γ1 = γ2 > 0, but that c1 >c2.
Also assume that

x1(ξ)�x2(ξ), ξ ∈J# (A.22)

and that x2(ξ) is monotonically increasing. Then if x1(ξ0)=x2(ξ0) for some
ξ0, we have that x1(ξ)=x2(ξ) is constant for all ξ � ξ0.

Proof. We start out by noticing that the difference y(ξ)=x1(ξ)−x2(ξ)

satisfies the linear equation

y′′(ξ)=−c1

γ
x′

1(ξ)+
c2

γ
x′

2(ξ)−
1
γ

N∑

j=0

Aj(ξ)y(ξ + rj ), (A.23)

where the coefficients Aj are again given by (A.20).
We have already seen that the coefficients Aj(ξ) are uniformly bounded

for 0 � j �N and that Aj(ξ)> 0 for all ξ ∈ R and for 1 � j �N . We can
thus write A0(ξ)�α0, for some α0<0. Now using the fact that x′

2(ξ)�0,
we have

c2

γ
x′

2(ξ)�
c1

γ
x′

2(ξ), (A.24)

which allows us to conclude

y′′(ξ)�−c1

γ
y′(ξ)− α0

γ
y(ξ). (A.25)

Upon defining z(ξ)= e
c1
2γ ξ y(ξ), we obtain

z′′(ξ)�
(
c2

1

4γ 2
− α0

γ

)
z(ξ)=Bz(ξ), (A.26)

where B > 0. We now proceed as in the proof of Lemma A.1 to con-
clude that z(ξ)=0 for all ξ � ξ0, which implies x1(ξ)=x2(ξ) for all ξ�ξ0.
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Referring back to (A.14), we see that for ξ � ξ0 + rmin we must have
c1x

′
1(ξ)= c2x

′
2(ξ). However, as also x′

1(ξ)= x′
2(ξ), we must have x′

1(ξ)=
x′

2(ξ)=0. This establishes the claim.

We are now ready to provide the proof of Theorem 2.5 and we note
here that the preparations in this section allow us to follow closely the
proof of [28, Theorem 4.1].

Proof of Theorem 2.5. Denote the limiting constant coefficient opera-
tors at ±∞ by L±. Then it follows from Lemma A.4 that the equations
(A.7) with L± are both hyperbolic. In fact, the same result holds for the
family of constant coefficient operators 1

2 ((1−ρ)L + (1+ρ)L+) for −1�
ρ�1, which connects L− to L+. Theorem 2.1 thus guarantees that �c,γ,L
is a Fredholm operator with ind(�c,γ,L)= 0. Corollary A.7 immediately
implies that the nontrivial solution p satisfies p>0. Using Proposition 2.2
and Lemma A.4, we obtain the asymptotic expressions

p(ξ)=
{
C
p
−eλ

u− ξ +O(e(λu−+ε)ξ ), ξ→−∞,

C
p
+eλ

s+ξ +O(e(λs+−ε)ξ ), ξ→∞,
(A.27)

for some ε >0, with finite exponents

−∞<λs+<0<λu−<∞. (A.28)

Since p does not decay superexponentially and is strictly positive,
Proposition 2.2 and Lemma 2.3 imply that both C

p
± > 0. Suppose that

there exists some x∈K(�c,γ,L) which is linearly independent of p. By add-
ing some multiple of p and replacing x by −x if necessary, we may assume
that x satisfies a similar asymptotic expansion (A.27) with Cx− � 0 and
Cx+ = 0. Because x is not identically zero, Lemma A.6 implies that there
exist arbitrarily large ξ , for which x(ξ) �=0. If x(ξ)�0 for all large ξ , then
the same reasoning as applied above to conclude that Cp+>0 in the expan-
sion (A.27) leads to a contradiction with Cx+ = 0. This means there even
are arbitrarily large ξ for which x(ξ)>0. From this, it immediately follows
that there exists µ0>0 such that

p(ξ)−µ0x(ξ)<0, (A.29)

for some ξ ∈R. We now consider the family p−µx∈Kc,γ,L for 0≤µ≤µ0.
The asymptotic expressions for p and x ensure that there exist τ,K,λ∈R

such that

p(ξ)−µx(ξ)�Ke−λ|ξ |>0, |ξ |>τ, 0≤µ≤µ0. (A.30)
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Now define

µ∗ = sup{µ∈ [0,µ0] | p(ξ)−µx(ξ)�0 for all ξ ∈R}. (A.31)

By definition it follows from (A.29) that µ∗<µ0. Obviously, we have the
inequality µ∗x(ξ)� p(ξ) for all ξ ∈ R, but actually it is easy to see that
also µ∗x(ξ0) = p(ξ0) for some ξ0 ∈ [−τ, τ ]. From Corollary A.7 it now
immediately follows that µ∗x(ξ) = p(ξ), but this contradicts the linear
independence of x and p, establishing dim K(�c,γ,L)=1. To complete the
proof, it is enough to show that there exists a p∗ ∈ K(�∗

c,γ,L) which sat-
isfies p∗ � 0, as the strict positivity then follows immediately from Corol-
lary A.7. Thus assume to the contrary that p∗(ξ1) > 0>p∗(ξ2) for some
ξ1, ξ2 ∈ R. Lemma A.6 guarantees that we may assume that |ξ1 − ξ2| �
rmax − rmin. This means that there exists a continuous function h : R → R

such that
∫∞
−∞ p∗(ξ)h(ξ)dξ = 0, with supp(h)⊂ [τ1, τ2] for some τ1, τ2 ∈ R

satisfying τ2 − τ1<rmax − rmin. Theorem 2.1 now implies that there exists
an x ∈W 2,∞ such that �c,γ,Lx = h. We now consider the family of such
solutions x+µp for µ∈R. Noting that x satisfies the homogeneous equa-
tion (2.2) for large |ξ | and using similar arguments as above, one argues
that there exists a µ∗ ∈R such that y=x+µ∗p satisfies y�0 and y(ξ0)=0
for some ξ0 ∈ R. Since (−∞, τ1 + rmax] ∪ [τ2 + rmin,∞)= R, we may use
Lemma A.6 to conclude that y(ξ) does not vanish for all large |ξ |. By
possibly making the substitution ξ → −ξ , we may assume y(ξ) does not
vanish for all large ξ . However, Lemma A.2 now implies y(ξ)= 0 for all
ξ � ξ0, which gives the desired contradiction.

APPENDIX B: IMPLEMENTATION ISSUES

Performing the iteration step defined in (4.7) with µ = 0 amounts
to solving a boundary value problem on the real line. This observation
in principle allows one to perform the Newton iterations requiring the
help of a boundary value problem solver for ordinary differential equa-
tions only, if one truncates the problem to some appropriate finite inter-
val [T−, T+] with T−<0<T+. In our C++ implementation, the boundary
value problem solver COLMOD [8] was used at each iteration step. Since
the boundary value problem which has to be solved has degree three,
three boundary conditions need to be specified at each step. These con-
ditions were chosen to be φ(T±)=±1 and φ(0)= 0, in order to pick out
the unique translate. In addition, when evaluating the delay and advanced
terms in (4.7), the iterates were taken to satisfy φ(ξ)=−1 whenever ξ�T−
and φ(ξ)= 1 for ξ � T+. In the literature, other sets of boundary con-
ditions have been proposed, which require that at the boundary points
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ξ = T± solutions are matched up with the exponential eigenfunctions of
the corresponding linearization. However, since solutions have exponen-
tial behaviour at ±∞ , the distinction between these two sets of bound-
ary conditions vanishes numerically if the interval is chosen to be large
enough.

In order to perform the iteration (4.7) with µ �= 0, the COLMOD
code was adapted, roughly along the lines of [1,2], to collocate the delay
and advance terms directly. This required the usage of extra memory space
to accomodate the larger matrices involved and the use of a different lin-
ear system solver to allow for non block-diagonal matrices.

It remains to specify how a suitable starting value (φ0, c0) can be
supplied for the Newton iterations. It turns out that this is very hard in
general: very often the algorithm requires a very accurate initial guess to
converge. One has to use the technique of continuation to arrive at a
suitable starting value. In general, this means that one starts by solving
an “easy” problem to a certain degree of accuracy and gradually moves
toward the “hard” problem, using the solution of one problem as the
starting value for the next problem which lies “nearby” . As an example,
we mention that a continuation scheme for the family (5.2) can involve
varying combinations of the detuning parameter ρ, the size of the delay
term α and the size of γ . The continuity in parameter space which was
established in Proposition 3.2 shows that this is indeed a feasible strategy.
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