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Twist Character of the Fourth Order Resonant Periodic
Solution
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In this paper, we will give, for the periodic solution of the scalar Newtonian
equation, some twist criteria which can deal with the fourth order resonant
case. These are established by developing some new estimates for the periodic
solution of the Ermakov–Pinney equation, for which the associated Hill equa-
tion may across the fourth order resonances. As a concrete example, the least
amplitude periodic solution of the forced pendulum is proved to be twist
even when the frequency acroses the fourth order resonances. This improves
the results in Lei et al. (2003). Twist character of the least amplitude peri-
odic solution of the forced pendulm. SIAM J. Math. Anal. 35, 844–867.
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1. INTRODUCTION

In this paper we are concerned with the twist character of the 2π -periodic
solution of the scalar Newtonian equation

ẍ +g(t, x)=0, (1.1)

where g =g(t, x) :R×R→R is 2π -periodic in t and of class C0,4 in (t, x).
Special attention is paid to the case of the fourth order resonant periodic
solutions.
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Suppose that x =u(t) is a 2π -periodic solution of (1.1). The first order
approximation, or the linearization, of (1.1) near u(t) is the Hill equation

ẍ +a(t)x =0, (1.2)

where

a(t)=gx(t, u(t)).

Let λ1,2 denote the Floquet multipliers of (1.2). We say that (1.2) is hyper-
bolic, elliptic, or parabolic if |λ1,2| �=1, |λ1,2|=1 but λ1,2 �=±1, or λ1,2 =±1,
respectively.

Since (1.1) is a conservative system, the stability of the periodic solu-
tion u(t) of (1.1) cannot be deduced directly from that of (1.2). However,
the stability of u(t) ‘almost’ implies that (1.2) is stable, i.e., (1.2) is elliptic,
although some exceptional cases do happen [7].

When (1.2) is elliptic, we say that u(t) is resonant of the order k if
λk

1,2 = 1 but λ
j

1,2 �= 1 for all 1 � j < k. We say that u(t) is strongly reso-
nant if λk

1,2 =1 for some 1� k �4. When u(t) is not strongly resonant, or
4-elementary [12], or has no resonances up to order 4, the stability of u(t)

can be studied using higher order approximation of (1.1) along u(t). In a
series of papers [10–13], R. Ortega gave an extensive study for the third
order approximation of (1.1) along u(t). That is, one considers the equa-
tion

ẍ +a(t)x +b(t)x2 + c(t)x3 +· · ·=0 (1.3)

with a(t) is as above and b(t), c(t) are

b(t)= 1
2
gxx(t, u(t)), c(t)= 1

6
gxxx(t, u(t)).

Here the solution u(t) of (1.1) has been transformed to the origin x(t)=0
of (1.3). Based on the theory of Birkhoff normal form [1, Section 3.6]
and the Moser twist theorem [5, 14], he has derived out the (first) twist
coefficient of (1.3) and then finds many interesting applications, especially
when (1.2) is within the first stability zone (for the definition, see Section
3 below). Later, some refinement and other applications of these results
are given in [3, 6, 8, 9, 18]. However, these applications deal with only the
cases that (1.2) is in the lower order stability zones.

In a recent work [2], motivated by the least amplitude periodic solu-
tion of the forced pendulum

ẍ +ω2 sin x =p(t), (1.4)
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where the frequency ω>0 and the forcing p(t) is 2π -periodic, the authors
have developed some interesting estimates so that (1.2) may be in arbi-
trarily higher order stability zones. It is also found there that the estimates
of the (unique) positive 2π -periodic solution r(t) of the Ermakov–Pinney
equation [16]

r̈ +a(t)r = 1
r3

(1.5)

are crucial in studying the twist character, because r(t) represents the
growth of the Floquet solutions of (1.2).

However, these works mentioned above are mainly concerned with the
non-strongly resonant case. The main aim of this paper is to develop some
new twist criteria so that the fourth order resonant case can be studied fol-
lowing the ideas in [12] and some satisfactory applications to (1.4) can be
obtained.

In order to describe the results, let us introduce some notation. We
use C(R/2πZ,R) to denote the space of continuous 2π -periodic real-val-
ued functions. For x ∈ C(R/2πZ,R) and an exponent α ∈ [1,∞], we use
‖x‖α to denote the Lα norm of x(t) over [0,2π ]. For any 0<σ1 �σ2, let

Cσ1,σ2 ={a(t)∈C(R/2πZ,R)|a(t) satisfies σ 2
1 �a(t)�σ 2

2 for all t}.

For any 1�k �4, define the set

�k ={ω>0|ω �=p/q for allp,q ∈N with 1�q �k}.

Then each �k is a countable union of intervals.
Recall that a basic case for (1.2) to have no strong resonances is that

the coefficient a(t)∈Cσ1,σ2 for some σ1, σ2, where σ1, σ2 are from the same
interval of �4. In this case, it is proved in [2] that the L4 norm of r(t), the
solution of (1.5), can be estimated using a connection between (1.5) and
the Riccati equation on the complex plane. See [2, Lemma 3.6].

In Section 2, we will find a new domain D2 of (σ1, σ2) so that
‖r‖4 can be estimated when a(t)∈Cσ1,σ2 . See Theorems 2.4 and 2.8. The
domain D2 contains the fourth order resonances σ1 =σ2 = (2k−1)/4, k∈N.
These estimates are very accurate in some sense and are crucial in the lat-
ter discussions because they enable us to study the cases where σ1, σ2 may
across the fourth order resonances (2k −1)/4, k ∈N.

In Section 3, we will present some new twist criteria which are based
on the estimates in Section 2 and some ideas in [2, 12]. The difference
between the results here and that in the previous work [2] is that we can
now study the fourth order resonances. See Theorems 3.1 and 3.2.
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In Section 4, we will apply the results to the twist character of peri-
odic solution of the scalar Newtonian equation (1.1). A particular exam-
ple is the forced pendulum (1.4). In this case, we will find an explicit
bound P(ω), which is defined on �3, such that if ‖p‖1 < P(ω) then the
least amplitude periodic solution xω(t) (see [2]) is of twist type, see The-
orem 4.1. Here the region �3 contains the fourth order resonances (2k −
1)/4, k∈N. The bound P(ω) is of order O(ω1/2) when ω is bounded away
from strong resonances. Moreover, at the fourth order resonances (2k −
1)/4, P ((2k −1)/4) has a positive limit

√
2/π as k →∞.

2. ESTIMATES OF THE PERIODIC SOLUTION OF THE
ERMAKOV–PINNEY EQUATION

We begin with an abstract result which will be useful for the existence
and estimates of periodic solutions.

Proposition 2.1. Let X be a Banach space. Suppose that P,Q:X →X

are completely continuous operators. Consider the operator T from X to
itself decomposed as

T x =Px +Qx. (2.1)

Define for r �0,

�P (r)= sup
x∈X,‖x‖�r

‖P(x)‖, �Q(r)= sup
x∈X,‖x‖�r

‖Q(x)‖.

If the equation

�P (ρ)+�Q(ρ)=ρ (2.2)

has non-negative solutions, then the operator T in (2.1) has at least one
fixed point x∗ satisfying ‖x∗‖�ρ∗, where ρ∗ is the least non-negative solu-
tion of (2.2). Moreover, if P and Q are Lipschitz continuous in B̄ρ∗ = {x ∈
X|‖x‖�ρ∗}, with the Lipschitz constants L1 and L2, respectively, then T has
a unique fixed point in B̄ρ∗ provided that L1 +L2 <1.

Proof. Under the assumption, the operator maps B̄ρ∗ into itself.
Thus the existence and the estimate of the fixed points can be obtained
by applying the Schauder Fixed Point Theorem on the domain B̄ρ∗ .

We remark that �P (r) and �Q(r) can be replaced by any functions
which are greater than �P (r) and �Q(r), respectively.
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Suppose that a(t) ∈ C(R/2πZ,R). In the following we are going to
study the Hill equation (1.2). Associated with (1.2) is the Ermakov–Pinney
equation (1.5) and the Ricatti equation (on the extended complex plane C)

ż= z2 +a(t), z(0)= z(2π). (2.3)

It is well known that (2.3) always has 2π -periodic solutions, with values
possibly in the extended complex plane C̄, see for instance the survey [4].
When (1.2) is elliptic, the 2π -periodic solutions of (2.3) take values in the
complex plane C. In this case, (1.5) has a unique positive 2π -periodic solu-
tion denoted by r(t). See [2, Lemma 3.3].

From [2], it is known that the estimate of r(t) is crucial to study
the twist condition of the third order approximation (1.3) of a non-linear
Newtonian equation. In the following, our goal is to get adequate bounds
on these solutions r(t) when (1.2) may across the fourth order resonances.

We always assume that a(t) has positive mean value. Let us define

σ 2 = 1
2π

∫ 2π

0
a(t)dt >0, ã(t)=a(t)−σ 2. (2.4)

Hereinafter, σ =σ(a)> 0. Under the change of variables y = z−σ i, prob-
lem (2.3) is transformed into

ẏ =2σ iy +y2 + ã(t), y(0)=y(2π). (2.5)

Assume further that σ ∈ �2, i.e., 2σ /∈ N. Then y(t) is a 2π -periodic
solution of (2.5) with value in C if and only if y ∈C(R/2πZ,C) satisfies

y(t)=
∫ 2π

0
χ(t, s)(y2(s)+ ã(s))ds, (2.6)

where the kernel χ(t, s) is

χ(t, s)=
{

e2iσ (t−s)

1−e−i4σπ if 0� s < t �2π,

e2iσ (t−s)

e−i4σπ−1
if 0� t � s �2π.

In the notation of Proposition 2.1, let us consider the Banach space
X = (C(R/2πZ,C),‖ · ‖∞) and define then operators P,Q :X →X by

Py ≡Lã, Qy =Ly2,

where

(Lh)(t)=
∫ 2π

0
χ(t, s)h(s)ds.
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Then problem (2.6) is equivalent to a fixed point equation

y =Py +Qy (2.7)

in the space X. It is easy to verify that P and Q are completely continu-
ous. Since

|χ(t, s)|≡ 1
2| sin 2πσ | ,

we have, for any y ∈X with ‖y‖∞ �ρ,

�P (ρ)≡‖Lã‖∞ � ‖ã‖1

2| sin 2πσ | ,

|(LQ)(y)(t)|=
∣∣∣∣∣
∫ 2π

0
χ(t, s)y2(s)ds

∣∣∣∣∣�ρ2 ·max
t

∫ 2π

0
|χ(t, s)|ds = πρ2

| sin 2πσ |
and, consequently,

�Q(ρ)� πρ2

| sin 2πσ | .

Proposition 2.2. Consider the periodic problem (2.3). Let σ and ã(t)

be as in (2.4). If

σ ∈�2 and ‖ã‖1 =
∫ 2π

0
|a(t)−σ 2|dt � sin2 2πσ

2π
, (2.8)

then (2.3) has solutions z1(t) and z2(t)(=z1(t)), which take values in C and,
for all t ,

|z1(t)− iσ |� τ(a) := | sin 2πσ |− (sin2 2πσ −2π‖ã‖1)
1/2

2π
� ‖ã‖1

| sin 2σπ | .
(2.9)

Proof. We will apply Proposition 2.1 to (2.7) by using the estimates
on �P (ρ) and �Q(ρ) as above. Note that the quadratic equation of ρ

‖ã‖1

2| sin 2πσ | + πρ2

| sin 2πσ | =ρ (2.10)

has non-negative solutions if and only if (2.8) is satisfied. In this case, the
least non-negative solution of (2.10) is ρ∗ = τ(a) which is defined in (2.9).
The second inequality in (2.9) is elementary. Thus the estimate (2.9) fol-
lows immediately from Proposition 2.1.
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Corollary 2.3. Let σ = σ(a) and τ = τ(a) be as in (2.4) and (2.9).
Assume that (2.8) is satisfied. Then the unique (positive) 2π -periodic solu-
tion r(t) of the Ermakov–Pinney equation (1.5) satisfies

(σ + τ)−1/2 � r(t)� (σ − τ)−1/2. (2.11)

Proof. Let

z(t)=− ṙ(t)

r(t)
+ i

r2(t)
. (2.12)

Then z(t) is a 2π -periodic solution of the Riccati equation (2.3). From
(2.9), we have

∣∣∣∣ 1
r2(t)

−σ

∣∣∣∣� |z(t)− iσ |� τ(a). (2.13)

Note that when (2.8) is satisfied, one has

τ(a)� ‖ã‖1

| sin 2σπ | � | sin 2σπ |
2π

<σ.

Now (2.11) is obvious.

When we study the twist coefficients in the latter sections, we need
to estimate the upper bounds of the L4 norm of r(t). As a direct conse-
quence of the L∞ estimates (2.11) for r(t), one has the following L4 esti-
mates:

(2π)1/2

σ + τ
�‖r‖2

4 � (2π)1/2

σ − τ
. (2.14)

The estimates (2.14) can be improved using more sophisticated tech-
niques.

Theorem 2.4. Assume that a(t)∈C(R/2πZ,R) satisfies a(t)�0 for all
t and conditions (2.8). Then we have the following estimates on the L4 norm
of the periodic solution r(t) of (1.5):

(2π)1/2

σ

(1+16σ 2)1/2

(1+16σ 2)1/2 +4τ
�‖r‖2

4 � (2π)1/2

σ

(1+16σ 2)1/2

(1+16σ 2)1/2 −4τ
. (2.15)

Since 0�τ <σ , it is easy to check that the estimates (2.15) are always
better than (2.14) when τ(a)>0.
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Proof. In order to obtain (2.15), using (2.12) we can obtain from
(2.13) a differential inequality on r(t)

ṙ2/r2 + (σ −1/r2)
2 � τ 2,

i.e.,

ṙ2 � 2σr2 −1− (σ 2 − τ 2)r4

r2
. (2.16)

By applying the comparison theorem for solutions of the first order ordi-
nary differential equations, one may find from (2.16) estimates on r(t) for
all t . However, we will not develop this.

As for the bounds of ‖r‖4, we rewrite the inequality (2.16) as

1
4
((r2)′)2 �2σr2 −1− (σ 2 − τ 2)r4. (2.17)

Let m=mint r(t) and M =maxt r(t). Since a(t)�0 for all t , by integrating
(1.5) over [0,2π ], we have

1
2π

∫ 2π

0
a(t)r(t)dt = 1

2π

∫ 2π

0

1
r3(t)dt

.

Thus mσ 2 � 1/m3 and m2 � 1/σ . Similarly, we have M2 � 1/σ . Conse-
quently, r2(t0)=1/σ for some t0 ∈ [0,2π ]. Applying the Poincaré inequality
to the function R(t) := r2(t)−1/σ on the interval [t0, t0 +2π ], we have

∫ 2π

0
Ṙ2dt =

∫ t0+2π

t0

Ṙ2dt � 1
4

∫ t0+2π

t0

R2dt = 1
4

∫ 2π

0
R2dt.

This yields

1
4

∫ 2π

0
((r2)′)2dt � 1

16

∫ 2π

0
(r2(t)−1/σ)2dt

= 1
16

‖r‖4
4 − 1

8σ
‖r‖2

2 + 2π

16σ 2
.

Integrating (2.17) over [0,2π ], we have

1
4

∫ 2π

0
((r2)′)2dt �2σ‖r‖2

2 −2π − (σ 2 − τ 2)‖r‖4
4.

From these two inequalities, we have
(

1
16

+σ 2 − τ 2
)

‖r‖4
4 +2π

(
1

16σ 2
+1

)
�
(

1
8σ

+2σ

)
‖r‖2

2.
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By the Hölder inequality, ‖r‖2
2 � (2π)1/2‖r‖2

4. Thus we have a quadratic
inequality on ‖r‖2

4

(
1
16

+σ 2 − τ 2
)

‖r‖4
4 +2π

(
1

16σ 2
+1

)
� (2π)1/2

(
1

8σ
+2σ

)
‖r‖2

4.

Finally we can obtain (2.15) by solving the inequality above.

Remark 2.5. When σ = σ(a) is large, by the definition of τ(a) we
have τ(a)�1/(2π). It follows from (2.15) that

‖r‖2
4 = (2π)1/2/σ +O(1/σ 2).

This shows that the estimates (2.15) are very accurate, because for
a(t)≡σ 2, one has r(t)≡1/σ 1/2 and

‖r‖2
4 = (2π)1/2/σ.

Lemma 2.6. Suppose that a(t)∈Cσ1,σ2 for some 0<σ1 �σ2. Then

σ1 �σ �σ2, (2.18)

‖ã‖1 �
4π
(
σ 2

2 −σ 2
) (

σ 2 −σ 2
1

)
σ 2

2 −σ 2
1

, (2.19)

where the right-hand side of (2.19) is understood as 0 when σ1 =σ2 and

‖ã‖1 �π
(
σ 2

2 −σ 2
1

)
, (2.20)

where the inequality is strict if σ1 <σ2.

Proof. The estimate (2.18) is obvious. Let us now prove the estimates
(2.19) and (2.20) on ‖ã‖1. Define

I ={t ∈ [0,2π ]|a(t)�σ 2}, J = [0,2π ]\I.

Let µ be the measure of I . Then
∫

I

(σ 2 −a(t))dt =
∫

J

(a(t)−σ 2)dt � min {(σ 2 −σ 2
1 )µ, (σ 2

2 −σ 2)(2π −µ)}.
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Thus

‖ã‖1 =
∫

I

(σ 2 −a(t))dt +
∫

J

(a(t)−σ 2)dt

� 2 min {(σ 2 −σ 2
1 )µ, (σ 2

2 −σ 2)(2π −µ)}
� 2 max

0�µ�2π
min{(σ 2 −σ 2

1 )µ, (σ 2
2 −σ 2)(2π −µ)}

= 4π(σ 2
2 −σ 2)(σ 2 −σ 2

1 )

σ 2
2 −σ 2

1

.

This proves (2.19). The estimate (2.20) can be obtained from (2.19),
because

‖ã‖1 � max
σ1�σ�σ2

4π(σ 2
2 −σ 2)(σ 2 −σ 2

1 )

σ 2
2 −σ 2

1

=π(σ 2
2 −σ 2

1 ).

Remark 2.7. For the estimate (2.20), if we consider a discontinuous
step-potential

A(t)=
{

σ 2
1 if 0� t <π,

σ 2
2 if π � t <2π,

where 0<σ1 <σ2, one has

σ 2 = σ 1
2 +σ 2

2

2
, ‖Ã‖1 =π(σ 2

2 −σ 2
1 ).

Thus the estimate (2.20) is optimal. When σ1 <σ2 and a(t) is continuous,
(2.20) is strict. This can be seen easily from the proof above.

Theorem 2.8. (i) There exists a positive function G2(ω) defined on �2
such that, if ω∈ ((n−1)/2, n/2)⊂�2, then

(n−1)/2<G2(ω)<ω, (2.21)

and, if G2(σ2)�σ1 �σ2, then (2.8) is satisfied for all a(t)∈Cσ1,σ2 .
(ii) There exists a positive function N2(σ1, σ2) defined on the domain

D2 ={(σ1, σ2)|G2(σ2)�σ1 �σ2, σ2 ∈�2} (2.22)

such that if a(t) ∈ Cσ1,σ2 for some (σ1, σ2) ∈ D2, then the solution r(t)

of (1.5) satisfies

‖r‖2
4 �N2(σ1, σ2). (2.23)

Moreover, both of the functions G2(ω) and N2(σ1, σ2) can be computed
using (2.29) and (2.30), respectively.
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Proof. (i) Using estimate (2.19), condition (2.8) can be implied by
the following assumption on σ1 and σ2:

4π(σ 2
2 −σ 2)(σ 2 −σ 2

1 )

σ 2
2 −σ 2

1

� sin2 2πσ

2π
for all σ ∈ [σ1, σ2]. (2.24)

Let us define

F(σ1, σ2;σ)=
(

sin 2πσ

2π

)2

− 2(σ 2
2 −σ 2)(σ 2 −σ 2

1 )

σ 2
2 −σ 2

1

(2.25)

and

F(σ1, σ2) := min
σ∈[σ1,σ2]

F(σ1, σ2;σ). (2.26)

Then (2.24) is equivalent to

F(σ1, σ2)�0. (2.27)

In the following we will prove that condition (2.27) can be rewritten
as G2(σ2)�σ1 �σ2, where the function G2(·) satisfies (2.21).

Note that when (n−1)/2<σ1 <σ2 <n/2 for some n∈N , we have

∂F

∂σ
(σ1, σ2;σ)= sin 4πσ

2π
− 4σ(σ 2

1 +σ 2
2 −2σ 2)

σ 2
2 −σ 2

1

.

Thus

∂F

∂σ
(σ1, σ2;σ)

∣∣∣∣
σ=σ1

= sin 4πσ1

2π
−4σ1 <−2σ1 <0,

and

∂F

∂σ
(σ1, σ2;σ)

∣∣∣∣
σ=σ2

= sin 4πσ2

2π
+4σ2 >2σ2 >0.

Therefore

F(σ1, σ2)=F(σ1, σ2;σ(σ1, σ2))

for some σ(σ1, σ2)∈ (σ1, σ2).
Fix a σ2 ∈ ((n−1)/2, n/2), n∈N. Note that when σ1 =σ2,

F(σ1, σ2)=F(σ2, σ2)=
(

sin 2πσ2

2π

)2

>0. (2.28)

In the following we prove that F(σ1, σ2)<0 when σ1 → (n−1)/2 +0.
To this end, let us prove that F((n − 1)/2, σ2) < 0. So let us assume that
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σ1 = (n − 1)/2 and 0 < σ − (n − 1)/2 � 1. We consider the following two
cases.

Case 1. n>1. We have(
sin 2πσ

2π

)2

≈ (σ−(n−1)/2)2,
2(σ 2

2 −σ 2)(σ 2−σ 2
1 )

σ 2
2 −σ 2

1

≈2(n−1)(σ−(n−1)/2).

Thus, by (2.25), F((n − 1)/2, σ2;σ) < 0 when 0 < σ − (n − 1)/2 � 1. So
F((n−1)/2, σ2) < 0 by (2.26).

Case 2. n=1. In this case, if 0<σ �1, we have

F(0, σ2;σ)=
(

sin 2πσ

2π

)2

− 2(σ 2
2 −σ 2)σ 2

σ 2
2

≈−σ 2 <0.

So F(0, σ2)<0 by (2.26).
The fact F((n−1)/2, σ2)<0, together with (2.28), implies that for any

fixed σ2 ∈ ((n− 1)/2, n/2), the equation F(σ1, σ2)= 0 has a (unique) solu-
tion σ1 =G2(σ2)∈ ((n−1)/2, σ2), which means that G2(σ2) satisfies (2.21).
Thus the function G2(σ2) is determined by

F(G2(σ2), σ2)=0. (2.29)

Now the inequality (2.27) can be expressed as G2(σ2)�σ1 �σ2.
(ii) For any given (σ1, σ2)∈D2, where D2 is defined by (2.22), we use

(2.9), (2.15), and (2.19) to define

N2(σ1, σ2;σ)= (2π(1+16σ 2))1/2

σ

(
(1+16σ 2)1/2 − 2| sin 2πσ |

π
+4

(
sin2

2πσ

4π2 − 2(σ2
2 −σ2)(σ2−σ2

1 )

σ2
2 −σ2

1

)1/2
)

for σ ∈ [σ1;σ2] and

N2(σ1, σ2)= max
σ∈[σ1,σ2]

N2(σ1, σ2;σ), (σ1, σ2)∈D2. (2.30)

It follows from (2.15) that the solution r(t) satisfies (2.23).

Remark 2.9. Let us compare the estimate (2.23) with some other
estimates to the solutions r(t) of (1.5) in literature.

(i) When 0<σ1 �σ2 �1/4, which implies that (1.2) is in the first sta-
bility zone, it is proved in [6] that

σ
−1/2
2 � r(t)�σ

−1/2
1 .

Hence we have

‖r‖2
4 � (2π)1/2/σ1 (2.31)
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in this case. Estimate (2.31) is better than (2.23). However, (2.31) does not
hold in higher order stability zones.

(ii) If a(t)∈Cσ1,σ2 for some (σ1, σ2) in the following domain

D4 :={(σ1, σ2)|(n−1)/4<σ1 �σ2 <n/4, n∈N},
it is proved in [2, Lemma 3.6] that r(t) has the following estimate:

‖r‖2
4 �N4(σ1, σ2):=max

{(
2π

σ1σ2

tan 2πσ2

tan 2πσ1

)1/2

,

(
2π

σ1σ2

tan 2πσ1

tan 2πσ2

)1/2
}

.

(2.32)

Note that the domain D4 does not contain the fourth order resonances
and the domain D2 does contain neighborhoods of the fourth order reso-
nances σ1 =σ2 = (2k −1)/4, k ∈N. It is this improvement that enables us to
develop the twist criteria for the fourth order resonant case. The compar-
ison between the domains D2 and D4 is given in Fig. 1.

In the applications below, both the estimates (2.23) and (2.32) can be
used. For simplicity, let us define

N(σ1, σ2)=




N2(σ1, σ2) if (σ1, σ2)∈D2 \D4,

N4(σ1, σ2) if (σ1, σ2)∈D4 \D2,

min{N2(σ1, σ2),N4(σ1, σ2)} if (σ1, σ2)∈D2 ∩D4.

(2.33)

Then, if a(t)∈Cσ1,σ2 for some (σ1, σ2)∈D2 ∪D4,

‖r‖2
4 �N(σ1, σ2). (2.34)

3. TWIST CRITERIA

Let us consider the equation

ẍ +a(t)x +b(t)x2 + c(t)x3 +· · ·=0, (3.1)

where a(t), b(t), c(t) ∈ C(R/2πZ,R), and the dots denote the terms of
order higher than 3. We will derive some new twist criteria for the equi-
librium x(t)≡0 (as a 2π -periodic solution of (3.1)).

The first-order approximation of (3.1) is the Hill equation (1.2). For
the Hill equation (1.2), by the change of variables x = −r sin ϕ, ẋ =
r cos ϕ,ϕ satisfies the following equation:

ϕ̇ =a(t) cos2 ϕ + sin2 ϕ. (3.2)
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Figure 1. Domains D2 and D4.

Since (3.2) is a periodic equation on the circle S1 =R/2πZ, or even on the
circle R/πZ, the rotation number of (3.2), or that of (1.2), is well defined:

θ = θ(a)= lim
|t |→∞

ϕ(t)

t
,

where ϕ(t) is any solution of (3.2). It is known that θ �0.
In the following, we always assume that a(t) ∈ C(R/2πZ,R) satisfies

a(t)� 0 for all t and (1.2) is elliptic. It is well known that this is equiva-
lent to

θ ∈�2.

See, e.g., [17]. In this case, the Floquet multipliers of (1.2) are λ1,2 =
exp(±i2πθ). When θ ∈ ((n − 1)/2, n/2), n ∈ N, we say that Eq. (1.2) is in
the nth stability zone. The third-order resonances mean that the rotation
number

θ = (3k −2)/3 or (3k −1)/3, k ∈N,

while the rotation numbers which do not correspond to the resonances up
to the order 3 are

θ ∈�3.
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Note that �3 is the union of countable open intervals. Since (1.2) is ellip-
tic, the Ermakov–Pinney equation (1.5) has a unique positive 2π -peri-
odic solution denoted by r(t)= r(t;a). Note that both of θ(a) and r(t;a)

depend upon the functions a(t) in a nonlinear way, which cannot be given
explicitly.

Let

F̂ (x0, y0)= (F̂1(x0, y0), F̂2(x0, y0))

be the Poincaré map of (3.1). Write F̂ in the complex form, with
z=x0 + iy0,

F(z, z̄)= F̂1((z+ z̄)/2, (z− z̄)/(2i))+ iF̂2((z+ z̄)/2, (z− z̄)/(2i)).

When λ = ei2πθ is not strongly resonant, F(z, z̄) is C∞ conjugate, in the
group of area-preserving diffeomorphisms, to

N(z, z̄)=λ(z+ iβ|z|2z+· · · )
and when θ = (2k −1)/4, k ∈N, i.e., λ=±i, F (z, z̄) is C∞ conjugate to

N(z, z̄)=λ(z+ iβ|z|2z+γ z̄3 +· · · ),
where β ∈R and γ ∈C, and the dots denote the terms of order higher than
3. See [12, Proposition 2.1]. These N(z, z̄) are called the Birkhoff normal
form of F . The coefficients β and γ , which depend only on a, b, c and are
invariant under conjugacies of area-preserving diffeomorphisms, are called
the twist coefficients of (3.1). When β �=0 in the first case and |β| > |γ | in
the second case, we say that the solution x(t)=0 of (3.1) (as a 2π -periodic
solution) is of twist type (see [12, Proposition 2.2]). In this case, the Moser
twist theorem is applicable and will yield the typical dynamical behavior
near 0 such as x(t)= 0 is stable in the sense of Lyapunov, and (3.1) has,
in a neighborhood of x(t)=0, infinitely many subharmonics with periods
tending to infinity and infinitely many quasi-periodic solutions.

Before stating the main results, let us define the functions on

�3 ={θ >0|3θ /∈N}
by

K1(θ)=
√

2
8

+max
{
− 3

16
cot(πθ),0

}
+max

{
− 1

16
cot(3πθ),0

}
, θ ∈�3,

K2(θ)=
{

|2+3 cos(2πθ)|/(8| sin(3πθ)|) if θ ∈ (0,1/3)∪ (2/3,1),

| cos(2πθ)|√−2 cos(2πθ)/(8| sin(3πθ)|) if θ ∈ (1/3,2/3)
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and K2(θ) is extended to �3 by 1-periodicity. Define then K:�3 −→R by

K(θ)=min{K1(θ),K2(θ)}.
In following, we will give a twist condition of (3.1) when c(t) is neg-

ative and b(t) may change sign. This case is motivated by the forced pen-
dulum (1.4). However, the statement of the results make use of θ(a) and
r(t;a).

Theorem 3.1. Assume that a(t)∈C(R/2πZ,R) satisfies a(t)�0 for all
t and (1.2) is elliptic without resonances up to order 3. Then there exists a
constant µ=µ(θ)> 0, depending on θ = θ(a), such that x(t)= 0 (as a 2π -
periodic solution of (3.1)) is of twist type provided that b(t) and c(t) sat-
isfy

max
t∈R

c(t)<−µ‖r‖2
4‖b‖2

4. (3.3)

Proof. Since (1.2) is elliptic, by [10, Proposition 7], (1.2) can be
transformed into a R-elliptic equation after rescaling [12]. This means that
the corresponding Poincaré mapping is a rigid rotation [10]. Note that the
condition for x(t) ≡ 0 to be of twist type is invariant after rescaling [12,
Lemma 2.5].

Since (1.2) has no resonances up to order 3, the rotation number θ is
in

�3 =�4 ∪{(2k −1)/4|k ∈N}.
Let λ=e±i2πθ be the Floquet multipliers of (1.2). Recall the arguments in
refs. [12] and [2, Section 3.2]. Suppose that t0 is some critical point of r(t)

and ϕ:R→R is defined by

ϕ(t)=
∫ t

t0

dt

r2(t)
.

By [12, Propositions 2.4 and 4.4] and [2, Propositions 3.1 and 3.2], let us
introduce

β = (r(t0))
−1/2

[
−3

8

∫ t0+2π

t0

c(t)r4(t)dt

+
∫ ∫

[t0,t0+2π ]2
b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)−ϕ(s)|)dt ds

+ 3
16

cot(πθ)

∣∣∣∣∣
∫ t0+2π

t0

b(t)r3(t)e−iϕ(t)dt

∣∣∣∣∣
2
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+ 1
16

cot(3πθ)

∣∣∣∣∣
∫ t0+2π

t0

b(t)r3(t)e3iϕ(t)dt

∣∣∣∣∣
2

 , (3.4)

or, equivalently,

β = (r(t0))
−1/2

[
−3

8

∫ t0+2π

t0

c(t)r4(t)dt

+
∫ ∫

[t0,t0+2π ]2
b(t)b(s)r3(t)r3(s)χ2(|ϕ(t)−ϕ(s)|)dt ds

]
, (3.5)

where

χ1(x) = 3 sin x −2 sin3 x

8
, x ∈ [0,2πθ ],

χ2(x) = 3
16

cos(x −πθ)

sin(πθ)
+ 1

16
cos 3(x −πθ)

sin 3πθ
, x ∈ [0,2πθ ]

and the factor (r(t0))
−1/2 >0 is not of importance in the estimates below.

When θ = (2k −1)/4, k ∈N, or λ= exp(i2πθ)=±i, we have an addi-
tional coefficient

|γ | = (r(t0))
−1/2

∣∣∣∣18
∫ t0+2π

t0

c(t)r(t)4e4iϕ(t)dt

−1
8

∫ ∫
[t0,2π+t0]2

b(t)b(s)r3(t)r3(s)χ3(t, s)ds dt

∣∣∣∣,
where

χ3(t, s)= ei(2ϕ(t)+ϕ(s))
(

sin |ϕ(t)−ϕ(s)|± e−i(ϕ(t)−ϕ(s))
)

t, s ∈ [0,2π ].

Recall that x(t)≡0 is of twist type, if

β �=0 for θ ∈�4,

or

|β|> |γ | for θ = (2k −1)/4, k ∈N.

Using the formulas (3.4) and (3.5), it is proved in [2, Section 3.5] that
if θ ∈�3, then

|β|>(r(t0))
−1/2


3

8

∫ 2π

0
|c(t)|r4(t)dt −K(θ)

(∫ 2π

0
|b(t)|r3(t)dt

)2

 .
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When θ = (2k −1)/4 for some k ∈N, since

|χ3(t, s)| =
∣∣∣sin |ϕ(t)−ϕ(s)|± e−i(ϕ(t)−ϕ(s))

∣∣∣
�max

x∈R

| sin |x|± e−ix |

=max
x∈R

∣∣∣∣32 ± sin(2|x|)− 1
2

cos(2|x|)
∣∣∣∣
1/2

=
(

3+√
5

2

)1/2

=: c0,

we have, by noticing that b(t), c(t), r(t) are 2π -periodic,

|γ | � (r(t0))
−1/2

[
1
8

∫ 2π

0
|c(t)r4(t)|dt+1

8

∫∫
[0,2π ]2

|χ3(t, s)‖b(t)‖b(s)|r3(t)r3(s)dtds

]
,

� (r(t0))
−1/2


1

8

∫ 2π

0
|c(t)|r4(t)dt + c0

8

(∫ 2π

0
|b(t)|r3(t)dt

)2

 .

Thus x(t)=0 is of twist type when

3
8

∫ 2π

0
|c(t)|r4(t)dt >K(θ)

(∫ 2π

0
|b(t)|r3(t)dt

)2

if θ ∈�4, (3.6)

1
4

∫ 2π

0
|c(t)|r4(t)dt >

(
K(θ)+c0

8

)(∫ 2π

0
|b(t)|r3(t)dt

)2

if θ=2k−1
4

, k ∈N.

(3.7)

Note that (∫ 2π

0
|b(t)|r3(t)dt

)2

�‖r‖6
4‖b‖2

4

and if c(t)<0 for all t , then
∫ 2π

0
|c(t)|r4(t)dt � (−max

t
c(t))‖r‖4

4.

Thus these conditions (3.6) and (3.7) can be guaranteed, respectively by

max
t

c(t)<−8
3
K(θ)‖r‖2

4‖b‖2
4 if θ ∈�4,

max
t

c(t)<−
(

4K(θ)+ c0

2

)
‖r‖2

4‖b‖2
4 if θ = 2k −1

4
, k ∈N.
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As a result, one can take µ in (3.3) as

µ=



8
3K(θ) if θ ∈�4,

4K(θ)+
(

3+√
5

8

)1/2
if θ = 2k−1

4 , k ∈N.
(3.8)

�
In the next result, we assume that a(t) in (3.1) is in Cσ1,σ2 for some

(σ1, σ2) and will derive a twist result from Theorem 3.1 for (3.1).
Let In = (an, bn), n∈N, denote all intervals of �3

�3 =
⋃
n∈N

In.

Explicitly, for k ∈N,

I4k−3 =
(

k −1, k − 2
3

)
, I4k−2 =

(
k − 2

3
, k − 1

2

)
,

I4k−1 =
(

k − 1
2
, k − 1

3

)
, I4k =

(
k − 1

3
, k

)
.

Note that when a(t)∈Cσ1,σ2 , where (σ1, σ2) is in the following domain

D3 ={(σ1, σ2)|an <σ1 �σ2 <bn,n∈N
}
,

(1.2) has no resonances of order � 3. Meanwhile, the solution r(t) of the
corresponding Eq. (1.5) can be estimated when (σ1, σ2)∈D2 ∪D4. Thus we
introduce the following domain:

D=D3 ∩ (D2 ∪D4).

This domain D is plotted in Fig. 2. It is easy to see that D can be written
as

D={(σ1, σ2)|G(σ2)<σ1 �σ2, σ2 ∈�3
}
,

where the function G:�3 → [0,∞) is

G(σ2)=max{[3σ2]/3,min{G2(σ2), [4σ2]/4}}, (3.9)

where [x] denotes the greatest integer �x.
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Figure 2. Domain D.

Theorem 3.2. Assume that a(t) ∈ C(R/2πZ,R) is in Cσ1,σ2 for some
(σ1, σ2) ∈D. Then there exists a constant ν = ν(σ1, σ2) > 0, depending only
on (σ1, σ2), such that x(t)=0 (as a 2π -periodic solution of (3.1)) is of twist
type provided that b(t) and c(t) satisfy

max
t∈R

c(t)<−ν(σ1, σ2)‖b‖2
4. (3.10)

Explicitly, ν(σ1, σ2) can take

ν(σ1, σ2)=
{(

4K(σ2)+
(

3+√
5

8

)1/2
)

N(σ1, σ2) if 2k−1
4 ∈ [σ1, σ2] for some k ∈N,

8
3 K(σ2)N(σ1, σ2) otherwise,

(3.11)

where N(σ1, σ2) is defined by (2.33).

Proof. If a(t) ∈ Cσ1,σ2 , it is well known the rotation number θ of
(1.2) satisfies

σ1 � θ �σ2.

Note that, on each interval I from �3,K(θ) is non-decreasing. Thus

K(θ)�K(σ2).

Using the estimates ‖r‖2
4 � N(σ1, σ2) in (2.33) and (2.34), we know from

(3.8) that ν in (3.10) can be as in (3.11).
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Remark 3.3. If c(t)> 0 for all t , one can work out a twist criterion
as in Theorem 3.1. If

min
t∈R

c(t)>µ‖r‖2
4‖b‖2

4, (3.12)

where µ is as in (3.3), then x(t) = 0 is of twists type. Such a case does
happen in some singular repulsive equations [15]. One may use the twist
condition (3.12) to develop some practical twist conditions for singular
equations, as argued in Theorem 3.2. In fact, basing on the estimates (2.4),
one may develop also some twist criteria when b(t) and c(t) may change
sign, following some ideas in [2,6]. However, we will not do this because
we are here mainly interested in the forced pendulum (1.4).

4. APPLICATIONS TO THE NEWTONIAN EQUATIONS

4.1. Application to the Forced Pendulum

In this Section, we consider the concrete example (1.4) and will apply
the results above to improve the twist results on the least amplitude peri-
odic solution given in [2].

Let us recall some results of [2, Section 2]. Define for ω ∈ �1 =
(0,∞)\N,

α =α(ω)=
∫ ωπ

0 | cos s|ds

6| sin ωπ | , γ =γ (ω)= 1
2ω| sin ωπ | . (4.1)

If p(t)∈C(R/2πZ,R) satisfies the condition

27αγ 2‖p‖2
1 �4, (4.2)

then (1.4) has a 2π -periodic solution x =xω(t) such that ‖xω‖∞ is smallest
among all of 2π -periodic solutions of (1.4). (The solution xω(t) is called
the least amplitude periodic solution of (1.4) in ref. [2].) Moreover, xω(t)

satisfies

‖xω‖∞ �X∗(α, γ ), (4.3)

where X∗(α, γ ) is the minimal non-negative solution of the cubic equation

αX3 +γ ‖p‖1 =X. (4.4)

Explicitly,

X∗(α, γ )= 2
(3α)1/2

cos
ϑ +π

3
,

(
ϑ =arccos

(
3
2
γ ‖p‖1(3α)1/2

)
∈
(

0,
π

2

))
.
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One sees that ‖xω‖∞ is small when ω � 1. The existence condition (4.2)
can be rewritten as

‖p‖1 � 4
√

2
3

ω| sin ωπ |3/2

(∫ πω

0 | cos s|ds
)1/2

=:P1(ω). (4.5)

In the following we will prove that xω(t) is of twist type under more
restriction on ‖p‖1 than (4.5).

Theorem 4.1. There exists a positive function P(ω) defined on �3 such
that

(i) If ω∈�3 and p(t)∈C(R/2πZ,R) satisfies

‖p‖1 <P(ω),

then the least amplitude 2π -periodic solution xω(t) of (1.4) is of
twist type.

(ii) At fourth order resonances, we have limk→+∞ P((2k − 1)/4) =√
2/π .

(iii) P(ω) is of order O(ω1/2) when ω is bounded away from the res-
onances of order �4 and tends to +∞.

Proof. (i) Let ω∈�3 and p(t)∈C(R/2πZ,R). Suppose that (4.2), or
(4.5), is satisfied. We consider the third order approximation of (1.4) to
xω(t)

ẍ +aω(t)x +bω(t)x2 + cω(t)x3 +· · ·=0, (4.6)

where

aω(t)=ω2 cosxω(t), bω(t)=−ω2

2
sin xω(t), cω(t)=−ω2

6
cosxω(t).

In order to apply Theorem 3.2 to (4.6), introduce a parameter

η= (cosX∗(α, γ ))1/2. (4.7)

The condition

(ηω,ω)∈D=D3 ∩ (D2 ∪D4)

can be rewritten as

G(ω)/ω<η�1. (4.8)

See (3.9).
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Note from (4.3) that

−max
t

cω(t)� ω2

6
cosX∗(α, γ )= ω2η2

6
,

‖bω‖2
4 � (2π)1/2

(
ω2

2

)2

(sin X∗(α, γ ))2 = (2π)1/2

4
ω4(1−η4).

When η satisfies (4.8), the twist condition (3.10) can be ensured by

ω2η2

6
>ν(ηω,ω)

(2π)1/2

4
ω4(1−η4),

i.e.,

2η2 >3(2π)1/2ω2ν(ηω,ω)(1−η4), (4.9)

where ν(·, ·) is defined by (3.11).
Note that (4.9) is always satisfied for η=1. Thus we can combine con-

ditions (4.8) and (4.9) into a single inequality

Q(ω)<η�1, (4.10)

where the function Q:�3 → (0,1) is well defined.
In order to obtain the relationship between ω and ‖p‖1, we use rela-

tions (4.4) and (4.7). Let

X(ω)=arccos Q2(ω).

Note that the function X−αX3,X∈ [0,∞), attains its maximum 2/(3
√

3α)

at X0 = (3α)−1/2. Following (4.4), we define a function P̃ :�3 → (0,∞) by

P̃ (ω)=
{

2ω| sin ωπ |(X(ω)−α(ω)X3(ω)) if X(ω)� (3α(ω))−1/2,
4ω| sin ωπ |
3
√

3α(ω)
if X(ω)>(3α(ω))−1/2.

(4.11)

Consequently, if ‖p‖1 < P(ω) := min{P1(ω), P̃ (ω)}, then xω(t) is of twist
type.

(ii) Now we consider the fourth order resonances. To this end, let
ωk = (2k − 1)/4, k ∈ N. Then Q(ωk) in (4.10) is determined by conditions
(4.8) and (4.9).
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Let us first consider condition (4.8). Since (ηωk,ωk) /∈D4, it is neces-
sary that (ηωk,ωk)∈D3 ∩D2 and G(ωk)=G2(ωk), where G2(ωk) is deter-
mined by (2.29). Let ηk =G2(ωk)/ωk. It is easy to see that 0 <ηk < 1 and
ηk →1 as k →∞. Introduce the function

Fk(ξ)=1−η2
k

ω2
k

F (ηkωk,ωk; ξωk)=(1−η2
k)

(
sin 2πξωk

2πωk

)2

−2(1− ξ2)(ξ2 −η2
k),

where F is given by (2.25) and ξ ∈ [ηk,1]. By (2.29), there exists ξk ∈ (ηk,1)

satisfying the equations

0= ∂Fk(ξ)

∂ξ

∣∣∣
ξ=ξk

= (1−η2
k)

sin 4πξkωk

2πωk

−4ξk(η
2
k +1−2ξ2

k ) (4.12)

0=Fk(ξk)= (1−η2
k)

(
sin 2πξkωk

2πωk

)2

−2(1− ξ2
k )(ξ2

k −η2
k). (4.13)

In the following we will find an asymptotic formula for ηk from
(4.12) and (4.13). Set ηk = 1 − ζk, where ζk → 0. By (4.12), one has
ξk =1− ζk/2+o(ζk). Thus

1−η2
k =2ξk +o(ζk), 1− ξ2

k = ζk +o(ζk), ξ2
k −η2

k = ζk +o(ζk)

and
(

sin 2πξkωk

2πωk

)2

=
(

sin((2k −1)π/2−2πζkωk)

2πωk

)2

= 1

4π2ω2
k

(1+O(ζ 2
k ω2

k)).

Substituting these into (4.13), we obtain

ζk = 1

4π2ω2
k

(1+o(1)).

Thus

ηk =G2(ωk)/ωk =1− ζk =1− 1

4π2ω2
k

(1+o(1)). (4.14)

Next let us consider condition (4.9). Note that

4K(ωk)+
(
(3+

√
5)/8

)1/2 =:K∗(ωk)

takes only two positive constants K∗(1/4) and K∗(3/4). When η � ηk,
where ηk is as in (4.14) and k is large,
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2η2 =2+o(1)

and

3(2π)1/2ω2
kν(ηωk,ωk)(1−η4)

=3(2π)1/2ω2
kN(ηωk,ωk)K∗(ωk)(1−η4)

=3(2π)1/2ω2
k

(2π)1/2

ωk

(1+o(1))K∗(ωk)(1−η4)

=3(2π)1/2ω2
kN(ηωk,ωk)K∗(ωk)(1−η4)

�6πωk(1+o(1))K∗(ωk)
1

π2ω2
k

(1+o(1))

= 6K∗(ωk)

πωk

(1+o(1))=O(1/ωk).

These show that (4.9) is always satisfied when η � ηk, k � 1. Thus, when
k �1, we have

Q(ωk)=ηk =1− 1

4π2ω2
k

(1+o(1))

and

X(ωk)=arccos Q2(ωk)= 1
πωk

(1+o(1)).

By (4.1),

α(ωk)=
√

2
3

ωk(1+o(1)),

γ (ωk)=
√

2
ωk

and

(3α(ωk))
−1/2 = 1

21/4ω
1/2
k

(1+o(1)).

So X(ωk)<(3α(ωk))
−1/2 for k �1. By (4.11), we have

P̃ (ωk)=2ωk| sin ωkπ |(X(ωk)−α(ωk)X
3(ωk))=

√
2

π
+o(1).

Note from (4.5) that

P1(ωk)= 211/4ω
1/2
k

3
(1+o(1)).
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Figure 3. Twist result.

Thus

lim
k→∞

P(ωk)= lim
k→∞

P̃ (ωk)=
√

2
π

.

(iii) The conclusion can be obtained by finding the estimates on P̃ (ω).

The graph of P(ω) is plotted in Fig. 3, where the lower curve
describes the twist result in Theorem 4.1. A comparison to the existence
condition (4.5) is the upper curve shown in the figure. One may compare
this figure with Fig. 2 in [2].

4.2. Application to Newtonian Equations

The ideas above apply also to the periodic problem (1.1), where
g(t, x) is 2π -periodic in t . We will give only a brief discussion.
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Define

ḡ(x)= 1
2π

∫ 2π

0
g(t, x)dt, g̃(t, x)=g(t, x)− ḡ(x).

We assume here that there exists ū∈R such that ḡ(ū)=0 and ḡ′(ū) :=ω2 >0.
Set y =x − ū and

ĝ(y)= ḡ(y + ū)−ω2y.

Problem (1.1) is equivalent to

ÿ +ω2y + ĝ(y)+ g̃(t, y)=0,

y(0)=y(2π), ẏ(0)= ẏ(2π), (4.15)

hereinafter we write g̃(t, y) for g̃(t, y + ū) for short. Then y(t) is a solution
of (4.15) if and only if y ε C(R/2πZ,R) and satisfies

y(t)=
∫ 2π

0
χ(t, s)(−ĝ(y(s))− g̃(s, y(s)))ds, (4.16)

where the kernel χ(t, s) is given explicitly by

χ(t, s)=
{

cosω(π−t+s)
2ω sin ωπ

if 0� s � t �2π,
cosω(π−s+t)

2ω sin ωπ
if 0� t � s �2π.

Here we have assumed that ω /∈N.
Let us consider the Banach space X= (C(R/2πZ,R),‖·‖∞). Compar-

ing (4.16) with Proposition 2.1, we have

(Px)(t)≡−Lg̃(t, x(t)), (Qx)(t)=−Lĝ(x(t)),

where

(Lh)(t)=
∫ 2π

0
χ(t, s)h(s)ds.

Define

L1(ω) := 1
2ω| sin ωπ | =max

(t,s)
|χ(t, s)|, L2(ω) :=

∫ ωπ

0 | cos s|ds

ω2| sin ωπ | =max
t

∫ 2π

0
|χ(t, s)|ds.

Then

sup
x∈X,‖x‖∞�r

‖P(x)‖∞ �L1(ω) sup
x∈X,‖x‖∞�r

‖g̃(t, x(t))‖1 :=�P (r),

sup
x∈X,‖x‖∞�r

‖Q(x)‖∞ �L2(ω)max
|s|�r

|ĝ(s)| :=�Q(r).

From Proposition 2.1, we have
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Proposition 4.2. Assume that ḡ(ū)=0 for some ū and ω= (ḡ′(ū))1/2 ∈
�1. If the equation

�P (ρ)+�Q(ρ)=ρ, (4.17)

has non-negative solution, then (1.1) has at least one 2π -periodic solution
u(t)= ū+ δu(t),satisfying

‖δu‖∞ �ρ∗,

where ρ∗ is the minimal non-negative solution of (4.17). If, futhermore,

L1(ω) sup
|s|�ρ∗,t∈R

|gx(t, s)|+L2(ω) sup
|s|�ρ∗

|ĝx(s)|<1

then the solution is unique in the ball B̄(ū, ρ∗).

Let us consider the twist character of the periodic solution
u(t)= ū+ δu(t) of (1.1) in Proposition 4.2. Define

ā(t)=gx(t, ū), b̄(t)= 1
2
gxx(t, ū), c̄(t)= 1

6
gxxx(t, ū).

Let us express the coefficients in the third order approximation of (1.1) to
u(t) as

a(t)= ā(t)+ δa(t), b(t)= b̄(t)+ δb(t), c(t)= c̄(t)+ δc(t).

Let

Mk(ρ∗)= sup
‖v‖∞�ρ∗

∥∥∥∥∂kg

∂xk
(t, ū+v(t))

∥∥∥∥∞
, k =2,3,4.

Then

‖δa‖∞ �M2(ρ∗)ρ∗, ‖δb‖∞ � 1
2
M3(ρ∗)ρ∗, ‖δc‖∞ � 1

6
M4(ρ∗)ρ∗.

If

M2(ρ∗)ρ∗ <min
t

ā(t), (4.18)

we define σ1 and σ2 by

σ 2
1 =min

t
(ā(t)−M2(ρ∗)ρ∗), σ 2

2 =max
t

(ā(t)+M2(ρ∗)ρ∗). (4.19)

Since

max
t

c(t) � max
t

c̄(t)+‖δc‖∞, ‖b‖2
4 � (‖b̄‖4 + (2π)1/4‖δb‖∞)2,

we have the following twist result.
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Theorem 4.3. Consider the periodic problem (1.1). If (4.17) has non-
negative solutions,(4.18) is satisfied, and (σ1, σ2) ∈ D,where σ1, σ2 are
defined in (4.19), then the periodic solution u(t)=ū + δu(t) of (1.1) is of
twist type, provided that the following twist condition is satisfied:

max c̄(t)
t

<−
(

1
6
M4(ρ∗)ρ∗ +ν(σ1, σ2)

(
||b̄||4 + (2π)1/4M3(ρ∗)ρ∗/2

)2
)

.

ACKNOWLEDGMENTS

Supported by D.G.I. BFM2002-01308, Ministerio Ciencia y Tec-
nologı́a, Spain. Supported by the NNSFC (Nos. 10325102, 10301006),
China. TRAPOYT-M.O.E. (2001), and the National 973 Project (No.
TG1999075108), China.

REFERENCES

1. Chow, S.-N., Li, C. Z., and Wang, D. (1994). Normal Forms and Bifurcation of Planar Vec-
tor Fields, Cambridge University Press, Cambridge.

2. Lei, J., Li, X., Yan, P., and Zhang, M. (2003). Twist character of the least amplitude peri-
odic solution of the forced pendulem. SIAM J. Math. Anal. 35, 844–867.

3. Lei J., and Zhang, M., (2002). Twist property of periodic motion of an atom near a
charged wire. Lett. Math. Phys. 60, 9–17.

4. Mawhin, J. (1998). Nonlinear complex-valued differential equations with periodic, Flo-
quet or nonlinear boundary conditions. International Conference on Differential Equations
(Lisboa, 1995), World Scientific, River Edge, NJ, pp. 154–164.

5. Moser, J. (1962). On invariant curves of area preserving mappings of an annulus. Nachr.
Akad. Wiss. Göttingen Math. Phys. Kl. II, 1–20.
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7. Núñez D., and Ortega, R. (2000). Parabolic fixed points and stability criteria for nonlin-
ear Hill’s equations. Z. Angew. Math. Phys. 51, 890–911.
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