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Traveling Waves in Diffusive Random Media∗
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The current paper is devoted to the study of traveling waves in diffusive ran-
dom media, including time and/or space recurrent, almost periodic, quasipe-
riodic, periodic ones as special cases. It first introduces a notion of traveling
waves in general random media, which is a natural extension of the clas-
sical notion of traveling waves. Roughly speaking, a solution to a diffusive
random equation is a traveling wave solution if both its propagating pro-
file and its propagating speed are random variables. Then by adopting such
a point of view that traveling wave solutions are limits of certain wave-like
solutions, a general existence theory of traveling waves is established. It shows
that the existence of a wave-like solution implies the existence of a critical
traveling wave solution, which is the traveling wave solution with minimal
propagating speed in many cases. When the media is ergodic, some determin-
istic properties of average propagating profile and average propagating speed
of a traveling wave solution are derived. When the media is compact, cer-
tain continuity of the propagating profile of a critical traveling wave solution
is obtained. Moreover, if the media is almost periodic, then a critical travel-
ing wave solution is almost automorphic and if the media is periodic, then
so is a critical traveling wave solution. Applications of the general theory to
a bistable media are discussed. The results obtained in the paper generalize
many existing ones on traveling waves.

KEY WORDS: diffusive random media; recurrence; almost periodicity; almost
automorphy; traveling wave solution; wave-like solution; random equilibrium;
random fixed point.
AMS Subject Classification: 35K55, 35K57, 35B50.

1. INTRODUCTION

In this paper, we study traveling wave solutions of the following reaction-
diffusion equation in random media,
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∂tu= ∂2
xu+F(θt,xω,u), x ∈R, (1.1)

where ω∈Ω, (Ω,F,P) is a probability space, ((Ω,F,P), {θt,x}t,x,∈R) is a
metric dynamical system, and F : Ω × R → R is measurable and for each
fixed ω ∈ Ω, F(θt,xω,u) is Hölder continuous in t, x and Lipschitz con-
tinuous in u (see (H1) in Section 2 for detail).

Equation (1.1) includes the cases that the media is homogeneous (that
is, Ω is a singleton, in this case, F(θt,xω,u) = f (u), time periodic (that
is, Ω = {θt,0ω0|0 � t � T } for some ω0, where θt,xω0 = θt,0ω0 and θ0,0ω0 =
θT ,0ω0, in this case, F(θt,xω0, u)=F(θt,0ω0)=f (t, u) is of period T in t),
space periodic (i.e., Ω = {θ0,xω0|0 � x � p} for some ω0, where θt,xω0 =
θ0,xω0 and θ0,0ω0 =θ0,pω0, in this case, F(θt,xω,u)=F(θ0,xω0, u)=f (x, u)

is of period p in x), etc. On the other hand, a general time–space depen-
dent reaction-diffusion equation

∂tu= ∂2
xu+f (t, x, u), x ∈R, (1.2)

where f is a bounded and uniformly continuous function, can be embed-
ded into (1.1) with Ω = H(f ) = cl{ft,y(·, ·, ·)|τ, y ∈ R, fτ,y(t, x, u) = f (t +
τ, x + y,u)}, where the closure is taken under the compact open topol-
ogy, F=BΩ (BΩ is the Borel σ -algebra of Ω with respect to the compact
open topology), θt,xω(·, ·, ·)=ω(t +·, x +·, ·),P a θt,x-invariant measure on
Ω (the existence of such measure is guaranteed by the Krylov–Bogoliubov
theorem), and with F(θt,xω,u)=ω(t, x, u) for ω∈H(f ).

Equation (1.1) serves as mathematical models for many applied prob-
lems, for example, population genetics, gene development, phase transi-
tion, signal propagation, chemical kinetics, combustion, etc. (see [6,11,23,
24,26,35,45,55] and references). One of the central problems about (1.1)
is the traveling wave solution problem. In homogenous media, classically
a traveling wave solution is a solution u(t, x) with a fixed profile φ(·)
and a constant speed c, that is, u(t, x) = φ(x − ct), and has been stud-
ied for a long time (see for example [6,12–14,23,24,33,35,37,43–45,51,53,
59,60]). However, the study of traveling wave solutions in inhomogeneous
media has begun more recently. Nevertheless, there have been established
some basic theoretical foundations for traveling wave solutions in time
periodic media, space periodic media, time almost periodic media, general
time dependent media, and space recurrent media. For the time periodic
case, a traveling wave solution is defined to be a solution u(t, x) with a
periodically varying profile φ : R × R → R and a constant speed c, that
is, u(t, x) = φ(x − ct, t) and φ(x, t) is periodic in t (see [1]). In the space
periodic case, a traveling wave solution is defined to be of form u(t, x)=
φ(x − ct, x), where φ(x, y) is periodic in y (see [58,61]). The reader is
also referred to [28,38,55,56] for the study of traveling wave solutions in
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time and/or space periodic media. For definitions and basic properties of
tarveling wave solutions in time dependent media, see [46–48]. H. Mat-
ano in his talks at the Fifth Mississippi State Conference on Differential
Equations and Computational Simulations (2001) and the Fourth Inter-
national Conference on Dynamical Systems and Differential Equations
(2002) introduced a notion of traveling wave solutions in time independent
and spatially recurrent media. A solution u(t, x) of (1.2) with f (t, x, u)=
f (x, u) being recurrent in x is a traveling wave solution if u(t, x)=φ(x −
c(t), θ0,c(t)f ), where φ : R × H(f ) → R is continuous and c(·) is a real
valued function. It should be pointed that the concept of traveling wave
solutions of (1.1) introduced in the present paper extends all the above
mentioned concepts by taking Ω = H(f ) for f (t, x, u) = f (u) being both
time and space independent, or f (t, x, u)=f (t, u) being periodic (almost
periodic, recurrent) in t , or f (t, x, u)=f (x, u) being periodic (almost peri-
odic, recurrent) in x.

Since in nature, many systems are subject to irregular influences arisen
from various kind noise (see Section 3 for two examples arising from pop-
ulation genetics and phase transition), it is of great importance to study
traveling wave solutions in random media, and in particular, to inves-
tigate the existence, uniqueness and stability of traveling waves and to
understand the influence of the media and/or spatial randomness on the
wave profiles and wave speeds of such solutions. There are some works
toward to various aspects of propagating solutions to certain special ran-
dom equations (see for example [28,53,54,61]). However, the understand-
ing to traveling wave solutions in general random media is very little. Up
to the authors knowledge, there is no rigorous definition of solutions in
general random media which serve as an analog of the classical traveling
wave solutions in both time and space homogeneous media. As in the time
almost periodic case, most methods and techniques to study traveling wave
solutions in time independent equations will not be applicable to the study
of traveling wave solutions in random media.

The objective of the current paper is to provide some theoretical and me-
thological foundation for the study of traveling waves in random media and
discuss some simple applications. It first introduces the concept of random
traveling wave solutions, which is a natural extension of the classical traveling
wave solutions. To study the existence of such solutions, such a point of view
that traveling wave solutions are limits of certain wave like solutions is adopted.
A general existence theorem is then established and some deterministic proper-
ties of wave profile and wave speed are derived. When the media Ω is compact,
certain continuity of wave profile is also obtained. Applying the general results
to a bistable case, the existence of traveling wave solution is proved. The results
obtained in the paper generalize many existing ones on traveling waves.
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To be more specific, first in Section 2, among others, we introduce the
concept of random traveling wave solutions connecting two random equi-
libria (traveling wave solution for short) as well as the concept of wave-
like solutions. Roughly speaking, a random traveling wave solution is a
solution with a random propagating profile and a random propagating
speed. A wave-like solution is a solution that does not become flat as time
increases. Main results of the paper, Theorems A–C, are also stated in
this section. Theorem A concerns the existence of random traveling wave
solutions and deterministic properties of average propagating profile and
average propagating speed of a random traveling wave solution in gen-
eral random media and is proved in Section 5. It shows that the exis-
tence of a wave-like solution implies the existence of a critical traveling
wave solution and when (Ω,F,P), {θt,x}t,x∈R)(θt,x = θt,0 or θ0,x) is ergo-
dic, the average propagating profile and average propagating speed of a
regular traveling wave solution (see Definition 2.2) are deterministic. Note
that under appropriate conditions, a critical traveling wave solution is the
one among all the traveling wave solutions that has minimal average prop-
agating speed (see Remark 2.1.3)). Theorem B considers continuous prop-
erties of critical traveling wave solution when Ω is compact and is proved
in Section 6. It shows that the propagating profile of a critical traveling
wave solution is continuous in certain sense and that when Ω is periodic,
traveling wave solutions are also periodic. Theorem C is proved in Sec-
tion 7. It discusses the applications of Theorem A to a spatially homo-
geneous bistable equation and shows the existence of a wave-like solution
to such equation and then by Theorem A the existence of traveling wave
solutions. We present two examples arising from population genetics and
phase transition, namely, a random variant of the Fisher, or KPP, equa-
tion and a random variant of bistable equations in Section 3. For the
use in proving Theorems A–C, we present some preliminary lemmas in
Section 4.

We remark that there are numerous works on traveling wave solutions
to various evolution problems. See for example [1,6,12–14,23,24,35,37,44,
46–48,50,52,58–61] for the local continuous evolution problems, see [9,15,
18–20,29,34,39,55,63,64] for the discrete problems, see [7,8,10,16,17] for
nonlocal convolution problems, see [31,36,49,57,63] for the problems with
delays, see [22,32,40,41] for the problems of coupled evolution equations.
The contribution of the current paper is that it provides some theoreti-
cal and methological foundation for the further study of traveling waves
in random media. Uniqueness and stability of traveling waves in random
media as well as applications of general existence, uniqueness and stability
theories to general random equations of bistable and KPP types will be
studied in forthcoming papers.
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2. DEFINITIONS AND MAIN RESULTS

In this section we first introduce some definitions and then state our
main results. Throughout this paper, we assume that (1.1) satisfies two
hypotheses: (H1) and (H2).

(H1) F :Ω ×R→R is (F×BR,BR) – measurable, where BR denotes
the Borel σ -algebra of R. For each fixed ω ∈ Ω,Fω(t, x, u) = F(θt,xω,u)

is globally Hölder continuous in t, x ∈ R uniformly with respect to u in
bounded sets and is locally Lipschitz continuous in u∈ R uniformly with
respect to t, x ∈R, that is, for each fixed ω∈Ω and M >0, there are posi-
tive real numbers L(ω,M) and δ(ω,M) such that

|Fω(t, x, u)−Fω(s, y, u)| � L(ω,M)(|t − s|δ(ω,M) +|x −y|δ(ω,M)) (2.1)

and

|Fω(t, x, u)−Fω(t, x, v)| � L(ω,M)|u−v| (2.2)

for all t, s, x, y ∈R and −M � u, v � M. F(ω,0) is bounded, that is, there
is M0 >0 such that

|F(ω,0)| � M0

for ω∈Ω.
Note that in (H1), there are no regularity or measurability assump-

tions on L(ω,M) and δ(ω,M).
Let

X=Cb
unif (R)={u : R → R|u is bounded and uniformly continuous} (2.3)

with uniform convergence topology (i.e.‖ · ‖∞-topology). For each ω ∈
Ω and u0 ∈ X, it is known that (1.1) has a unique (local) solution,
denote it by u(t, ·;u0,ω), with u(0, ·;u0,ω)=u0(·) (see [27,30]). Moreover,
u(t, x;u0,ω) is continuous in t, x, and u0, and is measurable in ω. There-
fore (1.1) generates a (local) random dynamical system (see [4] for general
theory on random dynamical systems),

Πt,x : X ×Ω →X ×Ω, (2.4)

Πt,x(u0,ω)= (πt,x(u0,ω), θt,xω), (2.5)

where t ∈I (u0,ω)≡{t ∈R+|u(t, x;u0,ω) exists at t}, x ∈R, and πt,x(u0,ω)=
u(t, ·+x;u0,ω).

In the following, a function u: R → R is said to be piecewise con-
tinuous if it is continuous on R\E, where E is a countable isolated sub-
set of R, and for each x0 ∈E, both limx→x0−u(x) and limx→x0+u(x) exist.
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u : R→R is said to have finite discontinuous points if u is continuous on
R\E, where E is a finite subset of R. Let

BPC(R)={u : R→R|u is bounded, piecewise continuous, and has finite

discontinuous points}. (2.6)

Observe that for each u0 ∈BPC(R) and ω∈Ω, solution of (1.1) with ini-
tial data u0(·) exists (see [35]) and we may also write it as u(t, x;u0,ω).
We denote u(t, x;u0(ω),ω) as the solution of (1.1) with initial data u0(ω)

for each ω∈Ω.

Definition 2.1. (1) A map φ : Ω → X is called a random variable if it
is measurable.
(2) A random variable φ : Ω → X is called a random equilibrium solution
of (1.1) if

πt,x(φ(ω),ω)=φ(θt,xω)

for all t ∈R+ and x ∈R.
(H2) There are two bounded random equilibrium solutions u± : Ω → X of
(1.1) with

u+(ω)(x)−u−(ω)(x)� δ0

for some δ0 >0 and all ω∈Ω and x ∈R.

Definition 2.2. (1) A solution u(t, x;u0(ω),ω) of (1.1) is called a
random traveling wave solution connecting u±(ω) (traveling wave solution
for short) if u(t, ·;u0(ω),ω) exists for t ∈ R and there are U : R × Ω →
R,U(·,ω) ∈ X and is measurable in ω in the X-topology (i.e. U∗ : Ω →
X,U∗(ω)=U(·,ω) is measurable), and c : R×ω→R, c(t,ω) is measurable
in ω, such that for each ω∈Ω,

u0(ω) = U(·,ω),

u−(ω)(x) < U(x,ω)<u+(ω)(x) for x ∈R,

U(x,ω)−u±(ω)(x) → 0 as x →±∞,

and

u(t, x;u0(ω),ω)=U(·− c(t,ω), θt,c(t,ω)ω) for t ∈R.

Such traveling wave solution is also said to be generated by U(·, ·).
(2) A traveling wave solution generated by U(·, ·) : R×Ω →R is said

to be critical if for each V (·, ·) : R × Ω → R which generates a traveling
wave solution,

V (x + ξ1(ω),ω)

{
�U(x + ξ2(ω), θ0,ξ1(ω)−ξ2(ω)ω), x �0,

�U(x + ξ2(ω), θ0,ξ1(ω)−ξ2(ω)ω), x <0
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provided that ω∈Ω and ξ1(ω), ξ2(ω)∈R satisfy the equality,

V (ξ1(ω),ω)=U(ξ2(ω), θ0,ξ1(ω)−ξ2(ω)ω).

(3) A traveling wave solution generated by U(·,ω) is said to be regu-
lar if for each ω ∈Ω,c(t,ω) differentiable in t and uω(x) is differentiable
in x, where uω(x)=U(0, θ0,xω), and

inf
ω∈Ω

(
∂xU(0,ω)− ∂xu

ω(0)
)
>0.

Definition 2.3. A solution u(t, ·;v0(ω),ω) of (1.1) is a wave-like solu-
tion if for each ω∈Ω,

u−(ω)(x)<v0(ω)(x)<u+(ω)(x) for x ∈R,

lim
x→±∞

(
v0(θ0,yω)(x)−u±(θ0,yω)(x)

)=0

uniformly in y ∈R, v0(θ0,yω)∈X and is continuous in y in the X-topology,
and for each δ > 0 and ω ∈Ω, there is m(δ,ω)> 0 such that for all y ∈ R

and t �0,

x+(t, δ,ω, y)−x−(t, δ,ω, y) � m(δ,ω),

where

x+(t, δ,ω, y)= inf{x+|u(t, x;v0(θ−t,−yω), θ−t,−yω) � u+(θ0,−yω)(x)− δ

for x � x+}

and

x−(t, δ,ω, y)= sup{x−|u(t, x;v0(θ−t,−yω), θ−t,−yω) � u−(θ0,−yω)(x)+ δ

for x � x−}.

Such wave-like solution is also said to be generated by v0(ω).

Remark 2.1.

(1) If φ : Ω → X is a random equilibrium solution of (1.1), then
for each ω ∈Ω,φω(t, x)≡φ(θt,xω)(0)=φ(θt,0ω)(x) is a solution.
Moreover, if θt,x is independent of x (i.e., θt,xω = θt,0ω for all
t, x ∈ R and ω ∈ Ω), then so is φ (i.e., φω(t, x) = φω(t,0) for
all t, x ∈ R and ω ∈ Ω). Similarly, if θt,x is independent of t

(i.e., θt,xω = θ0,xω for all t, x ∈ R and ω ∈ Ω), then so is φ (i.e.,
φω(t, x)=φω(0, x) for all t, x ∈R and ω∈Ω).
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(2) The joint measurability of U(x,ω) and c(t,ω) is not assumed in
Definition 2.2.1). But U(x,ω) is always jointly measurable since
U(·,ω) is measurable in ω in the X-topology and U(x,ω) is uni-
formly continuous in x for each ω ∈Ω. In some cases it can be
shown that c(t,ω) is differentiable in t and hence is jointly mea-
surable (see for example Theorem C).

(3) In the case that the media is spatially homogeneous (that is,
θt,x is independent of x) and (Ω, {θt,0}t∈R) is almost periodic,
if one of u± is stable, then a critical traveling wave solution is
the one among all the traveling wave solutions that has minimal
average propagating speed (see [47]).

(4) When uω(x)≡U(0, θ0,xω) is independent of x (i.e., uω(x)=uω(0)

for all x ∈R and ω∈Ω), the condition in Definition 2.2.3),

inf
ω∈Ω

(
Ux(0,ω)−uω

x (0)
)
>0,

becomes
inf

ω∈Ω
Ux(0,ω)>0.

(5) Suppose that V0(·,ω) generates a traveling wave solution,
V0(·, θ0,yω)∈X is continuous in y ∈R in the X-topology, and

lim
x→±∞V0(x, θ0,yω)−u±(θ0,yω)(x)=0

uniformly with respect to y ∈R. Then V0(·,ω) generates a wave-
like solution. In fact, suppose that

u(t, x;V0(·,ω),ω)=V0(x − c0(t,ω), θt,c0(t,ω)ω).

Then

u(t, x;V0(·, θ−t,−yω), θ−t,−yω)

=V0(x − c0(t, θ−t,−yω), θ0,−y+c0(t,θ−t,−yω)ω).

By the assumption that limx→±∞V0(x, θ0,yω)−u±(θ0,yω)(x)=0 uniformly
with respect to y ∈R,

V0(x, θ0,−y+c0(t,θ−t,−yω)ω)−u±(θ0,−y+c0(t,θ−t,−yω)ω)(x)→0

as x →±∞ uniformly in y ∈R and t �0. It then follows that

u(t, x + c0(t, θ−t,−yω);V0(·, θ−t,−yω), θ−t,−yω)

−u±(θ0,−yω)(x + c0(t, θ−t,−yω))→0

as x →±∞ uniformly in y ∈ R and t � 0. Therefore u(t, ·;V0(·,ω),ω) is a
wave-like solution.
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Definition 2.4. ([25,51,62]) Let Y be a metric space and f : R→Y a
continuous function.

(1) f is said to be recurrent if for each sequence {α′
n} ⊂ R, there is

a subsequence {αn} ⊂ {α′
n} such that limn→∞ f (t + αn) exists in

the compact open topology, and for each sequence {αn}⊂R with
limn→∞ f (t +αn)=g(t) in the compact open topology, there is a
sequence {βn}⊂R such that limn→∞ g(t +βn)=f (t) in the com-
pact open topology.

(2) f is almost automorphic if for each sequence {α′
n}⊂R, there is a

subsequence {αn}⊂{α′
n} such that

lim
m→∞ lim

n→∞f (t +αn −αm)=f (t)

in the compact open topology.
(3) f is almost periodic if for each pair of sequences {α′

n}, {β ′
n}⊂ R,

there are subsequences {αn}⊂{α′
n} and {βn}⊂{β ′

n} such that

lim
m→∞ lim

n→∞f (t +αn +βm)= lim
n→∞f (t +αn +βn)

in the compact open topology.

Definition 2.5. ([4,21,51,62])

(1) ((Ω,F,P), {θt,x}t,x∈R) is ergodic if θt,xE=E(E∈F) for all t, x ∈R

implies that P(E)=0 or 1.
(2) Suppose that Ω is a compact metric space, F = BΩ, θt,x : Ω →

Ω is continuous, and θt,x is independent of t (x). Let σtω =
θt,0ω(σtω = θ0,tω) (note that (Ω, {σt }t∈R) is a compact dynamical
system). Then

(i) (Ω, {σt }t∈R) is a minimal if for any ω ∈Ω, {σtω|t ∈ R} is
dense in Ω.

(ii) (Ω, {σt }t∈R) is almost automorphic if it is minimal and
there is ω0 ∈ Ω such that σtω0 is an almost automoro-
phic function from R to Ω.

(iii) (Ω, {σt }t∈R) is almost periodic if it is minimal and there
is ω0 ∈Ω such that σtω0 is an almost periodic function
from R to Ω.

(iv) (Ω, {σt }t∈R) is periodic of period T if there is ω0 ∈ Ω

such that σt+T ω0 =σtω0 and Ω ={σtω0|0� t �T }.
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Remark 2.2.

(1) Let Y be as in Definition 2.4. For a given a continuous function
f : R→ Y, let

H(f )= cl{fτ |fτ (·)=f (·+ τ), τ ∈R},

where the closure is taken under the compact open topology, and
denote (H(f ), {σt }t∈R) as the time translation flow, σtg=g(·+ t).

Then if f is recurrent (almost automorphic, almost periodic, and
periodic), so is (H(f ), {σt }t∈R).

(2) Let Ω,θt,x be as in Definition 2.5 (2) with θt,xω = θt,0ω(θt,xω =
θ0,xω) and let σtω = σt,0ω(σtω = θt,0ω). If (Ω, {σt }t∈R) is almost
automorphic, then for residually many ω0 ∈Ω,σtω0 is an almost
automorhic function from R to Ω. If (Ω, {σt }t∈R) is almost peri-
odic, then, for all ω0 ∈ Ω,σtω0 is an almost periodic function
from R to Ω (see [25,51,62]).

We now state our main results.

Theorem A. Consider (1.1). Suppose that (1.1) has a wave-like solu-
tion generated by v0(·) :Ω → X. Then

(1) There is a critical traveling wave solution of (1.1). Moreover crit-
ical traveling wave solutions are unique in the sense that for each
pair U(·,ω) and V (·,ω) which generate critical traveling wave
solutions, there is a measurable function ξ(·) : Ω → R such that

V (·+ ξ(ω),ω)=U(·, θ0,ξ(ω)ω).

(2) If θt,x is independent of x, ((Ω,F,P), {θt,0}t∈R) is ergo-
dic, and U(x,ω) generates a regular traveling wave solution,
u(t, x;U(·,ω),ω) = U(x − c(t,ω), θt,0ω) with supω∈Ω |∂t ũ

ω(0)| <
∞, where ũω(t)=U(0, θt,0ω), then there is g : Ω → R integrable
such that

∂t c(t,ω)=g(θt,0ω)

and there are c∗ ∈R,U∗ ∈X, and u±∗ ∈R such that for a.e. ω∈Ω,

lim
t→∞

c(t,ω)

t
= c∗ =

∫
Ω

g(ω)dP(ω),

lim
t→∞

1
t

∫ t

0
U(x, θs,0ω)ds =U∗(x) for x ∈R,
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lim
t→∞

1
t

∫ t

0
u+(θs,0ω)(0)ds =u+

∗ ,

lim
t→∞

1
t

∫ t

0
u−(θs,0ω)(0)ds =u−

∗ ,

and

u−
∗ �U∗(x)�u+

∗ for x ∈R.

Moreover, if limx→±∞ U(x, θs,0ω)=u±(θs,0ω)(x)(≡u±(θs,0ω)(0))

uniformly with respect to s ∈R, then limx→±∞ U∗(x)=u±∗ .

(3) If θt,x is independent of t, ((Ω,F,P, {θ0,x}x∈R) is ergo-
dic, and U(·,ω) generates a regular traveling wave solution,
U(t, x;U(·,ω),ω) = U(x − c(t,ω), θ0,c(t,ω)ω) with ∂t c(t,ω) � δ̄0
for all t ∈R,ω∈Ω and some δ̄0 >0, then there is g: Ω →R with
both g and 1/g being integrable such that

∂t c(t,ω)=g(θ0,c(t,ω)ω)

and there are c∗ ∈R,U∗ ∈X, and u±∗ ∈R such that for a.e. ω∈Ω,

lim
t→∞

c(t,ω)

t
= c∗ = 1∫

Ω
1

g(ω)
dP(ω)

,

lim
t→∞

1
t

∫ t

0
U(x, θ0,sω)ds =U∗(x) for x ∈R,

lim
t→∞

1
t

∫ t

0
u+(θ0,sω)(0)ds =u+

∗ ,

lim
t→∞

1
t

∫ t

0
u−(θ0,sω)(0)ds =u−

∗ ,

and

u−
∗ �U∗(x)�u+

∗ for x ∈R.

Moreover, if limx→±∞(U(x, θ0,sω) − u±(θ0,sω)(x)) = 0 uniformly
in s ∈R, then limx→±∞ U∗(x)=u±∗ .

Theorem B. Assume that the conditions of Theorem A are satisfied
and U(·,ω) generates a critical traveling wave solution. Moreover, assume
that Ω is a compact metric space, F(θt,xω,u) is continuous in t, x ∈ R,ω ∈
Ω, and u∈X, and u±(ω) is continuous in ω. Then the folowing hold.
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(1) Let X̃ = Cb
unif (R) be equipped with the compact open topology.

Then Ω0 ={ω0 ∈Ω|U(·,ω) is continuous at ω0 in the X̃− topol-
ogy} is a residual subset of Ω (i.e. Ω0 is the intersection of
countably many open dense subsets of Ω).

(2) If θt,x is independent of x, then U(·,ω) is continous at ω0 ∈
Ω0 in the X-topology and θt,0Ω0 = Ω0 for all t ∈ R. More-
over, if ((Ω,F,R), {θt,0}t∈R) is minimal, then for each ω ∈
Ω0,U

ω(t)(·) ≡ U(·, θt,0ω) ∈ X̃ is a recurrent function from R to
X̃. If ((Ω,F,P), {θt,0}t∈R) is almost periodic, then Uω(t)(·) is
almost automorphic function from R to X̃ for each ω ∈ Ω0. If
(Ω,F,P), {θt,0}t∈R) is periodic of period T , then Ω0 = Ω =
{θt,0ω0|0 � t � T , θT ,0ω0 = ω0, θt,xω0 = θt,0ω0} for some ω0 and
U(·, t) = U(·, θt,0ω0) is periodic in t with period T . In this case,
let

c0 = c(T ,ω0)−C(0,ω0)

T

and

V (x, t)=U(x + c0t − c(t,ω0), θt,0ω0).

Then

u(t, x;U(·,ω0),ω0)=V (x − c0t, t)

and

V (x, t +T )=V (x, t).

(3) If θt,x is independent of t and periodic of period p in x,Ω =
{θ0,xω0)|0 � x � p} for some ω0, and there is T > 0 such that
c(T ,ω0)=p, then letting c0 =p/T and

V (x, t)=U(x + c0t − c(t,ω0), θ0,c(t,ω0)ω0),

there holds

u(t, x;U(·,ω0),ω0)=V (x − c0t, t)

and

V (x, t +T )=V (x, t).

Letting

W(x, y)=U

(
y − c

(
y −x

c0
,ω0

)
, θ

0,c
(

y−x
c0

,ω0

)ω0

)
,
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there holds
u(t, x;U(·,ω0),ω0)=W(x − c0t, x)

and

W(x, y +p)=W(x, y).

Remark 2.3.

(1) Theorem B(2) shows that if θt,x is independent of x and
((Ω,F,P), {θt,0ω}t∈R) is periodic of periodic T , then a traveling
wave solution is of form

u(t, x)=V (x − c0t, t),

where V (x, t +T )=V (x, t), which fits the definition given in [1].
(2) Theorem B(3) shows that if θt,x is independent of t and

((Ω,F,P), {θ0,xω}x∈R) is periodic of period p, then under some
proper assumption, a traveling wave solution is of form

u(t, x;U(·,ω0),ω0)=W(x − c0t, x),

where W(x, y + p) = W(x, y), which fits the definition given in
[58].

To state Theorem C on the applications of Theorem A and B to a bistable
case, we assume

(H3)

(1) (1.1) has three random equilibrium solutions u±(ω) and u0(ω)

with

inf
ω∈Ω,x∈R

{u+(ω)(x)−u0(ω)(x), u0(ω)(x)−u−(ω)(x)}>0.

(2) u±(ω) are globally stable in the sense that for all α > 0, β < 0,

and ω∈Ω,

lim
t→∞

(
u(t, x;u0(θτ,yω)(·)+α, θτ,yω)−u+(θt+τ,yω)(x)

)
=0

lim
t→∞

(
u(t, x;u0(θτ,yω)(·)+β, θτ,yω)−u−(θt+τ,yω)(x)

)
=0

uniformly in τ, y, x ∈R.
(3) u0(ω) is unstable in the sense that there are bounded integrable

functions g±(t) with limt→∞
∫ t

0 g−(s)ds =∞ such that

g−(t)� ∂uF (θt,xω,u0(θt,0ω)(x))�g+(t)

for t, x ∈R and ω∈Ω.



1024 Shen

Theorem C. Consider (1.1). Assume that (H1), (H2), and (H3) are
satisfied and that θt,xω = θt,0ω for t, x ∈ R and ω ∈ Ω. Then (1.1) has
a wave-like and therefore has a critical traveling wave solution. Moreover,
there is U(·,ω) such that it generates a critical traveling wave solution,
u(t, x;U(·,ω),ω)=U(x − c(t,ω), θt,0ω), and c(t,ω) is differentiable in t .

3. EXAMPLES

In this Section, we present two random reaction-diffusion equations
arising from population genetics and phase transition to which Theorems
A, B and/or C can be applied, namely, a random variant of the Fisher, or
KPP, equation to which Theorems A and B can be applied, and a ran-
dom variant of bistable equations to which Theorems A, B and C can be
applied.

3.1. A Random Variant of the Fisher, or KPP, Equation

Classically, the so called Fisher, or KPP, equation is as follows:

∂tu= ∂2
xu+mu(1−u), (3.1)

where m is a positive constant. (3.1) models the propagation of genetic
composition in a population ([26]). In this model, each individual of the
population belongs to one of three possible genotypes, aa, aA and AA.
The parameter u represents the fraction of alleles of type a or A amongst
the total number of alleles in the population and hence is a certain mea-
sure of the genetic composition. The reaction term mu(1 − u) is derived
from a knowledge of the relative survival fitness of the three genotypes
(m is hence called the fitness coefficient) and the diffusion term ∂2

xu arises
from the effect of random migration of the individuals.

In reality, the propagation of genetic composition in a population is
influenced by various variations of the environment (for example, local
temperature) which may be known only in certain probability. Also, the
habitat in which the population lives is spatially inhomogeneous in gen-
eral. Taking these facts into account, it is natural to use proper random
variants of the classical Fisher, or KPP, equation to describe the propaga-
tion of genetic composition in a population. The following is one of such
variants,

∂tu= ∂2
xu+F(θt,xω,u), (3.2)

where θt,x is a random process on some probability space (Ω,F,P), and
for all fixed t0, x0 ∈R and ω0 ∈Ω,f (u)≡F(θt0,x0ω0, u) is of Fisher or KPP
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type, that is, there are u−, u+ ∈R with u− <u+ such that f (u±)=0, f (u) 	=
0 for u 	=u±, and f ′(u−)>0, f ′(u+)<0.

Clearly, if F(θt,xω,u) = m(θt,xω)u(1 − u), where m(θt,xω) > 0 for all
t, x ∈R and ω∈Ω, then (3.2) is a random variant of (3.1). It describes the
propogation of genetic composition in a population in which the fitness
coefficient depends on both time and sapce in a random way. (3.2) with
F(θt,xω,u) = m(θt,xω)u(1 − u) satisfies (H1) provided that m: ω → R is a
bounded (F,BR)-measurable function and for all fixed ω∈Ω,m(θt,xω) is
globally Hölder continuous in t and x. It is also easy to see that (3.2) has
two random equilibria u−(ω)≡ 0 and u+(ω)≡ 1 and hence satisfies (H2).
Therefore Theorems A and B can be appliled to (3.2) with F(θt,xω,u)=
m(θt,xω)u(1 −u). The application of Theorems A and B to more general
type variant of the fisher, or KPP, equation will be studied in forthcoming
papers.

It should be mentioned that a proper regularization of stochastic var-
iant of the Fisher, or KPP, equation gives rise to a random one and there-
fore, the present work would have impact on the study of front propaga-
tion in certain stochastic parabolic equations. For example, consider the
following stochastic variant of (3.1),

du= (∂2
xu+m(x)u(1−u))dt +u(1−u)◦dW(t,ω), (3.3)

where m(x) is a bounded smooth function, (W(t, ·))t∈R is a two-sided
scalar Wiener process on the probability space (Ω,F,P),

�=C0(R,R)≡{ω∈C(R,R)|ω(0)=0}
endowed with the compact open topology, P is the corresponding Wie-
ner measure, F is the P-completion of FB (FB is the Borel σ -algebra on
�), and ◦dW(t,ω) denotes Stratonovich’s differential. Let ε ∈ (0,1) and let
j ∈C∞(R) be compactly supported in (0, 1) with j �0 and

∫
R j (ξ)dξ =1.

Consider the mollifier jε(ξ)= ε−1j (ε−1ξ) and define

sε(ω)=
∫ ∞

0
j ′
ε(ξ)dW(ξ,ω).

Obviously,

sε(θtω)=
∫ ∞

0
j ′
ε(ξ − t)dW(ξ,ω),

where θt is the so called canonical dynamical system on (Ω,F,P) defined
by

θtω(·)=ω(·+ t)−ω(t) for all t ∈R.
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The following random equation can be viewed as a regularization of (3.3),

∂tuε = ∂2
xuε + (m(x)+ sε(θtω))uε(1−uε). (3.4)

(3.4) is a random variant of (3.1) though (H1) is not satisfied (m(x) +
sε(θtω) is locally but may not be globally Hölder continuous for some ω∈
Ω). Nevertheless, some concepts and techniques introduced in the present
paper could be applied to (3.4). We will explore applications of the present
work to certain stochastic parabolic equations somewhere else.

3.2. A Random Variant of Bistable Equations

Equation

∂tu= ∂2
xu+ (1−u2)(u−a), (3.5)

where a(−1 < a < 1) is a constant, is a so called bistable equation. Note
that (3.5) has three and only three constant solutions u− =−1, u0 =a,u+ =
1 (u− <u0 <u+) and u± are stable and u0 is unstable. (3.5) has been used
to describe front propagation in many applied problems including phase
transition and nerve propagation. Physically W(u)=− ∫ u

(1−ξ2)(ξ −a)dξ ,
the so called double well potential, arises from the free energy or entropy
and ∂2

xu arises from the internal interaction energy. When the two wells of
W have equal size (i.e. a = 0), (3.5) is usually called Allen–Cahn equation,
which models the grain boundary motion in a solid material ([2]). In this
case, u(t, x) is an order parameter representing the state of the material at
time t and position x. The minima u=±1 of W are the pure phases and
the grain or antiphase boundary is the interface between two regions, one
with order parameter 1 and the other −1.

Similarly, in reality, it is important to use proper random variants of
bistable equations to describe front propagation in those physical and bio-
logical problems traditionally modelled by (3.5). Here is an example of
such random variants,

∂tu= ∂2
xu+F(θt,xω,u), (3.6)

where θt,x is a random process on some probability space (Ω,F,P), and
for all fixed t0, x0 ∈ R and ω0 ∈Ω,f (u)≡F(θt0,x0ω0, u) is of bistable type,
that is, there are u±, u0 ∈ R with u− <u0 <u+ such that f (u±)= f (u0)=
0, f (u) 	=0 for u 	=u±, u0, and f ′(u±)<0, f ′(u0)>0.

Clearly, F(θt,xω,u)= (1−u2)(u−a(θt,xω)) with −1<a(θt,xω)<1 is of
bistable type. (3.6) with F(θt,xω,u)= (1−u2)(u−a(θt,xω)) (−1<a(θt,xω)<

1) satisfies (H1) and (H2) provided that for all ω ∈Ω,a(θt,xω) is globally
Hölder continuous in t and x. Moreover, if θt,x depends only on t (i.e.
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θt,xω = θt,0ω for all t, x ∈ R and ω ∈Ω) and −1/4 �a(θt,xω)� 1/4, then it
is not difficult to prove that (3.6) also satisfies (H3). In fact, it is easily
seen that u± : Ω → R, u±(ω)=±1, are two random equilibria of (3.6). By
monotone random dynamical system theory (see [5]), there is at least one
random equilibrium u0 : Ω → R of (3.6) with −1/4 � u0(ω) � 1/4 for all
ω ∈Ω. Moreover, since 1 − (u0(ω))2 − 2u0(ω)(u0(ω)− a(ω))� 11/16, every
random equilibrium lying between −1/4 and 1/4 is unstable and hence is
unique. The rest of (H3) can be easily verified. Therefore, Theorems A, B,
as well as C can all be applied.

4. PRELIMINARY LEMMAS

In this section we present some lemmas to be used in later sections to
prove Theorems A–C.

Let X=Cb
unif (R) be as in (2.3) and Πt : X×Ω →X×Ω be as in (2.4)

and (2.5). Let u∗
0(ω) be as follows,

u∗
0(ω)(x)=

{
u+(ω)(x) for x �0,

u−(ω)(x) for x <0.
(4.1)

Clearly, u∗
0 ∈ BPC(R), where BPC (R) is as in (2.6).

Lemma 4.1. Consider

∂tu= ∂2
xu+q(t, x)u, x ∈R, t >0. (4.2)

where q is a bounded and continuous function. Let u(t, x) be a nonzero clas-
sical solution of (4.2).

(1) For each t >0, the zero set of u(t, x),

z(t)={x ∈R|u(t, x)=0}

is a discrete subset of R.
(2) If at (t0, x0) both u and ux vanish, then there is a neighborhood

N = [t0 − δ, t0 + δ]× [x0 − ε, x0 + ε] of (t0, x0) such that

(i) u(t, x0 ± ε) 	=0 for |t − t0|� δ.

(ii) u(t0 + δ, ·) has at most one zero in the interval [x0 − ε, x0 +
ε].

(iii) u(t0 − δ, ·) has at least two zeros in the interval [x0 − ε, x0 +
ε].

Proof. See [3].
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Lemma 4.2. For each u0 ∈BPC(R) and each ω∈Ω, if

lim
x→±∞

(
u0(x)−u±(ω)(x)

)=0,

then for all t >0 at which u(t, x;u0,ω) exists,

lim
x→±∞

(
u(t, x;u0,ω)−u±(θt,0w)(x)

)=0.

Proof. If follows from standard theory for parabolic equations ([27]).

Lemma 4.3. Let ωn ∈Ω and un, u0 ∈BPC(R)(n∈N) with supx∈R|un(x)|
being bounded. If F(θt,xωn, u) → f ∗(t, x, u) and un(x) → u0(x) as n → ∞
in the compact open topology, then for all t > 0 at which u∗(t, x;u0) and
u(t, x;un,ωn) exist,

u(t, x;un,ωn)→u∗(t, x;u0)

as n→∞ in the compact open topology, where u∗(t, x;u0) is the solution of

∂tu= ∂2
t u+f ∗(t, x, u)

with u∗(0, x;u0)=u0(x).

Proof. Let vn(t, x)=u(t, x;un,ω)−u∗(t, x;u0). Then vn(t, x) satisfies

∂tvn = ∂2
x vn + ∂uF (θt,xωn, u

∗
n(t, x))vn

+F(θt,xωn, u
∗(t, x;u0))−f ∗(t, x, u∗(t, x;u0)),

where u∗
n(t, x) lies between u(t, x;un,ωn) and u∗(t, x;u0). Let

ṽ(t, x)= vn(t, x)

1+x2
.

Then ṽn, satisfies

∂t ṽn = ∂2
x ṽn + 4x

1+x2
∂xṽn +

[
∂uF (θt,xωn, u

∗
n(t, x))+ 2

1+x2

]
v̄n

+F(θt,xωn, u
∗(t, x;u0))−f ∗(t, x, u∗(t, x;u0))

1+x2
.

Note that

ṽn(0, x)= vn(0, x)

1+x2
→0
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uniformly in x ∈R and

F(θs,xωn, u
∗(s, x;u0))−f ∗(s, x, u∗(s, x;u0))

1+x2
→0

uniformly in 0� s � t and x ∈R. It then follows that

ṽn(t, x)→0

as n→∞ uniformly in x ∈R. Hence vn(t, x)→0 and then u(t, x;u0,ωn)→
u∗(t, x;u0) as n→∞ in the compact open topology.

Lemma 4.4. Let uε(·), u0(·)∈BPC(R) be such that∫ ∞

−∞
|uε(x)−u0(x)|dx →0

as ε →0. Then for all t >0 at which u(t, x;uε,ω) and u(t, x;uε,ω) exist,

lim
ε→0

u(t, x;uε,ω)=u(t, x;u0,ω)

uniformly in x ∈R.

Proof. See [35].

Lemma 4.5.
(1) For all y1, y2 ∈R with y1 	=y2 and all t >0, there holds

u(t, ·;u∗
0(θ−t,−y1ω)(·+y1), θ−t,0ω)> (or <)

u(t, ·;u∗
0(θ−t,−y2ω)(·+y2), θ−t,0ω).

(2) Assume that

U(x)= lim
n→∞u(tn, x;u∗

0(θ−tn,−ynω)(·+yn), θ−tn,0ω)

and

Ũ (x)= lim
n→∞u(tn, x;u∗

0(θ−tn,−ỹn
ω)(·+ ỹn), θ−tn,0ω)

in the compact open topology for some tn →∞ and yn, ỹn ∈R. If
U(0)= Ũ (0), then U(x)≡V (x).

Proof. (1) Note that for all y ∈R,

u∗
0(θ−t,−yω)(x +y)=

{
u+(θ−t,0ω)(x) for x �−y,

u−(θ−t,0ω)(x) for x <−y.
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Hence for all y1, y2 ∈R with y1 	=y2,

u∗
0(θ−t,−y1ω)(x +y1)� (or �)u∗

0(θ−t,−y2ω)(x +y2)

for all x ∈R depending on y1 >( or <)y2, but

u∗
0(θ−t,−y1ω)(x +y1) 	≡u∗

0(θ−t,−y2ω)(x +y2).

(1) Then follows from comparison principal for parabolic equations.
(2) Without loss generality, suppose that yn > ỹn. Then

u∗
0(θ−tn,−ynω)(·+yn)� ( and 	=)u∗

0(θ−tn,−ỹn
ω)(·+ ỹn).

By (1),

u(t, x;u∗
0(θ−tn,−ynω)(·+yn), θ−tn,0ω)

>u(t, x;u∗
0(θ−tn,−ỹn

ω)(·+ ỹn), θ−tn,0ω)

for all x ∈R. Without loss of generality, we may also assume that

lim
n→∞u(tn −1, x;u∗

0(θ−tn,−ynω)(·+yn), θ−tn,0ω)=u∗(x)

and

lim
n→∞u(tn −1, x;u∗

0(θ−tn,−ỹn
ω)(·+ ỹn), θ−tn,0ω)= ũ∗(x)

in the compact open topology. Then we have u∗(x)� ũ∗(x) and

U(x,ω) =u(1, x;u∗(·), θ−1,0ω),

Ũ(x,ω) =u(1, x; ũ∗(·), θ−1,0ω)

for all x ∈R. If u∗(x) 	≡ ũ∗(x), then by comparison principle for parabolic
equations, U(x,ω)>Ũ(x,ω) for all x ∈R. But U(0,ω)= Ũ (0,ω)=u0(ω), a
contradiction. Therefore, u∗(x)≡ ũ∗(x) and then U(x,ω)≡ Ũ (x,ω).

Lemma 4.6. (1) For each t �0,ω∈Ω, and u0 ∈BPC(R) with

lim
x→±∞

(
u0(x)−u±(ω)(x)

)=0

and

u−(ω)(x)<u0(x)<u+(ω)(x) for −∞<x <∞,

there is unique ξ(t,ω)∈ [−∞,∞] such that

u(t, x;u∗
0(ω),ω)

{
>u(t, x;u0,ω) for x >ξ(t,ω),

<u(t, x;u0,ω) for x <ξ(t,ω).
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(2) Assume that

U(x)= lim
n→∞u(tn, x;u∗

0(θ−tn,−ynω)(·+yn), θ−tn,0ω)

and

V (x)= lim
n→∞u(tn, x;v∗

n(·), θ−tn,0ω)

in the compact open topology for some ω∈Ω, tn →∞, yn ∈R, and
v∗
n ∈BPC(R) with

lim
x→±∞

(
v∗
n(x)−u±(θ−tn,0ω)(x)

)=0

and

u−(θ−tn,0ω)(x)<v∗
n(x)<u+(θ−tn,0ω)(x) for x ∈R.

If U(0)=V (0), the either U(x)≡V (x) or

U(x)

{
>V (x) for x >0,

<V (x) for x <0.

Proof. (1) First, it is not difficult to see that there are u∗
ε (ω), uε ∈X

such that u∗
ε (ω)(x)=u∗

0(ω)(x) and uε(x)=u0(x) for |x|�1,∫ ∞

−∞
|u∗

ε (ω)(x)−u∗
0(ω)(x)|dx →0

and ∫ ∞

−∞
|uε(x)−u0(x)|dx →0

as ε → 0, and for 0 < ε � 1, u∗
ε (ω)(·) − uε(·) has exactly one simple zero.

Then by Lemma 4.1, for each t >0, there is ξε(t,ω)∈ [−∞,∞] such that

u(t, x;u∗
ε (ω),ω)

{
>u(t, x;uε,ω) for x >ξε(t,ω),

<u(t, x;uε,ω) for x <ξε(t,ω).

Take a sequence εn → 0. Without loss of generality, assume ξεn(t,ω) →
ξ(t,ω)∈ [−∞,∞]. Then by Lemma 4.4., we have

u(t, x;u∗
0(ω),ω)

{
�u(t, x;u0,ω) for x >ξ(t,ω),

�u(t, x;u0,ω) for x <ξ(t,ω).
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Note that the above holds for all t > 0. It then follows from Lemma 4.1
and comparison principle for parabolic equations that

u(t, x;u∗
0(ω),ω)

{
>u(t, x;u0,ω) for x >ξ(t,ω),

<u(t, x;u0,ω) for x <ξ(t,ω).

(2) Without loss of generality, we may assume that

U∗(x)= lim
n→∞u(tn −1, x;u∗

0(θ−tn,−ynω)(·+yn), θ−tn,0)

and

V∗(x)= lim
n→∞u(tn −1, x;v∗

n(·), θ−tn,0ω)

in the compact open topology. By (1), we may assume there is ξ∗(t) ∈
[−∞,∞] such that

U(x)=u(t, x;U∗(·), θ−t,0ω)

{
�u(t, x;V∗(·), θ−1,0ω)=V (x) for x >ξ∗(t),
�u(t, x;V∗(·), θ−1,0ω)=V (x) for x <ξ∗(t)

for 0� t �1. It then follows from Lemma 4.1 and comparison principle for
parabolic eqautions again that either V (x)≡U(x), or V (x)>U(x) for all
x ∈R, or V (x)<U(x) for all x ∈R, or

U(x)

{
>V (x) for x >ξ∗(1)

<V (x) for x <ξ∗(1).

Therefore, if U(0)=V (0), then either U(x)≡V (x) or

U(x)

{
>V (x) for x >0,

<V (x) for x <0.

Lemma 4.7. Let G : R×Ω →R be measurable in ω∈Ω (i.e. for each
y ∈ R,G(y, ·) : Ω → R is measurable) and continuous hemicompact in y ∈
R (i.e. for each ω ∈ Ω,G(·,ω) : R → R is continuous and any sequence
{yn}⊂R with |yn −G(yn,ω)|→0 as n→∞ has a convergent subsequence).
Then G has a deterministic fixed point (i.e. there is φ : Ω → R such that
G(φ(ω),ω)=φ(ω)) iff G has a random fixed point (i.e. there is measurable
φ : Ω → R such that G(φ)(ω),ω)=φ(ω)).

Proof. See [42].

Let Y and Z be two compact metric spaces and P : Z → Y be a
homomorphism with P(Z)=Y .
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Lemma 4.8. There is a residual subset Y0 ⊂Y such that for all y0 ∈Y0
and yn ∈ Y with yn → y0 as n → ∞, for each z0 ∈ P −1(y0), there are zn ∈
P −1(yn) such that zn → z0 as n→∞.

Proof. See [51] or [62].

Lemma 4.9. Suppose that θt,xω = θt,0ω(θt,xω = θ0,xω) for all t, x ∈ R

and ω ∈ Ω. Let σtω = θt,0ω(σtω = θ0,tω). if (Ω, {σt }t∈R) is ergodic and h ∈
L1(Ω,F,P) (h is real-valued), then there is Ω0 ∈F with P(Ω0) = 1 such
that

lim
t→∞

1
t

∫ t

0
h(σsω) ds =

∫
Ω

h(ω)dP(ω)

for all ω∈Ω0.

Proof. see [4].

5. PROOF OF THEOREM A

In this section, we shall prove Theorem A stated in Section 2.
Throughout this section, we assume that (1.1) has a wave-like solution
generated by v0 :Ω → X. Let

u0
0(ω)= u+(ω)(0)+u−(ω)(0)

2
.

Clearly, u0
0(·) : Ω → R is measurable, and

u−(ω)(0)+ δ̃0 �u0
0(ω)�u+(ω)(0)− δ̃0

for some δ̃0 >0 and all ω∈Ω.

Proof of Theorem A(1). Let u∗
0(ω) be as in (4.1). We shall prove that

for each t >0, there is y(t,ω) measurable in ω such that

u(t, y(t,ω);u∗
0(θ−t,−y(t,ω)ω), θ−t,−y(t,ω)ω)=u0

0(ω), (5.1)

and

U(x,ω)= lim
t→∞u(t, x +y(t,ω);u∗

0(θ−t,−y(t,ω)ω), θ−t,−y(t,ω)ω) (5.2)

exists and U(·,ω) generates a critical traveling wave solution. Moreover,
critical traveling solution is unique. We subdivide the proof into five steps.

Step 1. We prove that for each t >0 and ω∈Ω, there is y(t,ω) measurable
in ω∈Ω such that (5.1) holds. Moreover, y(t,ω) satisfying (5.1) is unique.
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In order to do so, first for given ω∈Ω and t >0, define

G(t, y,ω)=y +u0
0(ω)−u(t, y;u∗

0(θ−t,−yω), θ−t,−yω). (5.3)

Then by Lemma 4.3, G(t, y,ω) is continuous in y and measurable in ω.
We claim that

lim
y→±∞u(t, y;u∗

0(θ−t,−yω), θ−t,−yω)−u±(ω)(0)=0. (5.4)

In fact, for all yn →∞,

u∗
0(θ−t,−ynω)(x +yn)→u+(θ−t,0ω)(x)

in the compact open topology. Hence by Lemma 4.3 again,

u(t, yn;u∗
0(θ−t,−ynω), θ−t,−ynω) =u(t,0;u∗

0(θ−t,−ynω)(·+yn), θ−t,0ω)

→u(t,0;u+(θ−t,0ω)(·), θ−t,0ω)

=u+(ω)(0).

This implies that

lim
y→∞u(t, y;u∗

0(θ−t,−yω), θ−t,−yω)=u+(ω)(0).

Similarly, we can prove that

lim
y→−∞u(t, y;u∗

0(θ−t,−yω), θ−t,−yω)=u−(ω)(0).

By (5.4), there are y±(t,ω) with y−(t,ω)<0<y+(t,ω) such that

G(t, y,ω)�y − δ̃0

2
for y �y+(t,ω)

and

G(t, y,ω)�y + δ̃0

2
for y �y−(t,ω).

Let

M(ω)= max
y−(t,ω)�y�y+(t,ω)

|G(t, y,ω)|.

We have

G(t, y,ω)∈ [y−(t,ω)−M(ω), y+(t,ω)+M(ω)]

for each y ∈ [y−(t,ω)−M(ω), y+(t,ω)+M(ω)]. Hence there is y(t,ω) such
that

G(t, y(t,ω),ω)=y(t,ω)
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and then by (5.3), (5.1) holds. Moreover, for all {yn} with yn−G(t, yn,ω)|→
0 as n→∞, we must have y−(t,ω)�yn �y+(t,ω) for n�1. Hence there
is a convergent subsequence of {yn}. It then follows from Lemma 4.7 that
there is y(t,ω) measurable in ω such that (5.1) holds.

Next, we prove that y(t,ω) such that (5.1) holds is unique. For oth-
erwise, suppose that y1 <y2 are such that

u(t, yi;u∗
0(θ−t,−yi

ω), θ−t,−yi
ω)=u0

0(ω)

for i =1,2. By Lemma 4.5,

u(t, x;u∗
0(θ−t,−y1ω)(·+y1), θ−t,0ω)<u(t, x;u∗

0(θ−t,−y2ω)(·+y2), θ−t,0ω)

for all t >0 and x ∈R. But

u(t,0;u∗
0(θ−t,−y1(·+y1), θ−t,0ω) = u0

0(ω)

= u(t,0;u∗
0(θ−t,−y2ω)(·+y2), θ−t,0ω),

a contradiction. Therefore, y(t,ω) satisfying (5.1) is unique.

Step 2. Let

U(t, x;ω)=u(t, x +y(t,ω);u∗
0(θ−t,−y(t,ω)ω), θ−t,−y(t,ω)ω). (5.5)

We prove that limt→∞ U(t, ·;ω) exists in the X-norm and U(·,ω) =
limt→∞ U(t, ·;ω) is measurable in ω in the X−norm, limx→±∞(U(x,ω)−
u±(ω)(x))=0.

We first prove that for each t > 0 U(t, ·;ω)∈X is measurable in ω in
the X-norm. To do so, define

G1 : Ω → R×Ω, G1(ω)= (y(t,ω),ω),

G2 : R×Ω →R×X, G2(y,ω)= (y, u(t, ·;u∗
0(θ−t,−yω), θ−t,−yω),

and

G3 : R×X →X, G3(y, u)(·)=u(·+y).

Clearly G1 is (F,BR × F)-measurable and G3 is (BR × BX,BX)-mea-
surable . By Lemma 4.4, G2 is (BR,×F,BR × BX)-measurable. Hence
U(t, ·,ω)=G3 ◦G2 ◦G1(ω) is (F,BX)-measurable.

Next, we prove that for all t1, t2 with 0<t1 <t2,

U(t1, x;ω)

{
>U(t2, x;ω) for x >0

<U(t2, x;ω) for x <0.
(5.6)
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Notice that

U(t, x;ω) = u(t, x +y(t,ω);u∗
0(θ−t,−y(t,ω)ω), θ−t,−y(t,ω)ω)

= u(t, x;u∗
0(θ−t,−y(t,ω)ω)(·+y(t,ω)), θ−t,0ω).

Therefore,

U(t1, x;ω)=u(t1, x;u∗
0(θ−t1,−y(t1,ω)ω)(·+y(t1,ω)), θ−t1,0ω),

and

U(t2, x;ω)=u(t1, x;u(t2 − t1, ·;u∗
0(θ−t2,−y(t2,ω)ω)(·+y(t2,ω)),

θ−t2,0ω), θ−t1,0ω).

By Lemma 4.6(1), (5.6) holds. Hence limt→∞ U(t, x;ω) exists for each x ∈
R. Let

U(x,ω)= lim
t→∞U(t, x;ω).

Clearly U(·,ω)∈X and U(0,ω)=u0
0(ω).

We also claim that

lim
t→∞U(t, x;ω)=U(x,ω) (5.7)

uniformly in x ∈R and

lim
x→±∞(U(x,ω)−u±(ω)(x))=0. (5.8)

In fact, by the arguments similar to those in proving the existence of
y(t,ω) in step 1, there is ξ(t,ω) such that

u(t, ξ(t,ω);v0(θ−t,−ξ(t,ω)ω), θ−t,−ξ(t,ω)ω)=u0
0(ω).

Then by Lemma (4.6.1),

U(t, x,ω)

{
�u(t, x + ξ(t,ω);v0(θ−t,−ξ(t,ω)ω), θ−t,−ξ(t,ω)ω), x �0,

�u(t, x + ξ(t,ω);v0(θ−t,−ξ(t,ω)ω), θ−t,−ξ(t,ω)ω), x <0.

This implies that

lim
x→±∞U(t, x,ω)−u±(ω)(x)=0

uniformly in t > 0 and then (5.7), (5.8) follows. Moreover, by the measur-
ability of U(t, x,ω) in ω and (5.7), U(·,ω) is measurable in ω in the X-norm.
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Step 3. We prove that U(·,ω) generates a traveling wave solution, that is,
there is c(t,ω) measurable in ω such that

u(t, x + c(t,ω);U(·,ω),ω)≡U(x, θt,c(t,ω)ω). (5.9)

First, by the arguments similar to those in proving the existence of
y(t,ω) in step 1 again, there is c(t,ω) measurable in ω such that

u(t, c(t,ω);U(·,ω),ω)=u0
0(θt,c(t,ω)ω). (5.10)

Now, we show that (5.9) holds. Note that

U(x,ω)= lim
s→∞u(s, x;u∗

0(θ−s,−y(s,ω)ω)(·+y(s,ω)), θ−s,0ω).

Hence,

u(t, x + c(t,ω);U(·,ω),ω)

= lim
s→∞u(s + t, x;u∗

0(θ−s,−y(s,ω)ω)(·+y(s,ω)+ c(t,ω)), θ−s,c(t,ω)ω)

= lim
s→∞u(s + t, x;u∗

0(θ−s−t,ỹ(s+t,θt,c(t,ω)ω)θt,c(t,ω)ω)(·+ ỹ(s + t, θt,c(t,ω)ω)),

θ−(s+t),0(θt,c(t,ω)ω)),

where ỹ(t + s, θt,c(t,ω)ω)=y(s,ω)+ c(t,ω),
and

u(t, c(t,ω);U(·,ω),ω)=u0
0(θt,c(t,ω)ω).

Note also that

U(x, θt,c(t,ω)ω)

= lim
s→∞u(s + t, x;u∗

0(θ−(s+t),−y(s+t,θt,c(t,ω)ωθt,c(t,ω)ω)(·+y(s + t, θt,c(t,ω)ω),

θ−(s+t),0θt,c(t,ω)ω)

and

U(0, θt,c(t,ω)ω)=u0
0(θt,c(t,ω)ω),

Then by Lemma 4.5(2),

u(t, x + c(t,ω);U(·,ω),ω)≡U(x, θt,c(t,ω)ω),

that is , (5.9) holds.

Step 4. We prove that U(·,ω) generates a critical traveling wave solution.
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Suppose that V (·,ω) also generates a traveling wave solution. Given
ω∈Ω, suppose that ξ1(ω) and ξ2(ω) are such that

V (ξ1(ω),ω)=U(ξ2(ω), θ0,ξ1(ω)−ξ2(ω)ω).

Note that

V (x,ω)=u(t, x;u(−t, ·;V (·,ω),ω), θ−t,0ω).

Hence

V (x + ξ1(ω),ω) =u(t, x;u(−t, ·+ ξ1(ω);V (·,ω),ω), θ−t,ξ1(ω)ω)

= lim
t→∞u(t, x;u(−t, ·+ ξ1(ω);V (·,ω),ω), θ−t,ξ1(ω)ω).

Note also that

U(x + ξ2(ω), θ0,ξ1(ω)−ξ2(ω)ω)

= lim
t→∞u(t, x;u∗

0(θ−t,−y(t,θ0,ξ1(ω)−ξ2(ω)
θ0,ξ1(ω)−ξ2(ω)ω)

(·+ ȳ(t,ω)), θ−t,ξ1(ω)ω),

where ȳ(t,ω)=y(t, θ0,ξ1(ω)−ξ2(ω)ω)+ ξ2(ω). By Lemma 4.6(2), we have

U(x + ξ2(ω), θ0,ξ1(ω)−ξ2(ω)ω)

{
�V (x + ξ1(ω),ω), x �0,

�V (x + ξ1(ω),ω), x �0.

Therefore, U generates a critical traveling wave solution.

Step 5. We prove that critical traveling wave solutions are unique. Sup-
pose that both U and V generate critical wave solutions. First, by the
arguments similar to those in proving the existence of y(t,ω) in step 1
again, there is a measurable ξ(ω) such that V (ξ(ω),ω) = u0

0(θ0,ξ(ω)ω) =
U(0, θ0,ξ(ω)ω). Then by the arguments in step 4,

V (x + ξ(ω),ω)

{
�U(x, θ0,ξ(ω)ω) x �0,

�U(x, θ0,ξ(ω)ω) x �0.

On the other hand,

U(x, θ0,ξ(ω)ω)

{
�V (x + ξ(ω),ω) x �0,

�V (x + ξ(ω),ω) x <0.

Hence V (·+ ξ(ω),ω)=U(·, θ0,ξ(ω)ω).
The proof of Theorem (A 1) is then completed.
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Proof of Theorem A(2). Let σtω=θt,0ω. Suppose that U(·,ω) gener-
ates a regular travelimg wave solution,

u(t, x;U(·,ω),ω)=U(x − c(t,ω), σtω),

u(t, c(t,ω);U(·,ω),ω)=U(0, σtω)= ũω(t).

First of all, we have that

∂tu(t, c(t,ω);U(·,ω),ω)+ ∂t c(t,ω)∂xu(t, c(t,ω);U(·,ω),ω)

= ∂t ũ
ω(t)= ∂t ũ

σtω(0).

Therefore,

∂t c(t,ω)= ∂t ũ
σtω(0)− ∂2

xU(0, σtω)−F(σtω,u0
0(σtω))

∂xU(0, σtω)
.

Let

g(ω)= ∂t ũ
ω(0)− ∂2

xU(0,ω)−F(ω,u0
0(ω))

∂xU(0,ω)

Then g(ω) is integrable and

∂t c(t,ω)=g(σtω).

It follows from Lemma 4.9 that there is Ω1 ∈F with P(Ω1)=1 and c∗ ∈R

such that

lim
t→∞

c(t,ω)

t
= lim

t→∞
1
t

∫ t

0
g(σsω)ds = c∗ =

∫
Ω

g(ω)dP(ω)

for ω∈Ω1.

By Lemma 4.9, there is Ω2 ⊂Ω with P(Ω2)=1 and u±∗ ∈R such that

lim
t→∞

1
t

∫ t

0
u±(σsω)(0)ds =u±

∗

exists for any ω∈Ω2.
Now, let Q be the set of rational numbers. Since U(·,ω) ∈ X is

measurable in ω and U(x,ω) is bounded in x and ω, by Lemma 4.9
again, there is Ω3 ∈F with P(Ω3)= 1 such that limt→∞ 1

t

∫ t

0 U(x, σsω)ds

exists for all x ∈ Q and ω ∈ Ω3. Note that U(x,ω) is uniformly con-
tinuous in x. This implies that for all x ∈ R and ω ∈ Ω3, the limit
limt→∞ 1

t

∫ t

0 U(x, σsω)ds exists. Let

U∗(x)= lim
t→∞

1
t

∫ t

0
U(x, σsω)ds
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for x ∈ R and ω ∈ �3. We have U∗ ∈ X and U∗ is monotone. Note that
u±(ω)(x)=u±(ω)(0). Then

u−(ω)(0)<U(x,ω)<u+(ω)(0)

for all x ∈R. Hence

u−
∗ �U∗(x)�u+

∗ for x ∈R.

Clearly, if limx→±∞ U(x, σsω) = u±(σsω)(0) uniformly for s ∈ R , then
U∗(±∞)=u±∗ . Theorem A(2) then folows.

Proof of Theorem A(3). Let σxω= θ0,xω. Observe that

u(t, c(t,ω);U(·,ω),ω)=U(0, σc(t,ω)ω)=uω(c(t,ω)).

Since U(·,ω) generates a regular traveling wave solution, we have

∂tu(t, c(t,ω);U(·,ω),ω)+ ∂xu(t, c(t,ω);U(·,ω),ω)∂t c(t,ω)

= ∂t c(t,ω)∂xu
ω(c(t,ω)

and then

∂t c(t,ω)=−∂2
xU(0, σc(t,ω)ω)+F(σc(t,ω)ω,u0

0(σc(t,ω)ω))

∂xU(0, σc(t,ω)ω)− ∂xuω(c(t,ω))
.

Note that ∂xu
ω(c(t,ω))= ∂xu

σc(t,ω)ω(0). Let

g(ω)=−∂2
xU(0,ω)+F(ω,u0

0(ω))

∂xU(0,ω)− ∂xuω(0)
.

Then

∂t c(t,ω)=g(σc(t,ω)ω).

Since ∂t c(t,ω) � δ̃0 >0 for t ∈ R,ω ∈ Ω and some δ̃0 > 0, there is t (ξ,ω)

such that ξ = c(t (ξ,ω),ω). Hence

∂ξ t (ξ,ω)= 1

g
(
σξω

) .

By Lemma 4.9,

lim
n→∞

1
η

∫ η

0
∂ξ t (ξ,ω)dξ = 1

limt→∞ 1
t

∫ t

0 ∂t c(t,ω)dt

=
∫

Ω

1
g(ω)

dP(ω)
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for a.e. ω∈Ω. This implies that

lim
t→∞

c(t,ω)− c(0,ω)

t
= 1∫

Ω
1

g(ω)
dP(ω)

for a.e. ω∈Ω. The rest of Theorem A(3) follows from the same arguments
as in Theorem A(2).

6. PROOF OF THEOREM B

In this section, we shall prove Theorem B. Throughout this sec-
tion, we assume that Ω is compact, F=BΩ,F (θt,xω,u) is continuous in
t, x∈R,ω∈Ω, and u∈X,u±(ω) are continuous in ω. We assume that (1.1)
has a critical traveling wave solution generated by U(·,ω),u(t, x;U(·,ω),ω)=
U(x − c(t,ω), θt,c(t,ω)ω),U(0,ω)=u0

0(ω), where

u0
0(ω)= u+(ω)(0)+u−(ω)(0)

2
.

Proof of theorem B(1). First of all, let X̃ = Cb
unif (R) be equipped

with open compact topology. Let

Y = cl{(U(·,ω),ω)|ω∈Ω}⊂ X̃ ×Ω,

where the closure is taken in the X̃ ×Ω-topology. Let

P : Y → Ω, P (V (·),ω)=ω.

Then Y is a compact subset of X̃ ×Ω and P is continuous. Let

h̄ : Ω → 2Y , h̄(ω)=P −1(ω).

By Lemma 4.8, there is a residual subset Ω0 ⊂Ω such that h̄ is a contin-
uous on Ω0.

Next, we claim that for each ω∈Ω and (V (·),ω)∈Y , there holds

U(x,ω)

{
�V (x) for x �0,

�V (x) for x �0.
(6.1)

In fact, for each ω∈Ω and (V (·),ω)∈Y , suppose that

(V (·),ω)= lim
n→∞(U(·,ωn),ωn)

in X̃ ×Ω-topology. Note that

U(x,ωn)= lim
t→∞u(t, x +y(t,ωn);u∗

0(θ−t,−y(t,ωn)ωn), θ−t,−y(t,ωn)ωn)
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in the uniform convergence topology. Without loss of generality, we may
assume that for some tn →∞,

V (x)= lim
n→∞u(tn, x +y(tn,ωn);u∗

0(θ−tn,−y(tn,ωn)ωn), θ−tn,−y(tn,ωn)ωn)

in the compact open topology. Hence by Lemma 4.3,

u(t, x;V (·),ω)

= lim
n→∞u(t + tn, x +y(tn,ωn);u∗

0(θ−tn,−y(tn,ωn)ωn), θ−tn,−y(tn,ωn)ωn)

in the compact open topology for all t ∈R. Therefore u(t, x;V (·),ω) exists
for t ∈R and

V (x) = u(t, x;u(−t, ·;V (·),ω), θ−t,0ω)

= lim
t→∞u(t, x;u(−t, ·;V (·),ω), θ−t,0ω)

in the compact open topology. Note also that

U(x,ω)= lim
t→∞u(t, x;u∗

0(θ−t,−y(t,ω)ω)(·+y(t,ω)), θ−t,0ω).

By the continuity of u±(ω) in ω and comparison principle for parabolic
equations,

u−(ω)(x)<V (x)<u+(ω)(x)

for x ∈R. Clearly, V (0)=u0
0(ω). Hence by Lemma 4.6(2), (6.1) holds.

Now we claim that for each ω0 ∈Ω0, h̄(ω0)={(U(·,ω0),ω0)} is a sin-
gleton. In fact, if (V (·),ω0)∈ h̄(ω0), then there are (U(·,ωn),ωn) such that
(U(·,ωn),ωn) → (V (·),ω0) as n → ∞ in X̃ × � topology. By the continu-
ity of h̄ at ω0, there are (Vn,ωn)∈Y such that (Vn,ωn)→ (U(·,ω0),ω0) in
X̃ ×Ω topology. By (6.1),

U(x,ωn)

{
�Vn(x) for x �0,

�Vn(x) for x �0.

Hence we must have

V (x)

{
�U(x,ω0) for x �0,

�U(x,ω0) for x �0.

By (6.1) again,

U(x,ω0)

{
�V (x) for x �0,

�V (x) for x �0.
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Hence V (x) = U(x,ω0) for all x ∈ R and h̄(ω0) = {(U(·,ω0),ω0)} is a sin-
gleton.

Finally, it is not difficult to see that h : Ω →X,h(ω)=U(·,ω) is con-
tinuous at ω0 ∈Ω in the X̃-topology iff h̄(ω0) is a singleton. It then follows
that h(ω)=U(·,ω) is continuous at each ω0 ∈Ω0 in the X̃-topology.

Proof of Theorem B(2). Suppose that θt,xω = θt,0ω for all t, x ∈ R

and ω∈Ω. Let σtω= θt,0ω.
First of all, we claim that for each (V (·),ω)∈Y,V (x) is either strictly

monotone or a constant function. In fact, for each (V (·),ω) ∈ Y , assume
that

V (x)= lim
n→∞u(tn, x +y(tn,ωn);u∗

0(θ−tn,−y(tn,ωn)ωn), θ−tn,−y(tn,ωn)ωn)

for some tn →∞ in the compact open topology. Then for all t ∈R,

u(t, x;V (·),ω)

= lim
n→∞u(t + tn, x +y(tn,ωn);u∗

0(θ−tn,−y(tn,ωn)ωn), θ−tn,−y(tn,ωn)ωn)

in the compact open topology. It then follows from comparison principle
for parabolic equations that V (x) is either strictly monotone or is a con-
stant function.

Next, we prove that U(·,ω) is continuous at each ω0 ∈ Ω0 in the
X-topology and σtΩ0 = Ω0 for all t ∈ R. Note that ω ∈ Ω0 if and only if
P −1(ω) is a singleton.

Assume ω0 ∈ Ω0 and ωn ∈ Ω with ωn → ω0. By Theorem B(1),
U(·,ωn) → U(·,ω0) in the X̃-topology. The continuity of u±(ω) together
with the monotonicity of U(·,ω) then implies that U(·,ωn)→U(·,ω0) in
the X-topology.

Assume ω0 ∈Ω. For each fixed t >0, suppose that (V (·), σtω0)∈Y . Then
there is ωn →ω0 such that U(·, σtωn)→V (·) in the compact open topology.
Note that U(·,ωn)→U(·,ω0) in uniform convergence topology. Hence

U(x,ωn)−u±(ωn)(0)→0

as x →±∞ uniformly in n�1 and then

u(t, x;U(·,ωn),ωn)−u±(σtωn)(0)→0

as x →±∞ uniformly in n�1. Hence c(t,ωn) is bounded with respect to
n and

U(x, σtωn)−u±(σtωn)(0)=u(t, x + c(t,ωn);U(·,ωn),ωn)−u±(σtωn)(0)→0
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as x →±∞ uniformly in n�1. It then follows that

u(−t, x;U(·, σtωn), σtωn)−u±(ωn)(0)→0

as x →±∞ uniformly in n� 1 and therefore c(−t, σtωn) is bounded with
respect to n. Without loss of generality, suppose that

c(−t, σtωn)→ c∗

as n→∞. Then

U(x,ωn) =u(−t, x + c(−t, σtωn);U(·, σtωn), σtωn)

=u(−t, x + c∗;U(·, σtωn), σtωn)

+u(−t, x + c(−t, σtωn);U(·, σtωn), σtωn)

−u(−t, x + c∗;U(·, σtωn), σtωn)

→u(−t, x + c∗;V (·), σtω0)

=u(−t, x;V (·+ c∗), σtω0)

as n→∞ in the compact open topology. On the other hand,

U(x,ωn) →U(x,ω0)

=u(−t, x + c(−t, σtω0);U(·, σtω0), σtω0)

=u(−t, x;U(·+ c(−t, σtω0), σtω0), σtω0)

as n→∞ in uniformly convergece topology. We then must have

U(·+ c(−t, σtω0), σtω0)=V (·+ c∗)

and then V (x) is strictly monotone in x. Since U(0, σtω0) = V (0) =
u0

0(σtω0), we must have c∗ = c(−t, σtω0) and then V (·)=U(·, σtω0). Thre-
fore P −1(σtω) is a singleton and then σtω0 ∈Ω0. This implies that σtΩ0 =
Ω0 for all t ∈R.

Second, if ((Ω,F,P), {θt,0}t∈R) is minimal, then for each ω0 ∈Ω0, by
the continuity of h̄ at ω0, cl{(U(·, σtω0), σtω0)|t ∈R} is minimal and hence
Uω0(t)(·)=U(·, σtω0) is a recurrent function from R to X̃.

Now suppose that ((Ω,F,P), {σt }t∈R) is almost periodic. Then for
each ω0 ∈Ω0 and {α′

n}⊂R, there is {αn}⊂{α′
n} such that

lim
n→∞ lim

m→∞σ−αn+αmω0 =ω0.

By the continuity of h̄ at ω0, we have

lim
n→∞ lim

m→∞U(·, σ−αn+αmω0)=U(·,ω0)
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in X̃. Therefore, U(·, σtω0) is an almost automorphic function from R to
X̃.

Finally suppose that σT ω0 =ω0 and Ω ={σtω0|0 � t �T }. By σtΩ0 =
Ω0, we have Ω0 = Ω and hence U(·, t) ≡ U(·, σtω0) is periodic in t with
periodic T . Let

c0 = c(T ,ω0)− c(0,ω0)

T

and

V (x, t)=U(x + c0 · t − c(t,ω0), σtω0).

Note that

c(t +T ,ω0)= c(t,ω0)+ c(T ,ω0).

Then

c0 · (t +T )− c(t +T ,ω0)= c0 · t − c(t,ω0).

Hence

V (x, t +T )=V (x, T )

and

u(t, x;U(·,ω0),ω0)=V (x − c0t, t).

Proof of Theorem B(3). Let σxω = θ0,xω. Note � = {σxω0|0 � x � p}
and σpω0 =ω0. Suppose that c(T ,ω0)=p. Then

c(t +T ,ω0)= c(t,ω0)+p.

Let

c0 = p

T

and

V (x, t)=U(x + c0t − c(t,ω0), σc(t,ω0)ω0)

for 0� t �T . Then

V (x, t +T )=V (x, t)
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and

u(t, x;U(·,ω0),ω0) =U(x − c(t,ω0), σc(t,ω0), ω0)

=U(x − c0t + c0t − c(t,ω0), σc(t,ω0)ω0)

=V (x − c0t, t).

Let c0 be as above and

W(x, y)=U

(
y − c

(
y −x

c0
,ω0

)
, σ

c(
y−x
c0

,ω0)
ω0

)

for x, y ∈R. Then

c

(
y +p −x

c0
,ω0

)
= c

(
y −x

c0
+T ,ω0

)
= c

(
y −x

c0
,ω0

)
+p.

Hence

W(x, y +p)=W(x, y)

for x, y ∈R. Clearly,

u(t, x;U(·,ω0,ω0)=W(x − c0t, y).

7. PROOF OF THEOREM C

In this section, we shall prove Theorem C. Throughout this section,
we assume that (1.1) satisfies (H1), (H2), (H3) and that the media is spa-
tially homogeneous, that is, θt,xω = θt,0ω for all t, x ∈ R and ω ∈ Ω. Let
u±(ω) and u0(ω) be the random equilibrium solutions of (1.1) assumed in
(H3). Note that u±(ω)(x) = u±(ω)(0) and u0(ω)(x) = u0(ω)(0) for x ∈ R.
For simplicity in notation we denote u±(ω) and u0(ω) as u±(ω)(0) and
u0(ω)(0), respectively. We also assume that ζ(·), η(·), and H(·) are smooth
functions with the following properties:

ζ(s) = 1
2

(
1+ tanh s

2

)
, s ∈R,

η(s) =
{

0 if s <0,

1 if s �4,

η′(s) �0 and |η′′(s)|�2 for s ∈R,

H(s) =
{

1 for s �0,

0 for s <0.

Note that

ζ ′ = ζ(s)(1− ζ(s)), ζ ′′(s)= ζ(s)(1− ζ(s))(1−2ζ(s)). (7.1)



Waves in Diffusive Random Media 1047

Let

uω
0 (x)=u−(ω)(1− ζ(x))+u+(ω)ζ(x). (7.2)

We first prove the following lemmas.

Lemma 7.1. There is τ >0 and χ : Ω →R bounded such that the fol-
lowing hold.

(1) Let v1(t, x;ω), v2(t, x;ω) be the solutions of

∂tv = ∂2
x v + ∂uF (θt,xω,u0(θt,0ω))v(t, x) (7.3)

with v1(t,0;ω)=H(x), v2(0, x;ω)=−1+2H(x). Then

v1(τ, x;ω)�3 for x �χ(ω),

v2(τ, x;ω)�−3 for x <χ(ω).

(2) Let u1
δ(t, x;ω),u2

δ (t, x;ω) be solutions of (1.1) with

u1
δ(0, x;ω)=u0(ω)+ δH(x)

and

u2(0, x;ω)=u0(ω)+ δ(−1+2H(x)).

There is δ1 >0 such that for 0<δ � δ1,

u1
δ(τ, x,ω)�u0(θτ,0ω)+2δ for x �χ(ω),

u2
δ (τ, x;ω)�u0(θτ,0ω)−2δ for x �χ(ω).

(3) Let u3
δ(t, x;ω),u4

δ (t, x;ω) be solutions of (1.1) with

u3
δ(0, x;ω)=u0(ω)+ δH(x)− (u0(ω)−u−(ω))H(−h−x)

and

u4
δ (0, x;ω) = u0(ω)+ δ(−1+2H(x))

+(u+(ω)−u0(ω)− δ)H(x −h).

Let δ1 be as in (2). Then for each 0 <δ � δ1, there is h1(δ) such
that for all h�h1(δ).

u3
δ(τ, x;ω)�u0(θτ,0ω)+ δ for x �χ(ω),

u4
δ (τ, x,ω, x0)�u0(θτ,0ω)− δ for x �χ(ω).
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Proof. (1) First of all, denote v(t, x;v0,ω) as the solution of (7.3)
with v(0, x; , v0,ω) = v0(x). Clearly, v(t, x;0,ω) = 0,0 � v1(t, x;ω) �
v(t, x;1,ω), and

v2(t, x;ω)=−v(t, x;1,ω)+2v1(t, x;ω).

By (H3),

g−(t)� ∂uF (θt ,x ω,u0(θt,0ω))�g+(t)

for t, x ∈R and ω∈Ω, and ∫ t

0
g−(s)ds →∞

as t →∞. Without loss of generality, we may assume that

inf
t∈R

g+(t)>0. (7.4)

Let

γ±(t)=
∫ t

0
g±(s)ds.

We claim that

v1(t,−∞;ω)=0, v1(t,∞;ω)� eγ−(t).

In fact, let ε >0 and

w+(t, x)=ρ(ε)e2γ+(t) +η(εx)eγ+(t).

Then

∂tw
+ − ∂2

xw+ − ∂uF (θt,xω,u0(θt,0ω))w+

� ∂tw
+ − ∂2

xw+ −g+(t)w+

= (2ρ(ε)e2γ+(t) +η(εx)eγ+(t))g+(t)− ε2η′′(εx)eγ+(t)

−g+(t)ρ(ε)e2γ+(t) −η(εx)g+(t)eγ+(t)

=ρ(ε)e2γ+(t)g+(t)− ε2η′′(εx)eγ+(t).

Let

ρ(ε)= sup
t,x∈R

|ε2η′′(εx)|
g+(t)

.
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Then w+(t, x + 4/ε) is a supersolution of (7.3). Note that v1(0, x;ω) �
w+(0, x + 4/ε) for x ∈ R and ρ(ε)→ 0 as ε → 0. By comparison principle
for parabolic equations, we have

v1(t, x;ω)�w+
(

t, x,+4
ε

)
for x ∈R. (7.5)

This implies that

lim sup
x→−∞

v1(t, x;ω)�ρ(ε)e2γ+(t)

for all ε >0. Let ε →0, we have

v1(t,−∞;ω)=0.

Note that −w+(t,−x + 4/ε) is a subsolution of (7.3) and eγ−(t) is also a
subsolution of (7.3). Let

w−(t, x)= eγ−(t) −w+(t,−x).

Then w−(t, x −4/ε) is s subsolution of (7.3). Clearly v1(0, x;ω)�w−(0, x −
4/ε) for x ∈ R. Hence by comparison principle for parabolic equations
again,

v1(t, x;ω)�w−
(

t, x − 4
ε

)
for x ∈R. (7.6)

This implies that

lim inf
x→∞v1(t, x;w)� eγ−(t) −ρ(ε)e2γ+(t)

for all ε >0. Let ε →0, we have

lim inf
x→∞v1(t, x;ω)� eγ−(t)

for t >0.
Next let τ be such that eγ−(τ ) =9. Then v(τ, x;1,ω)�9 for any ω∈Ω.

By (7.5) and (7.6), it is not difficult to see that there are χ± such that
v1(τ, x;ω) < 2 for x � χ− and ω ∈ Ω, and v1(τ, x;ω) > 5 for x � χ+ and
ω∈�. Hence there is χ(ω)∈ [χ−, χ+] such that

v1(τ, x;ω)�3 for x �χ(ω),

and

v2(τ, x;ω)�−3 for x �χ(ω).
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(2) Let

w1(t, x)=u0(θt ,0 ω)+ δv1(t, x;ω)− δ2eK1t ,

where v1 is as in (1), K1 and δ will be determined later. Then

∂tw
1 − ∂2

xw1 −F(θt,xω,w1(t, x))

=F(θt,xω,u0(θt,0ω))−F(θt,xω,u0(θt,0ω)+ δv1(t, x;ω)− δ2eK1t ))

+δ∂uF (θt,xω,u0(θt,0ω))v1(t, x;ω)− δ2K1e
K1t

= δ2(∂uF (θt,xω,u0(θt,0ω))eK1t −K1e
K1t

− 1
2∂2

uF (θt,xω,u∗(t, x;ω))(v1(t, x;ω)− δeK1t )2),

where u∗(t, x;ω) lies between u0(θt,0ω) and w1(t, x). Then for K1 large
enough, δ1 small enough such that δ1e

K1τ �1,

∂tw
1 − ∂2

xw1 −F(θt ,x ω,w1)�0

for 0 � t � τ and 0 < δ � δ1. Note that u1
δ(0, x;ω) � w1(0, x) for x ∈ R.

Hence, u1
δ(t, x;ω)�w1(t, x) for x ∈R. For 0<δ � δ1,we have

u1
δ(τ, x;ω)�u0(θτ ,0 ω)+2δ for x �χ(ω).

Similarly, we can prove that

u2
δ (τ, x;ω)�u0(θτ,0ω)−2δ for x �χ(ω).

(3) Let 0<δ � δ1 and u1
δ(τ, x;ω) be as in (2). For given positive constants

ε,K2,C, and M � supω∈Ω(u+(ω)−u−(ω)), define

w2(t, x;ω) =u1
δ(t, x;ω)−ρ(ε)e2K2t −Mη (−ε(x −χ(ω)−C(t − τ)))

× (1−η(ε(x −χ(ω)−C(t − τ)))) .

Then

∂tw
2 − ∂2

xw2 −F(θt,xω,w2(t, x;ω))

=F(θt,xω,u1
δ(t, x;ω))−F(θt,xω,w2(t, x;ω))

−2K2ρ(ε)e2K2t

−εCM
[
η′(−y)(1−η(y))+η(−y)η′(y)

]
y=ε(x−χ(ω)−C(t−τ))

−ε2M
[
η′′(−y)(1−η(y))+2η′(−y)η′(y)−η(−y)η′′(y)

]
y=ε(x−χ(ω)−C(t−τ))

.

Let

ρ(ε)= ε2 sup
yεR

∣∣η′′(−y)(1−η(y))+2η′(−y)η′(y)−η(−y)η′′(y)
∣∣
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and

K2 = (1+M) sup{1+|∂uF (θt ,x ω,u)| : û1
δ(t, x;ω)�u�u1

δ(t, x;ω)},
where û1

δ(t, x;ω)=u1
δ(t, x;ω)−1−M. Then

−K2ρ(ε)e2K2t − ε2M
[
η′′(−y)(1−η(y))+2η′(−y)η′(y)−η(−y)η′′(y)

]
�0 (7.7)

for all 0� t � τ and x ∈R, where y = ε(x −χ(ω)−C(t − τ))

and

F(θt ,x ω,u1
δ (t, x;ω))−F(θt,xω,w2(t, x;ω))−K2ρ(ε)e2K2t �0 (7.8)

for all (t, x) with 0� t �τ and η(−ε(x −χ(ω)−C(t −τ)) or 1−η(−ε(x −χ(ω)−
C(t − τ))�ρ(ε). Now let

γ =min{η′(−y)(1−η(y))+η(−y)η′(y)|ρ(ε)�η(−y)�1−ρ(ε)}
and

C = K2

γ ε(1+M)
.

Let ε = ε(δ) be such that

ρ(ε(δ))e2K2τ � δ.

Then

F(θt,xω,u1
δ (t, x;ω))−F(θt,xω,w2(t, x, ;ω))

−ρ(ε)K2e
2K2t − εCM[η′(−y)(1−η(y))+η(−y)η′(y)]�0, (7.9)

where y = ε(x −χ(ω)−C(t − τ)) and (t, x) is such that 0� t � τ, ρ(ε)�η(−y)�
1−ρ(ε). By (7.7)–(7.9),

∂tw
2 − ∂2

xw2 −F(θt,xω,w2(t, x;ω))�0

for 0� t � τ and x ∈R. Let

h1(δ)= 4
ε(δ)

+ sup
ω∈Ω

|χ(ω)|+Cτ.

Then

u3
δ (0, x;ω)�w2(0, x;ω)

for x ∈R. By comparison principle for parabolic equations, we have

u3
δ (t, x;ω)�w2(t, x;ω)
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for 0� t � τ and x ∈R. In particular,

u3
δ (τ, x;ω) �w3(τ, x;ω)=u1

δ (τ, x;ω)−ρ(ε)e2K2τ

�u0(θτ,0ω)+2δ − δ =u0(θτ,0ω)+ δ

for x �χ(ω).
Similarly, we can prove that

u4
δ (τ, x;ω)�u0(θτ,0ω)− δ

for x �χ(ω).

Lemma 7.2. Let τ be as in Lemma 7.1. There is χ̃ : Ω →R bounded such
that the following hold.

(1) Let ṽ1(t, x;ω), ṽ2(t, x;ω) be the solutions of (7.3) with ṽ1(t,0;ω) =
−1+H(x), ṽ2(0, x;ω)=−1+2H(x). Then

ṽ1(τ, x;ω)�−3 for x � χ̃(ω),

ṽ2(τ, x;ω)�3 for x � χ̃(ω).

(2) Let ũ1
δ (t, x;ω), ũ2

δ (t, x;ω) be solutions of (1.1) with

ũ1
δ (0, x;ω)=u0(ω)+ δ(−1+H(x))

and

ũ2(0, x;ω)=u0(ω)+ δ(−1+2H(x)).

There is δ2 >0 such that for each 0<δ � δ2,

ũ1
δ (τ, x;ω)�u0(θτ,0ω)−2δ for x � χ̃(ω),

ũ2
δ (τ, x;ω)�u0(θτ,0ω)+2δ for x � χ̃(ω).

(3) Let ũ3
δ (t, x;ω), ũ4

δ (t, x;ω) be the solutions of (1.1) with

ũ3
δ (0, x;ω)=u0(ω)+ δ(−1+H(x))+ (u+(ω)−u0(ω))H(x −h),

ũ4
δ (0, x;ω)=u0(ω)+ δ(−1+2H(x))− (u0(ω)−u−(ω)− δ)H(−x −h).

Let δ2 be as in (2). Then for each 0 <δ � δ2, there is h2(δ) such that
for all h�h2(δ),

ũ3
δ (τ, x;ω)�u0(θτ,0ω)− δ for x � χ̃(ω),

ũ4
δ (τ, x;ω)�u0(θτ,0ω)+ δ for x � χ̃(ω).

Proof. It can be proved by similar arguments as in Lemma 7.1.
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Lemma 7.3. For each 0<δ � δ∗(δ∗ =min(δ1, δ2)), there is ε∗(δ) such that

0<ξ+(t,ω, δ)− ξ−(t,ω, δ)� ξ+(0,ω, δ)− ξ−(0,ω, δ)+ ε∗(δ)

for all t �0 and ω∈Ω, where ξ±(t,ω, δ) are such that

u(t, ξ±(t,ω, δ);uω
0 ,ω)=u0(θt,0ω)± δ.

Proof. By Lemma 4.2, ξ±(t,ω, δ) are well defined. Let ξ0(t,ω) be such
that

u(t, ξ0(t,ω);uω
0 ,ω)=u0(θt,0ω).

Note that ξ0(t,ω) is also well defined.
First we prove that for any t0 �0,

ξ+(t0 + τ,ω, δ)−ξ−(t0 + τ,ω, δ)�max{ξ+(t0,ω, δ)−ξ−(t0,ω, δ),2h∗(δ)}. (7.10)

We prove (7.10) for the case t0 =0. The case t0 	=0 can be proved similarly.
First of all, note that one of the following must hold,

ξ+(0,ω, δ)− ξ0(0,ω)�h∗(δ), (7.11)

ξ0(0,ω)− ξ−(0,ω, δ)�h∗(δ), (7.12)

and

h∗(δ)�max{ξ+(0,ω, δ)− ξ0(0,ω), ξ0(0,ω)− ξ−(0,ω, δ)}. (7.13)

Next, suppose that (7.11) holds. Then

uω
0 (x + ξ+(0,ω, δ)− ξ0(0,ω)) =u(0, x + ξ+(0,ω, δ)− ξ0(0,ω);uω

0 ,ω)

�u3
δ (0, x − ξ0(0,ω);ω)

and

uω
0 (x + ξ−(0,ω, δ)− ξ0(0,ω)) =u(0, x + ξ−(0,ω, δ)− ξ0(0,ω), uω

0 ,ω)

�u4
δ (0, x − ξ0(0,ω);ω)

for x ∈R. By comaprison principle for parabolic equations,

u(τ, x + ξ+(0,ω, δ)− ξ0(0,ω);uω
0 ,ω)�u3

δ (τ, x − ξ0(0,ω);ω)

and

u(τ, x + ξ−(0,ω, δ)− ξ0(0,ω);uω
0 ,ω)�u4

δ (τ, x − ξ0(0,ω);ω)

for x ∈R, and then by Lemma 7.1,

ξ+(τ,ω, δ)�χ(ω)+ ξ+(0,ω, δ)
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and

ξ−(τ,ω, δ)�χ(ω)+ ξ−(0,ω, δ).

Hence

ξ+(τ,ω, δ)− ξ−(τ,ω, δ)� ξ+(0,ω, δ)− ξ−(0,ω, δ)� ξ+(0,ω, δ)− ξ−(0,ω, δ).

Similarly, if (7.12) holds, then by Lemma 7.2 the above inequality holds. If
(7.13) holds, then

uω
0 (x +h∗(δ)) = u(0, x +h∗(δ);uω

0 ,ω)

� u3
δ (0, x − ξ0(0,ω);ω)

and

uω
0 (x −h∗(δ)) = u(0, x −h∗(δ);uω

0 ,ω)

� u4
δ (0, x − ξ0(0,ω);ω)

for x ∈R. By comparison principal for parabolic equations again,

u(τ, x +h∗(δ);uω
0 ,ω)�u3

δ (τ, x − ξ0(0,ω);ω)

and

u(τ, x −h∗(δ);uω
0 ,ω)�u4

δ (τ, x − ξ0(0,ω);ω)

for x ∈R. It then follows from Lemma 7.1 that

ξ+(τ,ω, δ)�χ(ω)+h∗(δ)+ ξ0(0,ω)

and

ξ−(τ,ω, δ)�χ(ω)−h∗(δ)+ ξ0(0,ω).

Hence

ξ+(τ,ω, δ)− ξ−(τ,ω, δ)�2h∗(δ).

Therefore, (7.10) holds.
Now, by (7.10), for each 0<δ � δ∗, there is ε1(δ) such that

ξ+(t + t0,ω, δ)− ξ−(t + t0,ω, δ)� ξ+(t0,ω, δ)− ξ−(t0,ω, δ)+ ε1(δ)

for t0 �0, t ∈ [0, τ ],ω∈Ω. Let ε∗(δ)= ε1(δ)+2h∗(δ). We have that for all t �0,

ξ+(t,ω, δ)− ξ−(t,ω, δ)� ξ+(0,ω, δ)− ξ−(0,ω, δ)+ ε∗(δ).

Lemma 7.4. For each M > 0, there is C > 0 such that for each pair
α+, α− ∈X with −M �α−(x)<α+(x)�M for x ∈R, each c�C, and each ω∈Ω,
the following hold.
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(1) Let

v+(t, x)=u(t, x;α+,ω)ζ(x + ct)+u(t, x;α−,ω)(1− ζ(x + ct)),

v−(t, x)=u(t, x;α−,ω)ζ(x + ct)+u(t, x;α+,ω)(1− ζ(x + ct)).

Then v+ and v− are super- and sub-solutions of (1.1), respectively.
(2) Let

w+(t, x)=u(t, x;α−,ω)ζ(x − ct)+u(t, x;α+,ω)(1− ζ(x − ct)),

w−(t, x)=u(t, x;α+,ω)ζ(x − ct)+u(t, x;α−,ω)(1− ζ(x − ct)).

Then w+ and w− are also super- and sub-solutions of (1.1), respectively.

Proof. We prove that v+(t, x) is a super-solution. Other statements can be
proved similarly, Denote u±(t, x) as u±(t, x;α±,ω).

First, a direct computation yields

∂tv
+(t, x)− ∂2

x v+(t, x)−F(θt,xω, v+(t, x))

=F(θt,xω,u+(t, x))ξ(x + ct)+F(θt,xω,u−(t, x))(1− ξ(x + ct))

−F(θt,xω,u+(t, x)ξ(x + ct)+u−(t, x)(1− ξ(x + ct))

+cξ ′(x + ct)(u+(t, x)−u−(t, x))− ξ ′′(x + ct)(u+(t, x)−u−(t, x))

−2∂xu
+(t, x)ξ ′(x + ct)+2∂xu

−(t, x)ξ ′(x + ct).

Note that

F(θt,xω,u+(t, x))ξ(x + ct)+F(θt,xω,u−(t, x))(1− ξ(x + ct))

−F(θt,xω,u+(t, x)ξ(x + ct)+u−(t, x)(1− ξ(x + ct))

= ∂2
uF (θt,xω,u∗∗(t, x)) · (u∗(t, x)−u−(t, x))

·(u+(t, x)−u−(t, x))ζ(x + ct)(1− ζ(x + ct))

for some u∗∗(t, x), u∗(t, x) between u−(t, x) and u+(t, x). It then follows from
(7.1) that

∂tv
+(t, x)− ∂2

x v+(t, x)−F(θt,xω), v+(t, x))

= ξ(x + ct)(1− ξ(x + ct))(u+(t, x)−u−(t, x))

×
(

c− (1−2ξ(x + ct))− ∂2
uF (θt,xω,u∗∗(t, x))(u∗(t, x)−u−(t, x))

−2∂xu
+(t, x)−2∂xu

−(t, x)

u+(t, x)−u−(t, x)

)
.

It is then not difficult to see that for each given M >0, there is C >0 such that
when c�C,v+ is a super-solution.

Lemma 7.5. Let δ∗ and ξ±(t,ω, δ) be as in Lemma 7.3. Let ξ̃±(t,ω, δ) be
such that

u(t, ξ̃±(t,ω, δ);uω
0 ,ω)=u±(θt,0ω))∓ δ.
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Then for each 0<δ � δ∗, there is ε̃∗(δ) such that

ξ̃+(t,ω, δ)− ξ̃−(t,ω, δ)� ξ+(0,ω, δ)− ξ−(0,ω, δ)+ ε̃∗(δ)

for all t >0 and ω∈Ω.

Proof. First, we claim that there is c > 0, ε∗
1 (δ) > 0, T̃ (δ) > 0 (0 < δ � δ∗)

such that for each ω∈Ω,

ξ̃+(t + t0,ω, δ)− ξ̃−(t + t0,ω, δ)� ξ+(t0,ω, δ)− ξ−(t0,ω, δ)+ ε̃∗
1 (δ)+2ct (7.14)

for all t � T̃ (δ), t0 � 0. We prove the case that t0 = 0. The case t0 	= 0 can be
proved similarly.

For each ω∈Ω,0<δ � δ∗, define

w+(t, x;ω)=u(t, x;u0(ω)− δ,ω)(1− ζ(x + ct))+u(t, x;u+(ω)+ δ,ω)ζ(x + ct)

and

w−(t, x;ω)=u(t, x;u−(ω)− δ,ω)(1− ζ(x − ct))+u(t, x;u0(ω)+ δ,ω)ζ(x − ct).

Clearly, there is χ∗(δ) such that

w+(0, x;ω)�u+(ω) for x �χ∗(δ),
w−(0, x,ω)�u−(ω) for x �−χ∗(δ).

Hence

w−(0, x − ξ+(0,ω, δ)−χ∗(δ);ω)�uω
0 (x)�w+(x − ξ−(0,ω, δ)+χ∗(δ);ω)

for x ∈R. This together with Lemma 7.4 and comparison principle for parabolic
equations implies that when c�1,

w−(t, x − ξ+(0,ω, δ)−χ∗(δ);ω)�u(t, x;uω
0 ,ω)�w+(t, x − ξ−(0,ω, δ)+χ∗(δ);ω)

for t >0 and x ∈R. By the stability of u±(ω), there is T̃ (δ)>0, χ̃∗(δ)>0 such
that for t � T̃ (δ),

w+(t, x − ξ−(0,ω, δ)−χ∗(δ);ω)�u−(θt,0ω)+ δ

for x �−χ̃∗(δ)− ct + ξ−(0,ω, δ)+χ∗(δ)
and

w−(t, x − ξ+(0,ω, δ)−χ∗(δ);ω)�u+(θt,0ω)− δ

for x � χ̃∗(δ)+ ct + ξ+(0,ω, δ)+χ∗(δ).
Hence

ξ̃+(t,ω, δ)� ξ+(0,ω, δ)+χ∗(δ)+ χ̃∗(δ)+ ct

and

ξ̃−(t,ω, δ)� ξ−(0,ω, δ)−χ∗(δ)− χ̃∗(δ)− ct
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for t � T̃ (δ). This implies (7.14) holds with ε∗
1 (δ)= 2χ∗(δ)+ 2χ̃∗(δ). Let ε̃∗

1 (δ)=
ε∗

1 (δ)+ ε∗(δ). It then follows from Lemma 7.3 that

ξ̃+(t,ω, δ)− ξ̃−(t,ω, δ)� ξ+(0,ω, δ)− ξ−(0,ω, δ)+ ε̃∗
1 (δ)+2cT̃ (δ)

for all t � T̃ (δ). Clearly, there is ε̃2(δ)>0 such that

ξ̃+(t,ω, δ)− ξ̃−(t,ω, δ)� ε̃∗
2 (δ)

for 0� t � T̃ (δ). This implies that

ξ̃+(t,ω, δ)− ξ̃−(t,ω, δ)� ξ+(0,ω, δ)− ξ−(0,ω, δ)+ ε̃∗(δ)

for all t �0,0<δ � δ∗,
where

ε̃∗(δ)=max{ε̃∗
2 (δ), ε̃∗

1 (δ)+2cT̃ (δ)}.
Proof of Theorem C. Note that for 0 < δ � 1, ξ+(0,ω, δ), ξ−(0,ω, δ) is

bounded in ω∈Ω. Then by Lemma 7.5, v0(ω)=uω
0 (·) generates a wave-like solu-

tion. Therefore (1.1) has a wave-like solution. It then follows from Theorem A
that (1.1) has a critical traveling wave solution. Moreover, by the arguments in
the proof of Theorem A and comparison principal for parabolic equations, there
is U(·,ω) such that U(0,ω)=u0(ω), ∂xU(x,ω)>0, and U(·,ω) generates a crit-
ical traveling wave solution, u(t, x;U(·,ω),ω)=U(x − c(t,ω), θt,0ω). Note that

u(t, c(t,ω);U(·,ω),ω)=U(0, θt,0ω)=u0(θt,0ω)

and ∂xu(t, c(t,ω);U(·,ω),ω)=∂xU(0, θt,0ω)>0. It then follows fromt the differ-
entiability of u0(θt,0ω) and the regularity of u(t, x;U(·,ω),ω) that c(t,ω) is
differentiable in t and

∂t c(t,ω)= F(θt,0ω,u0(θt,0ω))− ∂2
xU(0, θt,0ω)−F(θt,0ω,U(0, θt,0ω))

∂xU(0, θt,0ω)
.
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