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Global Bifurcation and Structure of Turing Patterns in
the 1-D Lengyel–Epstein Model∗
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This work continues the mathematical study started in ([13], to appear) on
the analytic aspects of the Lengyel–Epstein reaction diffusion system. This
system captures the crucial feature of the CIMA reaction in an open un-
stirred gel reactor which gave the first experimental evidence of Turing pat-
tern in 1990. In the one dimensional case, we make a detailed description for
the global bifurcation structure of the set of the non-constant steady states.
The limiting behavior of the steady states is further clarified using a shadow
system approach.
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1. INTRODUCTION

Understanding the mechanisms by which patterns are created in the liv-
ing system poses one of the most challenging problems in developmental
biology. In 1952, Alan Turing suggested in his celebrated paper “chemi-
cal basis for morphogenesis” [21] that chemical reactions, with appropriate
nonlinear kinetics coupled to diffusion, could lead to the formation of sta-
tionary patterns of the type appeared in living organisms. He also argued
that the creation of such patterns, which we now call Turing patterns,
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could play a major role in biological pattern formation. Turing’s mecha-
nism is considered to be a central source for the occurrences of coherent
patterns in far-from-equilibrium systems, and has been applied in a variety
fields in biology and chemistry [10], such as tissue regeneration in hydra
[4,11], pattern formation in the Belousov–Zhabotinsky (BZ) reaction, and
most recently in electrochemical systems [9].

The first experimental evidence of Turing pattern was observed in
1990, nearly 40 years after Turing’s prediction, by the Bordeaux group in
France, on the chlorite-iodide-malonic acid-starch (CIMA) reaction in an
open unstirred gel reactor [2]. In their scheme, the two sides of the gel
strip loaded with starch indicator are, respectively, in contact with solu-
tions of chlorite (ClO−

2 ) and iodide (I−) ions on one side, and malonic
acid (MA) on the other side, of which are fed through two continuously
flow stirred tank reactors. These reactants diffuse into the gel, encounter-
ing each other at significant concentrations in a region near the middle
of the gel, where the Turing patterns of lines of periodic spots can be
observed. This observation represents a significant breakthrough for one
of the most fundamental ideas in morphogenesis and biological pattern
formation.

The Brandeis group later found that, after a relatively brief initial
period, it is really the simpler chlorine dioxide ClO2–I2–MA (CDIMA)
reaction that governs the formation of the patterns [7,8]. The CDIMA
reaction can be described in a five-variable model consists of three com-
ponent processes. However, observing that three of the five concentrations
remain nearly constants in the reaction, Lengyel and Epstein [7, 8] simpli-
fied the model to a 2 × 2 system: Let u= u(x, t) and v= v(x, t) denote
the rescaled chemical concentrations of iodide (I−) and chlorite (ClO−

2 ),
respectively, where x ∈Ω, a smooth, bounded domain in Rn. Then the
Lengyel and Epstein model takes the form

∂u

∂t
=∆u+a−u− 4uv

1+u2
, (1.1)

∂v

∂t
=σ

[
c∆v+b

(
u− uv

1+u2

)]
, (1.2)

where ∆ = ∑n
i=1 ∂

2/∂x2
i is the Laplace operator, carrying the spatial

dependence of the reaction, a and b are the parameters related to the feed
concentrations, c the ratio of the diffusion coefficients, σ > 1, a rescal-
ing parameter depending on the concentration of the starch, enlarging the
effective diffusion ratio to σc. We shall assume accordingly that all con-
stants a, b, c, and σ are positive.
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Recently we started the mathematical study on the analytic aspects of
this system [13]; for various important experimental and numerical studies
see [1, 5] and the references therein. We considered positive solutions to
the system subject to the initial condition

u(x,0)=u0(x)>0, v(x,0)=v0(x)>0, x ∈Ω, (1.3)

where u0, v0 ∈C2(Ω)∩C0(Ω̄), and the Neumann boundary condition

∂u/∂ν= ∂u/∂ν=0, x ∈ ∂Ω, t >0, (1.4)

where ν is the unit outer normal to ∂Ω. We proved that the problem
(1.1)–(1.4) admits a unique solution (u, v), which is defined for all x ∈Ω
and t >0, and is bounded by some positive constants depending only on a,
u0 and v0. Furthermore, this unique solution enters the “attracting” region

�a = (0, a)× (0,1+a2)

for all t large, regardless of the initial values u0 and v0.
We also studied in [13] the existence and non-existence of steady

states of (1.1)–(1.4), as a Turing pattern is defined to be the non-con-
stant steady state at the onset of diffusion-driven instability. Our theorems
show that, roughly speaking, if the parameter a (related to the feed con-
centrations), the size of the reactor Ω (reflected by its first eigenvalue), or
the “effective” diffusion rate d = c/b, is not large enough, then the sys-
tem (1.1)–(1.4) has no non-constant steady states. On the other hand, we
proved that if a lies in a suitable range, then (1.1)–(1.4) possesses non-con-
stant steady states for large d. The proof of the existence uses a degree-
theoretical approach combined with the a priori bounds. As we noticed,
however, such an approach does not provide much information about the
shape of the solution.

It is our purpose in this paper to make a better description for the
structure of the set of the non-constant steady states, but focusing on the
one dimensional case only. We will prove in Section 3 a global bifurca-
tion theorem which gives the existence of non-constant steady states for all
d suitably large under a rather natural condition. In Section 4, we shall
describe the solution set for all d sufficiently large by solving the corre-
sponding shadow system.

2. PRELIMINARY

In this section we shall recall several results proved in [13], and intro-
duce the basic assumption on the system parameters, see condition (H)
below. Clearly, Turing patterns, or more generally non-constant steady
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states of the Lengyel–Epstein reaction–diffusion system, are necessarily
positive non-constant solutions to the elliptic system

∆u+a−u− 4uv
1+u2

=0, (2.1)

d∆v+u− uv

1+u2
=0 (2.2)

(d= c/b), subject to the homogeneous Neumann boundary condition

∂u/∂ν= ∂v/∂ν=0, x ∈ ∂Ω. (2.3)

If (u, v)= (u(x), v(x)) is a positive solution to the boundary value problem
(2.l)–(2.3), then it is proved in [13] that

a

5+4a2
<u<a and 1+

(
a

5+4a2

)2

<v<1+a2, x ∈Ω. (2.4)

With the help of this a priori estimate, we also proved the following
non-existence theorem.

Theorem 1. [13]. There is a constant d0 = d0(a, λ1) > 0 such that the
problem (2.1)–(2.3) does not admit a nonconstant solution for 0<d <d0.

If a2 �75, then the boundary value problem (2.1)–(2.3) does not admit
any non-constant solution if

1
d
>

8a
5

− 25
a
. (2.5)

In particular, there is no non-constant solution for all d >0 if a2 �125/8.
There is a constant Λ=Λ(a) > 0 such that the problem (2.1)–(2.3)

does not admit any non-constant solution if λ1(Ω)>Λ.

As in [13], we shall maintain the basic hypothesis

(H) 0<3α2 −5<σαb, α=a/5
in the rest of this paper. This condition is important because it is sufficient
and necessary for

(i) the system (1.1) and (1.2) is an activator–inhibitor system,
(ii) the unique constant steady state

(u∗, v∗)= (α,1+α2), α=a/5
of (1.1) and (1.2) subject to the boundary condition (1.4) is
diffusion-free stable.
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To see this, we let

f (u, v)=a−u− 4uv
1+u2

, g(u, v)=u− uv

1+u2
. (2.6)

Then we call the species u an activator, v an inhibitor, and so (1.1) and
(1.2) an activator-inhibitor system, if

fu(u
∗, v∗)>0, gv(u

∗, v∗)<0.

This holds if and only if 3α2 − 5> 0, which is ensured by (H). Further-
more, we say that (u∗, v∗) is diffusion-free stable if it is stable as an equi-
librium of the system of ordinary differential equations

du
dt

=f (u, v), du
dt

=σbg(u, v).
Notice that the Jacobian of this system is

J =

f0 f1

σbg0 σbg1


 ,

where

f0 = 3α2 −5
1+α2

, f1 =− 4α
1+α2

, g0 = 2α2

1+α2
, g1 =− α

1+α2
.

(2.7)

Since det J >0, the equilibrium is stable if trace J =f0 +σbg1<0, which
is again ensured by (H).

Under condition (H), (u∗, v∗) is Turing unstable if it is unstable as a
steady state of the system of reaction–diffusion equations (1.1) and (1.2)
subject to the homogeneous boundary condition. Let 0 = λ0 < λ1 < λ2 <

· · · be the sequence of eigenvalues for the elliptic operator −∆ subject to
the Neumann boundary condition on Ω, where each λi has multiplicity
mi �1. If

λ1<f0 = (3α2 −5)/(1+α2), (2.8)

then we define iα = iα(α,Ω) to be the largest positive integer such that

λi <f0 for i� iα. (2.9)

Clearly, if (2.8) is satisfied, then 1� iα <∞. In this case, we let

d̃= d̃(α,Ω)= min
1� i� iα

di, di = α

1+α2

λi +5
λi(f0 −λi) . (2.10)

Then the local stability of (u∗, v∗) can be summarized as follows.
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Lemma 2.1. [13]. Assume (H) hold. If λ1 �f0, or λ1<f0 and 0<d<
d̃, then the constant steady state (u∗, v∗) is asymptotically stable. If λ1<f0,
and d > d̃, then (u∗, v∗) is unstable, and hence Turing unstable.

Naturally, one may expect the existence of non-constant steady states
as the constant solution is unstable. Our next result gives a partial result.

Theorem 2. [13]. Assume (H) holds. Suppose λ1<f0<λ2 and λ1 has
an odd multiplicity. Then for any d >d1 the problem (2.1)–(2. 3) possesses
at least one non-constant positive solution.

We note that the assumption f0>λ1 in this theorem is a natural one
in view of Lemma 2.1. However, it is for the technical reason that we
assumed f0<λ2. As our result in Section 3 shows, it is not needed at least
in the one dimensional case.

3. GLOBAL BIFURCATION

In the one-dimensional interval

Ω= (0, 	), 	>0,

a steady state of (1.1) and (1.2) is a positive solution U = (u(x), v(x)), 0<
x<	, to the elliptic problem

u′′ +a−u− 4uv
1+u2

=0, (3.1)

dv′′ +u− uv

1+u2
=0, (3.2)

subject to the boundary condition

u′ =v′ =0 at x=0, 	. (3.3)

When applying the bifurcation theory to the study of the existence of
such solutions, we shall fix constants a and 	, and treat d as a bifurca-
tion parameter. The local bifurcation theory will be used to give a pre-
cise description for the structure of positive solutions near the bifurcation
points. The global bifurcation theory is then used to show that these bifur-
cation curves can be prolonged as long as d is larger than certain critical
values.

The eigenvalue problem

−φ′′ =λφ, φ′ =0 at 0, 	
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possesses a sequence of simple eigenvalues

λj = (πj/	)2, j =0,1,2, . . . ,

whose corresponding normalized eigenfunctions are given by

φj (x)=



1/
√
	, j =0,

√
2/	 cos(πjx/	), j >0.

(3.4)

This set of eigenfunctions forms an orthonormal basis in L2(0, 	). Let Y =
L2(0, 	)×L2(0, 	) be the Hilbert space with the inner product

(U1,U2)Y = (u1, u2)L2(0,	)+ (v1, v2)L2(0,	)

for U1 = (u1, v1), U2 = (u2, v2)∈Y , and

E={(u, v) :u, v∈C2([0, 	]), u′ =v′ =0 at x=0, 	}.

We regard E as a Banach space with usual C2 norm. Define the map F :
(0,∞)×E→Y by

F(d,U)=
(
u′′ +f (u, v)
dv′′ +g(u, v)

)
, U = (u, v).

Then the solutions of the boundary value problem (3.1)–(3.3) are exactly
zeros of this map. With U∗ = (u∗, v∗), we have

F(d,U∗)=0 for all d >0.

If there is a number τ > 0 such that every neighborhood of (τ,U∗) con-
tains zeros of F in (0,∞) × E not lying on the curve (d,U∗), d > 0,
then we say that (τ,U∗) is a bifurcation point of the equation F =0 with
respect to this curve. By Theorem 1.7 of [3], (τ,U∗) is a bifurcation point
provided that:

(a) the partial derivatives Fd,FU , and FdU exist and are continuous,
(b) ker FU(τ,U∗) and Y/R(FU(τ,U

∗)) are one-dimensional,
(c) let ker FU(τ,U∗)= span{Φ}, then FdU(τ,U

∗)Φ /∈R(FU(τ,U∗)).

Theorem 3. Suppose j is a positive integer such that λj <f0 and dj 	=
dk for any integer k 	= j . Then (dj ,U∗) is a bifurcation point of F =0 with
respect to the curve (d,U∗), d >0.
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There is a one-parameter family of non-trivial solutions Γ (s)= (d(s),

u(s), v(s)) of the problem (3.1)–(3.3) for |s| sufficiently small, where
d(s), u(s), v(s) are continuous functions, d(0)=dj and

u(s)=u∗ + sφj +o(s), v(s)=v∗ + sbjφj +o(s), bj = (λj −f0)/f1>0.

The zero set of F consists of two curves (d,U∗) and Γ (s) in a neighborhood
of the bifurcation point (dj ,U∗).

Proof. It suffices to verify conditions (a)–(c) above. Note that

L=FU(d,U∗)=

∆+f0 f1

g0 d∆+g1


 , ∆= ∂2

∂2x
,

where f0, f1, g0 and g1 are given in (2.7). It is clear that the linear oper-
ators FU , FdU and Fd are continuous. Condition (a) is verified.
Suppose Φ= (φ,ψ)∈kerL, and write φ=�aiφi,ψ=�biφi . Then

∞∑
i=0

Bi


 ai
bi


φi =0, Bi =


f0 −λi f1

g0 g1 −dλi


 . (3.5)

Since

detBi =0 ⇔ d=di = α

1+α2

λi +5
λi(f0 −λi) ,

taking d=dj implies that

kerL= span{Φ}, Φ=

 1

bj


φj , (3.6)

where

bj = λj −f0

f1
= 3α2 −5− (1+α2)λj

4α
>0.

Consider the adjoint operator

L∗ =

∆+f0 g0

f1 d∆+g1


 .

In the same way as above we obtain

kerL∗ = span{Φ∗}, Φ∗ =

1

b∗
j


φj , (3.7)
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where b∗
j = (λj − f0)/g0 < 0. Since R(L)= (kerL∗)⊥, the codimension of

R(L) is the same as dim ker L∗ =1. Condition (b) is thus verified.
Finally, since

FdU(dj ,U
∗)Φ=


 0 0

0 ∆


Φ=


0

−λjbjφj


 ,

and

(FdU (dj ,U
∗)Φ,Φ∗)Y = (−λjbjφj , b∗

j φj )L2 =−λjbjb∗
j >0,

we find FdU(dj ,U
∗)Φ /∈R(L), and so condition (c) is satisfied. The proof

is completed.

We remark that if dj = dk for some j 	= k, then dim ker L> 1 at d=
dj . This can be seen from the proof above. By (2.10) one may verify that
dj =dk for j 	=k if and only if

5	2(f0 −λj )
π2(λj +5)

=k2. (3.8)

This theorem shows that if dj > 0, then (dj ,0) is a bifurcation point
with respect to the trivial branch (d,0). The number of such bifurcation
points is thus equal to the number of j for which dj > 0, namely, iα for
given α and 	, see (2.9). Let J denote the closure of the non-trivial solu-
tion set of F =0, and Γj the connected component of J ∪{(dj ,0)} to which
{(dj ,0)} belongs. In a neighborhood of the bifurcation point the curve Γj
is characterized by the eigenfunction φj . Since φj has exactly j zeros in
the open interval (0, 	), we call the non-constant solutions in Γj mode j
steady states.

Theorem 3 provides no information on the bifurcating curve Γj far
from the equilibrium. A further study is therefore necessary in order
to understand its global structure. We shall prove that Γj is unbounded,
using the global bifurcation theory of Rabinowitz and the Leray-Schauder
degree for compact operators.

Theorem 4. Under the same assumption of Theorem 3, the projection
of the bifurcation curve Γj on the d-axis contains (dj ,∞).

If d >d̃ and d 	=dk for any integer k>0, then the problem (3.1)–(3.3)
possesses at least one non-constant positive solution.

Proof. As in [13], we first rewrite the system (3.1) and (3.2) in a
form that the standard global bifurcation theory can be more conveniently
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applied: Let ũ=u−α, ṽ= v− 1 −α2. Then (3.1) and (3.2) is transformed
into

−ũ′′ =f0ũ+f1ṽ+ f̃ (ũ, ṽ),
−dṽ′′ =g0ũ+g1ṽ+ g̃(ũ, ṽ),

where f̃ and g̃ are higher-order terms of ũ and ṽ. The constant steady
state (α,1+α2) of (3.1–3.2) is shifted to (0, 0) of this new system.

Let G: h→ w denote the Green operator for the boundary value
problem

f0w−w′′ =h in (0, 	), w′ =0 at x=0, 	

and Gd the Green operator for

−g1w−dw′′ =h in (0, 	), w′ =0 at x=0, 	,

where f0 = (3α2 −5)/(1+α2)>0 and g1 =−α/(1+α2)<0. Put Ũ = (ũ, ṽ),
K(d)Ũ = (2f0G(ũ)+f1G(ṽ), g0Gd(ũ))

and

H(Ũ)= (G(f̃ (ũ, ṽ)),Gd(g̃(ũ, ṽ))).
Recall that

E={(u, v) :u, v∈C2([0, 	]), u′ =v′ =0 at x=0, 	}.
Then the boundary value problem (3.1) and (3.3) can be interpreted as the
equation

Ũ =K(d)Ũ +H(Ũ) (3.9)

in E. Note that K(d) is a compact linear operator on E for any given
d >0. H(Ũ)=o(|Ũ |) for Ũ near zero uniformly on closed d sub-intervals
of (0,∞), and is a compact operator on E as well.

In order to apply Rabinowitz’s global bifurcation theorem [17, Theo-
rem 1.3], we first verify that 1 is an eigenvalue of K(dj ) of algebraic mul-
tiplicity one. From the argument in the proof of Theorem 3 it is seen that
ker(K(dj )− I )= ker L= span{Φ}, so 1 is indeed an eigenvalue of K =
K(dj ), and dim ker(K− I )=1. As the algebraic multiplicity of the eigen-
value 1 is the dimension of the generalized null space ∪∞

i=1 ker(K − I )i ,
we need to verify that ker(K − I )= ker(K − I )2, or ker(K − I )∩R(K −
I )= {0}.
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We now compute ker(K∗ − I ) following the calculation in [13], where
K∗ is the adjoint of K. Let (φ,ψ) ∈ ker(K∗ − I ). Then

2f0G(φ)+g0Gd(ψ)=φ, f1G(φ)=ψ.
By the definition of G and Gd we obtain

−djf1φ
′′ =fφφ+fψψ, −ψ ′′ =f1φ−f0ψ,

where

fφ =2djf0f1 +f1g1, fψ =f1g0 −2(f0g1 +djf 2
0 ).

Write φ=�aiφi , ψ=�biφi . Then

∞∑
i=0

B∗
i

(
ai
bi

)
φi =0, B∗

i =

fφ −djf1λi fψ

f1 −f0 −λi


 .

By a straightforward calculation one can check that detB∗
i = f1 detBi ,

where Bi is given in (3.5) (replacing d there by dj ). Thus detBi = 0 only
for i= j , and ker(K∗ − I ) is spanned by (f0 +λj , f1) φj . This shows that
Φ /∈ (ker(K∗ − I ))⊥ = R(K − I ), so ker(K − I ) ∩ R(K − I )= {0} and the
eigenvalue 1 has algebraic multiplicity one.

If 0<d 	=dj is in a small neighborhood of dj , then the linear opera-
tor I −K(d) : E→E is a bijection and 0 is an isolated solution of (3.9)
for this fixed d. The index of this isolated zero of I −K(d)−H is given
by

i(I −K(d)−H, (d,0))= deg (I −K(d),B,0)= (−1)p,

where B is a sufficiently small ball center at 0, and p is the sum of the
algebraic multiplicities of the eigenvalues of K(d) that are > 1. For our
bifurcation analysis, it is also necessary to verify that this index changes
as d crosses dj , that is, for ε >0 sufficiently small,

i(I −K(dj − ε)−H, (dj − ε,0)) 	= i(I −K(dj + ε)−H, (dj + ε,0)).
(3.10)

Indeed, if µ is an eigenvalue of K(d) with an eigenfunction (φ,ψ),
then

−µφ′′ = (2−µ)f0φ+f1ψ,

−dµψ ′′ =g0φ+g1µψ.



308 Jang et al.

Using the Fourier cosine series φ=�aiφi and ψ=�biφi leads to

∞∑
i=0


 (2−µ)f0 −µλi f1

g0 µg1 −dµλi




ai
bi


φi =0.

Thus the set of eigenvalues of K(d) consists of all µ’s that solve the char-
acteristic equation

(f0 +λi)µ2 −2f0µ− f1g0

dλi −g1
=0, (3.11)

where the integer i runs from zero to ∞. For d=dj in particular, if µ=1
is a root of (3.11), then a simple calculation leads to dj = di , and so j =
i by the assumption. Therefore, without counting the eigenvalues corre-
sponding to i=j in (3.11), K(d) has the same number of eigenvalues > 1
for all d close to dj , and they have the same multiplicities. For i = j in
(3.11), we let µ(d), µ̃(d) denote the two roots. First we find that

µ(dj )=1 and µ̃(dj )= f0 −λj
f0 +λj <1.

Now for d close to dj , µ̃(d)< 1. As the constant term −f1g0/(dλi − g1)

in (3.11) is a decreasing function of d, there results

µ(dj + ε)>1, and µ(dj − ε)<1.

Consequently, K(dj + ε) has exactly one more eigenvalues that are larger
than 1 than K(dj −ε) does, and by a similar argument above we can show
that this eigenvalue has algebraic multiplicity one. This verifies (3.10).

With the help of (3.10), we can use the argument in the proof of the
[Theorem 1.3, 17] to conclude that Γj either meets infinity in R ×E or
meets (dk,0) for some k 	=j , dk >0. We now show that the first alternative
must occur, following the idea of Nishiura [11] and Takagi [20]: Indeed,
if Γj is bounded, then it is compact, and Γj meets some other bifurcation
points. Let k be such that Γj meets (dk,0), but not (di,0) for any i > k.
Consider the system (3.1) and (3.2) on the interval (0, 	/k) subject to the
boundary condition

u′ =v′ at x=0, 	/k. (3.12)

We first note that if Ū solves (3.1) and (3.2) and (3.12), then one can con-
struct a solution Ū to (3.1) and (3.3) by a reflective and periodic exten-
sion: Let xn=n	/k, n=0,1, . . . , k, and define

U(x)=


Ū (x−x2n) if x2n�x�x2n+1,

Ū (x2n+2 −x) if x2n+1 �x�x2n+2.
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It is easy to see that (dk,0) is also a bifurcation point of the problem (3.1)
and (3.2) and (3.12). Let Λk denote the bifurcation branch of this new
problem that meets (dk,0), then using the same argument above it is clear
that it either meets infinity or meets (d ′

k,0) for some k′>k. If the second
case occurs, then by the above extension one sees that Γj meets (d ′

k,0),
which violates the definition of k; hence Λk meets infinity, and then by the
extension again Γj meets infinity too. It then follows that the projection
of Γj on the d interval must be unbounded, since the solutions u, v are
bounded by constants independent of d. It also follows from the a priori
estimates that any solution on the curve Γj must be positive. The theorem
is thus proved.

We remark that we do not know if it is possible that Γj meets some
bifurcation points and then reaches infinity; note that our argument above
only rule out the possibility that Γj meets some bifurcation points without
finally reaching infinity. If this case occurs, then some bifurcating branches
“collide” each other and the solutions undergo a symmetry breaking.
Notice further that our theorem does not provide the existence of non-
constant solutions for d = dk. Indeed, from our proof it can be seen that
if (3.1)–(3.3) admits no non-constant positive solution for some dk > d̃,
then the “collision” must occur somewhere; i.e., the non-existence at some
dk > d̃ implies the “collision” of some bifurcation curves. Understanding
this phenomenon is very important in studying the pattern formation in
living organisms.

4. THE SHADOW SYSTEM

Although Theorem 4 gives existence of the non-constant solutions for
large d, and Theorem 3 provides a detailed description on the solution
shape near the bifurcation points, little is known for the qualitative prop-
erties of the solutions far from the equilibrium. For a better understanding
of the solution properties, we consider the problem (3.1)–(3.3) as d→∞.
The limit system is called a shadow system, as was first introduced by
Keener [6]. For other important progress on the study of shadow systems,
see for example [12, 14, 15, 20]. If we rewrite Eq. (3.2) as

v′′ +d−1
(
u− uv

1+u2

)
=0.

Then by the a priori estimate (2.4) we see that, as d→∞, v′′ =0. It follows
from the boundary condition (3.3) that v must be a constant, say v= τ ,
with

1+
(

a

5+4a2

)2

<τ <1+a2. (4.1)
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Integrating (3.2) on (0, 	) gives∫ 	

0
udx=

∫ 	

0

uτ

1+u2
dx.

Substituting this into the integration of (3.1) yields∫ 	

0
udx= a	

5
.

We thus obtain the shadow system

u′′ +a−u− 4uτ
1+u2

=0, (4.2)

1
	

∫ 	

0
udx= a

5
, (4.3)

u′(0)=u′(	)=0. (4.4)

By (2.4) any positive solution of (4.2)–(4.4) satisfies

a

5+4a2
<u<a.

Observe that if u=u(x) is a decreasing solution of (4.2)–(4.4), then

u (x)=u(	−x)
gives an increasing solution of the same problem. Furthermore, if u is
a solution of (4.2)–(4.4) with m(m�1) interior critical points, then these
points must occur at k	/(m+1), 1� k�m, and all the m+1 pieces defined
in the subintervals ((k−1)	/(m+1), k	/(m+1)), 1� k�m+1, are mono-
tone and are identical up to translation and/or reflection. Hence the set
of increasing solutions characterizes all solutions of (4.2)–(4.4). We shall
therefore focus on finding increasing solutions of (4.2)–(4.4) only.

As in [15,20], our strategy of solving (4.2)–(4.4) is to solve the regu-
lar boundary value problem (4.2) and (4.4) first, and then to look for the
solutions that satisfy the extra condition (4.3).

Let

f (u)=a−u− 4τu
1+u2

and F(u)=
∫ u

0
f (s)ds.

Then we have:

Lemma 4.1. Let u be an increasing solution of (4.2) and (4.4) with
u(0)=β, u(	)= θ . Then F(β)=F(θ) and F(u(x))<F(β) for all 0<x<	.
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Proof. Let E(x)= (u′(x))2/2+F(u(x)). Then E′(x)≡0 and so

E(x)=F(β)=F(θ), 0�x� 	 (4.5)

by the boundary condition (4.4). Since u′(x) > 0 in (0, 	), it holds that
F(u(x))<F(β) for all 0<x<	.

Consequently, if (4.2) and (4.4) admit a solution, then there must be
some z∈ (0, a) at which F(u) takes a minimum value, so f (z)= 0 and f

changes sign in a neighborhood of z. To find the range for the parameter
τ for which this happens, we need some detailed information for the curve

h(u)= (a−u)(1+u2)

4u
, 0<u<a. (4.6)

Clearly f (z)=0 if and only if τ =h(z). Since

h′(u)=−2u3 −au2 +a
4u2

, (4.7)

h(u) is decreasing for u>0 close to u=0 or u=a. As our basic assump-
tion (H) gives

3a2>125, (4.8)

we find that

h′(α)= 3a2 −125
20a

>0.

Therefore h(u) has exactly two critical points in (0, a).

Lemma 4.2. Assume (4.8) holds. Let α− and α+ denote respectively
the minimum and the maximum points of h(u) in (0, a). Then

max{1,8/a}<α−<α, 2α<α+<a/2, (4.9)

where α=a/5. Furthermore, let

τ− =h(α−) and τ+ =h(α+).

Then

max
{

2,1+ 64
a2

}
<τ−<1+ a2

25
<τ+<

a2

12
− 1

4
. (4.10)
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Proof. By (4.7), α− and α+ are the two zeros of h(u) = 2u3 −
au2 + a in (0, a), so (4.9) follows from the simple fact that h> 0 at u=
0,1,8/a, a/2, a, and h<0 at u=α,2α.

Since α−<a/5, we have 4α−<a−α− and by (4.9)

τ− = (a−α−)(1+α2−)
4α−

>1+α2
−>max

{
2,1+ 64

a2

}
.

As h(α)=1+α2, we get

τ−<1+α2<τ+

by the monotonicity of h(u) over (α−, α+). Finally, since α+ is a zero of
h(u), it holds that a=aα2+ −2α3+. We have the estimate

τ+ = a−α+ +aα2+ −α3+
4α+

= 1
4
(−3α2

+ +2aα+ −1)� a2

12
− 1

4
.

We remark that although the estimates in (4.9) and (4.10) are not
optimal, they are nevertheless very sharp. For instance, the lower bound
8/a in (4.9) cannot be replaced by numbers larger than 9/a.

Lemma 4.3. The problem (4.2) and (4.4) admits solutions for some
	>0 if and only if τ ∈ (τ−, τ+).

Proof. We first prove that there exists no solution to (4.2) and (4.4)
for any 	 > 0 if τ /∈ (τ−, τ+). Indeed, if τ < τ−, then f (u) has exactly
one zero in (0, a). Denote this unique zero by z+. Then z+>α+. Clearly
f (u) > 0 for 0< u < z+, and f (u) < 0 for z+ < u < a. Hence the func-
tion F(u) is concave in (0, a). If τ = τ−, then α− is a zero of f (u), which
has another zero z+>α+ in (0, a). Since f (u) does not change sign near
α−, F(u) is still concave in (0, a). Similarly, we can derive the concav-
ity of F(u) for the case τ � τ+. Hence the non-existence follows from
Lemma 4.1.

On the other hand, if τ ∈ (τ−, τ+), then f (u) has exactly three (sim-
ple) zeros, denoted by z−<z<z+, in (0, a), with the interlacing relation

z−<α−<z<α+<z+. (4.11)
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It is easily seen that f <0 for z−<u<z,f >0 for z<u<z+ and f ′(z)>
0. Thus F(u) is a convex function in (z−, z+), taking a strict minimum at
u= z. For a given β ∈ (z−, z), there are two cases: either F(β)�F(z+) or

f (β)<F(z+). (4.12)

Clearly (4.12) holds if β is sufficiently close to z.
Choose β ∈ (z−, z) such that (4.12) holds. Let θ > β be the unique

number in (z, z+) such that F(β)= F(θ). Let u= u(x,β) be the unique
solution to the initial value problem

u′′ +f (u)=0, u(0)=β ∈ (z−, z), u′(0)=0. (4.13)

Then u′′(0)= −f (β) > 0, so u is initially increasing. We claim that there
is some finite 	= 	(β)> 0 such that u′> 0 in (0, 	) and u′(	)= 0. Indeed,
if this is not true, then u′> 0, and by (4.5), u<θ for all x > 0. Let u∞ =
limx→∞ u(x). Then β<u∞ � θ . But as x→∞ one has u′′ →0, so by (4.2)
f (u∞)= 0. Since z is the only zero of f in (β, θ) we get u∞ = z, and
limx→∞E(x)=F(z)<F(β), which contradicts (4.5). The claim is proved
and the existence of solutions to (4.2) and (4.4) then follows.

Remark 4.1. If F(z−) > F(z+), then we define β0 to be the unique
number in (z−, z) such that F(β0)=F(z+); if F(z−)�F(z+), then we let
β0 = z−. For a given β ∈ (z−, z), condition (4.12) holds if and only if β >
β0. From the argument in the proof of Lemma 4.3 it follows that the ini-
tial value problem (4.13) gives rise to an increasing solution of (4.2) and
(4.4) if and only if β0<β<z.

To obtain more precise information for the existence, we shall study
the function 	(β), β0<β<z, in more details. By (4.5) we find that

u′(x)=
√

2(F (β)−F(u))>0, x ∈ (0, 	)
and u(	)= θ . It follows that

	=
∫ θ

β

du√
2(F (β)−F(u)) . (4.14)

This is a singular integral. For a simple evaluation of this integral we
shall apply several change of variables to transform it into a regular one,
following the original idea of Opial [16] (see also [18, 19] for advanced
approach).

For a given number u∈ (β, θ), define u=g(s) by the relation

F(g(s))−F(z)= s2/2, sign s= sign(u− z)= sign(f (u)). (4.15)
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Then s=g−1(u) is well defined and is strictly increasing in (β, θ), since in
this interval F(u) is convex and takes a strict minimum at u=z. Let p>0
be given by

1
2
p2 =F(β)−F(z)>0. (4.16)

Then we have

	(β)=
∫ p

−p
g′(s)ds√
p2 − s2

.

Making another change of variable s=−p cos t,0� t �π , we arrive at

	(β)=
∫ π

0
g′(−p cos t)dt. (4.17)

For later purpose, we first express g′(s), g′′(s) and g′′′(s) as functions
of u, following the calculation similar to that in [18, pp. 4–6]. Differenti-
ating the identity (4.15) with respect to s we obtain f (u)g′(s)= s. Write

F̄ (U)=F(u)−F(z).
Then by (4.15) we get

g′(s)=
√

2F̄ (u)
|f (u)| >0, (4.18)

as long as s 	=0 or u 	= z. For s=0, using the L’Hopital’s rule we obtain

g′(0)≡ lim
u→z

g′(s)=1/
√
f ′(z), (4.19)

which implies in particular

lim
β→z

	(β)=π/
√
f ′(z)=	0. (4.20)

Differentiating the identity f (u)g′(s)= s with respect to s further gives

f ′(u)g′2(s)+f (u)g′′(s)=1

and

f ′′(u)g′3(s)+3f ′(u)g′(s)g′′(s)+f (u)g′′′(s)=0,

from which it is straightforward to verify

g′′(s)=−f
2 −2f ′F̄
f 3

(u), g′′(0)=− f ′′

3f ′2 (z), (4.21)
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and

g′′′(s)=− g′(s)
f 4(u)

H(u),

g′′′(0)= 1
12(f ′(z))7/2

[5(f ′′)2 −3f ′f ′′′](z), (4.22)

where

H(u)=2f (u)f ′′(u)F̄ (u)+3f ′(u)[f 2(u)−2f ′(u)F̄ (u)]. (4.23)

The following lemma is technically very useful.

Lemma 4.4. H(z)=0, and H(u)<0 for u∈ (z−, z+) and u 	= z.
Proof. Obviously H(z)=0 since f (z)=0 and F̄ (z)=0.
For our function f (u)=a−u−4τu/(1+u2), we have

f ′(u)=−1− 4τ(1−u2)

(1+u2)2
, f ′′(u)= 8τu(3−u2)

(1+u2)3
,

and

f ′′′(u)= 24τ(1−6u2 +u4)

(1+u2)4
.

In (z−, z+), f (u) has one point of inflection u = √
3, and two critical

points c− and c+ with c−<
√

3<c+. For u∈ (z−, c−], we have

f <0, f ′ �0, f ′′>0, and F̄ >0,

verifying at once H(u)<0. The same reasoning works for u∈ [c+, z+).
For u∈ (c−, c+), we need a different approach since in this interval f

and f ′′ change sign. Noticing further that we do not know explicitly the
function F̄ , it seems not easy to verify H(u)<0 directly. We shall use an
argument based on some clever ideas of Schaaf [18]. As

H ′(u)=2f (u)f ′′′(u)F̄ (u)+5f ′′(u)[f 2(u)−2f ′(u)F̄ (u)],

we find that

5f ′′H(u)−3f ′H ′(u)=2f F̄G(u), G(u)=5f ′′2(u)−3f ′(u)f ′′′(u).
(4.24)

It is remarkable that G also appears in (4.22).
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We claim that G(u)>0 for u∈ (c−, c+). In fact, if f ′′′ �0, then this is
trivial as f ′>0 in this interval. If f ′′′>0, then u4 −6u2 +1>0 and so

G(u) = 320τ 2u2(3−u2)2

(1+u2)6
+72τ

(
1+ 4τ(1−u2)

(1+u2)2

)
· (1−6u2 +u4)

(1+u2)4

>
320τ 2u2(3−u2)2

(1+u2)6
+ 288τ 2(1−u2)(1−6u2 +u4)

(1+u2)6

= 32τ 2

(1+u2)6
[10u2(3−u2)2 +9(1−u2)(1−6u2 +u4)]

= 32τ 2

(1+u2)6
(9+27u2 +3u4 +u6)>0.

By (4.22) we have

g′′′(0)= 1
12(f ′(z))7/2

G(z)>0,

and so g′′′(s)>0 for s close to zero, implying that H(u)<0 for all u close
to z but not equal to z. Suppose for contradiction that there is some ξ ∈
(z, c+) at which H(ξ)=0 and H <0 for u∈ (z, ξ), then H ′(ξ)�0, f ′(ξ)>0
and G(ξ) > 0, which contradict (4.24). Thus H(u) < 0 for all z < u< z+.
Similarly, we can prove that H(u)<0 for all z−<u<z+.

Lemma 4.5. Let β0<β<z. Then 	′(β)<0.

Proof. In stead of showing that 	′(β) < 0 directly, we shall prove
an equivalent inequality d	/dp> 0. (Note that dp/dβ < 0, see (4.16)). By
(4.17) we have

	′(p)=−
∫ π

0
cos tg′′(s)dt and 	′′(p)=

∫ π

0
cos2 tg′′′(s)dt, s=−p cos t.

Since

	′(0)= d	
dp
(0)=−g′′(0)

∫ π

0
cos t dt=0,

and from (4.18), (4.22) and Lemma 4.4 it follows that 	′′(p)>0, we con-
clude that d	/dp>0, completing the proof.

Now we can present our main result on the problem (4.2) and (4.4).

Theorem 5. The problem (4.2) and (4.4) has non-trivial solutions if
and only if

τ ∈ (τ−, τ+) and 	>	0 ≡π/
√
f ′(z). (4.25)
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Furthermore, if τ and 	 are given numbers such that (4.25) holds, then
the problem admits exactly one increasing solution u, and u must be non-
degenerate.

Let u(0)= β and u(	)= θ . Then β ∈ (β0, z), θ ∈ (z, z+), ∂β/∂	< 0 and
∂θ/∂	>0.

Proof. When τ ∈ (τ−, τ+), it is easy to show that 	(β)→∞ as β ↓β0,
where β0 is defined in Remark 4.1. Indeed, if F(z−)>F(z+), then β0>z−
and F(β0)=F(z+), in which case u= u(x,β0) is increasing for all x > 0
and limx→∞ u= z+. If F(z−)�F(z+), then β0 = z− and u(x,β0)≡β0, for
which case one still has 	(β)→∞ as β ↓β0 by the continuous dependence
on initial conditions.

Therefore, if τ ∈ (τ−, τ+), and β ∈ (β0, z), the function 	(β) is decreas-
ing by Lemma 4.5, with the range (	0,∞) as limβ↑z= 	0 by (4.20). Com-
bining with Lemma 4.3, we obtain the existence and uniqueness results
as stated. Furthermore, in view of Remark 4.1, Lemmas 4.1 and 4.5 we
obtain the properties for β and θ .

It remains to show that u must be non-degenerate: Differentiating the
relation u′(	, β)=0 with respect to β we have

u′′(	, β)
∂	

∂β
+w′(	, β)=0, w=w(	,β)= ∂u(	, β)

∂β
,

leading to w′(	)=f (θ)∂	/∂β <0. As w also solves the problem

w′′ +f ′(u)w=0, w(0)=1, w′(0)=0, (4.26)

it follows that the only solution to the eigenvalue problem

ρ′′ +f ′(u)ρ=0, ρ′(0)=ρ′(	)=0, (4.27)

is the trivial solution, establishing the non-degeneracy of u.

Treating the second zero z of f (u) on (0, a) as a function of τ , then
z=z(τ ) is well-defined for τ ∈ (τ−, τ+). z(τ ) is an increasing function, with
z↓α− as τ ↓ τ−, and z↑α+ as τ ↑ τ+.

It is easy to check that z=α if and only if τ =1+α2. Since

f ′(z)=−2z3 −az2 +a
z(z2 +1)

,

we find that, when z=α,

f ′(z)=−3α2 −5
α2 +1

=f0,
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in which case 	>	0 if and only if f0>λ1. Recall that f0>λ1 is necessary
for the instability of (u∗, v∗) as well as the existence of bifurcating solu-
tions of (3.1)–(3.3), see Lemma 2.1, and Theorems 3, 4. However, f ′(z)
may not take the maximum value at z=α. Hence the problem (4.2) and
(4.4) could have solutions even if (3.1)–(3.3) possesses no bifurcating solu-
tions.

Next, we try to understand the existence of solutions to (4.2) and
(4.4) when the interval length 	 is fixed. To state the result, we introduce
the polynomial

ζ(z)=az4 +4z3 −4az2 −a. (4.28)

One can verify that ζ(z) has a unique zero, say z=α∗, in (0, a). We have

∂f ′(z)/∂z=−ζ(z)/[z2(z2 +1)2].

Thus f ′(z) takes the maximum value at α∗.

Theorem 6. Let α∗ be the unique zero of ζ(z). Let 	∗ =π/√f ′(α∗). If
	� 	∗, then the problem (4.2) and (4.4) has no nontrivial solutions for any
τ >0.

On the other hand, if 	>	∗, then there are two numbers τ	−<τ	+ such
that (τ	−, τ	+)⊂ (τ−, τ+), and the problem (4.2) and (4.4) has non-triv-
ial solutions if and only if τ ∈ (τ	−, τ	+). Moreover, for each τ ∈ (τ	−, τ	+),
the problem admits exactly one increasing solution u, and u must be non-
degenerate.

Proof. By the remark above it is obvious that 	∗ is the absolute min-
imum value of π/

√
f ′(z(τ )) over τ ∈ (τ−, τ+). It follows that (4.2) and (4.4)

admit no nontrivial solutions when 	� 	∗ for any τ >0.
Observe that f ′(z) has a unique maximum value at z = α∗ in z ∈

(α−, α+), with f ′(α∗)=π2/	2∗, and f ′ vanishes at α− and α+. Now, if 	>
	∗, then there must be two numbers α	−<α	+, such that α∗ ∈ (α	−, α	+)⊂
(α−, α+), and f ′(α	−) = f ′(α	+) = π2/	2. Let τ	− = h(α	−) and τ	+ =
h(α	+), see (4.6) for the definition of h(u). We see that whenever τ ∈
(τ	−, τ	+), it holds that f ′(z(τ ))>π2/	2, i.e., 	0<	; thus there must be a
unique, increasing, and non-degenerate solution to the problem (4.2) and
(4.4) by Theorem 5. The proof is completed.

It is easy to see that as 	↓ 	∗, the set (τ	−, τ	+) shrinks to an empty
set; whereas as 	→∞, (τ	−, τ	+) expands to the intervel (τ−, τ+).

Theorem 7. Assume f0 > λ1. Then the shadow system (4.2)–(4.4)
admits at least one (strictly) increasing solution, and the same number
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of (strictly) decreasing solutions. The corresponding τ must satisfy τ ∈
(τ	−, τ	+).

Consequently, if f0>λk, k > 1, then the shadow system admits at least
2k non-trivial solutions, and for each 1<j � k there are at least two solu-
tions with exactly j −1 interior critical points in (0, 	).

Proof. We first prove that f0 > λ1 implies 	 > 	∗: Indeed, as we
noticed before that for τ =1+α2, one has z(τ )=α and f ′(z)=f0. Hence
f0<f

′(α∗), yielding f ′(α∗)>λ1, and

	= π√
λ1
>

π√
f ′(α∗)

=	∗.

Since f ′(α	−)=f ′(α	+)=λ1, and f ′(α)=f0>λ1, we also find that

α	−<α<α	+. (4.29)

For fixed 	>	∗ and a given τ ∈ (τ	−, τ	+), we shall denote the unique
solution obtained in Theorem 6 by u	(x), and write

β	(τ )=u	(0), A(τ)= 1
	

∫ 	

0
u	(x)dx.

It follows by the non-degeneracy of u	 that both β	(τ ) and A(τ) must
be continuous functions of τ .

If τ ∈ (τ	−, τ	+) is close to τ	−, then z(τ ) is close to α	−. Since 	=
π/
√
f ′(α	−) we find that β	 is close to z(τ ), and thus close to α	− too.

Furthermore, the solution u	(x) is nearly a constant. Hence A(τ) is close
to α	− and by (4.29) we conclude that A(τ) < α. Similarly, for those τ ’s
that are close to τ	+ we can establish A(τ)>α . By the continuity of A(τ)
we find that there must be some τ ∈ (τ	−, τ	+) such that A(τ)= α. This
gives the existence of increasing solutions to the shadow system (4.2)–(4.4).
The existence of decreasing solutions follows by a reflection.

Finally, if f0>λk, k > 1, then for each 1<j � k it follows that 	/j >
π/

√
f0 > 	∗. Hence we can find a pair of solutions of (4.2)–(4.4) with 	

replaced with 	/j . The existence of solutions with interior critical points
in (0, 	) follows by reflections and/or translations.

We are in the process of trying to show that A(τ) is a strictly increas-
ing function of τ for all τ ∈ (τ	−, τ	+), which needs a lengthy and highly
non-trivial argument. Notice however that it is easy to prove the mono-
tonicity of A(τ) in some subintervals of (τ	−, τ	+) . This monotonicity is
sufficient to imply the non-degeneracy of the shadow system, and so by a
standard argument in [20] it is clear that the solutions obtained in Theo-
rem 6 can be “projected” back to the original system (3.1)–(3.3).
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