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Abstract
This paper addresses the null controllability of an abstract boundary control systems in
Hilbert spaces where the system operator is of Riesz type. Consequently, this document
establishes a criterion for null controllability in such systems based on initial data, utilizing the
moment problem.Furthermore, this criterion is formulated by employing a null controllability
criterion that is applicable to a corresponding linear system with internal control. Finally,
we apply our approach to the heat equation and the Mullins equation, demonstrating the
practicality of our methodology.

Keywords Null controllability · Boundary control · Unbounded control operator · Dirichlet
operator · Semigroup · Heat equation · Mullins equation
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1 Introduction

The study of null controllability has been a significant research area in the field of partial
differential equations, aiming to manipulate the evolution of systems to reach a desired state
through appropriate control inputs.A fundamental aspect of this pursuit involves investigating
the controllability of equations subjected to boundary control conditions. Such equations
often arise in various scientific and engineering applications, ranging from heat transfer and
fluid dynamics to structural mechanics and population dynamics. Refer to [1–5] for further
insights on this topic.

In recent years, several researchers have dedicated their efforts to exploring the concept
of boundary null controllability in specific systems, often based on the moment problem.
Notably, this methodology was also employed by Fattorini and Russell in tackling control-
lability issues related to second-order parabolic equations, see [6]. For instance, in [7], the
authors investigated the null controllability of the linear heat equation with Dirichlet bound-
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ary control, transforming the control problem into a moment problem. Similarly, in [8],
the null controllability of one-dimensional compressible Navier-Stokes equations, linearized
around a constant steady state with periodic boundary conditions, was examined using the
moment problem as a foundation. This approach has also been explored in other works, see
for example [9, 10].

The null controllability of infinite-dimensional control systems, in which the evolution of
the state variable x is described by a linear equation where the input signal is internal, has
been studied by various researchers in the literature, see [11, 12]. In this study, we examine
the situation where the force acting on the system only takes place on a certain boundary
area. To that purpose we separate the boundary area from the state space. This idea was
developed by G. Greiner [13] to examine boundary conditions of differential equations as a
domain perturbation of an unbounded linear operator. The class of boundary control systems
is considered to be a fundamental and essential class of infinite-dimensional unbounded
control systems.

In this contribution, we investigate the null controllability of linear boundary control
systems in the abstract framework of the form

(BCP)

⎧
⎨

⎩

ẋ(t) = Amx(t), t > 0,
Qx(t) = Bu(t), t ≥ 0,

x(0) = x0,

where the state x(·) and the boundary control u(·) are in some appropriate Hilbert spaces
and Am , Q and B are linear operators. These systems garnered significant attention in the
early seventies, particularly through the contributions of [14, 15]. Significant results have
been obtained concerning the existence of solutions, as well as the exact, approximate and
positive controllability of boundary control systems (BCP) [16, 17]. In [14], H.O. Fattorini
established abstract characterizations of null controllability for boundary control systems
(BCP). While these abstract results are theoretically significant, they can be impractical
in certain cases. Consequently, many authors in the literature often focus on investigating
the controllability of specific systems, particularly parabolic linear equations in one space
dimension. In this context, the major contributions of authors F.O. Fattorini and D.L. Russell
have considerably enriched our understanding of this type of equation. In their work [6],
they extensively examined the exact controllability of linear parabolic partial differential
equations, basing the proposed characterization on the moment problem. See also [18].

Recently, null controllability of boundary control systems (BCP) has been discussed in
[19]. Their approach involved a transformation of the problem of null controllability, where
the control operator is unbounded, into a problem of null controllability, where the control
operator is bounded. A central aim of their investigation was to explore the null controlla-
bility of flows in networks controlled in a single vertex. In this context, they established a
matrix equality that characterizes the conditions for achieving null controllability. For more
information on the various controllability concepts associated with (BCP), see [19] and the
references therein.

In [19], the authors refrained from providing a comprehensive characterization of the null
controllability of (BCP) in the abstract context. Consequently, the primary objective of this
paper is to delve into criteria concerning the null controllability of (BCP). To this end, we
focus on a class of Riesz operators and use the semigroup theory and moment problem to
derive practical characterizations for achieving null controllability of (BCP) in the abstract
framework.

To be more precise, we delve into the realm of initial data that can be driven to zero
in a finite time frame through an appropriate choice of boundary control in L2

loc(R+,U ).
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The starting point of this paper is the work done in [19], where the resolution of the null
controllability problem for (BCP) is transmuted into the resolution of null controllability
for an associated infinite-dimensional linear control system. This approach proves to be a
fundamental tool in our analysis.

Subsequently, our attention shifts to the characterization of null controllability of the
associated system. In this context, the control problem is reduced to a moment problem.
This aspect is particularly critical, as it engages the family of real exponentials {eλn t }n≥0,
where the λn represent the eigenvalues of a Riesz operator. Consequently, we show that the
input leading to null controllability have Fourier coefficients that increase exponentially with
increasing frequency. In this context, we develop criteria for assessing the null controllability
of the (BCP) system.

The paper is structured as follows: In Section 2, we introduce the necessary hypotheses
to formulate the (BCP) problem and outline their corresponding solutions. Proceeding to
Section 3, we establish the fundamental notion of null controllability for the system (BCP),
along with its associated properties. Subsequently, we prove our main results concerning the
null controllability of the system (BCP). In Section 4, we shift our focus to the null control-
lability analysis of the heat equation. Finally, in Section 5, we delve into the examination of
null controllability of the Mullins equation.

2 Problem Setting

The goal of this paper is to explore the null controllability of the system (BCP) with the
aim of formulating a more specific criterion. In line with the approach of [19], we propose
the following conditions to achieve this goal:

• The state, the boundary, and the control space are three Hilbert spaces X , ∂X , and U ,
respectively,

• Am : D(Am) ⊂ X −→ X is a linear closed, densely defined operator,
• Q ∈ L([D(A)], ∂X) is a boundary operator, where [D(Am)] is the subspace D(Am)

equipped with the graph norm,
• B ∈ L(U , ∂X) is a bounded operator.
• u(·) is a control function in L2

loc(R+,U )

In order to establishwell-posedness for the abstract Cauchy problem (BCP), the introduction
of the following assumption was necessary.

Assumptions 1

(H1) The operator A ⊂ Am with domain D(A) = ker Q generates a strongly continuous
semigroup (S(t))t≥0 on X.

(H2) The operator Q : D(Am) −→ ∂X is surjective.

Building upon these assumptions, it becomes essential to present certain results established
in [13, Lemma 1.2, Lemma 1.3], as these findings play a crucial role in our analysis.

Lemma 1 The following assertions are satisfied for each λ ∈ ρ(A).

1. D(Am) = D(A) ⊕ ker(λ − Am);
2. Q|ker(λ−Am ) is invertible and the operator Qλ := (Q|ker(λ−Am ))

−1 : ∂X −→ ker(λ −
Am) ⊂ X is bounded;
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For λ ∈ ρ(A), Qλ is called the Dirichlet operator. Define the operator

Bλ := QλB ∈ L(U , ker(λ − Am)).

Under the above assumptions and for u ∈ L2
loc(R+,U ), it has been shown that if x is

a classical solution of (BCP), i.e. x(·) ∈ C1(R+, X) with x(t) ∈ D(Am) for all t ≥ 0
satisfying the boundary systems (BCP), then it is given by the variation of constat formula

x(t) = S(t)x0 + (λ − A−1)

∫ t

0
S(t − s)Bλu(s)ds, t ≥ 0 (1)

for some λ ∈ ρ(A), here A−1 denotes the generator of the extrapolated semigroup associated
to (S(t))t≥0, see [17].

In this study, the concept of Riesz spectral operators, as introduced in [11], is employed
to establish the admissibility of mild solutions (1) for the system (BCP) and to investigate
their null controllability.

Definition 1 Let A : D (A) ⊂ X → X be a linear and closed operator with simple eigenval-
ues λn and corresponding eigenvectors φn ∈ D (A) , n ∈ N . A is a Riesz-spectral operator
if
(1) {φn, n ∈ N} is a Riesz basis:

(a){φn, n ∈ N} is maximal, i.e., spanK φn = X;
(b)there exist constants mR, MR ∈ R

∗+ such that for all N ∈ N and all α0, . . . , αN ∈ K

mR

N∑

n=0

|αn |2 ≤
∥
∥
∥
∥
∥

N∑

n=0

αnφn

∥
∥
∥
∥
∥

2

X

≤ MR

N∑

n=0

|αn |2

(2) the closure of {λn, n ∈ N} is totally disconnected, i.e. for any distinct a, b ∈ {λn, n ∈ N},
[a, b] 	⊂ {λn, n ∈ N}.
From [11], the Riesz spectral operator ensures the following properties:
The eigenvalues of the adjoint operator A∗ are provided for n ∈ N by μn � λn and the
associated eigenvectors ψn ∈ D (A∗) can be selected such that {φn, n ∈ N} and {ψn, n ∈ N}
are biorthogonal, i.e., for all n,m ∈ N, 〈φn, ψm〉X = δn,m .
Moreover, the sequence of vectors {ψn, n ∈ N} is a Riesz basis. For all (αn)n∈N ∈ K

N,
∑

n∈N
|αn |2 < ∞ ⇔

∑

n∈N
αnφn ∈ X ,

and for all x ∈ X ,
x =

∑

n∈N
〈x, ψn〉X φn =

∑

n∈N
〈x, φn〉X ψn .

On the other hand, A is the generator of a C0-semigroup S if and only if supn∈N Re λn < ∞.

In this case, the C0-semigroup S is given by

S(t)x =
∑

n∈N
eλn t 〈x, ψn〉X φn for all t ∈ R+, x ∈ X . (2)

Remark 1 [11] The semigroup (S(t))t≥0 is analytic if A is a Riesz-spectral operator and for
some ω ∈ R and c < 0

Re(λn) ≤ ω and Re(λn) − ω ≤ c|Im(λn)| for all n ∈ N. (3)
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To establish the subsequent corollary, we can make use of the regularity result presented
in [20, Theorem 6.2.4, page 70] and [21]. Hence, we introduce the following assumption:

Assumptions 2 A is a Riesz-spectral operator and the semigroup (S(t))t≥0 is analytic.

Corollary 1 Under Assumptions 1 and 2, the system (BCP) has a unique solution x in X−1,
that satisfies

x ∈ C([0,∞[, X) ∩ C1 ([0,∞[, X−1) .

Moreover, this solution it is given by

x(t) = S(t)x0 + (λ − A)

∫ t

0
S(t − s)Bλu(s)ds, t ≥ 0. (4)

For more detailed information on formula (4), refer to [19] and the references therein.

3 Null Controllability of Boundary Control Problems

3.1 Definitions and Related Properties

Building upon our previous work in [19], we further investigate null controllability by con-
necting the problem (BCP) with the standard control system (A, Bλ), where λ belongs to
ρ(A). This system is described as follows:

(A, Bλ)

{
ẋ(t) = Ax(t) + Bλu(t), t ≥ 0,
x(0) = x0.

(5)

The mild solution of (A, Bλ) is given by the variation of parameters formula

x(t) = S(t)x0 +
∫ t

0
S(t − s)Bλu(s)ds, (6)

where u ∈ L2
loc(R+,U ).

Our objective is to investigate the null controllability of the system (BCP) at a given time
T > 0. To achieve this goal, we introduce the following definition:

Definition 2 Let Z be a subset of the space X.

• The system (A, Bλ) (resp. (BCP)) is said to be exactly Z-null controllable at time T if
for all x0 ∈ Z, there is a control u ∈ L2([0, T ],U ) such that the corresponding solution
of the system satisfies x(T ) = 0.

• The system (A, Bλ) (resp. (BCP)) is said to be exactly Z-null controllable in finite time
if for all x0 ∈ Z, there is a time T and a control u ∈ L2([0, T ],U ) such that the
corresponding solution of the system satisfies x(T ) = 0.

In the study by [19], the null controllability of the system (BCP) within Banach spaces
was examined. The authors considered a scenario where the state space is non-reflexive, and
the control function exists in the space L1([0, T ],U )). Operating within the bounds of the
hypotheses presented in Assumptions 1 and under the assumption: There exist γ > 0, and
λ0 ∈ R such that

‖Qx‖ ≥ γ λ‖x‖ for all λ > λ0, and x ∈ ker(λ − Am). (7)
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they successfully established a correlation between the null controllability of (BCP) and
that of (A, Bλ).

In this paper, we aim to present analogous results in the context of Hilbert spaces. Here,
L1([0, T ],U ) will be replaced by L2([0, T ],U ), and the assumption (7) will be substituted
with the condition that the semigroup S(t) is analytic.

In the absence of an analytic semigroup S(t), while considering the hypothesis
∫ t
0 S(t −

s)Bλu(s)ds ∈ D(A) for all t > 0 and u ∈ L2
loc(R+,U ), we deduce a necessary condition

for achieving exact X -null controllability of the system (A, Bλ).

Theorem 1 [19] Let λ ∈ ρ(A) and Assumptions 1 hold. If the system (A, Bλ) is exactly
X-null controllable at a time T , then the semigroup (S(t))t≥0 is eventually differentiable.

Remark 2 Clearly, if the semigroup (S(t))t≥0 is analytic, it is also eventually differentiable.
Note that Assumptions 2 is not a necessary condition for studying the null controllability of
the system (A, Bλ) or (BCP). It is introduced to ensure the admissibility of the solution of
(BCP) as given by (4).

Concerning the null controllability of (BCP), as discussed in [19], by considering the
semigroup S(t) analytic instead of eventually differentiable, we obtain the following result.

Theorem 2 [19] Under Assumptions 1 and 2, the following assertions hold.

i) If the system (BCP) is exactly X-null controllable at time T , then (A, Bλ) is X-null
controllable at time T + ε for any ε > 0.

ii) Conversely, if the system (A, Bλ) is exactly X-null controllable at time T , then (BCP) is
X-null controllable at the same time T .

From [19], under Assumptions 1 and 2, we derive an important characterization of the
null controllability for (BCP).

Corollary 2 [19] The system (BCP) is exactly X-null controllable at time T , if and only if,
the system (A, Bλ) is D(A)-null controllable at the time T .

Remark 3 As demonstrated in [19], it is not difficult to prove that the system (BCP) is exactly
Z-null controllable at time T , if and only if, the system (A, Bλ) is R(λ, A)Z-null controllable
at the time T .

The result of the previous Corollary remains true for the null controllability in finite time.

Theorem 3 [19] The system (A, Bλ) is exactly D(A)-null controllable in finite time, if and
only if, the system (BCP) is exactly X-null controllable in finite time.

For the control law which steers the initial state of the (BCP) system to the origin in time
T , we have the following result.

Theorem 4 Let λ ∈ ρ(A), x0 ∈ X and u ∈ L2([0, T ],U ).
The control law u can drive the solution x(., x0, u) of (BCP) to zero if and only if it can

drive the solution x(., R(λ, A)x0, u) of (A, Bλ) to zero.

3.2 Main Results

Within the framework of Assumptions 1 and 2, we focus on the class of Riesz-spectral
boundary control systems associated with (BCP). For any λ ∈ ρ(A), the system (A, Bλ)
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has a unique solution x(·), as characterized by (6). Furthermore, as evidenced by (2), this
solution can be explicitly expressed as:

x(T ) =
∑

n∈N
eλnT 〈x0, ψn〉X φn +

∑

n∈N

∫ T

0
eλn(T−s) 〈Bλu(s), ψn〉X ds φn,

=
∑

n∈N
eλnT 〈x0, ψn〉X φn +

∑

n∈N

∫ T

0
eλns 〈Bλv(s), ψn〉X ds φn,

for all T > 0, x0 ∈ X and u ∈ L2([0, T ],U ) where v(s) = u(T − s).
Using the results presented in Corollary 2 and Theorem 4, establishing a criterion for the

X -null controllability of (BCP) can be simplified to establishing a criterion for the D(A)-null
controllability of (A, Bλ). To this end, we introduce the following theorem:

Theorem 5 Let λ ∈ ρ(A). The system (BCP) is X-null controllable at time T if and only if
for every x0 ∈ D(A), there exist u ∈ L2([0, T ],U ) such that

− eλnT 〈x0, ψn〉X =
∫ T

0
eλns 〈Bλv(s), ψn〉X ds for all n ∈ N, (8)

where v(s) = u(T − s).

Proof The system (A, Bλ) is D(A)-null controllable at time T if and only if for every x0 ∈
D(A), there exist u ∈ L2([0, T ],U ) such that the corresponding solution of the system
satisfies x(T ) = 0. i.e.,

∑

n∈N
eλnT 〈x0, ψn〉X φn +

∑

n∈N

∫ T

0
eλns 〈Bλv(s), ψn〉X ds φn = 0.

Since {φn, n ∈ N} is a Riesz basis, then, (A, Bλ) is D(A)-null controllable at time T if and
only if for every x0 ∈ D(A), there exist u ∈ L2([0, T ],U ) such that

−eλnT 〈x0, ψn〉X =
∫ T

0
eλns 〈Bλv(s), ψn〉X ds for all n ∈ N.

The proof is completed by Corollary 2. ��
Solving the (8) problem has allowed us to establish a connection with the following result:

Lemma 2 [6] Let cn ∈ R and μn ≥ 0 for all n ∈ N. The following moment problem
∫ T

0
v(s)e−μnsds = cn, n ∈ N, (9)

has an absolutely convergent solution v ∈ L2([0, T ],R) if, for some δ > 1,

∞∑

n=0

|cn |eδ
√

μn < ∞. (10)

Moreover, the solution v ∈ L2([0, T ],R) of (9) is given by

v(s) =
∞∑

n=0

cn En(s),
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where the sequence {En}n ⊂ L2([0, T ],R) are the biorthogonal functions to the set {e−μns}n
in L2([0, T ],R), i.e.,

∫ T

0
En(s)e

−μmsds = δnm, n,m ∈ N.

Remark 4 Since A is a Riesz-spectral operator and a generator of a C0-semigroup, the subset
σ+(A) of σ(A), which consists of eigenvalues with positive real parts, is limited to a finite
number of elements. Hence, there exist N0 ∈ N such that

−λn ≥ 0 for all n ≥ N0.

For the remainder of this paper, we will employ the change of variable μn = −λn for any
n ∈ N. This leads to the equation (8) being expressed as

− e−μnT 〈x0, ψn〉X =
∫ T

0
e−μns 〈Bλv(s), ψn〉X ds for all n ∈ N, (11)

where v(s) = u(T − s).
It is now evident that addressing the null controllability question for the (BCP) involves

investigating the existence of v in L2([0, T ],R), the solution to the equation (11). In order to
develop this characterization, we assume that the control law v(s) takes the following form:

v(s) =
∞∑

n=0

unEn(s), for all s ∈ [0, T ], (12)

for some un ∈ U , n = 0, 1, . . . .
This formulation leads to the following characterization for the null controllability of

(BCP).

Corollary 3 Let λ ∈ ρ(A) and v(·) is given by (12).
The system (BCP) is X-null controllable at time T if and only if for every x0 ∈ D(A),

there exist {un}n∈N ⊂ U such that

− e−μnT 〈x0, ψn〉X = 〈Bλun, ψn〉X for all n ∈ N. (13)

Proof According to Theorem 5 and Lemma 2, along with equations (11) and control law
(13), the system (BCP) exhibits X -null controllability at time T if and only if, for every
initial state x0 ∈ D(A), there exists a sequence unn∈N ⊂ U satisfying

−e−μnT 〈x0, ψn〉X =
∞∑

m=0

〈Bλum, ψn〉X
∫ T

0
e−μns Em(s)ds for all n ∈ N.

This implies that

−e−μnT 〈x0, ψn〉X = 〈Bλun, ψn〉X for all n ∈ N,

��

In the single-input case, i.e., whenU = R orU = C, we can derive the following corollary:

Corollary 4 Assume that
〈Bλ1, ψn〉X 	= 0 for all n ∈ N. (14)
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Then, the system (BCP) is X-null controllable at all time T . Additionally, the corresponding
control law is given by

u(s) = −
∞∑

n=0

e−μnT 〈R(λ, A)x0, ψn〉X
〈Bλ1, ψn〉X

En(T − s), (15)

i.e., an initial state x0 ∈ X of system (BCP) can be transferred to zero state in time T by
the control u(·) defined in (15).

Proof Let x0 ∈ X and λ ∈ ρ(A). Define x̃0 = R(λ, A)x0. Following the proof of Theorem
5 and utilizing criterion (13) from Corollary 3, we establish that the initial state x̃0 ∈ D(A)

of system (A, Bλ) can be transferred to zero state in time T by the control u(·) = v(T − ·),
where v(·) is given in (12) with

−e−μnT 〈x̃0, ψn〉X = un 〈Bλ1, ψn〉X for all n ∈ N.

This yields the expression for un as:

un = −e−μnT 〈R(λ, A)x0, ψn〉X
〈Bλ1, ψn〉X

for all n ∈ N.

Consequently, the initial state R(λ, A)x0 of system (A, Bλ) can be transferred to zero state
in time T by the control in (15). By applying Theorem 4, the proof is concluded. ��
Remark 5 In the case of a single input, the condition (14) is a necessary condition for the
null controllability of (BCP). Indeed, if the condition (14) is not satisfied, i.e., there exists
a number p in N such that

〈
Bλ1, ψp

〉

X = 0, then when the initial conditions x0 satisfy
〈
x0, ψp

〉

X 	= 0, the condition (13) is not satisfied. Consequently, by Corollary 3, the system
(BCP) is not X-null controllable for any time T .

4 Null Boundary Controllability of a One-dimensional Heat Equation

As a concrete application to demonstrate the findings presented in this paper, we consider
a specific boundary control system. The system is described by the one-dimensional heat
equation defined over the spatial domain [0, 1] and involves a Dirichlet boundary control
applied at point 0. The system is described as follows:

⎧
⎨

⎩

ẋ(t, z) = ∂2

∂z2
x(t, z), t ≥ 0, z ∈ [0, 1],

x(t, 0) = u(t), x(t, 1) = 0, t ≥ 0,
x(0, z) = x0(z), z ∈ [0, 1].

(16)

for a given function u ∈ L2
loc(R+,R) and x0 ∈ L2([0, 1],R).

To illustrate this example into our framework, we introduce the following:

i) the state space X = L2([0, 1],R),
ii) the boundary space ∂X = R,
iii) the control space U := R,
iv) the control operator B := I dR,

v) the operator Am := d2

dz2
with domain

D(Am) = { f ∈ H2([0, 1],R)/ f (1) = 0},
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vi) the boundary operator Q : D(Am) −→ R, Q( f ) = f (0),
vii) the operator A ⊂ Am with domain D(A) = ker Q.

As it is shown in [11], the operator A is a Riesz-spectral operator and serves as the
infinitesimal generator of an analytic semigroup (S(t))t≥0 on X defined by

S(t)x0(z) =
∞∑

n=1

2e−μn t sin(nπ z)
∫ 1

0
sin(nπξ)x0(ξ)dξ.

Here, the spectrum of A is given by σ(A) = {−μn/μn = n2π2, n ∈ N
∗}, and the associated

eigenvectors
{
φn(·) := √

2 sin(nπ ·), n ∈ N
∗
}
form an orthogonal basis for L2([0, 1],R).

It is evident that the boundary operator Q is surjective. Additionally, we verify that all the
assumptions stated in Assumptions 1 and 2 are satisfied. To compute the associated Dirichlet
operator Qλ, we focus on the null controllability of equation (16), which is independent of
the choice of λ see [19]. For simplicity, we set λ = 0. Therefore, a straightforward calculation
yields

(Q0y)(z) = (1 − z)y := yh(z).

We now introduce the associated system (A, B0) for (16)
⎧
⎨

⎩
ẏ(t, z) = ∂2

∂z2
y(t, z) + h(z)u(t), t ≥ 0, z ∈]0, 1[,

y(0) = g(·) := R(0, A)x0 = −A−1x0.
(17)

Using integration by parts, we obtain

〈Bλ1, φn〉X = √
2

∫ 1

0
sin(nπ z)h(z)dz =

√
2

nπ
	= 0.

Now, by Corollary 4, we deduce the following characterization of the null controllability of
(16).

Proposition 1 The control system (16) is X-null controllable at all time T > 0. Furthermore,
for any given initial state x0 ∈ X, the following control law

u(s) =
∞∑

n=1

nπe−μnT
〈
A−1x0, φn

〉

X√
2

En(T − s) for all s ∈ [0, T ], (18)

ensures that x(T , x0, u) = 0, where x(T , x0, u) = 0 represents the solution of (16).

The resolvent operator −A−1 is defined as follows:

−A−1x0 =
∞∑

p=1

1

p2π2

〈
x0, φp

〉
φn .

Consequently, the control law (18) takes the form:

u(s) = −
∞∑

n=1

e−μnT 〈x0, φn〉X
nπ

√
2

En(T − s) for all s ∈ [0, T ].
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5 Null Boundary Controllability for theMullins Equation

This section explores another concrete application of our abstract results presented in this
paper.Wewill investigate the null boundary controllability of theMullins equation, described
by the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t, z) = − ∂4

∂z4
x(t, z), 0 < z < 1, 0 < t < T ,

∂
∂z x(t, 0) = u(t), ∂3

∂z3
x(t, 0) = 0, 0 < t < T ,

x(t, 1) = 0, ∂2

∂z2
x(t, 1) = 0, 0 < t < T ,

x(0, z) = x0(z), 0 < z < 1,

(19)

where u ∈ L2
loc(R+,R) and x0 ∈ L2([0, 1],R).

Here, the equation (19) takes the form of (BCP) with

• X = L2([0, 1],R), ∂X = R, U := R and B := I dR,

• the operator Am := − d4

dz4
with domain

D(Am) = { f ∈ H4([0, 1],R)/
d3

dz3
f (0) = f (1) = d2

dz2
f (1) = 0},

• the boundary operator Q : D(Am) −→ R, Q( f ) = d
dz f (0).

We can show that the eigenvalues and normalized eigenfunctions of operator A := Am with
D(A) = ker(Q), are as follows

μn = −(π

2
+ nπ

)4 and φn(z) = √
2 cos

(
(
π

2
+ nπ)z

)
for all n ∈ N.

Therefore, the eigenvectors
{
φn(·) := √

2 cos
(
( π
2 + nπ) · )

, n ∈ N

}
form an orthogonal

Riesz basis for L2([0, 1],R). Furthermore, the condition (3) is fulfilled. Thus, the Assump-
tions 2 and (H1) in Assumptions 1 are satisfied. On the other hand, the hypothesis (H2) is
evidently valid.

Now, the task at hand is to identify the operator Qλ for some λ ∈ ρ(A). Given that
0 /∈ σ(A), we choose λ = 0. Thus, we have for any f ∈ ker(Am) and y ∈ ∂X := R

Q f = y ⇐⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d4

dz4
f (z) = 0, z ∈]0, 1[

d3

dz3
f (0) = 0,

d
dz f (0) = y,

f (1) = d2

dz2
f (1) = 0.

We get
(
Q0y

)
(z) = (z − 1)y, for all y ∈ R and z ∈ [0, 1].

Using integration by parts, for every n = 0, 1, 2, · · · we obtain

〈B01, φn〉X = √
2

∫ 1

0
cos

(
(
π

2
+ nπ)z

)
(z − 1)dz = −√

2

( π
2 + nπ)2

	= 0,

where B0 = Q0.
Consequently, utilizing Corollary 4, we can affirm that the control system (19) is X -null

controllable for all times T > 0.
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Remark 6 If we consider the system (19) with the Dirichlet condition x(t, 1) = 0 replaced

by the Neumann condition d
dz x(t, 1) = 0 and d2

dz2
x(t, 0) = 0 replaced by d3

dz3
x(t, 0) = 0, we

can proceed in a similar manner as mentioned earlier to confirm the validity of hypotheses
1 and 2. However, it’s important to note that condition (14) is not satisfied for all n ∈ N.
Consequently, in this scenario, the system (19) is not null controllable. Indeed, under these
conditions, we have:

μn = −(nπ)4, n ∈ N, φ0(z) = 1 and φn(z) = √
2 cos

(
nπ z

)
for all n ∈ N

∗.

Now, we choose λ = −1 ∈ ρ(A), we have for any f ∈ ker(−1 − Am) and y ∈ R

Q f = y ⇐⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d4

dz4
f (z) = f (z), z ∈]0, 1[

d3

dz3
f (0) = 0,

d
dz f (0) = y,

d
dz f (1) = d3

dz3
f (1) = 0.

We get
(
Q−1y

)
(z) := yh(z) = y

(
α1ez + α2e−z + α3 cos(z) + α4 sin(z)

)
, for all y ∈ R and

z ∈ [0, 1], where
α1 = − 1

2(e2−1)
,

α2 = − e2

2(e2−1)
,

α3 = cos(1)
2 sin(1) ,

α4 = 1
2

Furthermore, for n = 0, by a simple integral, we obtain:

〈B−11, φ0〉X =
∫ 1

0
h(z)dz,

= 0.

This implies that the condition (14) is not true. Therefore, according to Remark 5, the system
(19) is not null controllable for all time T .

6 Conclusion

In this contribution, we have delved into the null controllability aspects of an abstract bound-
ary control system, focusing on a class of Riesz-spectral operators. Our study prove that the
null controllability can be effectively characterized through the moment problem. However,
it is important to note that this characterisation applies to the study of null controllability in
certain classes of parabolic equations.

For our future endeavors, we aim to extend our exploration to the null controllability of
bilinear boundary control systems. This specific type of system has been investigated in [22].
Nonetheless, it’s worth noting that the method of moments proves to be less effective in this
particular scenario. We anticipate that alternative approaches will be necessary to tackle the
challenges posed by bilinear systems in the context of null controllability.
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