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Abstract
In this paper, we prove that the optimal risk-sensitive reward for Markov decision pro-
cesses with compact state space and action space converges to the optimal average reward
as the risk-sensitive factor tends to 0. In doing so, a variational formula for the optimal
risk-sensitive reward is derived. An extension of the Kreĭn-Rutman Theorem to certain
nonlinear operators is involved. Based on these, partially observable Markov decision pro-
cesses are also investigated. A portfolio optimization problem is presented as an example
of an application of the approach, in which a duality-relation between the maximization of
risk-sensitive reward and the maximization of upside chance for out-performance over the
optimal average reward is established.
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1 Introduction

In this paper, we study a risk-sensitive control problem for Markov decision pro-
cesses (MDPs). The risk-sensitive control of MDPs has been widely investigated (see
[10, 12, 16, 21, 22] and references cited therein). The basic target is to find the optimal
solution to the following control problem
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where is the state of the system at time , is the initial state, is the decision made
by the controller at time , and is the strategy for decision-making. The risk-sensitive
factor represents the controller’s risk preference. Regarding as a reward, we concern the
following maximization with 0:

sup .

It is well known that 0 corresponds to the risk-neutral case in which the performance
is evaluated according to the following typical long-run average reward:

sup lim
1

1

0

.

Notice that for any 0 if and both exist, then

lim
0

1
log .

It is natural to consider the problem of whether the optimal risk-sensitive control converges
to the optimal long-run average control as the risk-sensitive factor gets vanishing. It is the
main purpose of this paper to prove that

lim
0

(1.2)

provided that both sides are well-defined (see the next section for an explicit description
of this problem). This problem has been studied for minimizing risk-sensitive costs for
MDPs; see the references cited above. A similar problem for optimal risk-sensitive portfo-
lios has also been studied. Notice that in the framework of portfolio or other asset processes,
maximizing rewards is a natural problem for consideration. This maximization problem is
essentially different from the minimization problem, but both are of fundamental impor-
tance for applications. It is interesting that maximizing the risk-sensitive reward is dual to
maximizing the upside chance or minimizing the downside risk under some conditions (see
[18, 24] and [26]). These motivate us to study the asymptotics of optimal risk-sensitive
rewards for MDPs. We shall show in this paper that for MDPs with compact state spaces and
action spaces, under certain assumptions, the maximal risk-sensitive reward will converge
to the maximal long-run average reward as the risk-sensitive factor gets down to 0.

We note that in the approach for deriving the asymptotics of minimal risk-sensitive cost,
besides a few necessary continuity assumptions, some conditions on contraction and strong
ergodicity for the transition probabilities were imposed, based on which span contraction
of some properly defined operator can be verified which guarantee a solution to the cor-
responding Bellman equation. The strong ergodicity condition also makes it possible to
apply some large deviation techniques (see (2.7) and (2.8) in Section 2 for the explicit con-
ditions with more explanations given in Remark 2.1). In this paper, we shall use a quite
different approach: inspired by Anantharam and Borkar [2], we use a nonlinear exten-
sion of the Kreĭn-Rutman Theorem (see [23]) to find the eigenvalues of some properly
defined operators on certain function spaces and characterize the optimal growth rate of the
multiplicative reward with this eigenvalue. Using this characterization and a perturbation
technique, we derive a variational formula for the optimal growth rate (Theorem 3.7) of the
MDP without the ergodicity of transition probability. This variational formula is similar to
the Donsker-Varadhan formula (see [14]), which is of independent significance. The van-
ishing risk-sensitivity limit of the maximal reward of MDPs follows as an application of
this formula (Theorems 3.1 and 3.8), and its proof implies that for a risk-sensitive control
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problem, the optimal policy can be taken to be a stationary one, even when the MDP is not
communicating.

We also apply the approach to study the same problem for partially observable Markov
decision processes (POMDPs) with compact state and action spaces. For POMDPs, see [4,
6, 8, 11, 17], and [19] and the references cited therein. A widely used approach for studying
a POMDP is to transfer it into a completely observable MDP. However, the structure of
the transferred MDP is usually much more complicated. Among the current results, such
as those in the references mentioned above, few are on the risk-sensitivity vanishing limit.
In [1], the limit of the minimal risk-sensitive cost as the risk-sensitive factor tends to 0 is
derived for a class of POMDPs with a particular structure. This particular structure makes
it possible to apply a large deviation approach. In [11], Di Masi and Stettner established the
existence of the solution to the associated Bellman equation for cost-minimizing problems.
However, they remarked that the limit as the risk-sensitive factor tends to 0 for general
POMDPs had not been proven. Based on our investigation for MDPs, we prove that, as long
as the solution to the associated Bellman equation exists, the maximal risk-sensitive reward
converges to the maximal long-run average reward as the risk-sensitive factor tends to 0.

Finally, as an application of our approach, for portfolio optimization, we establish a
duality-relation between maximizing the risk-sensitive reward and maximizing the chance
for outperforming certain amounts of reward, with the range of the amounts being
characterized by the optimal average reward (Theorem 5.2).

The paper is organized as follows. At the end of this section, we introduce some notations
that will be frequently used in this paper. In Section 2, we define the decision model and
derive some properties of the operator corresponding to the Bellman equation. The risk-
neutral limit for MDPs is given in Section 3, in which the variational formula mentioned
above is established. Section 4 is devoted to POMDPs. The portfolio optimization problem
is investigated in Section 5.

Here are some notations and preliminaries. Given a separable and complete metric space
(also called a Polish space) , let and denote the set of finite signed
measures on and the set of finite measures on , respectively. is the space of
probability measures on , endowed with the weak topology. For , we use

to denote that is absolutely continuous with respect to . As usual, denotes
the Dirac measure on point . When is compact, , the real-valued continuous
functions on , equipped with the supremum norm , is a Banach space. Let
denote the set of non-negative functions in . is a cone, which means that
for any and any 0, both and are in . is
convex, closed and satisfies that 0 and that
. We write if 0

, respectively. These facts form the basis for applying a nonlinear
extension of the Kreĭn-Rutman theorem (see Appendix) to the operator corresponding to
the Bellman equation.

For two probability measures , the relative entropy of with respect to is
defined by

log

otherwise
(1.3)

which plays an important role in the variational formula for the optimal reward.
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Let Lip denote the space of real-valued, bounded, and Lipschitz continuous functions
on . Given Lip , define its norm by

max sup sup . (1.4)

Then Lip is a Banach space when is compact. Given , define
the following Kantorovich-Rubinstein norm:

0 sup Lip 1 . (1.5)

Then the weak topology on is generated by the Kantorovich-Rubinstein metric
0 0 (Theorem 8.3.2, pp. 193–194, in [7]). endowed with the weak

topology is a Polish space since is Polish. The space of Lipschitz functions and the
Kantorovich-Rubinstein metric will be used in Section 4 to discuss the POMDPs.

Finally, as usual, and denote the sets of non-negative integers and real numbers,
respectively.

2 Solution to the Bellman Equation

A discrete-time MDP can be represented as a four-tuple .
is the state space, is the action space, and both are assumed to be compact met-

ric spaces in the present paper. We assume for convenience that any action in is
admissible in any state. The transition kernel, which depends on actions, is denoted by

. The last element in the tuple is the one-step reward func-
tion . To define a probability space and a stochastic process with the desired
mechanism, let and be the product Borel -field. Given a sample path

1 1 2 2 ... , define . At each time , the
system occupies a state , based on which the controller chooses an action , and then
the system moves to the next state according to the law . A Markov decision
rule at time is a stochastic kernel , where denotes the probability for
taking action in when observing the current state . A Markov policy is a
sequence of Markov decision rules. Let denote the set of all the Markov decision rules.

is the set of all the Markov policies of . Given an initial state and a
policy 1 2 ... , we can define a unique probability measure P on by
the Ionescu-Tulcea theorem, such that for each 0,

P 1 1 ... 1 1 1

1

1

1 .

The corresponding expectation operator is denoted by . Since we view as a reward, a
typical criterion for evaluating the optimal policy is to maximize the average reward, i.e.,
we are interested in the following function

sup lim inf
1

1

(2.1)
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which is risk-neutral. Informally, we notice that by the Taylor expansion, we see that for a
small factor

1
log exp

1

1

1
2

Var
1

1 2 .

(2.2)
Hence, we can use 0 to evaluate the controller’s risk preference. This leads to the
following risk-sensitive criterion for maximization of reward (see [10]):

sup
1
lim inf

1
log exp

1

(2.3)

where 0 is a constant evaluating the controller’s risk preference. With “sup” replaced
by “inf” in (2.3), we have the risk-sensitive criterion for minimization of cost. An interesting
problem is the asymptotics of as 0. Observe that if we define for 1

1
log exp

1

. (2.4)

Then (2.2) implies that

0 lim
0

1

1

(2.5)

which motivates us to derive

0 lim
0

. (2.6)

This is the main concern of this paper.

Remark 2.1 Replacing the sup in (2.3) with an inf to define , the 0 limit has
already been established in [10]. They proved the existence of a solution to the Bellman
equation with, in addition to some necessary continuity assumptions, the following two
requirements:

for some 0 1 and for any (2.7)

and there exist an and a continuous density such that
for and

0 sup supsup . (2.8)

These conditions guarantee that the operator defining the corresponding Bellman equation
is span contractive, and hence a solution exists. (2.8) also implies strong ergodicity for the
family of transition probabilities defining the MDP. A consequence is the applicability of
large deviation techniques for ergodic Markov processes. Instead of such conditions, we
will use the following assumption (B1) on communication among the family of transition
probabilities to guarantee that the eigenvector of the Bellman equation is strictly positive,
based on which the variational formula holds. Then we will remove (B1) by a perturbation
technique, which means that the limit can hold for completely observable MDPs without
any communication requirements on the transition probability.
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(B1) For any 1 and any open neighborhood containing , there exist an 0
and 1 .. such that

1 1 1 ... 2 1 1 0

Remark 2.2 When the model is finite (i.e., both and are finite), (B1) is the classical
communicating condition.

Now let

sup

and

sup

for 0. The main objective of this paper is to show that

lim
0

. (2.9)

In order to do this, we make the following assumptions.

(A1) is continuous in .
(A2) is continuous in when .
(A3) The family of functions

1

is equicontinuous.

Moreover, if (B1) holds, we will see that, independent of the choice of the initial state ,
the value of depends only on and

lim
0

lim
0

. (2.10)

Remark 2.3 A concrete case in which (A3) is satisfied is that

with and equicontinuous. The equicontinuity assump-
tion (A3) is only used to prove the compactness of the operator related to the Bellman
equation. In particular, for every finite MDP, (A1), (A2), and (A3) automatically hold.
Combined with (B1), this compactness yields the existence of a positive eigenvalue and
the associated positive eigenvector. The continuity assumptions of the result regarding the
Bellman equation in [10] are the same as (A1) and (A2). But the 0 limit estab-
lished in [10] requires that there exist an and a density 0 such that

for and is continuous,
which is more strict than (A3) when state space and action space are compact.
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The Bellman equation mentioned above is

sup (2.11)

and the corresponding operator on is defined by

sup . (2.12)

Since

sup sup

and

sup sup

we see that

sup . (2.13)

Assumptions (A1), (A2) and the compactness of imply that when ,
also belongs to . Combining these with (A3), we can prove that is a compact
operator, which is crucial to the existence of a positive eigenvalue, as we claimed before.

Proposition 2.1 Assume (A1), (A2), and (A3). Then is a compact operator mapping
into itself.

Proof Notice that is bounded under assumption (A1) and the compactness of .
For convenience, we let and be the supremum and infimum of , respectively. For
any function with , we have sup . Thus, to apply the
Arzelà-Ascoli theorem, we need to verify that the family is
equicontinuous.

To this end, let denote the metric on . According to (A3), for any 0, there exists
1 0 such that

sup sup

1

1 2

for any 1 2 with 1 2 1. By the uniform continuity of , there exists 2 0
such that

sup 1 2
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whenever 1 2 2. Consequently when , for 1 2 with 1 2
min 1 2 , we have

1 2 sup 1
1

2
2

sup 1 2
1

sup 2
1 2

.

has the following properties, which will be used to apply the non-linear Kreĭn-
Rutman Theorem to prove the existence of the solution to (2.13).

(P1) Assume (A1). Then

sup exp
1

1 1.

This property can be proven by induction using the Markov feature of and
the fact that (see Lemma 2.1 and its proof in [2]).

(P2) (Positive 1-homogeneity) for 0 and .
(P3) (Order-preserving) If , then .

The following theorem shows that the spectral radius of is an eigenvalue. For an
operator , define

sup

1

.

It is not hard to check that

which implies that the limit

lim
1

exists.

Theorem 2.2 Assume (A1), (A2), and (A3). Then 0 and there exists an
depending on with 0 such that

. (2.14)

If in addition (B1) is satisfied, then 0 and log is independent
of .
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Proof From (P1), we see that 1 , which implies that 0.
Since is compact, positive 1-homogeneous and order-preserving, by Theorem A.1 in
the Appendix, there exists an satisfying (2.14). Moreover, from (A1) and (A2),
we know that is continuous in , which means that the supremum
in (2.13) can be achieved. Hence, there exists a Markov decision rule such that

.

Let , then we have for

1 1 . (2.15)

Similarly, we have for any Markov policy

1 1 . (2.16)

Now, assume (B1). Since and 0, there exist 0 0 0 and an open
neighborhood 0 containing 0 such that 0 0 0. It follows from (B1) that for any
1 , there exists 1 .. such that

1
1

1

1
1 0 1 1 ... 2 1 1 exp

1

1

0 1 0 1 1 ... 2 1 1 0.

Thus, 0. Since is compact, there are constants 0 such that
. From (2.15) and (2.16), we see that for any

1 1

and for any Markov policy

1 .

Taking the logarithm and letting , we see that the limit

log lim
1
log 1 (2.17)

exists and

log

for any .

Remark 2.4 Assume (A1), (A2), (A3), and (B1). From the proof of Theorem 2.2 we can see
that is the unique positive eigenvalue of restricted to .
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3 Risk-Sensitive Asymptotics of MDP

In this section, we shall apply the following variational formula for to prove (2.9).

sup
1

2 (3.1)

where is defined by

(3.2)

and for the notations 0 1 2, and are defined by

0 1 2 2 . (3.3)

Obviously, is nonempty and closed in . Notice that is compact
since is compact. Hence, is compact, too. For , 0 is the
first 1-dimensional marginal of , is the first 2-dimensional marginal of , and 1 and
2 are the two successive conditional distributions of . With these notations, is seen to

be the set of probability measures on satisfying that 0 is invariant under
1 2 .

The validity of (3.1) will be verified in Theorems 3.4 and 3.7. At present, we will apply
(3.1) to get the limit of as 0.

Theorem 3.1 Assume (A1) and (A2). If (3.1) holds, then

lim
0

. (3.4)

To prove the theorem, we need the following

Lemma 3.2 If there exists a satisfying that 2 , then

where is defined in (3.2).

Proof Since , taking 0 as the initial distribution and using the
policy 1 , we see that

0
[ 2 2 ] 2 2 1 2 2 2 1 1 1 1 1 0 1

2 2 1 2 2 1 1 2

1 2 1 2 1 1 1 2

1 2 1 2 1 0 1 0
[ 1 1 ] .
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The third equality is due to the coincidence of the first and the third marginal of ensured
by (3.2). By induction, we have

0
1

0
[ 1 1 ]

1 1 1 1 1 0 1

.

Thus,

lim inf
0

1

1

.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 By Hölder’s inequality, for 0, we have

1 1
log exp

1

1 1
log exp

1

and

1 1
log exp

1

1

1

.

Therefore, is non-decreasing in and lim
0

. To prove (3.4), it suffices to

verify that lim
0

. To this end, we notice that it follows from (3.1) that for any 0

and 0, there exists such that

1
2 . (3.5)

Recall that is compact, we can find a sequence decreasing to 0
and a such that

lim
0

lim and lim weakly.

Therefore, from (A1), we know that

lim lim

(3.6)
which is finite. Now we claim that 2 . Indeed, we have

2

.
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It follows from the (joint) lower semicontinuity of and (A2) that

lim inf

.

Thus if 2 , then

0.

Combining this with (3.5) and the fact that , we would have

lim .

It is impossible. Thus, and 2 . Recalling (3.6) and Lemma 3.2, we obtain
that

lim .

(3.4) follows by letting 0.

The remainder of this section is devoted to verifying (3.1) under certain conditions.
This is carried out at first under assumptions including (B1), then with (B1) removed. Our
assumption (A2) is slightly weaker than those in [2]. In [2], it is required that the family of
functions

1

is equicontinuous, while we assume that

1

is equicontinuous (Theorems 3.4 and 3.8). Moreover, it is worth mentioning that equiconti-
nuity only plays a role in the existence of the positive eigenvalue and the eigenvector. Once

has a positive eigenvalue and a strictly positive eigenvector, only (A1) and (A2) are
needed.

Proposition 3.3 Assume (A1) and (A2). If there exist 0 and such that
0 and , then (3.1) holds.

Proof From the proof of Theorem 2.2, we know that log for any .
Thus, for any , we have

.

Therefore,

sup inf
0

sup . (3.7)

For any 0, we also have

sup
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which means that

sup .

Since under (A1) and (A2), properties (P2) and (P3) hold for , we can apply Theorem
A.2 and A.3 in the Appendix to deduce that

sup . (3.8)

From (3.7) and (3.8), we have

1
log inf

0
sup

1
log inf

0
sup

1

.

Thus,

1
log inf

0
sup

1

sup

1
log inf

0
sup sup log log

1
inf sup sup log

1
inf sup log .

Using the Gibbs variational formula (Proposition 1.4.2(a), pp. 33–34 in [15]), we see that

1
inf sup sup

.

Since is jointly convex and lower semicontinuous in (Lemma 1.4.3, pp. 36–
38 in [15]) and are both compact, the minimax theorem (Theorem
4.2 in [25]) can be applied to get

1
sup sup inf

.

Furthermore, by the chain rule for relative entropy (Theorem D.13, pp. 357–359 in [9]), we
have that

1
sup sup inf

2 .
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Since 0 and 0 iff (Lemma 1.4.1 , pp. 33, in [15]), the
supremum over is attained at . Moreover, notice that when , for
any ,

0

and for ,

inf

we obtain that

sup
1

2

sup
1

2 .

Combining Theorem 2.2 and Proposition 3.3, we obtain the following theorem immedi-
ately.

Theorem 3.4 Assume (A1), (A2), (A3), and (B1). Then (3.1) holds.

To remove (B1), we use a perturbation argument. For each 0, define a new MDP
with the transition law and one-step reward given by

and log

(3.9)
respectively, where with full support. It is not hard to check that satisfies
(A1), (A2), (A3), and (B1). Using to denote the corresponding expectation operator
with initial state and policy , we define

sup 1 1
2 (3.10)

and

sup
1
lim inf

1
log exp

1

. (3.11)

By Theorem 2.2, depends only on , and the limit inferior is actually a limit.
Hence, we write it as . Without (B1), we will prove the variational formula by
exploring properties of and then letting 0.

Lemma 3.5 Assume (A1) and (A2). Then is non-decreasing in and lim
0

.

Proof From property (P1), we have

lim
1

sup
1
log exp

1

lim
1

log 1

(3.12)
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for any . Thus, for any 1 2 0, by (3.10), we obtain that

1 2 sup lim inf
1

log 1

sup sup lim inf
1

log exp
1

.

In order to write the variational formula in a form that is more convenient for using in
the following arguments, we define for given 0 0 and

1 1
2

and

0 1
2 .

To prove lim
0
sup , we will show that

sup sup 0 lim
0
sup

where is defined by

sup lim inf
1

log exp
1

with denoting the stationary Markov policy whose decision rules at each time are the
same .

Lemma 3.6 Assume (A1) and (A2). Then sup sup 0 .

Proof We need to prove that

sup 0

for each . If 0 , the inequality holds trivially. Otherwise, with
0 implies that 2 a.s.. Choosing the stationary

Markov policy 1 and the initial distribution 0 , we see that

sup lim inf
1

log
0
exp

1

.
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Define
0
as the expectation operator with respect to the probability measure determined

by the initial distribution 0, the transition law 2 for , and the policy .
Using the change of measure technique and Jensen’s inequality, we obtain that

log
0
exp

1

log
0
exp

1

log 2
1

0
1

log 2

0
1 .

Since , the same argument as in proving Lemma 3.2 shows that

0
1

log 2

0
1

0 1 1 log 2 1 1

1 1
2

Consequently,

sup
1

0 1 1 log 2 1 1

1 1
2 0 .

Combining Theorem 3.4 and Lemmas 3.5 and 3.6, we obtain the following

Theorem 3.7 Assume (A1), (A2), and (A3). Then (3.1) holds.

Proof From Lemmas 3.5 and 3.6, we see that

lim
0

sup sup sup 0 . (3.13)

Hence, (3.1) will follow once we prove that sup 0 lim
0

.

Since satisfies (A1), (A2), and (B1), by Theorems 2.2 and 3.4, we have

sup . (3.14)

Therefore, given 0, for every 0, there exists such that

sup .

Since is compact, there exists a sequence decreasing to 0 such that the weak limit
lim exists and . By (A1) and Dini’s Theorem converges to

uniformly. Thus, we obtain that

lim
1

.
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Recalling the definition of 2 for , by the lower semicontinuity of we see that

lim inf
2

lim inf

2 .

It then follows that

lim sup
1

2

0

Thus,

sup 0 0 lim sup lim .

Letting 0, we have sup 0 lim 0 . Now (3.1) follows.

Remark 3.1 The proof shows that the inequalities in (3.13) are actually equalities, which
indicates that the supremum overMarkov policies in risk-sensitiveMDP is tantamount to the
supremum over stationary Markov policies, meaning that one should search for the optimal
policy within the stationary policies even without the ergodicity of transition probability.

Combining Theorems 3.1, 3.4, and 3.7, we obtain the main result immediately.

Theorem 3.8 Assume (A1), (A2), and (A3). Then

lim
0

.

In addition, if (B1) holds, then

lim
0

.

for any .

Remark 3.2 Recalling the proof of Theorem 3.1, we see that under (A1), (A2), and (A3),
there exists such that

.

.

A sufficient condition for the risk-neutral average optimal reward to be independent
of the initial state is the uniform ergodicity (2.7) (see Section 5.5 in [20]). We rewrite it as

(B2) There exists 1 such that

sup sup sup . (3.15)

We provide brief proof for this.
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Theorem 3.9 Assume (A1), (A2), and (B2), then is independent of the initial state .

Proof Define an operator on by

sup .

It is not hard to check that under (A1) and (A2), maps into itself. Let

sp sup inf

be the span norm on . For 1 2 1 2 , and 0, there exist 1 2
such that

1 2.

Therefore, we obtain that

1 1 2 1 [ 1 2 2 2 ]

1 1 1 1 1 1 1 1 1 2

2 2 2 2 1 2 2 2 2 2

1 1 [ 1 2 ] 2 2 [ 1 2 ] 2

[ 1 1 2 2 ] 1 2 sp 2 1 2 sp 2

where in the second to the last inequality comes from the Hahn-Jordan decomposition
of 1 1 2 2 . Letting 0, we see that is a contraction mapping on

sp . Thus, by the Banach Fixed-Point Theorem, there exist a unique (up to an
additive constant) 0 such that 0 0 sp 0, which means that 0 0
is a constant 0. It follows that for any ,

0 lim
1

0 lim sup
1

1

sup lim inf
1

1

. (3.16)

Since 0 is in due to (A2), for each , there exists an
0 such that

0 0 0 0 .

Letting 0 0 , we have

lim sup
1

1

lim
1

0

1

sup lim inf
1

1

. (3.17)

(3.16) and (3.17) imply that 0 for any .
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Combining the above theorem with our main result (Theorem 3.8), we obtain the
following

Corollary 3.10 Assume (A1), (A2), (A3), (B1), and (B2). Then

lim
0

Furthermore, this limit is indeed independent of .

4 Risk-Sensitive Asymptotics of POMDP

This section applies the approach explored in the last section to the partially observable
Markov decision process (POMDP). Francesca Albertini, Paolo Dai Pra, and Chiara Prior
established such a limit in [1] for processes described by 1

, where , , and denote the state, control, and observation, respectively,
and are i.i.d random variables. As for general POMDPs, Di Masi and Stettner proved
the existence of the solution to the associated Bellman equation for cost-minimizing prob-
lems and stated that the limit as 0 had not been proven (see Remark 2 in [11]).
However, the method in [11] can not be applied to reward-maximizing problems since it
requires the operator induced from the Bellman equation to preserve the concavity. How-
ever, in this case, the operator is convexity-preserving. Nevertheless, we can prove that given
the existence of a solution to the Bellman equation, (3.4) holds for the maximal reward of
POMDPs.
A POMDP can be represented as a six-tuple . is
the space of real but unobserved states, is the action space, and both are assumed to be
compact metric spaces. The observation space is a Polish space. Like those in MDPs,
is the transition kernel depending on actions, and is the reward function.

denotes the observation probability when the system is in state . As mentioned
in the introduction, a widely used technique for analyzing a POMDP is to transfer it into a
completely observable MDP. We will also adopt this technique which allows us to employ
the analysis for MDPs in the last section to establish

lim
0

where

sup sup
1
lim inf

1
log 1

and

sup lim inf
1

1

.

The exact definitions of the set of policies and the expectation operator will be given
after introducing the assumptions needed in this section.

In order to use the measure transformation technique, we first assume that

(C0) There exists a with full support such that for every , .

The corresponding density function is also denoted by , i.e.,

.
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To apply Theorem 3.1 and Proposition 3.3, we make the following assumptions to guar-
antee that the reward and the transition probability of the transferred MDP satisfy (A1) and
(A2).

(C1) .
(C2) Lip . There exist 0 and 0 such that and

for every .
(C3) There exists 0 such that

for any and , where denotes the Kantorovich-Rubinstein
norm defined by (1.5) on , denotes the metric on , and denotes the
metric on .

To define a probability space and a stochastic process with the desired mechanism, let
and be the product Borel -field. Given a sample path

1 1 2 2 3 ... , define 1, and 2. At
each time , the system occupies a state , which is unobservable. When 1,
we know the distribution of 1 and then choose an action 1. When 2, we can observe
a signal generated by and then choose an action .
The optimal policy in POMDP is usually not a Markovian one due to the unavailability
of real states when making decisions. Hence, we introduce the observed-history-dependent
policy. Let denote the set of observed histories up to time . Then, 1

(the set of all the initial state distributions) and 1 . An
observed-history-dependent decision rule at time is a stochastic kernel ,
where denote the probability for taking action in when observing

1 1 2 2 3 ... 1 . An observed-history-dependent policy is
a sequence of such decision rules at different times. Let denote all the observed-
history-dependent decision rules at time , and 1 denote all the observable-
history-dependent policies. Given an initial distribution of states 1 and a policy

1 2 ... , a unique probability measure P
0
and the corresponding expectation

operator on is defined by the Ionescu-Tulcea theorem, such that for each 1,

P
1 1 1 2 2 ... 1

1 1

1

1

1 1 1 1 .

The risk-sensitive criterion introduced in Section 2 is to optimize

sup
1
lim inf

1
log 1 0. (4.1)

while the typical optimal average reward is

sup lim inf
1

1

. (4.2)

Let sup and sup . We intend to apply
Theorem 3.1 and Proposition 3.3 to prove the risk-sensitive asymptotics

lim
0

. (4.3)
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It has already been shown that optimal control of a POMDP under the average reward
criterion can be converted to the optimal control of a properly transferred MDP 0 (see,
e.g., Section 7.2.1 in [3], and Section 5.3, pp. 157–159 in [5]), where the new states are the
conditional distributions of real states given the observed history. The transition law 0 and
one-step reward 0 of 0 are

0
0 (4.4)

0

where 0 is a measure on defined by

0
0

0 0 0

0 0 0
(4.5)

and 0 is an operator on given by

0 1 . (4.6)

In the case of risk-sensitive control, the transformed MDP is slightly different from the
typical form of average reward control (see [4]). We present the transformation procedure
with our notations. Assuming (C0), (C1), (C2), and (C3), we derive the new state and the
corresponding transition mechanism of the transferred MDP first. For 1, define two
filters and by

1 2 ... 1 1 1 2 2 ... 1 .

respectively. Let 1 1 2 ... 1 denote the observed history up to time .
Since 1 is fixed, . Define another probability measure

1
on

by

P
1 1 1 2 2 ... 1

1 1

1

1

1 1

or equivalently,

P
1

P
1 2

.

Since are all Polish spaces, is also Polish. Thus, the following regular
conditional expectations on

1
for bounded Borel functions on

1

1
1 2

have regular versions. Therefore, we can define an -valued process by

1 1 1

1
1 2 (4.7)
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where is bounded and measurable on . For , define as an operator
on the space of bounded Borel functions on by

Notice that under
0
, 1 is independent of 1 1 and with , and 1

depends on 1 only through and , we have

1 1 1 1 1 1

1 1 1 1 1 1
1
1 1 1

1 1 1 1 1 1
1
1 1 1

1 1

1
1 1 1

1 1

1
1 .

Therefore, we have

1 1 1 1
. .

where is the adjoint operator of defined on by

1

1 .

From (C1), we know that is finite and strictly positive. Hence, we can define a new

state process taking values in by

. (4.8)

We call the information state process since it represents the cumulative-reward-
weighted conditional distribution of the real state given the observed history. The infor-
mation state 1 at time 1 is still 1. Notice that the operator is positively
1-homogeneous. We have

1
1

1

1

1

(4.9)

which implies the transition mechanism of .
As for the new reward function, we define

log . (4.10)

Then we have

1 1 1 1 1

1 1
1 2 (4.11)
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It then follows that

1
1

1
1

1 1
1

1 1

1
1 1

1

1
1 1

1

1
1 1 . (4.12)

Hence, we can consider as the new reward. Now, we can transfer to the following
completely observable model with state space and action space :

1. The initial information state is 1.
2. At time , given the current information state , we take action according to a pre-

specified policy. Then, the system generates 1, which is independent of ,
and with , and distributed according to the law . The next information state

1 is determined by

1
1

1

.

3. Once 1 is generated, the next state 1 is then obtained according to (4.9), and

simultaneously the system generates one-step reward 1 .

Remark 4.1 The one-step reward in (4.10) depends not only on the state and the
action but also on an independent signal under P

1
, which is slightly different from the

typical form. We make the following changes to have a reward and a transition probability
in a standard form in which assumptions (A1) and (A2) can be verified.

Define the completely observable Markov decision model with transition law
and one-step reward by

1

1

log log . (4.13)

where is a measure on defined by

0

0 0
. (4.14)

Use to denote the expectation operator with respect to the transition probability
with initial state and policy . Since is an MDP, we consider the Markov policies of
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, which consists of decision rules by choosing actions only through the current infor-
mation state . Such policies are also called separated policies of the original model
(see, e.g., [19]). We let denote the set of all the Markov decision rules of and

. Then for , by direct calculation, we have

1 1
1

1
1 (4.15)

for any bounded Borel function on . is a subset of since is -adaptive.
Hence, from (4.12) and (4.15), we have for ,

lim inf
1
log 1 lim inf

1
log

1
1 1

lim inf
1
log 1 .

We define as the optimal value of separated policies, which is

sup
1
lim inf

1
log 1

sup
1
lim inf

1
log 1 . (4.16)

We will show that under (C0), (C1), (C2), and (C3), and (4.3) hold if there exists
0 such that for every 0 , the Bellman equation

sup (4.17)

has a solution 0 and with 0.
We first verify that satisfies (A1) and satisfies (A2), which implies that the

corresponding operator on , defined by

sup (4.18)

maps into itself.

Lemma 4.1 Assume (C1). Then is continuous in .

Proof For weakly and , we have

The second term tends to 0 due to the weak convergence of while the first term tends
to 0 because of the uniform continuity of on the compact set . Hence,
is continuous in . Notice that 0, we see that is continuous in

.

Lemma 4.2 Assume (C0), (C1), (C2), and (C3). Then is
continuous in for .
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Proof Recall that and are the supremum and infimum of , respectively. Fix
. From (4.13) and direct calculation, we see that

where is continuous in by Lemma 4.1. It suffices to show that

(4.19)

is continuous in . Once is equicontinuous, then from the

uniform continuity of ( is compact since is compact) and the fact that

0

uniformly, we can see that

is equicontinuous, which proves this lemma.

Now we prove that is equicontinuous. Fix and

. For weakly and , we have

sup sup

sup .

The first term is

sup
Lip

1

sup
Lip

1

sup
Lip

1

Notice that 1 and imply 2 . Thus, by
(C1), (C2), and (C3), we have that

2 2
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and

.

holds for every . Hence, from the uniform continuity of , we know that

lim sup 0. (4.20)

The second term is

sup
Lip

1

.

Define two finite measures and . Then
from the continuity of , we know that weakly, which means that lim

0. Thus, we only need to verify that as a function of , if 1, then
the Lipschitz constant is bounded by a constant which is
independent of .
First, it is obvious that . As for the Lipschitz constant,
we have for 1 2 ,

1 2

1 2 2 1 2 .

Consequently,

lim sup lim sup max 2 0.

(4.21)

(4.20) and (4.21) show that is equicontinuous and the lemma

is proved.

Since satisfies (A1) and satisfies (A2), we can apply Proposition 3.3 to obtain the
variational formula for .

Theorem 4.3 Assume (C0), (C1), (C2), and (C3). If there exist 0 and

with 0 satisfying , then

sup
1 1

2 (4.22)

holds, where

(4.23)

and the notations 2 and are defined by (3.3).
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Proof Lemmas 4.1 and 4.2 imply that satisfies (A1) and (A2). Notice that is
compact, by Proposition 3.3, we have

sup 2 .

Hence, (4.22) holds.

By H lder’s inequality, for 0, we have . Therefore,
is non-decreasing in and lim

0
. To get the desired assertion, we need

that .

Theorem 4.4 Assume (C0), (C1), (C2), and (C3). If there exist 0 and

with 0 satisfying that , then .

Proof We first show that it is true in the finite-horizon case. Fix 0 and an observed-
history-dependent policy 1 ... ... . By (4.11), we have that

1
1 1.

Hence

1 1 1 1

1 .

For every and 0, there exists such that

1

sup 1 1 .

actually depends only on . Given with , we can
assume that

1 and 1

since 1 1 . Thus, for any , we have

1

1 .

Hence,

1

sup 1 1

sup 1 1

sup 1 .
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Thus, we see that for every , there exists depending only on

such that

1

sup 1 .

Now modify the policy by simply replacing with to get a new policy
1 ... 1 ... , we obtain that

1 1 .

Continue this procedure by successively replacing with for 1 1, with
each depending only on the information state and satisfying that

1
1

1 1
1

1 1 .

where 1 ... 1 ... ... . In this way, with 1 1 2 ... ... , we
obtain that

1 1 1 1 1 .

Noticing that the decision rules after time is irrelevant and recalling (4.12), we have
proved that

sup 1 sup 1 .

for any 0. Obviously,

sup 1 sup 1 .

Consequently,

sup 1 sup 1 .

Letting , we obtain that

sup
1
lim inf sup

1
1 (4.24)

sup
1
lim inf sup

1
1 . (4.25)

Thus, it suffices to verify that

sup
1
lim inf sup

1
1 . (4.26)

Recall that by assumption, we have with 0 and 0. From
Lemmas 4.1 and 4.2, we know that
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is continuous in . Due to the compactness of , for every , there exists
such that

.

Let . Similarly to the argument used to derive (2.17) in the proof of
Theorem 2.2, we see that

lim sup
1

1 log lim
1

1 .

Hence, the inequalities in (4.24) are equalities, which gives that .

With Theorems 4.3 and 4.4, using a similar argument as in the proof of Theorem 3.1, we
can now extend the risk-sensitive asymptotics to POMDPs, which is the main result of this
section.

Theorem 4.5 Assume (C0), (C1), (C2), and (C3). If there exists 0 such that for every
0 , there exist 0 and with 0 satisfying

, then

lim
0

. (4.27)

Before proving Theorem 4.5, we present a lemma to show that converges to 0
weakly and uniformly, where 0 is defined in (4.4).

Lemma 4.6 Assume (C0), (C1), (C2), and (C3). Then weakly converges to
0 , uniformly in and , i.e., if , then

lim
0
sup 0 0. (4.28)

Proof Fix an . Then

0

0
0

0
.

Since

1 1 max 1 1

It follows that converges uniformly to 1 as 1. Then similarly as in the proof of
Lemma 4.2, it suffices to verify that converges weakly to 0 , uniformly in
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, and . In fact, recalling the definition of the Kantorovich-Rubinstein
norm, we see that

0 sup
Lip

1

1

sup
Lip

1

1

max 1 1 .

Consequently,

lim
0

sup 0 0

and thus (4.28) follows.

Proof of Theorem 4.5 We already knew that lim
0

. Hence, by Theorem 4.4, it

suffices to verify that

lim
0

.

From Theorem 4.3, we know that for any 0 and 0, there exists such that

1 1
2 .

Recall that is compact. We can find a sequence
monotonically tending to 0 and a such that

lim
0

lim and lim

weakly. Since the relative entropy is non-negative, we obtain that

1
.

Monotonicity follows from H lder’s inequality. Thus, we have as 0 that

1 1
log 0

where 0 is defined in (4.4). Hence, by Dini’s theorem, 1 converge to 0 uniformly.
From the weak convergence of , we then obtain that

lim
1

0 .
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Now, we claim that 2 0, where 0 is defined in (4.4). Notice that

lim 0

lim inf
1

2

0

lim inf
1

lim inf
1

.

From the lower semicontinuity of and Lemma 4.6, we deduce that

lim inf

0 .

Thus, if 2 0, then

0 0

and we would have

0 lim .

It is impossible, so and 2 0. Now we can employ the same argument as used
in the proof of Lemma 3.2 to derive that

lim 0 .

Then (4.27) follows by letting 0.

Remark 4.2 From the proof of Theorem 4.5, we can see that the existence of a solution
to the risk-sensitive Bellman equation guarantees the existence of the invariant probability
measure for 0.

We end this section with a simple example.

Example 4.7 Consider a finite POMDP with 1 2 1 2 1 2 .
The transition probability , observation probability , and reward are described by

1 1 1 2 1 1

1 2 1 2 2 1

1 2 1 2
1 2 1 2

1 1 2 2 1 2

1 2 2 2 2 2

1 0
0 1

1 1 2 1

1 2 2 2

1 2 1 2
1 2 1 2

1 1 1 2

2 1 2 2

0 0
0 1

.

The state space of the transferred MDP is , which is isomorphic to 0 1 . We use
1 to denote the probability distribution in , where 0 1 represents the
probability assigned on 2.
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On the one hand, to apply Theorem 4.5, by straightforward calculations, we have for
0 1 ,

max
1

2
1

1
.

Let

1 0 1
2

2 1
2 1

.

We can verify that . Then all the assumptions in Theorem 4.5 are fulfilled.
Thus,

lim
0

lim
0

1
log 1.

On the other hand, given an initial distribution 0 1 , we can see that the optimal average
reward is . Hence, sup 0 1 1, which coincides with Theorem 4.5.
Furthermore, this example illustrates that there are circumstances in which the optimal risk-
sensitive reward is independent of the initial distribution while the optimal average reward
is not.

5 A Portfolio Optimization Example

In this section, as an example of applications of the approach developed in the previous
sections, we consider a problem for portfolio optimization. Given a market with securities
and price affecting factors. Let denote the portfolio’s value at time . We assume
that the portfolio dynamics are determined by

1
(5.1)

where 1 ... denotes the factor process, which is a Markov chain with
transition kernel , 1 ... represents the portfolio strategy,
i.e., the proportions of capital invested in the securities at time , 1 is the
i.i.d. random noise which is independent of the factor process and has a common law . is
a Borel measurable function. and take values in some compact subsets
and respectively, while the noise takes values in a Polish space .
This model was extensively studied in [26] for the dual relationship between maximiz-
ing the probability of outperforming over a given benchmark and optimizing the long-term
risk-sensitive reward. In this section, we will demonstrate that our approach guarantees the
convergence of the optimal risk-sensitive reward to the optimal risk-neutral reward as the
risk-sensitive factor tends to 0. As a consequence, we show that the optimal risk-neutral
reward can be taken as a benchmark appearing in the duality mentioned above, comple-
menting the studies of [26].
Given an initial state 1 , we use P to denote the corresponding probability mea-
sure on and the expectation under P . Let denote the set of all Markov
portfolio strategies. Given a risk factor 0, the risk-sensitive optimal value is

sup
1
lim inf

1
log exp

1

. (5.2)

In what follows, we state the two assumptions on and for fitting (A1), (A2), and (A3).
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(H1) For each , , and there is an integrable random
variable , such that

and (5.3)

(H2) The family of functions 1 is equicon-
tinuous.

Remark 5.1 (1) If (H1) holds, then and hence
is bounded continuous in . Let and be the infimum and

supremum of . Then from Jensen’s inequality, it follows that for 0

log . (5.4)

(2) A particular case in which (H2) is true is that with
equicontinuous and .

The one-step reward in (5.1) depends not only on the state and the action but also on
, which is slightly different from the typical form. We make the following changes to get

a reward in such a standard form. Define a new Markov decision model with the transition
law and the one-step reward defined respectively by

1
(5.5)

and log .

By a direct calculation, we see that is actually , and for any 1

exp
1

exp
1

. (5.6)

Notice that the transition kernel of this MDP is still , but the reward is instead of
. Assumption (H1) implies that is continuous in . Thus, with an extra

discussion about the convergence of 1 as 0, we can obtain the limit with the same
argument as the one in the proof of Theorem 3.1. In particular, it is not hard to check that
(H1) and (H2) imply that and satisfy (A1), (A2), and (A3). Therefore, setting the
risk-sensitive coefficient in Theorem 3.7 to be one and then dividing both sides by , we
have the following variational formula for sup .

1
sup 2 (5.7)

where is defined in (3.2). Although Theorem 3.8 can not be directly applied due to the
difference between (5.7) and (3.1), the risk-neutral limit lim 0 can still be derived
by an argument similar to the one used in proving Theorem 3.1. To see this, we still use
to denote the average optimal return, i.e.,

sup sup sup lim inf
1

1

. (5.8)
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Theorem 5.1 Assume (H1) and (H2). Then

lim
0

. (5.9)

Proof By Hölder’s inequality, we see that is nondecreasing in and lim inf
0

.

We will apply (5.7) to prove that lim sup
0

. Similarly to the argument in the proof

of Theorem 3.1, for any 0, we can find a sequence decreasing to 0 with
lim

0
lim and with lim weakly such that

1 1
2 . (5.10)

Therefore,

1
.

Monotonicity follows from Hölder’s inequality, and thus we have as 0 that

1 1
log 0 .

Therefore, it follows from Dini’s theorem that 1 converge to 0 uniformly. Combin-
ing this fact with the weak convergence of , we obtain that

lim
1 0 .

Now we claim that 2 . Indeed, from the joint semicontinuity of the relative entropy,
we see that

lim inf
2

lim inf

.

Thus, if 2 , then

0.

From assumption (H1), (5.4), (5.5), and (5.6), together with (5.2) and (5.10), we would have

lim .

It is impossible, implying that it must be that and 2 . Then it is routine to fol-
low the same argument as that of Theorem 3.2 to check that 0

. Consequently, (5.9) follows by letting 0.

As claimed in the introduction, it was shown in [18, 24], and [26] that the risk-
sensitive portfolio optimization is a dual problem to the maximization of the outperformance
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probability (upside chance) when assuming differentiability for the optimal value. To
describe this more precisely, for 0 , define by

sup lim inf
1
log P

1

1

(5.11)

and sup .

Then by Chebyshev’s inequality,

and .

Thus,
sup
0

(5.12)

for a pre-specified 0.
Let for convenience. It has already been established in [26] that if is
differentiable on 0 and the limit

lim
1
log exp

1

(5.13)

exists and does not depend on the initial state , then the duality

sup
0

(5.14)

holds whenever 0 or 0 , where denote the
righthand derivative of (see Theorem 2.7 in [26]). In the meantime, our result shows
that under (H1) and (H2),

0 lim
0

0
0 lim

0

which reveals the connection between the outer-performance probability, the risk-neutral
average return, and the risk-sensitive average growth rate.
In order to guarantee the differentiability, we add the following assumptions for and
in accordance with Theorem 3.1 in [26], which also implies that the transition law satisfies
(B2).

(H3) There exists 1 such that

sup sup . (5.15)

(H4) There exists a 0 such that the mapping sup is differentiable

on 0 for any .

Remark 5.2 Let and be defined in Remark 5.1(1). Then (H1), (H2), (H3), and the
condition log guarantee that the limit inferior in (5.2) is actually a limit and

does not depend on (see Theorem 1 in [13]). So the constant in (5.12) can be
determined.

Theorem 5.2 Assume (H1), (H2), (H3), and (H4). Let min log
. Then

is a constant, and the duality (5.14) holds for every .
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Proof Combining Theorem 3.1 in [26] and the above remark, we see that is
differentiable on 0 . Thus, by Theorem 2.7 in [26],

sup
0

holds for every 0 . Theorem 3.7 implies that

0 lim
0

1
lim

0
sup sup

where is indeed a constant due to (H3) and Lemma 3.9. These complete the proof.

We end this section with an illustrative example.

Example 5.3 Let 1 1 , 1 2 0 1 2 1 and 1 i.i.d.
with the standard Normal distribution 0 1 . is given by

1 2
2

where 0 1 2 is a constant. Then
2
with being

integrable. Thus (H1), (H2), and (H4) are fulfilled, and (5.9) holds. If the transition
probabilities are chosen to satisfy that

min 0

then (H3) is also satisfied; therefore, the assertions of Theorem 5.2 hold true.

Appendix A nonlinear extension of the Kreĭn-Rutman theorem

The following theorem is an extension of the Kreĭn-Rutman theorem for nonlinear operators
on Banach space (see Proposition 3.1.5, Lemma 3.1.3, and Lemma 3.1.7 in [23]).
An ordered Banach space is a real Banach space endowed with a ordered cone ,
which means is a closed convex cone with vertex at 0 such that 0 . Assume

and dim 2. For 1 2 , we write 1 2 if 1 2 ,
1 2 if 1 2 0 and 1 2 if 1 2 . For an operator

, define

0 for some 0 .

sup
1

.

Since 1, we can define

lim
1

.

The following properties for operator on will be required:

1. (Compactness) is a compact operator, meaning that maps any bounded subset into
a relatively compact one.

2. (Positively 1-homogeneity) for any 0.
3. (Order-preserving) 1 2 for any 1 2 1 2 .

Theorem A.1 Let be a compact, positively 1-homogeneous, and order-
preserving operator. If 0, then and max .
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Theorem A.2 Let be a positively 1-homogeneous and order-preserving
operator. If there exits 0 and 0 such that , then .

Theorem A.3 Let be a positively 1-homogeneous and order-preserving
operator. If there exits 0 and 0 such that , then .
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