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Abstract
In this paper, we study the following damped vibration problem

1
2 0

0 0 0 0.

Under a new super-quadratic condition, we obtain a sequence of periodic solutions with the
corresponding energy tending to infinity by using a fountain theorem.
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1 Introduction

Consider the following damped vibration problems

1
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0 0 0 0
(1.1)
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where 2 , is the identity matrix, 1

is -periodic and satisfies 0 0, is a -periodic symmetric
matrix-valued function with ( 1 2 ), is an

anti-symmetric constant matrix, 1 is -periodic in , and
denotes its gradient with respect to the variable.

The existence of periodic solutions for damped vibration problems has been extensively
studied in recent decades. When 0 and 0, the problem (1.1) is the familiar
second order Hamiltonian system, and there have been many results on the existence and
multiplicity of periodic solutions (see [2, 7, 8, 13, 15–18, 20, 23] and references therein).
When 0 and 0, the authors [19] studied problem (1.1) and obtained the exis-
tence and multiplicity of periodic solutions by using variational methods. When 0
and 0, many authors (see [3–6, 9–11, 14, 21]) have studied the existence and mul-
tiplicity of periodic solutions for Eq. 1.1 under various assumptions. In [10], the authors
established the variational framework for problem (1.1) and obtained infinitely many non-
trivial periodic solutions under the Ambrosetti-Rabinowitz super-quadratic condition by
using a symmetric mountain pass theorem. In [21], the author obtained infinitely many peri-
odic solutions for a class of second-order damped vibration systems under super-quadratic
and sub-quadratic conditions by using a symmetric mountain pass theorem and an abstract
critical point theorem. In [3–5], the author considered (1.1) with nonlinearities being asymp-
totically linear at infinity, being suplinear at infinity and being sublinear at both zero and
infinity, and he obtained infinitely many nontrivial periodic solutions by using the variant
fountain theorem [22].

In this paper, we study the multiplicity of periodic solutions for the problem (1.1) under
a new super-quadratic condition (see 2 below) introduced by Tang and Wu [17], where
the authors obtained the existence of periodic solutions for second-order Hamiltonian sys-
tems by using a local linking theorem [12]. Here by using a fountain theorem in [1], we
shall obtain infinitely many periodic solutions for the problem (1.1) with the corresponding
energy tending to infinity. Furthermore, we make the following assumptions:

1 lim 2 uniformly for 0 ;

2 there exists 0 and 0 such that 2 2 for

every with and 0 ;
3 there exist 1 0, 2 0 and 2 such that

1
1

2

for 0 , .

Now we state our main result.

Theorem 1.1 Assume that 1 3 hold and is even in , then the problem (1.1)
has infinitely many periodic solutions with the corresponding energy tending to infinity.

Remark 1.2 We consider the following general case of 2 :

2 there exists 0 and 0 such that 2 for

some 0 and every with and 0 .
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Clearly, if 0 2, then 2 implies 2 and thus Theorem 1.1 also holds under
1 , 2 , and 3 . However, we do not know whether the theorem is still true for some
2. We think this is an interesting question.

Remark 1.3 Now we give some comparisons between the super-quadratic condition 2
and the super-quadratic conditions in related papers [4, 9, 10]. We will see that the
super-quadratic condition 2 is weaker than those in [4, 9, 10]. In [10], the authors
obtained infinitely many periodic solutions of Eq. 1.1 under the Ambrosetti-Rabinowitz
super-quadratic condition

there exist a constant 2 and 0 such that 0 for
all 0 and .

In [4], under more general super-quadratic conditions, the author obtained infinitely many
periodic solutions for Eq. 1.1. He assumed 1 and

1 there exist constants 1 0 and 1 2 such that

1 1 1 1

2
1
2 0 for all 0

3 there is a constant 0 such that

lim inf
2

1
uniformly for 0 .

Later, the authors [9] obtained infinitely many periodic solutions for Eq. 1.1 under the super-
quadratic conditions used in [4] and some weaker conditions, they assumed 1 and

1 0 for all 0 ;

2 there exists 2 such that

lim
1

uniformly for 0

3 there are constants 0 and 1 2 such that

lim inf
2

uniformly for 0 .

Clearly, the conditions 1 - 3 or 1 - 3 imply 2 and 3 . On the other
hand, let 2 ln 1 2 sin 2 ln 1 2 (see [17]). It is not difficult to
see that satisfies the conditions 1 3 in Theorem 1.1. However, as pointed
in [17], we have

lim inf
2

0

for any 0, so does not satisfy the conditions 3 and 3 . Hence, the
super-quadratic conditions in Theorems 1.1 are weaker than the above super-quadratic
conditions.

The paper is organized as follows. In Section 2, we give the variational framework and
some important preliminary lemmas. In Section 3, we prove the main result by using a
fountain theorem.
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2 Preliminaries

In this section, we will give some preliminaries and prove an important compactness result.
We will use to denote the norm of 0 for any 1. Let 1 be
the usual Hilbert space defined by

1 0 is absolutely continuous 0 2 0

with the norm

0
0

2 2
1 2

where 0 . Since 1 is -periodic and satisfies 0 0,
we see that is a -periodic continuous function. Then there exist two positive constants
1 and 2 such that

1 2 0 . (2.1)

Hence, the norm 0 is equivalent to the usual one on , i.e.,

2
2

2
2

1
2

.

We denote by 0 the inner product corresponding to 0 on .
Define the functional on by

1

2 0

2

0
. (2.2)

By Lemma 2.1 in [10], we see that is continuously differentiable on . In addition, we
have

0

1

2 0

for all . Then the solutions of problem (1.1) correspond to the critical points of
(see Lemma 2.2 in [10]).

Let be the linear operator defined by

0
0

1

2
.

By Lemma 2.3 in [10], we have that is a bounded self-adjoint linear operator and compact
on . Since is an antisymmetry constant matrix, using the integration by parts,
we know that

0
0

1

2 0
.

It is not difficult to see that there exists a constant 0 0 such that

0
0

2
0. (2.3)

Let be the operator defined by

0 0
0

.
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Then is a bounded self-adjoint linear operator and compact on (see [10]). According
to the classical spectral theory, we have the decomposition

0

where 0 ker , and are the positive and negative spectral subspaces of
on respectively. Clearly, and 0 are finite dimensional. We can define a new

equivalent norm on such that 0
2 for with the

corresponding inner product denoted by . Then there exist positive constants 1 and 2
such that

1 0 2 0. (2.4)

We can rewrite the functional by

1

2
0

0

1

2
2 2

0
.

(2.5)

Now we state an important lemma from [1] which will be used to prove the main result.
Let be a Hilbert space with 1 2, where 2 is a finite dimensional subspace
of . Let 1

1
1
2 be a sequence of finite dimensional subspaces of 1 such that

1

1 1. Let 1 2. We say that 1 satisfies the condition

at level with respect to if each sequence satisfying

1 0

contains a subsequence which converges to a critical point of .

Lemma 2.1 (see Theorem 2.2 of [1]) Suppose that 1 is even, i.e.,
and

1 satisfies the condition at level 0 with respect to ;
2 there exists a sequence 0, , such that

inf
1

3 there exists a sequence such that, for 1 2 1 2 with
1 1, 2 2, and max 1 2 , one has 0 and

sup
max 1 2

.

Then has an unbounded sequence of critical values.

Here we set , 1 and 2 0. Let 1 be an orthonormal
basis of 1. And define

1 span 1 2

1 2.
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Lemma 2.2 Suppose that 1 and 2 hold, then satisfies the condition at level
0 with respect to .

Proof Let be a sequence in such that

1 0 0. (2.6)

Now we prove that the sequence is bounded in . If not, there is a subsequence of
(for simplicity still denoted by ) satisfying 0 as . Let

0
then is bounded in . Hence, we may assume that for some , there is a

subsequence of (still denoted by ) such that

weakly in W, (2.7)

in C 0 . (2.8)

We claim that 0. If not, set 1 0 0 , then 1 0, where
1 is the Lebesgue measure of 1. Since 0 , we have as

for any 1. Then by 1 , we have that

lim
2

on 1. (2.9)

From 1 and 1 , there exists a constant 3 0 such that

3 (2.10)

for any and 0 . Then by Eqs. 2.1 and 2.10, we obtain

0
2
0 1

2
0 0 1

2
0

1
2

2 2 3
2
0

.

(2.11)

By Eqs. 2.9, 2.11 and Fatou’s Lemma, we have

lim inf
0

2
0

lim inf
1 2

2 . (2.12)

Let 0 0 be a constant such that

0
2 . (2.13)
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By Eqs. 2.1, 2.2, 2.6–2.8, 2.13 and Hölder inequality, for sufficiently large we have
that

0
2
0

1

2 2
0

1

2 0

2

1

2 0

1
2
0

1 0

2
2

2

2 0

1
2
0

1 0

2
2

2

2 0

1
2

0

2
1
2

1
2
0

1 0

2
2

2 2

2
0

1
2
0

1 0

2
2

2 2

2
(2.14)

Then using 0 and the Sobolev inequality 0 , by Eq. 2.14,
we have that

lim inf
0

2
0

1

2

1 0

2
2

2 2

2
(2.15)

which contradicts with Eq. 2.12. Therefore, the claim is proved.
By the above claim and Eq. 2.14, we see that

lim
0

2
0

1

2
. (2.16)

By 1 and 2 , there exists a constant 2 with 2 such that

2
2

0 (2.17)

for any with 2 and 0 . And there exist positive constants 5 and 6
such that

5 2 6 (2.18)
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for any with 2 and 0 . Then by Eqs. 2.6, 2.17, and 2.18, we have that

0
2
0 0

2
0

2
2
0 2

2
0

2 5
2
0 2

2
2

2 5
2
0

2

2
2

2 5
2
0

2

2

2

2 5
2
0

2

2

2

2

0
2

2 5
2
0

2 6
2 2

2

2 5
2
0

2 6 3 2 0 (2.19)

which contradicts (2.16). Hence, is bounded in . Then by an argument similar as
Proposition 4.1 in [13], we conclude that the condition is satisfied.

3 Proof of Theorem 1.1

In this section, we shall use Lemma 2.1 to prove Theorem 1.1.

Lemma 3.1 Suppose 1 3 hold, then there exists a sequence 0 such that

inf
1

.

Proof Set

sup
1 1

. (3.1)

Similarly as [1], we prove that

0 (3.2)

as . In fact, if not, there must exist a constant 0 0 and a sequence in such
that 1, 1, 0, and as . Thus, for any ,
we have

1 1 0
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as , where 1 is the projection onto 1. Therefore, we have 0 in .
Since the embedding 0 is compact, we get 0 in 0 , which is
contrary to 0.

By 3 , there exists 7 0 and 8 0 such that

7 8 (3.3)

for every and 0 . Note that 1 for every . Then by Eqs. 3.1
and 3.3, for 1, we have that

1

2
2

0

1

2
2

7
0

8
0

1

2
2

9 10

1

2
2

9 10 (3.4)

where 9 7 2 and 10 8 2 . Let 9
1

2 . For every 1 with
, by Eq. 3.4, we can obtain that

1

2

1
9

2
2

10. (3.5)

Hence, by 2, Eqs. 3.2 and 3.5, we have that

inf
1

as .

Lemma 3.2 Suppose that 1 3 hold, then there exists a sequence such that
for 1 2 1 2 with 1 1, 2 2 and max 1 2 ,
one has 0 and

sup
max 1 2

.

Proof By 1 , for every 0, there exists a constant 0 such that
2 (3.6)

for any 0 and . Recall that 1 and 2 0 . Then for
every and 1 2 1 2 with 1 1, 2 2, by Eqs. 2.5 and
3.6, we have that

1

2
1 2 2 2

0

1

2
1 2 2 2

0

2

1

2
2 2

2

(3.7)
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where . Note is a finite dimensional subspace, it follows that the norms
and 2 are equivalent on . Hence, we can choose a sufficiently large such that

2 2
2 . (3.8)

Let max 2 1 1 , then . For with max 1 2 ,

since max 1 2 , it follows from Eqs. 3.7 and 3.8 that

1

2
2 1

2
0. (3.9)

Recall that 1 and is finite dimensional, it is easy to see that

sup .

Proof of Theorem 1.1 Since is even in , we have that is an even functional
on . By Lemma 2.2, we see that the assumption 1 in Lemma 2.1 holds. From Lemma
3.1, we see that the assumption 3 in Lemma 2.1 holds. By Lemma 3.2, we have that
the assumption 3 in Lemma 2.1 holds. Therefore, by Lemma 2.1, the problem (1.1) has
infinitely many periodic solutions with the corresponding energy as

.
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