
Vol.:(0123456789)

https://doi.org/10.1007/s10883-022-09610-4

1 3

Periodic Orbits in the Muthuswamy‑Chua Simplest Chaotic 
Circuit

Marcelo Messias1 · Alisson C. Reinol2 

Received: 11 June 2021 / Revised: 28 June 2022 / Accepted: 15 July 2022 

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In 2010, Muthuswamy and Chua presented an autonomous chaotic circuit using only three 
elements in series: an inductor, a capacitor and a memristor. This circuit is known as the 
simplest chaotic circuit and it is determined by a three-dimensional differential system, which 
depends on the real parameters C, L, α and β. Although the Muthuswamy-Chua system is 
simpler in formulation than other chaotic systems, its dynamics has proven to be complicated. 
Here we analytically prove the existence of periodic orbits in this system for suitable choice of 
the parameter values α and β leading to interesting phenomena as multistability and formation 
of chaotic attractors. In order to do that, we consider the existence of first integrals, invariant 
algebraic surfaces and a result from averaging theory. In addition, we relate the obtained results 
to the memristance and to the physical characteristics of the memristor.

Keywords Periodic orbit · Memristor-based circuit · First integral · Multistability · Chaotic 
attractor
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1  Introduction and Statement of the Main Results

In [1], Muthuswamy and Chua proposed the memristor-based circuit shown in Fig.  1, 
composed of only three components in series: two energy storage elements (a linear passive 
inductor and a linear passive capacitor) and a nonlinear active memristor. They called it the 
simplest chaotic circuit, since it reduces the number of circuit elements required for chaotic 
dynamics and it is also the simplest possible circuit having only one locally-active element: 
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the memristor. According to Muthuswamy and Chua, the memristor plays two important 
roles in the considered circuit: it provides the third essential state variable and the essential 
nonlinearity necessary for generating chaotic behavior.

The memristor-based circuit proposed by Muthuswamy and Chua in [1] is described 
by the three-dimensional differential system

where (x, y, z) ∈ ℝ
3 are the state variables, C, L, α and β are real parameters and the dot 

denotes derivative with respect to the time t. The function M(z) = � (z2 − 1) is called mem-
ristance of the memristor device in Fig.  1. For more details on obtaining system (1) as 
the mathematical model of the circuit proposed by Muthuswamy and Chua and the physi-
cal meaning of parameters, see [1]. In such a paper, Muthuswamy and Chua fixed C = 1 , 
L = 3 , � = 0.6 and, by varying β, they empirically observed period-one and period-two 
oscillations for � = 1.2 and � = 1.3 , respectively, and chaotic attractors for � = 1.5 and 
� = 1.7 , which are reproduced in Fig. 2. Recent studies about the dynamics and integrabil-
ity of system (1) can be found in [2–9].

(1)ẋ =
y

C
, ẏ = −

1

L
[x + 𝛽(z2 − 1)y], ż = −y − 𝛼z + yz,

Fig. 1  Schematic of the mem-
ristor-based circuit proposed by 
Muthuswamy and Chua in [1]

Fig. 2  Chaotic attractors of system (1) for C = 1 , L = 3 , � = 0.6 and � = 1.5 in (a) and � = 1.7 in (b). The 
initial condition of the orbit is (0.1, 0, 0.1) in both cases
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Here we consider the Muthuswamy-Chua system with C = 1 and L = 3 , as the authors 
originally done in [1], that is,

We analytically prove the existence of periodic orbits in this system in three cases: for 
� = � = 0 ; for � = 0 and 𝛽 > 0 sufficiently small; and for 𝛼 > 0 and 𝛽 > 0 sufficiently 
small.

For � = � = 0 , the phase space of system (2) can be completely determined due to the 
existence of the functionally independent first integrals H1(x, y, z) = x − ln(1 − z) , with 
z < 1 , H2(x, y, z) = −x + ln(z − 1) , with z > 1 , and H3(x, y, z) = x2 + 3y2 . We recall that 
a first integral of system (2) is a non-constant differentiable function H ∶ U ⊂ ℝ

3
→ ℝ , 

which is constant on all solution curves (x(t), y(t), z(t)) of the system contained in U, that is

where H = H(x(t), y(t), z(t)) . The existence of first integrals for the Muthuswamy-Chua 
system is treated, for instance, by Dias and Mello in [4] and by Llibre and Valls in [8]. 
A consequence from the existence of first integrals in system (2) for � = � = 0 is that its 
phase space is foliated by the cylinders Fc(x, y, z) = x2 + 3y2 − c = 0 , with c ∈ ℝ+ , and by 
the surfaces Gk(x, y, z) = −z + kex + 1 = 0 , with k ∈ ℝ , which are invariant under the flow 
of the system.

For � = � = 0 , the z-axis is formed by non-isolated zero-Hopf equilibrium points 
of system (2) as the eigenvalues of the Jacobian matrix of the system at these points are 
�1 = 0 and �2,3 = ±i

√
3∕3 . Moreover, these equilibrium points are nonlinear centers, since 

all orbits of the system are on the intersections of invariant cylinders Fc = 0 with invariant 
surfaces Gk = 0 , as shown in Figs. 3 and 4.

(2)ẋ = y, ẏ = −
1

3
[x + 𝛽(z2 − 1)y], ż = −y − 𝛼z + yz.

ẋ
𝜕H

𝜕x
+ ẏ

𝜕H

𝜕y
+ ż

𝜕H

𝜕z
≡ 0,

Fig. 3  Case � = � = 0 . The 
phase space of system (2) 
is foliated by the invariant 
surfaces x2 + 3y2 = c and 
fk = −z + kex + 1 = 0 , with 
c ∈ ℝ+ and k ∈ ℝ
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Note that system (2) presents a continuum of periodic orbits even when the mem-
ristance is turned off, that is, when � = 0 . Also, in this case, the z-coordinates of solu-
tions on the invariant cylinders Fc = 0 are asymptotic to the plane G0 = −z + 1 = 0 when 
the voltage, represented by the x-axis, is more negative and they present spikes when the 
voltage is more positive, see Fig. 4. Although this case may seem trivial due to absence 
of memristor in the circuit modeled by system (2), it is interesting from dynamical point 
of view, since varying the parameter values α and β the Muthuswamy-Chua system can 
be seen as a perturbation of an integrable system and interesting phenomena can arise 
when the structure of invariant surfaces is broken. A similar approach was considered 
by Llibre et al. in [10] to study the Nosé-Hoover oscillator.

For � = 0 and 𝛽 > 0 sufficiently small, the phase space of system (2) is foliated by the 
invariant surfaces Gk = 0 and the z-axis is filled by equilibrium points of the system. In 
the next result, by using the existence of the invariant surfaces Gk = 0 and a result from 
the averaging theory, we prove the existence of a unique stable periodic orbit around 
each equilibrium point (0,  0,  z), with |z| < 1 , see Fig.  5. These periodic orbits persist 
from the integrable structure observed in the phase space of system (2) when � = � = 0.

Theorem  1 For � = 0 and 𝛽 > 0 sufficiently small, there exists a unique stable periodic 
orbit around each equilibrium point (0, 0, z), with |z| < 1 , in the phase space of system (2).

Theorem 1 is proved in Section 2. Note that the periodic orbits obtained in Theorem 1 
have different amplitudes, as can be observed in Fig. 5. Furthermore, the existence of 

Fig. 4  Case � = � = 0 . (a) Periodic orbits in the phase space of system (2) and (b) their projection on the 
xz-plane
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such a periodic orbits is determined by the local activity of the memristor device of cir-
cuit in Fig. 1, since M(z) = 𝛽 (z2 − 1) < 0 for 𝛽 > 0 and |z| < 1.

As mentioned above, for � = 0 and 𝛽 > 0 , (0, 0, z) are equilibrium points of system (2). 
The Jacobian matrix of the system at these equilibrium points are

Observe that the (normal) stability of each equilibrium point (0, 0, z) depends on the mem-
ristance M(z) = �(z2 − 1) of the memristive device of circuit in Fig. 1 and they are (nor-
mally) asymptotically stable if |z| > 1 and unstable if |z| < 1 . The coexistence of distinct 
possible asymptotic stable states given by the equilibrium points (0,  0,  z), with |z| > 1 , 
and by infinitely many stable periodic orbits leads to an interesting phenomenon known as 
multistability, in which the final state of orbits depends crucially on the initial conditions. 
For more details about this subject see [11] and references therein. This phenomenon often 
can creates inconveniences. In engineering systems, for instance, where a targeted dynami-
cal behavior is often required, multistability creates dilemma to choose convenient initial 
conditions in order to obtain a desired final asymptotic state of the system. In this way, 
there are several papers, as [11, 12], that study the control of multistability. Furthermore, 
multistability was also reported in other memristive systems, as [13–16].

For 𝛼 > 0 and 𝛽 > 0 , the structure of invariant surfaces foliating the phase space of sys-
tem (2), as observed for � = 0 or � = 0 , is broken, which makes the dynamics of the system 
much more difficult to be studied. In this case, by using the averaging theory, we analyti-
cally prove the existence of a stable periodic orbit, which persists from one of the periodic 
orbits on the invariant cylinder F4 = x2 + 3y2 − 4 = 0 in the integrable case ( � = � = 0 ). 
As far as we know, the existence of periodic orbits in system (2) for 𝛼 > 0 and 𝛽 > 0 was 
verified only numerically until now, see [1, 5, 7]. The next theorem is proved in Section 3.

(3)�1 = 0, �2,3 = −
1

6

�
�(z2 − 1) ±

√
�2(z2 − 1)2 − 12

�
.

Fig. 5  Case � = 0 and 𝛽 > 0 . (a) Some periodic orbits on the invariant surfaces fk = 0 , with −2 < k < 0 , 
and (b) their projections on the xz-plane. Here � = 0.1
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Theorem 2 For 𝛼 > 0 and 𝛽 > 0 sufficiently small, there exists a stable periodic orbit in 
the phase space of system (2), which tends to an ellipse on the cylinder F4 = 0 when � → 0 
and � → 0.

Theorem 2 is proved in Section 3.
The stable periodic orbit obtained in Theorem 2 plays an important role in the formation 

of chaotic attractors in system (2). Indeed, we develop a numerical study on the continua-
tion of this periodic orbit by using the software Maple, where differential equations were 
solved through a Fehlberg fourth-fifth order Runge-Kutta method with degree four inter-
polant (known as rk45 method), with step-size equals to 0.01. This method showed to be 
appropriate for the numerical study presented here. The files are available to the interested 
readers, under demand to the authors. We verify that, when we fix � = 0.6 and vary β from 
0.01 to 1.7 into system (2), the periodic orbit initiates a cascade of period-doubling bifur-
cations from � ≈ 0.8 until � ≈ 1.15 and then it returns to a period-one periodic orbit for β 
near of 1.2, as can be seen in Figs. 6 (a) - (g). For 𝛽 > 1.2 , the cascade of period-doubling 
bifurcations restarts giving rise to a strange attractor, see Figs. 6 (g) - (i) and Fig. 2, which 
was shown to be chaotic for � = 1.7 by Muthuswamy and Chua in [1], through the study of 
Lyapunov exponents and simulations based on bifurcation analysis, and by Galias in [17] 
in a topological sense for � = 1.5 . This highlights the important role of periodic orbits in 
the occurrence of complex dynamics in system (2) as the parameter values are varied.

In order to corroborate the chaotic dynamics observed in system (2), we calculate the 
Lyapunov exponents using the time-series method [18] for a solution with initial condi-
tions (x0, y0, z0) = (0.1, 0, 0.1) , taking � = 0.6 and � = 1.5 . We obtained the values:

which characterize chaotic behavior. In [5], Galias computed bifurcation diagrams of sys-
tem (2) with � = 0.6 and covering the extended interval 0.9 ≤ � ≤ 2 , considering two inde-
pendent ways and obtaining, visually, similar diagrams, which display an abundance of 
tunable ranges of periodic and chaotic self-oscillations, corroborating the results obtained 
here.

The next sections are devoted to prove the results presented above. In Section  2 we 
prove Theorem 1 and in Section 3 we prove Theorem 2.

2  Proof of Theorem 1

Before proving Theorems 1 and 2, for the sake of completeness and to fix the notation to be 
used, we present the following result from averaging theory. For a general introduction to 
this theory see [19, 20].

Theorem 3 Consider the initial value problems

and

LE1 = 0.0303, LE2 = 0., LE3 = −0.5861,

(4)�̇ = 𝜀F1(t, �) + 𝜀2 F2(t, �, 𝜀), �(0) = �0,

(5)�̇ = 𝜀 g(�), �(0) = �0,
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with x, y and x0  in some open subset Ω of ℝn , t ∈ [0,∞) and � ∈ (0, �0] , for some fixed 
𝜀0 > 0 sufficiently small. Assume that F1 and F2 are periodic functions of period T in the 
variable t, and set

Assume that F1 , D�
F1 , D��

F1 and D
�
F2 are continuous and bounded by a constant inde-

pendent of  ε  in [0,∞) × Ω × (0, �0] , and that �(t) ∈ Ω for t ∈ [0, 1∕�] , where D
�
F and 

D
��
F are all the first and second derivatives of F. Then, the following statements hold. 

g(�) =
1

T ∫
T

0

F1(t, �)dt.

Fig. 6  Orbit of system (2) with � = 0.6 and initial condition (0.1, 0, 0.1) for different values of parameter β. 
Here t ∈ [1000, 1300]
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1. For t ∈ [0, 1∕�] , we have �(t) − �(t) = O(�) as � → 0.
2. If p is an equilibrium point of system (5) such that det[D

�
g(p)] ≠ 0 , then there exists 

a periodic solution �(t, �) of period T for system (4) which is close to p and such that 
�(0, �) − p = O(�) as � → 0.

3. The stability of the periodic solution �(t, �) is given by the stability of the equilibrium 
point p.

Theorem 3 was proved by Verhulst in [20].

Proof of Theorem  1 Suppose � = 0 and 𝛽 > 0 sufficiently small into system (2). 
In this case, the phase space of the system is foliated by the invariant surfaces 
Gk(x, y, z) = −z + k ex + 1 = 0 , with k ∈ ℝ , as H1(x, y, z) = x − ln(1 − z) , with z < 1 , and 
H2(x, y, z) = −x + ln(z − 1) , with z > 1 , are first integrals of the system for � = 0 . The 
restriction of system (2) to the invariant surfaces Gk = 0 is given by the planar differential 
system

The origin is the only equilibrium point of system (6) and, for each k ∈ ℝ , it corre-
sponds to the point (0, 0, z) of system (2) with z = k + 1 . In order to use Theorem 3, we 
write the linear part at the origin of system (6) into the real Jordan normal form through the 
change of coordinates

and the rescaling of time t =
√
3 � , where τ is the new time. Then we obtain the differential 

system

Now, writing system (7) in polar coordinates (r, �) , where u = r cos � and v = r sin � , 
and considering 𝛽 = 𝜀 > 0 , it becomes

Note that �̇� ≠ 0 when � → 0 . Then taking θ as the independent variable and doing the 
Taylor expansion of order 2 of the obtained equation at � = 0 , we get

Using the notation of Theorem 3, we have that if we take t = � , T = 2� , � = r,

(6)ẋ = y, ẏ = −
x

3
−

𝛽

3

[
(1 + k ex)2 − 1

]
y.

(x, y) → (u, v), where x =
√
3 u and y = v,

(7)u̇ = v, v̇ = −u −

√
3

3
𝛽

��
1 + k e

√
3 u
�2

− 1

�
v.

(8)
ṙ = −

√
3

3
𝜀 k e

√
3 r cos 𝜃

�
k e

√
3 r cos 𝜃 + 2

�
r sin2 𝜃,

�̇� = −1 −

√
3

3
𝜀 k e

√
3 r cos 𝜃

�
k e

√
3 r cos 𝜃 + 2

�
sin 𝜃 cos 𝜃.

(9)
dr

d�
=

�√
3

3
k e

√
3 r cos �(k e

√
3 r cos � + 2) r sin2 �

�
� +O(�2).

F1(t, �) =

√
3

3
k e

√
3 r cos �(k e

√
3 r cos � + 2) r sin2 �, and �2F2(t, �) = O(�2)
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it is immediate to verify that system (9) can be written in the normal form (4) and it satis-
fies Theorem 3. Then, computing function g of Theorem 3, we obtain

Solving the integral in expression (10) using power series up to order three in the variable 
r, we get

We have that, if −2 < k < k∗ = −0.5 , then g(r) = 0 has a unique real positive solution 
r = r0 =

√
−3(2k+1)(k+2)

3(2k+1)
 with g�(r0) ≠ 0 , since g�(r0) = 0 if, and only if, k = −2 . We note that 

k∗ → 0− as we increase the order of the power series used to solve the integral in (11).
Going back the change of coordinates, for 𝛽 > 0 sufficiently small, system (6) has a 

unique periodic orbit if −2 < k < 0 . Moreover, the obtained periodic orbit is stable. Indeed, 
writing system (2) in polar coordinates (see system (8) and remember that 𝛽 = 𝜀 > 0 ), we 
have that ṙ > 0 for −2 < k < 0 and r sufficiently small, since

and we have that ṙ < 0 for −2 < k < 0 and r sufficiently large. Hence system (6) has a 
unique stable periodic orbit around the origin for each k with −2 < k < 0 , see Fig. 7. As 
z = k + 1 , for � = 0 and 𝛽 > 0 sufficiently small, system (2) has a stable periodic orbit 
around each equilibrium point (0, 0, z) with |z| < 1.

(10)g(r) =

√
3

6�
k r

�
∫

2�

0

(k e
√
3 r cos � + 2) e

√
3 r cos � sin

2 � d�

�
.

(11)g(r) =

√
3

6
k r (k + 2) +

√
3

4
k r3

�
k +

1

2

�
.

�
k e

√
3 r cos 𝜃

+ 2

�
> 0 when r → 0,

Fig. 7  Periodic orbit in the phase 
portrait of system (6) for k = −1 . 
Here � = 0.1
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3  Proof of Theorem 2

Proof of Theorem 2 Suppose 𝛼 > 0 and 𝛽 > 0 into system (2). First we write the linear part 
at the origin of system (2) into the real Jordan normal form. In order to do this, we consider 
the linear change of coordinates

and the rescaling of time t = −
√
3 � , where � is the new time. Then, we obtain the differ-

ential system

As 𝛼 > 0 , there exists m > 0 such that m � = 1 . Then, system (12) can be rewritten as

Now, writing system (13) in cylindrical coordinates (r, �,w) , where u = r cos � and 
v = r sin � , and taking � = � a and � = � b , with a > 0 and b > 0 , it becomes

As �̇� ≠ 0 when � → 0 , we take θ as the new independent variable and do the Taylor expan-
sion of order 2 of the obtained equations at � = 0 . Then we get

Using the notation of Theorem 3 we have that if we take t = � , T = 2� , � = (r,w)T,

it is immediate to verify that system (14) can be written in the normal form (4) and it satis-
fies the assumptions of Theorem 3. Then, computing function g of Theorem 3, it follows 
that

(x, y, z) ↦ (u, v,w), where x = u, y =

√
3

3
v and z = −u + w,

(12)

u̇ = −v,

v̇ = u +

√
3

3
𝛽
�
(u − w)2 − 1

�
v,

ẇ = (v − 𝛼
√
3) (u − w).

(13)

u̇ = −v,

v̇ = u +

√
3

3
𝛽
�
(u − w)2 − 1

�
v,

ẇ = 𝛼 (mv −
√
3) (u − w).

ṙ =

√
3

3
𝜀 b

�
(r cos 𝜃 − w)2 − 1

�
r sin2 𝜃,

�̇� = 1 +

√
3

3
𝜀 b

�
(r cos 𝜃 − w)2 − 1

�
cos 𝜃 sin 𝜃,

ẇ = 𝜀 a (mr sin 𝜃 −
√
3) (r cos 𝜃 − w).

(14)

dr

d�
=

�√
3

3
b [(r cos � − w)2 − 1] r sin2 �

�
� + O(�2),

dw

d�
=
�
−a (mr sin � −

√
3) (r cos � − w)

�
� + O(�2).

F1(t, �) =

⎛⎜⎜⎝

√
3

3
b [(r cos � − w)2 − 1] r sin2 �

−a (m r sin � −
√
3) (r cos � − w)

⎞⎟⎟⎠
, and �2F2(t, �) = O(�2)
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which has a unique zero for r > 0 at (r,w) = (2, 0) . The determinant of the Jacobian matrix 
of g at (2, 0) is a b ≠ 0 and the eigenvalues of the Jacobian matrix of g at this point are 
𝜆1 = a

√
3 > 0 and 𝜆2 = b

√
3∕3 > 0 . Hence, for 𝜀 > 0 sufficiently small, system (14) has 

an unstable periodic orbit �(�, �) = (r(�, �),w(�, �)) such that �(0, �) → (2, 0) when � → 0.
Going back the change of coordinates to system (12) we have that such a system has an 

unstable periodic orbit of period approximately 2� for 𝛼 > 0 and 𝛽 > 0 sufficiently small 
given by

Finally, going back to the coordinates x, y, z and doing the rescaling of time � = −(
√
3∕3) t , 

this periodic orbit become into a stable periodic orbit for system (2) of period also close to 
2� for 𝛼 > 0 and 𝛽 > 0 sufficiently small given by

which tends to an ellipse on the cylinder F4 = 0 when � → 0 and � → 0.
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