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Abstract
In this paper, we study the exact boundary controllability of the linear fourth-order 
Schrödinger equation, with variable physical parameters and clamped boundary conditions 
on a bounded interval. The control acts on the first spatial derivative at the right endpoint. 
We prove that this control system is exactly controllable at any time T > 0 . The proofs are 
based on a detailed spectral analysis and the use of nonharmonic Fourier series.
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1  Introduction

The fourth-order cubic nonlinear Schrödinger equation or the so-called biharmonic cubic 
non-linear Schrödinger equation reads as follows

where y is a complex-valued function and � is a real constant. This equation has been mod-
eled by Karpman [23] and Karpman and Shagalov [24] in order to describe the propagation 
of intense laser beams in a bulk medium with Kerr nonlinearity when small fourth-order 
dispersion is taken into account. The fourth-order cubic nonlinear Schrödinger Eq. 1 has 
various applications in several fields of physics, such as nonlinear optics, plasma physics, 
superconductivity, and quantum mechanics. We refer to the book of Fibich [19], and for 
more details, see also [11, 15, 30].

The well-posedness and the dynamic properties of the biharmonic Schrödinger Eq. 1 
have been extensively studied from the mathematical perspective, see the paper of Pausader 

(1)i�ty + �4
x
y − �2

x
y − �|y|2y = 0,
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[31], see the papers of Capistrano-Filho et al. [16, 17], and also [14, 32] and the references 
therein.

In this work, we are interested in the study of the exact boundary controllability of a 
quantum mechanical particle that moves in a one-dimensional non-homogeneous box of 
length � > 0 . Its wavefunction y evolves according to the linear biharmonic Schrödinger 
Eq. 1 for � = 0 , with variable physical parameters. More precisely, we consider the follow-
ing quantum mechanical system

where f is a control that acts at the right end x = � , and y0 is the initial wavefunction of the 
particle at time t = 0 . Throughout the paper, we assume the following assumptions on the 
coefficients:

and there exist constants 𝜌0, 𝜎0 > 0 , such that

For system (2), the appropriate control notion to study is the exact controllability, 
which is defined as follows: System (2) is said to be exactly controllable at time T > 0 if, 
given any initial state y0 , there exists a control f such that the corresponding wavefunction 
y = y(t, x) of the particle satisfies y(T , .) = 0.

Let us now describe the existing results on stabilization and control of the Biharmonic 
Schrödinger system (2). In the case where � ≡ 0 , we recover the classical second-order 
Schrödinger equation with variable coefficients occupying the interval (0,�) . In this con-
text, the stabilization of the second-order Schrödinger equation has been thoroughly stud-
ied, see for instance [2–4, 9]. We also refer to [1, 5–8] for related results on exact con-
trollability of the second-order Schrödinger equation, see also [18, 21], and the references 
therein. The first result on exact controllability of the linear biharmonic Schrödinger Eq. 1 
for � = 0 on a bounded domain Ω ⊂ ℝ

n, n ≥ 1, is established by Zheng and Zhongcheng 
[35]. In that paper, the authors proved that the linearized system

is exactly controllable at any positive time T,   where the control f ∈ L2((0,T) × Γ0) and 
Γ0 ⊂ 𝜕Ω . Their proof uses the Hilbert Uniqueness Method “Lions’ HUM” (cf. Lions [26, 
27]) and the multiplier techniques [25]. Later on, Wen et al. [32] proved the well-posedness 
and the exact controllability for the linear fourth-order Schrödinger system (5) with the 
boundary observation

As a consequence, they established the exponential stability of the closed-loop sys-
tem under the output feedback f = −kz for any k > 0 . The same authors in [33] extended 

(2)

⎧⎪⎨⎪⎩

i�(x)�ty = −�2
x
(�(x)�2

x
y) + �x(q(x)�xy), (t, x) ∈ (0, T) × (0,�),

y(t, 0) = �xy(t, 0) = y(t,�) = 0, �xy(t,�) = f (t), t ∈ (0, T),

y(0, x) = y0(x), x ∈ (0,�),

(3)�, � ∈ H2(0,�), q ∈ H1(0,�),

(4)�(x) ≥ �0, �(x) ≥ �0, q(x) ≥ 0, x ∈ 0,�.

(5)

⎧
⎪⎨⎪⎩

i�ty + Δ2y = 0, (t, x) ∈ (0, T) × Ω,

y = 0,
�y

��
= f�Γ0

, (t, x) ∈ (0, T) × �Ω

y(0, x) = y0, x ∈ Ω,

z(t, x) = −iΔ((Δ2)−1y(t, x)), (t, x) ∈ (0, T) × Γ0.
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these results to the case of a linear fourth-order multi-dimensional Schrödinger equation 
with hinged boundary control and collocated observation.

The inverse problem of retrieving a stationary potential from boundary measure-
ments for the one-dimensional linear system (2) with � ≡ � ≡ 1 and f ≡ 0 was studied 
by Zheng [34]. To this end, the author proved a global Carleman estimate for the cor-
responding fourth-order operator. Exact controllability result is established recently by 
Gao [22] when the linear system (2) where � ≡ � ≡ 1 and q ≡ 0 has a particular struc-
ture. Indeed, in [22], the author considers a forward and backward stochastic fourth-
order Schrödinger equation and, again, uses Carleman inequalities for the adjoint prob-
lem for proving the exact controllability result. More recently, the global stabilization 
and exact controllability properties were studied by Capistrano-Filho et al. [15] for the 
biharmonic cubic non-linear Schrödinger Eq.  1  on a periodic domain �  with internal 
control supported on an arbitrary sub-domain of �  . More precisely, by means of some 
properties of propagation of compactness and regularity in Bourgain spaces, they first 
showed that the system is globally exponentially stabilizable. Then, they used this with 
a local controllability result to get the global controllability for the associated control 
system. In particular, for the proof of the local controllability result, they combined a 
perturbation argument with the fixed point theorem of Picard.

To our knowledge, the exact controllability of the fourth-order Schrödinger equation 
with variable coefficients is still unknown. In this paper, we prove that the linear control 
system (2) is exactly controllable at any time T > 0 , where the control f ∈ L2(0,T) and 
the initial condition y0 ∈ H−2(0,�) . Our approach is essentially based on the qualitative 
theory of fourth-order linear differential equations, and on a precise asymptotic analysis 
of the eigenvalues and eigenfunctions. Firstly, we prove that all the eigenvalues (�n)n∈ℕ∗ 
associated to the control system (2) with f (t) ≡ 0 are algebraically simple. We show 
that the second derivative of each eigenfunction �n, n ∈ ℕ

∗, associated with the uncon-
trolled system does not vanish at the end x = � . Secondly, by a precise computation of 
the asymptotics of the eigenvalues (�n)n∈ℕ∗ , we establish that the spectral gap satisfies 
the following asymptotic

As a result of the theory of non-harmonic Fourier series and a variant of Ingham’s 
inequality due to Beurling (e.g., [18]), we derive the observability inequalities for the 
adjoint system at any time T > 0 , i.e.,

for some positive constant CT > 0 , depending on T, where z is the solution of System (2) 
without control. Finally, we apply the Lions’ HUM to deduce the exact controllability 
result for System (2).

The rest of the paper is divided as follows: In Section 2, we establish the well-pos-
edness of System (2) without control. In Section 3, we prove the simplicity of all the 
eigenvalues (�n)n∈ℕ∗ and we determinate the asymptotics of the associated spectral gap. 
In Section 4, we prove the observability estimate (6). Finally in Section 5, we prove the 
exact controllability result for the linear control problem (2).

|�n+1 − �n| = 4�4

�4
n3 +O(n2), � ∶= ∫

�

0

(
�(t)

�(t)

) 1

4

dt.

(6)C−1
T
‖z0‖2H2

0
(0,�)

≤ �
T

0

��2
x
z(t,�)�2dt ≤ CT‖z0‖2H2

0
(0,�)
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2 � Well‑posedness of the Uncontrolled System

In this section, we show how solutions of System (2) without control can be developed 
in terms of Fourier series. As a consequence, we establish the existence and uniqueness 
of solutions of the uncontrolled system (2) with f (t) ≡ 0 . Towards this end, we consider 
the following system

First of all, let L2
�
(0,�) be the weighted Lebesgue space of all complex-valued func-

tions defined on (0,�), which is equipped with the inner product

where ∙̄ denotes the conjugate of ∙ . In what follows, we denote by Hk(0,�) the L2
�
(0,�)−

based Sobolev spaces for k > 0 . We consider the following Sobolev space

endowed with the norm

It is easy to show by Rellich’s theorem (e.g., [25]) that the space H2
0
(0,�) is densely 

and compactly embedded in the space L2
�
(0,�) . In the sequel, we introduce the operator 

A defined in L2
�
(0,�) by setting:

on the domain

which is dense in L2
�
(0,�).

Lemma 2.1  The linear operator A is positive and self-adjoint such that A−1 is compact. 
Moreover, the spectrum of A is discrete and consists of a sequence of positive eigenvalues 
(�n)n∈ℕ∗ tending to ∞:

where ℕ∗ ∶= ℕ�{0} . The corresponding eigenfunctions (Φn)n∈ℕ∗ can be chosen to form an 
orthonormal basis in L2

�
(0,�).

Proof  Let y ∈ D(A) , then using an integration by parts, we have

(7)

⎧
⎪⎨⎪⎩

i�(x)�tz = −�2
x
(�(x)�2

x
z) + �x(q(x)�xz), (t, x) ∈ (0, T) × (0,�),

z(t, 0) = �xz(t, 0) = z(t,�) = �xz(t,�) = 0, t ∈ (0, T),

z(0, x) = z0, x ∈ (0,�).

(8)⟨y, z⟩L2
𝜌
(0,�) = ∫

�

0

y(x)z̄(x)𝜌(x)dx, ∀ y, z ∈ L2
𝜌
(0,�),

H2
0
(0,�) ∶=

{
y ∈ H2(0,�) ∶ y(0) = y�(0) = y(�) = y�(�) = 0

}

(9)‖y‖H2
0
(0,�) = ‖y��‖L2

�
(0,�), ∀ y ∈ H2

0
(0,�).

Ay = �−1((�y��)�� − (qy�)�),

D(A) = H4(0,�) ∩ H2
0
(0,�),

0 < 𝜆1 ≤ 𝜆2 ≤ … ≤ 𝜆n ≤ … ⟶

n→∞
∞,
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Since 𝜎 > 0 and q ≥ 0 , then

and hence, the quadratic form has positive real values, which implies that the linear opera-
tor A is symmetric. Furthermore, it is easy to show that Ran(A − iI) = L2

�
(0,�) , and this 

means that A is self-adjoint. Since, by Rellich’s theorem (e.g., [25]) the space H2
0
(0,�) 

is continuously and compactly embedded in the space L2
�
(0,�) , then A−1 is compact in 

L2
�
(0,�) . The lemma is proved.

Now, we give a characterization of some fractional powers of the linear operator A 
which will be useful to give a description of the solutions of Problem (7) in terms of Fou-
rier series. According to Lemma 2.1, the operator A is positive and self-adjoint, and hence 
it generates a scale of interpolation spaces H� , � ∈ ℝ , see [25, Chapter 1]. For � ≥ 0 , the 
space H� coincides with D(A�) and is equipped with the norm ‖u‖2

�
= ⟨A�u,A�u⟩L2

�
(0,�) , 

and for 𝜃 < 0 it is defined as the completion of L2
�
(0,�) with respect to this norm. Further-

more, we have the following spectral representation of space H�,

where � ∈ R , and the eigenfunctions (Φn)n∈ℕ∗ are defined in Lemma 2.1. In particular,

where L2
�
(0,�) is equipped with the inner product (8). Obviously, the solutions of Problem 

(7) can be written as

where the Fourier coefficients are given by

and (cn) ∈ �
2(ℕ∗) . Let us denote by E� the �−energy associated to the space H� , then

which establishes the conservation of energy along time. As a consequence, by [25, Theo-
rem 1.1], we have the following existence and uniqueness result for Problem (7).

⟨Ay, y⟩L2
𝜌
(0,�) =∫

�

0

((𝜎(x)y��(x))�� − (q(x)y�(x))�)ȳ(x)dx

=∫
�

0

𝜎(x)�y��(x)�2dx + q(x)�y�(x)�2dx.

⟨Ay, y⟩L2
𝜌
(0,�) > 0 for y ≢ 0,

(10)H𝜃 =

�
u(x) =

�
n∈ℕ∗

cnΦn(x) ∶ ‖u‖2
𝜃
=

�
n∈ℕ∗

𝜆2𝜃
n
�cn�2 < ∞

�
,

H0 = L2
�
(0,�) andH1∕2 = H2

0
(0,�),

z(t, x) =
∑
n∈ℕ∗

cne
i�ntΦn(x),

cn ∶= ∫
�

0

z0(x)Φ̄n(x)𝜌(x)dx, n ∈ ℕ
∗,

E�(t) =‖z‖2� =
�
n∈ℕ∗

�2�
n
�cnei�nt�2

=
�
n∈ℕ∗

�2�
n
�cn�2 = E�(0),
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Proposition 2.2  Let � ∈ R and z0 ∈ H� . Then, Problem (7) has a unique solution 
z ∈ C([0, T],H�) , which is written in Fourier series as

where z0 =
∑

n∈ℕ∗

cnΦn . Moreover, the �−energy of System (7) is conserved along the time.

3 � Spectral Analysis

In this section, we investigate the main properties of all the eigenvalues (�n)n∈ℕ∗ of the 
operator A . On one hand, we prove that all the eigenvalues (�n)n∈ℕ∗ are algebraically 
simple, and then, the second derivatives of the corresponding eigenfunctions (Φn)n∈ℕ∗ do 
not vanish at x = � . On the other hand, we establish that the spectral gap “ |�n+1 − �n| ” 
is uniformly positive. To this end, we consider the following spectral problem which 
arises by applying separation of variables to system (7),

It is clear that Problem (12) is equivalent to the following spectral problem

i.e., the eigenvalues (�n)n∈ℕ∗ of the operator A and Problem (12) coincide together with 
their multiplicities. One has:

Theorem 3.1  All the eigenvalues (�n)n∈ℕ∗ of the spectral problem (12) are simple such that:

Moreover, the corresponding eigenfunctions (Φn)n∈ℕ∗ satisfy

Our main tool in proving this is the following result [13, Lemma 3.2].

Lemma 3.2  Let u be a nontrivial solution to the linear fourth-order differential equation 
defined on the segment [0,�]:

where the functions 𝜌(x) > 0 , 𝜎(x) > 0 , and q(x) ≥ 0 . If u, u′, u′′ and Tu = (�(x)u��)� − q(x)u� 
are nonnegative at x = 0 (but not all zero), then they are positive for all x > 0 . If u,−u�, u�� 
and (−Tu) are nonnegative at x = � (but not all zero), then they are positive for all x < �.

Proof of Theorem 3.1  First, we prove that the space of solutions, denoted by Λ� , of the fol-
lowing boundary value problem

(11)z(t, x) =
∑
n∈ℕ∗

cne
i�ntΦn(x),

(12)
{

(�(x)���)�� − (q(x)��)� = ��(x)�, x ∈ (0,�),

�(0) = ��(0) = �(�) = ��(�) = 0.

A� = ��, � ∈ D(A),

0 < 𝜆1 < 𝜆2 < … < 𝜆n < … ⟶

n→∞
∞.

(13)Φ��
n
(�) ≠ 0 ∀n ∈ ℕ

∗.

(�(x)u��)�� − (q(x)u�)� − �(x)u = 0,
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is a one-dimensional subspace for 𝜆 > 0 , i.e., dim Λ� = 1 . Suppose that there exist two 
linearly independent solutions �1 and �2 of problem (14). Both ���

1
(0) and ���

2
(0) must be 

different from zero since otherwise, it would follow from the first statement of Lemma 3.2 
that 𝜙�

i
(�) > 0 (i = 1, 2) which contradicts the last boundary condition in (14). In view of 

the assumptions about �1 and �2 , the solution

satisfies

This again contradicts the first statement of Lemma 3.2 unless � ≡ 0 . Therefore,

and then, all the eigenvalues (�n)n∈ℕ∗ of problem (12) are geometrically simple. On the 
other hand, by Lemma 2.1, the operator A is self-adjoint in L2

�
(0,�) , and this implies 

that all the eigenvalues (�n)n∈ℕ∗ are algebraically simple. Now, we prove (13). Let 
{�n,Φn} (n ∈ ℕ

∗) be an eigenpair of Problem (12), and assume that Φ���

n
(�) = 0, for some 

n ∈ ℕ
∗ . Then, the eigenfunctions Φn satisfy the boundary conditions

and then, by standard theory of differential equations, one gets

Without loss of generality, let TΦn(�) < 0 for some n ∈ ℕ
∗ . Since 𝜆n > 0 , it follows 

from the second statement of Lemma 3.2 that

but this contradicts the boundary conditions Φn(0) = Φ�
n
(0) = 0 . Thus,

and this finalizes the proof.

Next, we establish the asymptotic behavior of the spectral gap |�n+1 − �n| for large n. 
Namely, we have the following theorem:

Theorem 3.3  The eigenvalues (�n)n∈ℕ∗ of the associated spectral problem (12) satisfy the 
following asymptotic

Moreover, one has

(14)
{

(�(x)���)�� − (q(x)��)� = ��(x)�, x ∈ (0,�),

�(0) = ��(0) = ��(�) = 0,

�(x) = ���
1
(0)�2(x) − ���

2
(0)�1(x)

�(0) = ��(0) = ��(0) = 0 and ��(�) = 0.

dim Λ� = 1,

Φn(�) = Φ�
n
(�) = Φ��

n
(�) = 0, for some n ∈ ℕ

∗,

TΦn(�) = ((�(x)Φ��
n
(x))� − q(x)Φ�

n
(x))

|||x=� ≠ 0, for some n ∈ ℕ
∗.

Φn(x) > 0, Φ�
n
(x) < 0, Φ��

n
(x) > 0 and TΦn(x) < 0, ∀ x ∈ [0,�],

Φ��
n
(�) ≠ 0 ∀n ∈ ℕ

∗,

(15)4
√
�n ∶= �n =

�

�

�
n −

1

2

�
+O

�
1

exp(n)

�
, � ∶= ∫

�

0

�
�(t)

�(t)

� 1

4

dt.
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Proof  To simplify notation, throughout the proof, we denote by

It is known (e.g., [20, Chapter 5, pp. 235–239] and [29, Chapter 2]) that for � ∈ ℂ , the 
fourth-order linear differential equation

has four fundamental solutions {�i(x, �)}
i=4
i=1

 satisfying the asymptotic forms

where �4 = � , wi
4 = 1 , �(k) ∶=

�k�

�xk
 for k ∈ {1, 2, 3} , and [1] = 1 +O(�−1) uniformly as 

� → ∞ in a sector S� = {� ∈ C such that 0 ≤ arg(� + �) ≤ �

4
} where � is any fixed com-

plex number. It is convenient to rewrite these asymptotics in the form

Hence, every solution �(x, �) of Eq. 18 can be written in the following asymptotic form

for some constants Ci, i = 1, 2, 3, 4 . Also, from (19), we have

where k ∈ {1, 2, 3} . If �(x, �) satisfies the boundary conditions

then by relations (20) and (21), we obtain the following asymptotic estimate

Then, one gets

(16)|�n+1 − �n| = 4�4

�4
n3 +O(n2).

(17)� (x) ∶= ([�(x)]
3

4 [�(x)]
1

4 )−
1

2 and X ∶= ∫
x

0

(
�(t)

�(t)

) 1

4

dt.

(18)(�(x)���)�� − (q(x)��)� = ��(x)�, x ∈ (0,�),

(19)

{
�i(x, �) = � (x) exp(�wiX)[1],

�
(k)

i
(x, �) = � (x)(�wi)

k(
�(x)

�(x)
)
k

4 exp(�wiX)[1],

�1(x, �) = � (x) cos(�X)[1],

�2(x, �) = � (x) cosh(�X)[1],

�3(x, �) = � (x) sin(�X)[1],

�4(x, �) = � (x) sinh(�X)[1].

(20)�(x, �) = � (x)
(
C1 cos(�X) + C2 cosh(�X) + C3 sin(�X) + C4 sinh(�X)

)
[1],

(21)
�(k)(x, �) =�k� (x)

(
�(x)

�(x)

) k

4

(C1 cos
(k)(�X) + C2 cosh

(k)(�X))[1]

+ �k� (x)

(
�(x)

�(x)

) k

4

(C3 sin
(k)(�X) + C4 sinh

(k)(�X))[1],

�(0, �) = ��(0, �) = 0,

⎧⎪⎨⎪⎩

� (0)(C1 + C2)[1] = 0,

�� (0)
�

�(0)

�(0)

� 1

4

(C3 + C4)[1] = 0.
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and

From the boundary conditions �(�, �) = ��(�, �) = 0 , and the above asymptotics, one 
obtains

where the constant � is defined in relation (15). The latter homogeneous system of equa-
tions in the unknowns C1 and C2 has a non-trivial solution if and only if the corresponding 
determinant is zero, i.e.,

Equivalently,

Consequently, the eigenvalues (�n)n∈ℕ∗ are solutions of the following asymptotic charac-
teristic equation

which can also be written as

Since the solutions of the equation cos(��) = 0 are given by

it follows from Rouché’s theorem that the solutions of Eq.  26 satisfy the following 
asymptotic

which proves relation (15). Furthermore, one gets

(22)�(x, �) = C1� (x)(cos(�X) − cosh(�X))[1] + C3(sin(�X) − sinh(�X))[1]

(23)
��(x, �) =C1�� (x)

(
�(x)

�(x)

) 1

4

(sinh(�X) − sin(�X))[1]

+ C3�� (x)

(
�(x)

�(x)

) 1

4

(cos(�X) − cosh(�X))[1],

(24)
{

C1(cos(��) − cosh(��))[1] + C3(sin(��) − sinh(��))[1] = 0,

C1(− sin(��) − sinh(��))[1] + C3(cos(��) − cosh(��))[1] = 0,

((cos(��) − cosh(��))2 + sin2(��) − sinh2(��))[1] = 0.

(25)�� (�)

(
�(�)

�(�)

) 1

4

(cos(��) cosh(��) − 1)[1] = 0.

�� (�)

(
�(�)

�(�)

) 1

4

exp(��)

(
cos(��) −

2

exp(��)

)
[1] = 0,

(26)cos(��) +O

(
1

exp(��)

)
= 0.

�̃n =
�

�

(
n −

1

2

)
, n = 0, 1, 2, ...,

�n =�̃n + �n

=
�

�
(n −

1

2
) +O

(
1

exp(n)

)
,
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and hence,

The theorem is then proved.

We conclude this section with the following result about the asymptotics of the 
eigenfunctions (Φn)n∈ℕ∗ of the spectral problem (12).

Proposition 3.4  Assume that the eigenfunctions (Φn)n∈ℕ∗ of the spectral problem (12) are 
normalized in the sense that limn→∞ ‖Φn‖L2

�
(0,�) = 1 . Then, we have the following asymp-

totic formula

where the quantities �n, � , � , and X  are given by relations (15) and (17), respectively. Fur-
thermore, one has

Proof  If �n satisfies relation (25), then by solving the homogeneous system of two Eq. 24, 
one gets

for some constant C ≠ 0 . Due to this fact and by relations (15) and (22), we obtain the fol-
lowing asymptotic estimate for the eigenfunctions �(x, �n) of Problem (12)

By relations (15) and (29), it follows

and then, by (30), we have

√
�n =

�2

�2

�
n −

1

2

�2

+O

�
n

exp(n)

�
,

=
�2

�2
(n2 − n) +O(1).

�n+1 − �n =(
√
�n+1 −

√
�n)(

√
�n+1 +

√
�n)

=
�4

�4
((n + 1)2 − n2 +O(1))((n + 1)2 + n2 − 2n +O(1))

=
4�4

�4
n3 +O(n2).

(27)Φn(x) = �−
1

2 � (x)(sin(�nX) − cos(�nX)) +O

(
1

�n

)
, as n → ∞,

(28)lim
n→∞

��Φ��
n
(�)��√
�n

= 2� (�)

�
�(�)

��(�)

� 1

2

.

(29)
{

C1 = C(cos(�n�) − cosh(�n�))[1],
C3 = C(sin(�n�) + sinh(�n�))[1],

(30)
�(x, �n) =C� (x){(cos(�n�) − cosh(�n�))(cos(�nX) − cosh(�nX))}[1]

+ C� (x){(sin(�n�) + sinh(�n�))(sin(�nX) − sinh(�nX))}[1].

C1 =
−C exp (�n�)

2
, C3 =

C exp (�n�)

2
, as n → ∞,



713Exact Boundary Controllability of the Linear Biharmonic…

1 3

as n → ∞, where � is defined by (15). Therefore, one has

By the change of variables s = X  , one gets

where � is defined by (17). Similarly, we have

and

Consequently, one gets

Let us set

Then, (Φn(x))n∈ℕ∗ are the normalized eigenfunctions of Problem (12) so that 
limn→∞

‖‖Φn
‖‖L2

�
(0,�)

= 1 . Therefore, by (31) and (32)–(33), we get

and then, the asymptotic formula (27) is proved. In a similar way, from the asymptotics 
(21) and (32), a straightforward computation yields

As a consequence, one has

�(x, �n) = C� (x)
exp (�n�)

2
(sin(�nX) − cos(�nX) + cosh(�nX) − sinh(�nX)),

(31)�(x, �n) = C� (x)
exp (�n�)

2
(sin(�nX) − cos(�nX)), as n → ∞.

∫
�

0

(�(x))2 sin2(�nX)�(x)dx =∫
�

0

sin2

(
�n ∫

x

0

(
�(t)

�(t)

) 1

4

dt

)(
�(x)

�(x)

) 1

4

dx,

=∫
�

0

sin2(�ns)ds =
�

2
,

∫
�

0

(�(x))2 cos2(�nX)�(x)dx =
�

2
,

∫
�

0

(�(x))2 sin(�nX) cos(�nX)�(x)dx =
sin2(�n�)

2�n

, as n → ∞.

(32)‖‖�(x, �n)‖‖L2
�
(0,�)

= |C|�
1

2 exp (�n�)

2

(
1 +O

(
1

�n

))
, as n → ∞.

(33)Φn(x) ∶=
�(x, �n)

limn→∞
‖‖�(x, �n)‖‖L2

�
(0,�)

.

Φn(x) = �−
1

2 � (x)(sin(�nX) − cos(�nX))

(
1 +O

(
1

�n

))
, as n → ∞,

���(�, �n) =C�
2� (�)

(
�(�)

�(�)

) 1

2

(cosh2(�n�) − cos2(�n�))[1]

− C�2� (�)

(
�(�)

�(�)

) 1

2

(sin(�n�) + sinh(�n�))
2[1].
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Therefore, relying on the asymptotics (15) and (32)–(33), we get

and then, relation (28) is proved. The proof is complete.

4 � Observability

In this part of the paper, we prove some observability results that are consequences of the 
asymptotic properties of the previous section. The reason to study these properties is that, 
by means of the Lions’ HUM [27], controllability properties can be reduced to suitable 
observability inequalities for the adjoint system. As System (2) is reversible in time, we 
are reduced to the same system, without control. Therefore, consider System (7). One has:

Proposition 4.1  Let T > 0 and z0 ∈ H2
0
(0,�) . Then, there exists a positive constant CT > 0 , 

depending on T, such that

where z is the solution of Problem (7). Consequently, we have the following “hidden regu-
larity” result

In order to prove Proposition 4.1, we need the following variant of Ingham’s inequality 
due to Beurling (e.g., [18]).

Lemma 4.2  Let (�n)n∈ℤ be a strictly increasing sequence satisfying for some 𝛿 > 0 the 
condition

Then, for any T > 2𝜋D+(𝜆n) , the family (ei�nt)n∈ℤ forms a Riesz basis in L2(0, T) , that is

for some positive constant CT > 0 , depending on T, where D+(�n) ∶= limr→∞
n+(r,�n)

r
 is the 

Beurling upper density of the sequence (�n)n∈ℕ∗ , and n+(r, �n) denotes the maximum num-
ber of terms of the sequence (�n)n∈ℕ∗ contained in an interval of length r.

Proof of Theorem 4.1  Let C∞
c
(0,�) be the space of all smooth functions defined on (0,�) 

which have compact support in (0,�) . Let z0 ∈ C
∞
c
(0,�), then by the Fourier series 

|���(�, �n)| = 2|C|�2
n
� (�)

(
�(�)

�(�)

) 1

2 ||sin(�n�) sinh(�n�)
||[1].

|Φ��
n
(�)| = 2�−

1

2 �2
n
� (�)

(
�(�)

�(�)

) 1

2
(
1 +O

(
1

�n

))
, as n → ∞,

(34)C−1
T
‖z0‖2H2

0
(0,�)

≤ �
T

0

��2
x
z(t,�)�2dt ≤ CT‖z0‖2H2

0
(0,�)

.

(35)z0 ∈ H2
0
(0,�) ⇒ �2

x
z(t,�) ∈ L2(0, T).

𝜆n+1 − 𝜆n > 𝛿, ∀ n ∈ ℤ.

(36)C−1
T

∑
n∈ℤ

|̂cn|2 ≤ �
T

0

|||||
∑
n∈ℕ∗

ĉne
i�nt

|||||

2

dt ≤ CT

∑
n∈ℤ

|̂cn|2,
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representation (11), �2
x
z(t,�) is well-defined for every t > 0 . Furthermore, for any T > 0 , 

we have the following equality

By the first statement of Theorem 3.1 and the gap condition (16), Beurling’s Lemma 
4.2 states that, for any T > 2𝜋D+(𝜆n) , the family (ei�nt)n∈ℕ∗ forms a Riesz basis in L2(0, T) . 
Consequently, from relations (36) and (37), we deduce that for every T > 2𝜋D+(𝜆n), there 
exists a positive constant CT > 0 , depending on T, such that

By relation (15) and the characteristic Eq. 26, we find that the Beurling upper density of 
the eigenvalues (�n)n∈ℕ∗ of Problem (12) satisfies

From the second statement of Theorem 3.1, we have Φ�
n
(�) ≠ 0 for all n ∈ ℕ

∗. Then, by 
(28), there exists a positive C > 0 such that

Therefore, by relation (38), for any T > 0 , one gets

for some new constant CT > 0 . Due to the spectral representation (10) of the space H� and 
Proposition 2.2, one has

Since C∞
c
(0,�) dense in H2

0
(0,�) and D(A1∕2) = H2

0
(0,�), then by (39), we get both 

relations (34) and (35). This completes the proof.

Remark 4.3  The second inequality in (34) is often called a “direct inequality.” By a density 
argument, this inequality gives a sense to the second derivative at x = � of the solution z of 
System (7), for initial data z0 ∈ H2

0
(0,�) (see [25, Chapter 2]). Note that, in this case, the 

notation �2
x
z(t,�) in relation (35) makes no sense by the usual trace theorem.

Remark 4.4  The first inequality in (34) is an “observability” result. Since the total energy 
of System (7) is conserved, the observability inequality implies that the norm of the solu-
tion z in H2

0
(0,�) is measured continuously by the quantity �2

x
z(t,�) in L2(0, T).

Remark 4.5  Due to both inequalities in (34), we deduce that H2
0
(0,�) is the optimal space 

of observability, i.e., the largest space of initial data for which the solution of Problem (7) 
can be estimated by means of the L2-norm of the quantity �2

x
z(t,�).

(37)∫
T

0

|�2
x
z(t,�)|2dt = ∫

T

0

| ∑
n∈ℕ∗

cne
i�ntΦ��

n
(�)|2dt.

(38)C−1
T

∑
n∈ℕ∗

||cnΦ��
n
(�)||2 ≤ �

T

0

|�2
x
z(t,�)|2dt ≤ CT

∑
n∈ℕ∗

||cnΦ��
n
(�)||2.

D+(�n) = lim
n→∞

�4

�4(n −
1

2
)3

= 0.

C−1�n ≤ ||Φ��
n
(�)||2 ≤ C�n, as n → ∞.

(39)C−1
T

∑
n∈ℕ∗

�n
||cn||2 ≤ �

T

0

|�2
x
z(t,�)|2dt ≤ CT

∑
n∈ℕ∗

�n
||cn||2,

‖z0‖2H1∕2
= ‖z0‖2D(A1∕2)

=
�
n∈ℕ∗

�n�cn�2, ∀ z0 ∈ C
∞
c
(0,�).
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5 � Exact Boundary Controllability

In this final part of the paper, we prove the exact boundary controllability of the control 
problem (2).

5.1 � Well‑posedness

Since we are dealing with boundary control, we need to introduce the weaker notion of 
“solution defined by transposition” in the spirit of [28].

We follow the multiplier method from [25, Chapter  2] and [35], see also [32]. By a 
density argument, we may assume that the solution y of Problem (2) is smooth enough so 
that all the computations are rigorous. Then, we multiply (7) by ȳ and integrate by parts on 
[0,T] × (0,�) to obtain

Then, integrating by parts and using the boundary conditions in (2) and (7), we get

and then, using the first equation (2) that y satisfies, we deduce that

Let us now define the spaces

and the linear functional LT on S by

where ⟨., .⟩X′ ,X denotes the usual duality product. Moreover, we have

for some constant C(T) > 0 . Using relation (40), one can write the identity (41) in the fol-
lowing form

where z is the solution of Problem (7). This motivates the following definition.

Definition 5.1  We say that y is a weak solution to Problem (2) in the sense of transposition 
if y ∈ C([0, T];H−2(0,�)) satisfies (43) for all T > 0 and for every z0 ∈ S.

i∫
�

0 ∫
T

0

(𝜕tz)ȳ(t, x)dt𝜌(x)dx + ∫
�

0 ∫
T

0

(𝜕2
x
(𝜎(x)𝜕2

x
z) − 𝜕x(q(x)𝜕xz))ȳ(t, x)dtdx = 0.

i∫
�

0

[
ȳz(t, x)

]T
0

𝜌(x)dx = 𝜎(�)∫
T

0

f̄ (t)𝜕2
x
z(t,�)dt + i∫

�

0 ∫
T

0

(𝜕t ȳ)z(t, x)dt𝜌(x)dx

− ∫
�

0 ∫
T

0

(𝜕2
x
(𝜎(x)𝜕2

x
ȳ) − 𝜕x(q(x)𝜕xȳ))z(t, x)dtdx.

(40)i∫
�

0

ȳz(T , x)𝜌(x)dx = 𝜎(�)∫
T

0

f̄ (t)𝜕2
x
z(t,�)dt + i∫

�

0

ȳ0z0𝜌(x)dx.

S ∶= H2
0
(0,�) and S� ∶= H−2(0,�),

(41)LT (z0) = i⟨ȳ0, z0⟩S�
,S
+ 𝜎(�)∫

T

0

f̄ (t)𝜕2
x
z(t,�)dt,

(42)‖LT‖ ≤ C
�‖y0‖H−2(0,�) + ‖f‖L2(0,T)

�
,

(43)LT (z0) = i⟨ȳ(T , x), z(T , x)⟩S� ,S,
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Hence, the following result.

Proposition 5.2  Let T > 0 , and f ∈ L2(0,T) . Then for any y0 ∈ H−2(0,�) , there exists a 
unique weak solution of System (2) in the sense of transposition, satisfying

Moreover, there exists a constant C(T) > 0 such that

Proof  It follows from Proposition 2.2 that, for any T > 0, the linear map

is an isomorphism from H2
0
(0,�) into itself. Hence, by Proposition 4.1, we deduce that the 

linear map

is continuous on H2
0
(0,�) . Therefore, by duality, Equation (43) makes sense and uniquely 

determines y ∈ L∞([0,T];H−2(0,�)) . Moreover, from relation (42), it follows that the esti-
mate (45) holds. The continuity with respect to time in (44) is proved by a standard density 
argument (e.g., see [25, Chapter 2]). Indeed, if we call yn the corresponding solution of (2) 
associated to fn ∈ C

∞
c
(0,�) and y0,n ∈ H2

0
(0,�) such that

Then, the solution yn ∈ C([0,T];H−2(0,�)) . Moreover, we apply the estimate (45) to 
(yn − y) , and we have

for some positive constant C(T) > 0 . Since C([0, T];H−2(0,�)) is a closed subspace of 
L∞([0,T];H−2(0,�)) , then the desired property follows. The proof is complete.

5.2 � Exact Controllability

We are now ready to state our main controllability result. Thanks to the reversibility in time 
of (2), this system is exactly controllable if and only if the system is null controllable. One 
has:

Theorem 5.3  Assume that the coefficients � , � , and q satisfy relations (3) and (4). Given 
T > 0 and y0 ∈ H−2(0,�) , there exists a control f ∈ L2(0,T) such that the solution y of the 
control problem (2) satisfies

Proof  By the Lions’ HUM [27], solving the exact controllability problem is equivalent to 
proving an observability inequality for the backward problem. The backward problem is as 
follows

(44)y ∈ C([0, T];H−2(0,�)).

(45)‖y‖L∞([0,T];H−2(0,�)) ≤ C(T)(‖y0‖H−2(0,�) + ‖f‖L2(0,T)).

z(T , .) ⟼ z0

z(T , .) ⟼ LT (z0)

fn → f in L2(0,�), y0,n → y0 in H
−2(0,�), as n → ∞.

‖yn − y‖L∞([0,T];H−2(0,�)) ≤ C(T)(‖y0,n − y0‖H−2(0,�) + ‖fn − f‖L2(0,T))

y(T , x) = 0, x ∈ [0,�].
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where z is the solution of the uncontrolled system (7). By Proposition 5.2, Problem (46) 
has a unique weak solution y, satisfying y0 ∶= y(0, x) ∈ H−2(0,�). Hence, the linear map

is continuous from H2
0
(0,�) into H−2(0,�) . Furthermore, if Λ is shown to be surjective 

then there exists a control of the form f (t) = �2
x
z(t,�) that drives System (2) to rest in time 

T > 0. Since y(T , x) = 0 , then for the choice of f (t) = �2
x
z(t,�) , by multiplying (40) by z̄ , 

one has

Equivalently,

By Proposition 4.1, for every T > 0 and z0 ∈ H2
0
(0,�) , we have

for some constant CT > 0. Consequently, for every T > 0, one obtains

Therefore, by the Lax-Milgram Theorem, Λ is surjective. This implies that there exists a 
control of the form f (t) = �2

x
z(t,�) that drives the system (2) to rest in time T > 0, and this 

completes the proof of Theorem 5.3.
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