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Abstract
This paper deals with the fourth-order parabolic equation 2 log in a
bounded domain, subject to homogeneous Navier boundary conditions. For subcritical and
critical initial energy cases, we combine the Galerkin’s method with the generalized poten-
tial well method to prove the existence of global solutions. By the concavity arguments, we
obtain the results about blow-up solutions. For super critical initial energy case, we use some
ordinary differential inequalities to study the extinction of solutions. Moreover, extinction
rate, blow-up rate and time, and decay estimate of solutions are discussed.
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Initial energy
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1 Introduction

In this paper, we study the following fourth-order parabolic problem involving a variable
exponent and logarithmic nonlinearity,

2 log 0
0 0

0 0

(1.1)

where is bounded with smooth boundary ; 0
2
0 satisfies the com-

patibility conditions on the boundary in the trace sense; is Hölder-continuous in ,
satisfying the Zhikov-Fan’s condition log 1 for ,

, where constants 0 and 0 1. The problem (1.1) comes from the
discussion on the properties of medical magnetic resonance images. 2 is the capillarity-
driven surface diffusion term. The nonlinear source log describes some kinds of
Gaussian noise, where the function represents the random noise with respect to .
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The Navier boundary conditions are also referred to “stree-free” or “slip” boundary condi-
tions. The term Δu is no longer subject to the zero-flux boundary condition whereas the
image always satisfies the zero-flux boundary condition. For more information on back-
ground, the interested readers may refer to the works [18, 30]. There are little results about
the singularity of solutions to the fourth-order parabolic equations with variable exponents.
For the high-order equations with constant exponents, we referred the interested readers to
the works [8, 12, 13, 20, 23, 25, 27, 31, 32]. For the second-order parabolic problems with
variable exponents, the interested readers could find some results in the works [1, 2, 4–7,
10, 11, 14, 16, 17, 19, 22, 26, 28].

Philippin considered the following parabolic problem with coefficient of t in [21],

⎧
⎨

⎩

ut + Δ2u = k(t)|u|p−1u, (x, t) ∈ � × (0, T ),

u = 0, ∂u
∂η

= 0 or Δu = 0, (x, t) ∈ ∂� × (0, T ),

u(x, 0) = u0(x), x ∈ �,

(1.2)

where the dimension n ≥ 2 and p is a positive constant. By using the Sobolev type inequal-
ities and constructing auxiliary functions, they obtained some upper and lower bounds of
blow-up time of (1.2).

Li and Liu in [15] studied the following parabolic problem involving logarithmic
nonlinearity,

⎧
⎨

⎩

ut + Δ2u = |u|q−2u log u, (x, t) ∈ � × (0, T ),

u = Δu = 0, (x, t) ∈ ∂� × (0, T ),

u(x, 0) = u0(x) ∈ H 2
0 (�) \ {0},

(1.3)

where constant 2 < q < 2 + 4
n
. If 1

2

∫

�
|Δu0|2dx ≤ 1

q

∫

�
|u0|q log |u0|dx −

1
q2

∫

�
|u0|qdx and

∫

�
|Δu0|2dx >

∫

�
|u0|q log |u0|dx, then there exist global solutions

of (1.3). If 1
2

∫

�
|Δu0|2dx < 1

q

∫

�
|u0|q log |u0|dx − 1

q2

∫

�
|u0|qdx and

∫

�
|Δu0|2dx <

∫

�
|u0|q log |u0|dx, then there exist blow-up solutions.
Qu, Zhou, and Liang in [24] employed the concavity method to study blow-up solutions

of the fourth-order parabolic equation involving nonstandard growth conditions,

⎧
⎨

⎩

ut + Δ2u = up(x), (x, t) ∈ � × (0, T ),

u = Δu = 0, (x, t) ∈ ∂� × (0, T ),

u(x, 0) = u0(x) ∈ H 2
0 (�).

(1.4)

They proved that if (H) holds and 1
2‖Δu0‖22 ≤ ∫

�
1

p(x)+1u
p(x)+1
0 dx, then the weak solutions

of (1.4) blow up in the sense of limt→T −
∫ t

0‖u‖22dτ = +∞. Moreover, the bounds of blow-
up time and rate are discussed.

Inspired by the works [9, 10, 15, 16, 21, 24, 28, 29], we would study the singular solutions
to problem (1.1). We would use the sign of the difference between the energy functional and
the potential depth to classify the initial energy into three subcases. Moreover, the asymp-
totic estimates are discussed also, which include the bounds of extinction rate, blow-up rate
and time, and decay rate of weak solutions to problem (1.1). This paper is arranged as fol-
lows. In Section 2, we give the main results of the present paper. Moreover, we add Table 1
to show the optimal classification of the initial energy on the existence and nonexistence of
singular solutions. Sections 3, 4, and 5 will be devoted to the subcritical, critical, and super
critical cases, respectively.

456



Classification of Singular Solutions in a Nonlinear Fourth-Order

Table 1 Complete classification of initial energy and Nehari energy

Classification 0 0 0 2 Solution Main results

Subcritical 4 1 G.E. Th. 2.1

Subcritical 0 0 0 1 N.E. Th. 2.8

Subcritical 0 0 1 4 0 2 B.P. Th. 2.2

Critical 0 or 0 4 1 G.E. Th. 2.3

Critical 0 1 4 0 2 B.P. Th. 2.4

Super critical 1 4 0 2 0 G.E. Th. 2.5 (i)

Super critical 0 0 1 0 2 E. Cor. 2.1

Super critical 1 4 0 2 0 B.P. Th. 2.5 (ii)

2 Main Results

At the beginning, we give some preliminaries. The set

is measurable in modular d

with the Luxemburg’s norm inf 0 d 1 , is a sep-
arable and uniformly convex Banach space. The following inequalities show the relation

between and (see [3]), for all , min

max . We equip the Banach space 2
0 with the norm

2
0

2. There is the Sobolev embedding relationship 2
0

1

1 , where

1 1 2 2 for constant max 1 1 . (2.1)

Let 0 be small such that 4 . We have

1 1 2 2 for constant max 1 1 . (2.2)

Suppose 1 is the first eigenvalue of the clamped plate problem 2 0 in
with 0 on , where denotes the unit outward normal vector. We have
the following inequality 2

2
1

1
2
2. For all

2
0 , we give the following

notations:

energy functional
1

2
2
2

1 log

1
d

1

1 2
d (2.3)

Nehari functional 2
2

1 log d (2.4)

Nehari manifold 2
0 0 2 0

potential depth inf (2.5)

potential well 2
0 0 0 .

Define 2
0 0 , 2

0
0 , and 2

0 0 . Denote the sublevels of as
2
0 and for . For all constant , we
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define λs := inf {‖u‖2 : u ∈ N s} and 	s := sup {‖u‖2 : u ∈ N s}. Obviously, λs and 	s is
non-increasing and non-decreasing with respect to s, respectively.

Now, we give the definition of weak solutions for problem (1.1), which could be proved
by the standard procedure in [8].

Definition 2.1 Denote T be a positive constant. A function u is a weak solution of (1.1) if
u ∈ L∞ (

(0, T );H 2
0 (�)

)
satisfies ut ∈ L2((0, T );L2(�)) and

(ut , v) + (Δu,Δv) =
(
up(x) log u, v

)
, for a.e. t ∈ (0, T ), (2.6)

and for any test function v ∈ L2((0, T );H 2
0 (�)) and (·, ·) as the inner product in L2(�).

Moreover,
∫ t

0
‖uτ‖22dτ + J (u) = J (u0), for a.e. t ∈ (0, T ). (2.7)

If u is a weak solution to (1.1) for every bounded T > 0, then we call it a weak global
solution. �

2.1 Subcritical Initial Energy J (u0) < d

Theorem 2.1 Let p(x)p′(x) < 4∗ + 1 be in force and u0 ∈ H 2
0 (�). For J (u0) < d and

I (u0) > 0, problem (1.1) has a global solution u ∈ L∞ (
(0,+∞);H 2

0 (�)
)
with ut ∈

L2((0,+∞);L2(�)) and u(t) ∈ W for all 0 ≤ t < +∞. Moreover, the weak solution
is unique if it is bounded. Additionally, if J (u0) < d0 and I (u0) > 0, then ‖u(t)‖2 ≤
‖u0‖2 exp{−δ∗t} and

‖u(t)‖H 2
0

≤
√
2(p− + 1)

p− − 1
[J (u0) + ‖u0‖22] exp

[

− α∗λ1(p− − 1)

λ1(p− − 1) + 2(p− + 1)
t

]

, (2.8)

where positive constant d0 := p−−1
2(p−+1)

(
eμ

Bp++1+μ

) 2
p−−1+μ ; B is defined in (2.2); Positive

constants δ∗ := λ1 − λ1 (J (u0)/d0)
p−−1+μ

2 and

α∗ :=
2(p+ + 1)(p− + 1)

[

1 − (J (u0)/d0)
p−−1+μ

2

]

(p+ − 1)(p− + 1)2 + 2M(p+ + 1) + 2(p+ + 1)(p− + 1) (1 − J (u0)/d0)
p−−1+μ

2

,

where M is a positive constant to be determined later.

‖u(t)‖p(x)+1 ≤
√
2(p− + 1)

p− − 1
[J (u0) + ‖u0‖22]B exp

[

− α∗λ1(p− − 1)

λ1(p− − 1) + 2(p− + 1)
t

]

. (2.9)

Moreover, the energy functional J (u) decays in the following sense,

√
J (u(t)) ≤

√

J (u0) + ‖u0‖22 exp
[

− α∗λ1(p− − 1)

λ1(p− − 1) + 2(p− + 1)
t

]

. (2.10)

It could be tested that the radical functions in (2.8–2.10) make sense. In fact, since
J (u0) < d0 and I (u0) > 0 and by (2.3), one could find out that J (u0) > 0.
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Theorem 2.2 Let the variable exponent satisfies that

1 inf sup 4
4
4 4

1 4.

Assume is a weak solution of problem (1.1) with

0
2
0 0 2

4 1

1 1
. (2.11)

For 0 0 and 0 0, blows up at some finite satisfying

lim 0
2
2d . Furthermore,

2 0
2
2d

1 2
2

, where

2 0
2
2

1 1 0
.

2.2 Critical Initial Energy J (u0) d

Theorem 2.3 Let 4 1 be in force and 0
2
0 . If 0 and

0 0, then problem (1.1) admits a global weak solution 0 2
0

with 2 0 2 and for 0 . In addition,
the weak solution is unique if it is bounded.

Theorem 2.4 Let be in force. Assume is a weak solution of problem (1.1) and the
initial data satisfy (2.11). If 0 and 0 0, then there exists a finite time

such that blows up in the sense of lim 0
2
2d . Furthermore,

2 0
2
2d

1 2
2

, where is determined by 1 1 0
2
2d 2 1 0

2
2.

2.3 Super Critical Initial Energy J (u0) d

Theorem 2.5 Let be in force and 0 .

(i) If 0 and 0 2 0 , the weak solution of problem (1.1) in its 2
0 -norm

exists globally and 0 as ;
(ii) If 0 and 0 2 0 , the weak solution of problem (1.1) in its 2

0 -norm
blows up in finite time.

For , a positive constant, we give the following Theorem 2.6 to illustrate that
there exists 0 such that 0 is arbitrary large, and the corresponding solution to
problem (1.1) with 0 as initial datum blows up in finite time as well.

Theorem 2.6 Let 1 be in force. For any , there exists satisfying
and the weak solution of problem (1.1) blows up in finite time.

2.4 Extinction or Non-extinction in Finite Time

The following result shows the extinction properties of weak solutions for 0 1.
Let be a positive constant satisfying 1.
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Theorem 2.7 If 0 < p− < p+ < p∗ < 1, and

‖u0‖2 >

⎡

⎣
|�| 1−p∗

2

λ1e(p∗ − p+)

⎤

⎦

1
1−p∗

:= C, (2.12)

then the weak solution u of (1.1) vanishes at T∗ and 2
λ1(1−p∗) ≤ T∗ ≤ −2|�| 1−p∗

2

λ1e(p∗−p+)Y (0) . More
precisely,

⎧
⎨

⎩
‖u‖2 ≤

(
‖u0‖1−p∗

2 + Y (0)t/2
) 1

1−p∗
, 0 < t < T∗,

‖u‖2 = 0, t ∈ [T∗,+∞),
(2.13)

where T∗ := −2‖u0‖1−p∗
2 /Y (0) and Y (0) := (1 − p∗)

[

|�| 1−p∗
2

e(p∗−p+)
− λ1‖u0‖1−p∗

2

]

< 0.

Corollary 2.1 Let 0 < p− < p+ < p∗ < 1 and (2.12) be in force. If J (u0) > d and
I (u0) = 0, then the results of Theorem 2.7 hold.

In the following, we show a result on non-extinction of solutions.

Theorem 2.8 Let 0 < p− < p+ < p∗ < 1 and J (u0) < 0. The weak solution u of (1.1)
does not vanish in finite time.

2.5 Remarks

We summarize the main results in the above three subsections. For convenience, we
define some notations: “G.E.” means “Global existence”; “B.P.” means “Blow-up”; “N.E.”
means “Non-extinction”; “E.” means “Extinction”; “Th.” means “Theorem”; “Cor.” means
“Corollary”. We characterize the singularity of solutions by the help of Table 1.

The classification for the singularity of solutions is optimal with respect to the initial
energy. In fact, Nehari energy I (u0) �= 0 provided J (u0) < d. It was a pity that we have
not solved the case where the energy J (u0) meets the potential depth.

3 Proof of Theorems 2.1–2.2

Lemma 3.1 The potential depth d > 0 which is defined in (2.5).

Proof Fix any u ∈ N , we have I (u) = 0. Letμ > 0 be small that p(x)+μ < p++μ < 4∗.
By x−μ log x ≤ (eμ)−1 for x ≥ 1, μ > 0 and H 2

0 (�) ↪→ Lp(x)+1+μ(�), one could obtain
that

‖Δu‖22 =
∫

�1

up(x)+1 log udx +
∫

�2

up(x)+1 log udx

≤ 1

eμ

∫

�

up(x)+1+μdx ≤ 1

eμ
max

{
‖u‖p−+1+μ

p(x)+1+μ, ‖u‖p++1+μ

p(x)+1+μ

}

≤ Bp++1+μ

eμ
max

{
‖Δu‖p−+1+μ

2 , ‖Δu‖p++1+μ

2

}
, (3.1)
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where 1 1 , 2 0 1 , which implies 2

e
1

1
1 . Noticing that 1, we have

1

2
2
2

1

1
2
2

1

1

1

2 1

e
1

2
1

.

Therefore, 1
2 1

e
1

2
1 0.

Lemma 3.2 Let be in force and 2
0 .

(i) If 0 2
e

1

1
1 , then 0.

(ii) If 0, then 2 .
(iii) If 0, then 2 0 or 2 .

Proof (i) By using the Sobolev’s inequality (3.1), we have

1 log d
1

e
max 1 1 2

2
2
2

we have 0.
(ii) From 0 and the Sobolev’s inequality (3.1), one could check that 2 .
(iii) If 2 0, then 0. If 0 and 2 0, then by the Sobolev’s

inequality (3.1), we get 2 .

Proof of Theorem 2.1. Step 1. Global existence. We use the Galerkin’s approximation
and a priori estimate. Let be a system of orthogonal basis of 2

0 and define

1 , 1 2 , of (1.1) satisfying that

log 1 2 (3.2)

0 1 0 strongly in 2
0 as . (3.3)

By the Peano’s theorem, (3.2, 3.3) have a local solution. Multiplying (3.2) by d
d , we

have 0
2
2d 0 0 . Since 0 0 in

2
0 , we have 0 0 , 0 0 0. Thus, for

large , we have

0

2
2d 0 0 (3.4)

and 0 0, which indicates that 0 for sufficiently large .
Next, we claim for sufficiently large and any 0 . By con-

tradiction, there would exist a sufficiently large and a constant 0 such that
2
0 0 and or 0. In fact, the former case

contradicts to (3.4), while the later one happens, we have , which also con-
tradicts to (3.4). Hence, our claim is valid. Applying (2.3), (2.4), (3.4) and 0
for sufficiently large , one could obtain

0

2
2d

1

2 1
2
2
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for large m and any 0 ≤ t < +∞, which indicates that
∫ t

0
‖um

τ ‖22dτ < d, 0 ≤ t < +∞, (3.5)

‖um‖2
H 2
0 (�)

<
2d(p− + 1)

p− − 1
, 0 ≤ t < +∞. (3.6)

Since p(x)p′(x) < 4∗+1, we could chooseμ > 0 sufficiently small that (p(x)+μ)p′(x) <

4∗ + 1. Therefore, by embedding H 2
0 (�) ↪→ L(p(x)+μ)p′(x)(�), we get

∫

�

|ψm(x, t)|p′(x)dx =
∫

�1

|ψm(x, t)|p′(x)dx +
∫

�2

|ψm(x, t)|p′(x)dx

≤
∫

�1

|ψm(x, t)|p′(x)dx +
∫

�2

|(um)p
−
log(um)|p′(x)dx

≤ (eμ)
− p+

p−−1 max

{

‖um‖(p++μ)
p+

p−−1

(p(x)+μ)p′(x)
, ‖um‖(p−+μ)

p−
p+−1

(p(x)+μ)p′(x)

}

+ (ep−)
− p−

p+−1 |�|

≤ C1 max

{

‖Δu‖(p++μ)
p+

p−−1
2 , ‖Δu‖(p−+μ)

p−
p+−1

2

}

+ C2 ≤ C, (3.7)

where ψm(x, t) = (um)p(x) log(um) and �1 := {x ∈ � : um ≥ 1}, �2 := {x ∈ � : 0 <

um < 1} and the inequalities |xp−
log x| ≤ (ep−)−1 for 0 < x < 1 and x−μ log x ≤ (eμ)−1

for x ≥ 1 and μ > 0 are used.
By the uniform estimates (3.5–3.7), it was seen that the local solutions can be extended

globally. Thus, there exist some u and a subsequence of {um} such that, for each T > 0, one
could obtain that

um
t ⇀ ut weakly in L2(0, T ; L2(�)), (3.8)

um ⇀ u weakly in L2(0, T ; H 2
0 (�)), (3.9)

(um)p(x) log(um) ⇀ up(x) log u weakly star in L∞((0, T ); Lp′(x)(�)), (3.10)

as m → +∞. Fix k ∈ N. In order to show the limit u in (3.8–3.10) is a weak solution of
(1.1), one could find v ∈ C1([0, T ]; H 2

0 (�)) of

v(x, t) =
k∑

j=1

lj (t)φj (x), (3.11)

where {lj (t)}kj=1 are arbitrarily given C1 functions. Choosing m ≥ k in (3.2) and
multiplying (3.2) by lj (t), one could obtain

∫ T

0
((um

t , v) + (Δum,Δv))dt =
∫ T

0
((um)p(x) log(um), v)dt . (3.12)

Let m → +∞ in (3.12). By the convergence in (3.8–3.10), we deduce that
∫ T

0
((ut , v) + (Δu,Δv))dt =

∫ T

0
(up(x) log u, v)dt . (3.13)

Since functions in (3.11) are dense in L2((0, T );H 2
0 (�)), (3.13) holds for all v ∈

L2((0, T ); H 2
0 (�)). For arbitrariness of T > 0, one has (ut , v) + (Δu,Δv) =

(
up(x) log u, v

)
for a.e. t > 0. To prove (2.7), we first assume that u is smooth enough such

that ut ∈ L2((0, T );H 2
0 (�)). Taking v = ut in (3.13) it is seen that (2.7) is true. By the
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density of 2 0 2
0 in 2 0 , we know (2.7) holds for weak solutions

to problem (1.1). The global solutions of (1.1) is proved.
Step 2. Uniqueness of the bounded solution.We assume both and be bounded weak

solutions to (1.1). For any 2
0 , we have log

and log . Subtracting the above two equalities, choosing
2
0 and integrating over 0 for any 0, we deduce that

0

2 d d
0

log log d d .

Since 0 0, due to the boundedness of and , we have 2 d

0
2 d d , where 0 is a constant depending on , , and the bounds of

, . By the Gronwall’s inequality, 2 d 0. Hence, 0 a.e. in 0
and the uniqueness of bounded solution follows.

Next, we consider the exponential decay of 2. Since for 0 ,
we have 0. Then it follows from (2.7) and 0 that

0
1

2 1
2
2

1

1

1

2 1
2
2 (3.14)

which, together with (2.2), implies

1 2
2 1

1
0 . (3.15)

By the definition of 0 and (2.2, 3.1, 3.15), we obtain

1 log d max
2 1

1
0

1
2 1

e

2 1

1
0

1
2 1

e

1
1

2
2

0

0

1
2

2
2. (3.16)

Choosing in (2.6) and combining (2.4) with (3.16), we have

d

d
2
2 2 1 1 0 0

1
2 2

2.

Consequently, 2
2 0

2
2 exp , where constant

2 1 1 0 0
1
2 .

Finally, we consider the exponential decay of 2, 1, and . By
(2.4, 3.16), one could obtain

1 0 0
1
2 2

2. (3.17)
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Define an auxiliary function L(t) := J (u(t)) + ‖u(t)‖22. Then by ‖u‖22 ≤ λ−1
1 ‖Δu‖22 and

(3.14), we get

L(t) ≤ J (u(t)) + λ−1
1 ‖Δu(t)‖22 ≤

[

1 + 2(p− + 1)

λ1(p− − 1)

]

J (u(t)). (3.18)

By (2.1), we have
∫

�

up(x)+1dx ≤ max
{
‖u‖p−+1

p(x)+1, ‖u‖p++1
p(x)+1

}

≤ max

⎧
⎨

⎩
Dp++1

[
2(p− + 1)

p− − 1
J (u0)

] p−−1
2

, Dp++1
[
2(p− + 1)

p− − 1
J (u0)

] p+−1
2

⎫
⎬

⎭
‖Δu‖22.

Thus,

J (u) ≤
[

p+ − 1

2(p+ + 1)
+ M

(p− + 1)2

]

‖Δu‖22 + 1

p− + 1
I (u), (3.19)

where M := max

{

Dp++1
[
2(p−+1)
p−−1 J (u0)

] p−−1
2

,Dp++1
[
2(p−+1)
p−−1 J (u0)

] p+−1
2

}

. More-

over, it follows from (2.7) and d
dt ‖u‖22 = −2I (u) that d

dt L(t) = −‖ut‖22 − 2I (u(t)), which,
together with (3.16, 3.17, 3.19), indicates that for any constant α > 0, one could obtain

d

dt
L(t) ≤ −‖ut‖22 − 2I (u) − αJ (u) + α

[
p+ − 1

2(p+ + 1)
+ M

(p− + 1)2

]

‖Δu‖22 + α

p− + 1
I (u)

≤ −αJ (u) +

⎧
⎪⎨

⎪⎩
α

[
p+ − 1

2(p+ + 1)
+ M

(p− + 1)2

]
⎡

⎣1 −
(

J (u0)

d0

) p−−1+μ
2

⎤

⎦

−1

+ α

p− + 1
− 2

⎫
⎪⎬

⎪⎭
I (u).

Let

α :=
4(p+ + 1)(p− + 1)

[

1 −
(

J (u0)
d0

) p−−1+μ
2

]

(p+ − 1)(p− + 1)2 + 2M(p+ + 1) + 2(p+ + 1)(p− + 1)

[

1 −
(

J (u0)
d0

) p−−1+μ
2

] > 0.

It follows from (3.18) that

d

dt
L(t) ≤ −αJ (u(t)) ≤ − αλ1(p

− − 1)

λ1(p− − 1) + 2(p− + 1)
L(t),

which, together with the definition of L(t), implies

J (u(t)) + ‖u(t)‖22 = L(t) ≤ L(0) exp

[

− αλ1(p
− − 1)

λ1(p− − 1) + 2(p− + 1)
t

]

≤
(
J (u0) + ‖u0‖22

)
exp

[

− αλ1(p
− − 1)

λ1(p− − 1) + 2(p− + 1)
t

]

. (3.20)

By (3.14, 3.20), we obtain

‖Δu‖22 ≤ 2(p− + 1)

p− − 1
J (u(t)) ≤ 2(p− + 1)

p− − 1

(
J (u0) + ‖u0‖22

)
exp

[

− αλ1(p
− − 1)

λ1(p− − 1) + 2(p− + 1)
t

]

. (3.21)

Finally, it follows from (2.1, 3.21) that

‖u‖2p(x)+1 ≤ B2‖Δu‖22 ≤ 2B2(p− + 1)

p− − 1

(
J (u0) + ‖u0‖22

)
exp

[

− αλ1(p
− − 1)

λ1(p− − 1) + 2(p− + 1)
t

]

.
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Proof of Theorem 2.2. Step 1. Blow-up in finite time. Assume that was a global weak
solution to problem (1.1) for 0 0 , 0 0 and define 0

2
2d for

0, one has 2
2 and

2 2 2
2 2 1 log d 2 . (3.22)

Next, we claim 0 for all 0 . In fact, if it was false, it follows there
would exist a constant of first appearance 0 0 such that 0 0 and 0
for 0 0 . From Lemma 3.2 (ii), we have 2 0 for 0 0 . By
the continuity of 2 to and Lemma 3.2 (iii), we get 0 2 0. Hence,

0 . Then it follows from (2.5) that 0 , which contradicts to (2.7). By
computations, one has

1

2 1
2
2

1

1
. (3.23)

By (2.7, 3.22, 3.23), one could obtain

2 1 2
2 2 1

1 1
2
2 2 1

0

2
2d 2 1 0 .

Noticing that 2 4 0 d d
2

2 0
2
2 0

4
2, we have

1

2
2

1 1 2 1
0

2
2d 2 1 0

2 1
0

d d
2

1 0
2
2

1

2
0

4
2

1 1 2 1 0 1 0
2
2

1

2
0

4
2

1

2
1 2 1 0

1

2
1 1 0

2
2 .

From 2 , we have 0 for 0. Hence,

1

2
2

1

2
1 0

2
2 2 1 0

1

2
1 1 0

2
2 .

Since 0 0, we have 0 . Therefore, for sufficiently large , one
could obtain 1 1 2 1 0

2
2. Combining the above inequality and

0
2
2

4 1
1 1

4 1 0

1 1 , we have

1

2
2 0 (3.24)
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for sufficiently large t ≥ t∗. From (3.24), it follows with α = p−−1
2 > 0 that

d

dt

(
M ′(t)

M1+α(t)

)

> 0, ∀t ≥ t∗, or
M ′(t)

M1+α(t)
>

M ′(t∗)
M1+α(t∗)

, ∀t > t∗. (3.25)

Integrating both sides of (3.25) over (t∗, t) with respect to t , M(t) cannot remain finite for
all t > t∗, and therefore there is a contradiction.

Step 2. Upper bound of blow-up time. Taking J (λu) := j (λ), we have

j (λ) = 1

2
‖Δ(λu)‖22 −

∫

�

(λu)p(x)+1 log(λu)

p(x) + 1
dx +

∫

�

(λu)p(x)+1

(p(x) + 1)2
dx.

It is noticed that j (λ) > 0 for small λ > 0, j (λ) → −∞ for λ → +∞ and j (λ) is
continuous on [0, +∞) and differentiable on (0,+∞). Combining this facts, we imply that
j (λ) attains its maximum value at some number λ∗ := λ∗(u).

By Fermat’s theorem, one has j ′(λ) = λ‖Δu‖22 − ∫

�
λp(x)up(x)+1 log(λu)dx. On the

other hand, since j ′(λ) = 1
λ
I (λu), we obtain I (λ∗u) = 0. Since

I (u) = I (u) − 1

(λ∗)p−+1
I (λ∗u)

=
[
1 − (λ∗)1−p−] ‖Δu‖22 +

∫

�

(λ∗)p(x)−p−
up(x)+1 log(λ∗u)dx −

∫

�

up(x)+1 log udx,

and p(x) > 1 for a.e. x ∈ �, we derive that λ∗ ∈ (0, 1) provided that I (u) < 0. And this
implies

d ≤ J (λ∗u) − 1

p− + 1
I (λ∗u)

≤
(
1

2
− 1

p− + 1

)

‖Δ(λ∗u)‖22

−
∫

�

(
1

p(x) + 1
− 1

p− + 1

)

(λ∗u)p(x)+1 log udx +
∫

�

(λ∗u)p(x)+1

(p(x) + 1)2
dx

≤ (λ∗)2
[

J (u) − 1

p− + 1
I (u)

]

≤ J (u0) − 1

p− + 1
I (u),

which in turn implies for all t ≥ 0 that M ′(t) ≥2(p− + 1)(d − J (u0))t and M(t) ≥(p− +
1)(d − J (u0))t

2. Integrating both sides of (3.25) over (t∗, t) with respect to t , we obtain

M(t) >
[

M1+α(t∗)
αM ′(t∗)(t∗−t)+M(t∗)

] 1
α
, hence, t ≤ 2

∫ t∗
0 ‖u‖22dτ

(p−−1)‖u(t∗)‖22
+ t∗.

4 Proof of Theorems 2.3 and 2.5

Proof of Theorem 2.3. Let λk = 1 − 1/k, k = 2, 3, · · · . Consider
⎧
⎨

⎩

ukt + Δ2uk = u
p(x)
k log uk, (x, t) ∈ � × (0, T ),

uk(x, t) = Δuk(x, t) = 0, (x, t) ∈ ∂� × (0, T ),

uk(x, 0) = u0k(x) := λku0, x ∈ �.
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Noticing that 0
2
0 , 0 1 , and 0 0, we have

0
2

0
2

0
1 log 0 d

2
0
2d

1

0

log 0d
2

0 0.

A simply computation shows

d

d
0 0

2d 0
1 log 0 d

0
2d

1

0

log 0d 0 0.

This implies that 0 is strictly increasing with respect to . Hence, 0

0 0 . The remainder can be proved similarly to Theorem 2.1.

Proof of Theorem 2.4. Since 0 and 0 0, there exists a constant 0 0 such
that 0 and 0 for 0 0. Considering , we
have 0 for 0 0. Furthermore,

0 0 1

0

0

2
2d . (4.1)

Taking 0 as the initial time, we will prove that 0 for all 0. Otherwise,
there must be a constant 1 0 such that 1 0 and 0 for 0 1.
From Lemma 3.2 (ii), we have 2 0 for 0 1 . Then by continuity
of 2 with respect to and Lemma 3.2 (iii), we get 1 2 0. Hence,

1 . It follows from the definition of that 1 , which contradicts to (4.1).
Hence, 0 for all 0.

Similarly to the proof of Theorem 2.2, we get

1

2
2

1

2
1 2 1 0

1

2
1 1 0

2
2 .

Then from 2 , we have 0 for 0. Since 0 0, we have
0 . Therefore, for sufficiently large time , we have 1

2 1

1 0
2
2. By 0 2 , we have 1

2 1 2 1 0 . Consequently, there

exists a suitably large constant such that for all , 1
2

2 0.
The other could be proved similarly to the ones of Theorem 2.2.

5 Proof of Theorems 2.5 and 2.6

Lemma 5.1 Let be in force.

(i) dist 0 0, dist 0 0.
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(ii) For any constant s > 0, the set J s ∩ N+ is bounded in H 2
0 (�).

Proof (i) For any u ∈ N , by the definition of d , one could obtain

d ≤ J (u) ≤ p+ − 1

2(p+ + 1)
‖Δu‖22 + 1

p+ + 1
I (u) + 1

(p− + 1)2
max

{
‖u‖p−+1

p(x)+1, ‖u‖p++1
p(x)+1

}

≤ p+ − 1

2(p+ + 1)
‖Δu‖22 + Dp++1

(p− + 1)2
max

{
‖Δu‖p−+1

2 , ‖Δu‖p++1
2

}
,

which yields that there exists a constant c0 > 0 such that

dist(0,N ) = inf
u∈N ‖Δu‖2 ≥ c0 := min

⎧
⎪⎨

⎪⎩

⎡

⎣
d

(
p+−1

2(p++1) + Dp++1

(p−+1)2

)

⎤

⎦

1
p++1

,

√
√
√
√

d

p+−1
2(p++1) + Dp++1

(p−+1)2

⎫
⎪⎬

⎪⎭
> 0.

For any u ∈ N−, we have ‖Δu‖2 �= 0. Let μ > 0 be small that p(x) + μ < p+ + μ < 4∗.
By x−μ log x ≤ (eμ)−1 for x ≥ 1, μ > 0 and H 2

0 (�) ↪→ Lp(x)+1+μ(�), we have

‖Δu‖22 <

∫

�

up(x)+1 log udx ≤
∫

�1

up(x)+1 log udx

≤ 1

eμ
max

{
‖u‖p−+1+μ

p(x)+1+μ, ‖u‖p++1+μ

p(x)+1+μ

}

≤ Bp++1+μ

eμ
max

{
‖Δu‖p−+1+μ

2 , ‖Δu‖p++1+μ

2

}
,

where �1 := {x ∈ � : u ≥ 1}, �2 := {x ∈ � : 0 < u < 1}, which implies ‖Δu‖2 >
(

eμ
Bp++1+μ

) 1
p−−1+μ . Therefore, dist(0,N−) = infu∈N− ‖Δu‖2 ≥

(
eμ

Bp++1+μ

) 1
p−−1+μ

> 0.

(ii) For any u ∈ J s ∩ N+, J (u) < s and I (u) > 0. Therefore,

s > J (u) ≥ p− − 1

2(p− + 1)
‖Δu‖22 + 1

p+ + 1
I (u) >

p− − 1

2(p− + 1)
‖Δu‖22,

which yields ‖Δu‖2 <

√
2s(p−+1)

p−−1 .

Lemma 5.2 Let (H) be in force. For any s > d , 0 < C1 ≤ λs ≤ 	s ≤ C2 < +∞, where

C1 := min

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎣

eμδmin(d)

[β(1+|�|)]p++1+μ
(
2s(p−+1)

p−−1

) (1−θ)(p++1+μ)
2

⎤

⎥
⎦

1
θ(p−+1+μ)

, (5.1)

⎡

⎢
⎣

eμδmin(d)

[β(1+|�|)]p++1+μ
(
2s(p−+1)

p−−1

) (1−θ)(p++1+μ)
2

⎤

⎥
⎦

1
θ(p++1+μ)

⎫
⎪⎪⎬

⎪⎪⎭

,

δmin(d) is a positive constant to be determined later; C2 :=
√

2s(p−+1)
λ1(p

−−1) ; β is the optimal

constant in the Gagliardo-Nirenberg’s inequality

‖u‖p++1+μ ≤ β‖Δu‖1−θ
2 ‖u‖θ

2, ∀u ∈ H 2
0 (�), θ :=1 + n

2(p+ + 1 + μ)
− n

4
∈ (0, 1).
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Proof Firstly, we estimate the upper bound of . For any , by the definition of
functionals and , we obtain

1

2 1
2
2

1

1

1

2 1
2
2

1 1

2 1
2
2.

(5.2)

Therefore, (5.2) indicates that 2 2. Hence, 2 .
Next, we estimate the lower bound of . Let , then 0 and . By

(2.1), we obtain

1

2 1
2
2

1

1

1

1 2
1d

1

2 1
2
2

1

1 2
max 1

1
1
1

1

2 1
2
2

1

1 2
max 1

2
1

2

Thus,

2 min min
1

2 1
1

1 2

1
1

1
2 1

1

1 2

.

By log e 1 for 1, 0, the continuous embedding 1

1 and (5.2), we could obtain

min
2
2

1

1 log d

1

e
max 1

1
1
1

1

e
max 1 1 1 1

2
1

2

1 1 1 1
2

1
2

1 1

e

2 1

1

1 1
2

max 1
2

1
2 .

where 1 2 1 4 0 1 , one could obtain 2 1, which indicates

1 0.

Lemma 5.3 Let 1. If 0 and 0 2 1 1 1 2
0

1
1 , then

the weak solution of problem (1.1) blows up in finite time.
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Proof By the embedding Lp+1(�) ↪→ L2(�), we have ‖u0‖2 ≤ (1 + |�|)‖u0‖p+1,

J (u0) = 1

2
‖Δu0‖22 −

∫

�

u0
p+1 log u0

p + 1
dx +

∫

�

u0
p+1

(p + 1)2
dx

≥ p − 1

2(p + 1)
‖Δu0‖22 + 1

p + 1
I (u0) +

∫

�

u0
p+1

(p + 1)2
dx

≥ 1

p + 1
I (u0) +

∫

�

u0
p+1

(p + 1)2
dx

≥ 1

p + 1
I (u0) + J (u0).

Therefore, I (u0) < 0, i.e., u0 ∈ N−. Now, we only need to prove ‖u0‖2 ≥ 	J(u0). For any
u ∈ NJ (u0), i.e., I (u) = 0, J (u) < J (u0). Since

J (u) ≥ p − 1

2(p + 1)
‖Δu‖22 + 1

p + 1
I (u) + 1

(p + 1)2

∫

�

up+1dx ≥ 1

(p + 1)2

∫

�

up+1dx,

we have
∫

�

u2dx < (1 + |�|)2
(∫

�

up+1dx

) 2
p+1

< (1 + |�|)2[(p + 1)2J (u0)]
2

p+1 <

∫

�

u0
2dx,

i.e., ‖u0‖2 > 	J(u0). This completes the proof of this lemma.

Proof of Theorem 2.5. Denote T (u0) be the maximal existence time of (1.1) with ini-
tial datum u0. If T (u0) = +∞, we denote the ω-limit set of u0 by ω(u0) =
⋂

t≥0 {u(s) : s ≥ t}H 2
0 (�)

.
(i) Assume that u0 ∈ N+ with ‖u0‖2 ≤ λJ(u0). We first claim that u(t) ∈ N+ for all

t ∈ [0, T (u0)). If not, there would exist a constant t0 ∈ (0, T (u0)) such that u(t) ∈ N+
for t ∈ [0, t0) and u(t0) ∈ N . By I (u(t)) = − ∫

�
ut (x, t)u(x, t)dx, ut (x, t) �≡ 0 for

(x, t) ∈ � × (0, t0). Recalling (2.7), J (u(t0)) < J (u0). Thus, u(t0) ∈ N J (u0). By the
definition of λJ(u0), we have

‖u(t0)‖2 ≥ λJ(u0). (5.3)

By I (u(t)) > 0 for t ∈ [0, t0) and d
dt ‖u‖22 = −2I (u), we have ‖u(t0)‖2 < ‖u0‖2 ≤ λJ(u0),

which contradicts to (5.3). Therefore, our claim is true and we have u(t) ∈ J J(u0) for all
t ∈ [0, T (u0)). Lemma 5.1 (ii) shows that u(t) is bounded in H 2

0 (�) for t ∈ [0, T (u0)), and
the boundedness of ‖u‖H 2

0 (�) is dependent of t . Moreover, T (u0) = +∞. Let ω ∈ ω(u0).

By (2.7) and d
dt ‖u‖22 = −2I (u), one has ‖ω‖2 < λJ(u0) and J (ω) < J(u0), which implies

ω(u0)∩N = ∅. Hence, ω(u0) = {0}. Therefore, the weak solution u of (1.1) in itsH 2
0 -norm

exists globally and u(t) → 0 as t → +∞.
(ii) Assume that u0 ∈ N− with ‖u0‖2 ≥ 	J(u0). We claim that u(t) ∈ N− for all

t ∈ [0, T (u0)). If not, there would exist a constant t0 ∈ (0, T (u0)) such that u(t) ∈ N− for
t ∈ [0, t0) and u(t0) ∈ N . Similarly to case (i), one has J (u(t0)) < J (u0), which implies
that u(t0) ∈ J J(u0). Therefore, u(t0) ∈ N J (u0). According to the definition of 	J(u0), we
have

‖u(t0)‖2 ≤ 	J(u0). (5.4)

From d
dt ‖u‖22 = −2I (u) and I (u(t)) < 0 for t ∈ [0, t0), we get ‖u(t0)‖2 > ‖u0‖2 ≥

	J(u0), a contradiction to (5.4). Suppose T (u0) = +∞. For every ω ∈ ω(u0), by (2.7)
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and d
d

2
2 2 , one has 2 0 and 0 . Recalling 0 , we

obtain 0 . Thus, 0 0 , which contradicts to Lemma 5.1 (i). Hence,
0 .

Proof of Theorem 2.6. Assume that and 1 and 2 are two arbitrary disjoint open
subdomains of . Assume that 1 0

2
1 is an arbitrary nonzero

function and take 0 large enough such that

1

2
2
2

1 log

1
1 d

1

1
1 log d

1

1 2
1 d 0

2 1 1 1 2
1

1
.

We fix such a number 0 and choose 2 0
2

2 satisfying
. Extend and to be 0 in 1 and 2. Set . Then

and 2 2 1 1 1 2
1

1 . By
Lemma 5.3, and the weak solution of problem (1.1) blows up in finite time.

6 Proof of Theorems 2.7 and 2.8

Lemma 6.1 Assume a nonnegative continuous satisfies 2 1

2
1

2

e

1
2 , and 0

1
2

1e

2
1

, where 0 1. There

exists a constant 1 0 such that

1
2 0 0

2

2
1

0 1

0 1

(6.1)

where 1 2
1

2 0 0 , 2
1 1 1

2
1

2

1e 0 , and

0 1

1
2

e
1

1
2 0 0.

Proof For simplicity, we denote 1
2

1
2

e , 2 2 1. First, it is easy to observe that

the following fact remains true. 2 1
1

2 . Define
1

2 .
Then

1

2

1
2 1

1
2 2

1

2
1 2

1
2 . (6.2)

Since 0 0 and recalling the continuity of , there exists a sufficiently small 0 0
such that

0

2
0 0 0. (6.3)
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The estimates (6.2) and (6.3) indicate that H ′(t) ≤ ψ(0)/2, which implies that
{

H(t) ≤ H(0) + ψ(0)t/2, 0 < t < T1 ≤ T0,

H(t) = 0, t ≥ T1 := −2H(0)/ψ(0).

Obviously, by the definition of H(t), we have (6.1).

Lemma 6.2 Suppose constants p, α, β > 0 and h(t) be a nonnegative and absolutely
continuous function satisfying h′(t) + αhp(t) ≥ β, t ∈ (0,+∞). Then there exists an

estimate h(t) ≥ min
{
h(0), (β/α)

1
p

}
.

In fact, the proof of this lemma can be similarly by ones for Lemma 3.2 in [17], where
we use h′(t) + αhp(t) ≥ β, t ∈ (0,+∞) instead of h′(t) + αmax{hp(t), hq(t)} ≥ β,
t ∈ (0,+∞) . �

Proof of Theorem 2.7. Multiplying the nonlinear equation in (1.1) by u and integrating it
over � × (t, t + h) with h > 0 and then dividing the result by h yields

1

h

∫ t+h

t

∫

�

uτudxdτ + 1

h

∫ t+h

t

∫

�

|Δu|2dxdτ = 1

h

∫ t+h

t

∫

�

up(x)+1 log udxdτ . (6.4)

Let h → 0+ in (6.4) and use the Lebesgue differentiation theorem. We have

G′(t) + 2‖Δu‖22 = 2
∫

�

up(x)+1 log udx, (6.5)

where G(t) := ‖u‖22. By x−μ log x ≤ (eμ)−1 for x ≥ 1, μ ≥ 0 and Hölder inequality, we
obtain

∫

�

up(x)+1 log udx =
∫

�1

up(x)+1 log udx +
∫

�2

up(x)+1 log udx

≤
∫

�1

up++1 log udx ≤ 1

e(p∗ − p+)

∫

�

up∗+1dx

≤ |�| 1−p∗
2

e(p∗ − p+)
G

1+p∗
2 (t). (6.6)

By using ‖u‖22 ≤ λ−1
1 ‖Δu‖22 and (6.5, 6.6), we have G′(t)+2λ1G(t) ≤ |�| 1−p∗

2

e(p∗−p+)
G

p∗+1
2 (t).

By Lemma 6.1 and the definition of G(t) above, we obtain (2.13).

Proof of Theorem 2.8. Let G(t) := ∫

�
u2dx. According to the definition of J (u) and

applying the results in Lemma, we have

1

2
G′(t) =

∫

�

uutdx = −2
∫

�

|Δu|2
2

dx +
∫

�

up(x)+1 log udx

≥ −2J (u0) +
∫

�

(

1 − 2

1 + p(x)

)

up(x)+1 log udx. (6.7)
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Moreover, by log 1 for 1, 0 and Hölder’s inequality, we obtain that

1
2

1
1 log d

1

1
2

1
1 log d

2

1
2

1
1 log d

1

1
2

1
1 log d 1

2

1

1

e
1d

1
2

1

1
2

e

1
2 . (6.8)

By (6.7, 6.8) and 1, we have

2
2

1
1

1
2

e

1
2 4 0 . (6.9)

By (6.9) and Lemma 6.2, we show min 0
2

1 with

2
2

1
1

1
2

e
4 0 .
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