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Abstract
Our main aims in this paper are to investigate the regularity of inertial manifolds for non-
autonomous semi-linear evolution equations and to give an application of inertial manifolds
to a feedback control problem. We first prove that the inertial manifolds are smooth if the
nonlinear term is smooth. Then, using the theory of inertial manifolds for non-autonomous
semi-linear evolution equations, we construct a feedback controller for a class of control
problems for the one-dimensional reaction-diffusion equations with the Lipschitz coefficient
of the nonlinear term which may depend on time and belong to an admissible space.

Keywords Inertial manifolds · Admissible spaces · Evolution equations ·
Non-autonomous dynamical systems · Feedback control
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1 Introduction

Many phenomena in mechanics, physics, ecology, and so on can be described by par-
tial differential equations. By choosing appropriate function spaces and linear operators,
these partial differential equations can be rewritten into semi-linear evolution equations in
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an infinite-dimensional Banach space whose linear part is the generator of a continuous
semigroup and the nonlinear term satisfies the Lipschitz condition.

We are particularly interested in the non-autonomous semi-linear evolution equations
of the concise form du

dt
+ Au = f (u), where the operator A is in general an unbounded

linear operator on a separable infinite-dimensional Hilbert space X and f is a nonlinear
mapping. For such evolution equations, it is desirable to understand whether the asymptotic
behavior is described essentially by a finite-dimensional structure. For example, many dis-
sipative dynamical systems have global attractors of finite Hausdorff or fractal dimensions.
An inertial manifold is a beautiful and ideal finite-dimensional structure to study asymp-
totic behavior of solutions to the evolution equations as time goes to infinity. The notion
of inertial manifolds was introduced in 1985 by C. Foias, G.R. Sell, and R. Temam in [11]
(see also [13])in an attempt to reduce the study of the asymptotic behavior of the system
to a Lipschitz manifold of finite-dimension. An inertial manifold is a (at least Lipschitz)
smooth finite-dimensional manifold of the phase space which is positively invariant, contain
the global attractor and attracts exponentially all the solutions of the system. The feature of
exponential attraction allows to apply the reduction principle to study the asymptotic behav-
ior of the partial differential equation by determining the structures of its induced solutions
belonging to these inertial manifolds, which turn out to be solutions to some induced ordi-
nary differential equations due to the finite-dimensional structure of the manifold. In terms
of fluid dynamics, R. Temam [38] once wrote that: “From the physical point of view an
inertial manifold is an interaction law relating small and large eddies in a turbulent flow.
In that application, the specification of an inertial manifold is equivalent to a modeling of
turbulence”.

With a history of nearly 40 years, the field of inertial manifolds has been extensively
studied and gained many achievements in both theoretical and applied aspects. First, the
existence of inertial manifolds has been proved for several important classes of evolution
equations (see, e.g., [3–7, 12, 14, 16, 18, 22, 23, 34, 35, 37] and the references therein). In
order to overcome the technical conditions related to the spectral gap condition, some recent
work (see, e.g., [2, 15, 20, 21, 42]) have been published that are based on special approaches.
The concept of inertial manifolds is also generalized into many new types of manifolds that
are more useful for application problems (see, e.g., [8–10, 27]). In general, the conditions
for the existence of an inertial manifold are the spectral gap condition of the linear operator
A and the global and uniform Lipschitz condition of the nonlinear term f . Roughly speak-
ing, there should be a sufficiently large gap between two successive eigenvalues of A such
that the uniform Lipschitz constant (of f ) can be bounded by the length of that gap multi-
plied by a fixed constant. In fact, in applications, the nonlinear term is usually only locally
Lipschitz (i.e., Lipschitz in a neighborhood of a fixed point). However, in many circum-
stances, thanks to the existence of a global attractor, the nonlinear term can be truncated to
contain the interesting part of the asymptotic dynamics of the system, in such a way that
it becomes globally Lipschitz. Furthermore, for complicated evolutionary processes arising
in natural sciences and technology, for example, partial differential equations in popula-
tion ecology (the Fisher-Kolmogorov model describing the spread of an advantageous gene,
predator-prey model with cross-diffusion, or competition model with cross-diffusion, see,
e.g., J.D. Murray [24, 25]), the nonlinear part represents the source of material in many con-
texts where the Lipschitz coefficient may depend on time. Recenty, using Lyapunov-Perron
method and the admissibility of function spaces, T.H. Nguyen [26] proved a more general
condition on nonlinear part for the existence of inertial manifolds, that is, ϕ-Lipschitz con-
dition, ‖f (t, x) − f (t, y)‖ ≤ ϕ(t)

∥
∥Aθ(x − y)

∥
∥, for ϕ being a real and positive function
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which belongs to an admissible space. Instead of requiring the upper bound for uniform Lip-
schitz coefficient, the upper bound is now required for ‖�1ϕ‖∞ := supt∈R

∫ t

t−1 ϕ(τ)dτ . In
the past few years, there have been some studies on the existence of inertial manifolds for
evolution equations under such the ϕ-Lipschitz condition, which can be found in [1, 28, 40].

On aspect of application, we would like to emphasize applications of the inertial man-
ifold theory to feedback control problems, such as, using inertial manifolds to stabilize
semi-linear diffusion systems (see also [33, 36] and the references therein), for equations of
nonlinear elasticity (see Y. You [41]), for reaction-diffusion equations (see R. Rosa and R.
Temam [32], R. Rosa [30]), or for non-autonomous evolution equations by N. Koksch and
S. Siegmund [19]. Among those applications, we are particularly interested in R. Rosa and
R. Temam [32]. Consider the following semi-linear open-loop system

{
du
dt

+ Au = f (u) + Bg,

y = Cu,
(1.1)

where u is the state in an infinite-dimensional Hilbert space, y is the observation, g is the
finite-dimensional control input, and B and C are bounded linear operators. R. Rosa and
R. Temam [32] introduces a finite-dimensional feedback control for a open-loop problem
of a scalar reaction-diffusion equation so that the closed-loop system behaves in a desired
way given a priori by a finite-dimensional system. The finite-dimensional property and
characteristics of the inertial manifolds are used to reduce the closed-loop system to a finite-
dimensional system and that work concludes that the vector field of this finite-dimensional
system is close in a weighted C1-metric to some finite-dimensional vector field.

The purpose of the present paper is to extend the results by R. Rosa and R. Temam
[31, 32] to the case of a class of non-autonomous closed-loop systems. Precisely, using
the method in [31], we will show that the inertial manifolds obtained by in T.H. Nguyen
[26, Theorem 3.5] are of class C1 as long as the nonlinear term is of class C1 with respect
to the state of the evolutionary systems. Then, for a non-autonomous closed-loop system
of a scalar reaction-diffusion equation in concrete settings, we will extend the results in
R. Rosa and R. Temam [32] by applying the existence theorem of an inertial manifold for
mild solutions to the non-autonomous evolution equations in admissible spaces, (see [26,
Theorem 3.5]), and theorem of regularity has just proved, for that closed-loop system. Our
method and techniques are based on the Lyapunov-Perron equation, fixed point argument,
and the techniques of functional analysis combined with admissibility of function spaces.
Our main results are contained in Theorems 2.7, 2.9, 3.2, and 3.3. Theorems 2.7 and 2.9
present the results of the regularity of inertial manifolds corresponding to the cases of the
evolution equation in Banach and Hilbert space. The Theorem 3.2 describes the study of
an infinite-dimensional control system through an inertial manifold of the corresponding
closed-loop system. As a consequence of Theorem 3.2, Theorem 3.3 states the structurally
stable (see, e.g., [17, 29, 39]) of dynamical systems.

This paper is organized as follows. In next section, Section 2, we recall the result T.H.
Nguyen [26, Theorem 3.5] on the existence of inertial manifolds for evolution equations
when the partial differential operator A is positive definite and self-adjoint with a discrete
spectrum and Lipschitz coefficient of the nonlinear term depends on the time and belongs to
some admissible spaces. After that, regularity of the inertial manifolds will be substantiated.
We will show that if the nonlinear term is of class C1 with respect to the state variable then
those inertial manifolds are of class C1. In Section 3, first subsection presents the settings
and some assumptions for the open-loop system of a reaction-diffusion system. The desired
dynamics of the infinite-dimensional control system under consideration will be described
in the second subsection. We next recall some estimates for the input and output control
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operators of the system which is obtained by R. Rosa and R. Temam [32]. Finally, we
study the closed-loop system and establishes the main result. We design a finite-dimensional
feedback controller for a class of one-dimensional reaction-diffusion equations under some
certain conditions.

2 Regularity of the Inertial Manifolds for Parabolic Evolution
Equations in Admissible Spaces

In this section, we are concerned with the first-order regularity of the inertial manifolds for
the mild solution to the semi-linear parabolic evolution equations in admissible spaces. First
of all, we will recall some definitions and properties of admissible spaces and the existence
conditions of an inertial manifold, which is the main result of the T.H. Nguyen [26]. We will
then give a detailed proof of the regularity of the aforementioned inertial manifolds. Finally,
as an addition, we will state a similar result for inertial manifolds for the evolution equations
involving the sectorial operator, whose existence is recently proved in T.H. Nguyen and
X.-Q. Bui [28, Theorem 3.5].

First of all, we recall some information about the function space, including the Banach
function spaces and admissible spaces (see T.H. Nguyen [26] and references therein for
more information on the matter).

Definition 2.1 Denote by B the Borel algebra and by λ the Lebesgue measure on R. A
vector space E of real-valued Borel-measurable functions on R (modulo λ-nullfunctions) is
called a Banach function space (over (R,B, λ)) if

(1) E is a Banach lattice with respect to the norm ‖ · ‖E ;
(2) the characteristic functions χA belong to E for all A ∈ B of finite measure and

supt∈R ‖χ[t,t+1]‖E < ∞, inft∈R ‖χ[t,t+1]‖E > 0;
(3) E ↪→ L1, loc(R).

Definition 2.2 The Banach function space E is called admissible if it satisfies

(1) there is a constant M ≥ 1 such that for every compact interval [a, b] ⊂ R we have

∫ b

a

|ϕ(t)|dt ≤ M(b − a)

‖χ[a,b]‖E

‖ϕ‖E, for all ϕ ∈ E; (2.1)

(2) for ϕ ∈ E the function �1ϕ(t) = ∫ t

t−1 ϕ(τ)dτ belongs to E;
(3) the space E is T +

τ -invariant and T −
τ -invariant where T +

τ and T −
τ are defined, for τ ∈

R, by

T +
τ ϕ(t) := ϕ(t − τ), for t ∈ R, (2.2)

T −
τ ϕ(t) := ϕ(t + τ), for t ∈ R. (2.3)

Moreover, there are constants N1 and N2 such that

‖T +
τ ‖ ≤ N1 and ‖T −

τ ‖ ≤ N2, for all τ ∈ R.
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Proposition 2.3 Let E be an admissible space. Let ϕ ∈ L1, loc(R) be such that ϕ ≥ 0 and
�1ϕ ∈ E, where �1ϕ(t) := ∫ t

t−1 ϕ(τ)dτ . For σ > 0, functions �′
σ ϕ and �′′

σ ϕ are defined
by

�′
σ ϕ(t) :=

t∫

−∞
e−σ(t−s)ϕ(s)ds, �′′

σ ϕ(t) :=
∞∫

t

e−σ(s−t)ϕ(s)ds.

Then, �′
σ ϕ and �′′

σ ϕ belong to E. In particular, if supt∈R
∫ t

t−1 ϕ(τ)dτ < ∞, then �′
σ ϕ and

�′′
σ ϕ are bounded. Moreover, the following estimates hold:

‖�′
σ ϕ‖∞ ≤ N1

1 − e−σ
‖�1ϕ‖∞, ‖�′′

σ ϕ‖∞ ≤ N2

1 − e−σ
‖�1ϕ‖∞,

where N1 and N2 are defined in Definition 2.2.

2.1 The Existence of Inertial Manifolds Revisited

Consider the evolution problem of the form
{ du(t)

dt
+ Au(t) = f (t, u(t)), t > s,

u(s) = us, s ∈ R.
(2.4)

where A is a positive definite operator with discrete spectrum on an infinite-dimensional
separable Hilbert space X (see Assumption (A) below) and f : R× Xθ → X is a nonlinear
mapping with Xθ := D(Aθ ) being the domain of the fractional power Aθ , for 0 ≤ θ <

1, equipped with the norm
∥
∥Aθ ·∥∥ (the fractional power of A is computed using spectral

resolution as in I.D. Chueshov [4, §1 – Chapter 2]).
In this case −A generates a strongly continuous semigroup

(

e−tA
)

t≥0 on the Hilbert
space X. Instead of the evolution equation (2.4), we consider the integral equation

u(t) = e−(t−s)Au(s) +
t∫

s

e−(t−ξ)Af (ξ, u(ξ))dξ, for a.e. t ≥ s. (2.5)

By a solution of equation (2.5) we mean a strongly measurable function u(t) defined on an
interval J with the values in Xθ that satisfies (2.5) for t, s ∈ J . The solution u to equation
(2.5) is called a mild solution of evolution equation (2.4).

To obtain the existence of an inertial manifold for equation (2.5), we need the following
assumptions on the linear operator and the Lipschitz coefficient of the nonlinear term.

Assumption (A): Consider (X, ‖ · ‖) is a separable Hilbert space. Let A be a positive
definite operator with discrete spectrum in X. Suppose that {ek} is an orthonormal basis
of X such that

Aek = λkek, (2.6)

0 < λ1 ≤ λ2 ≤ · · · λk ≤ · · · , λk → ∞ as k → ∞, (2.7)

and each λk with finite multiplicity.
Assumption (F): Let E be an admissible space on the whole line R and ϕ be a positive

function belonging to E such that

R(ϕ, θ) := sup
t∈R

(
∫ t

t−1

ϕ(τ)
1+θ
2θ

(t − τ)
1+θ

2

dτ

) 2θ
1+θ

< ∞, where 0 < θ < 1. (2.8)
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In the case θ = 0 we do not need this assumption.
Assume that the function f : R × Xθ → X is ϕ-Lipschitz, that is, f satisfies

(1) ‖f (t, x)‖ ≤ ϕ(t)
(

1 + ∥
∥Aθx

∥
∥
)

, for all a.e. t ∈ R and for all x ∈ Xθ ,
(2) ‖f (t, x1)− f (t, x2)‖ ≤ ϕ(t)

∥
∥Aθ(x1 − x2)

∥
∥, for all a.e. t ∈ R and for all x1, x2 ∈

Xθ .

We assume further that the nonlinear term is of class C1 with respect to the state,

‖Df (t, u) − Df (t, v)‖L(Xθ ,X) ≤ ϕ2(t)
∥
∥Aθ(u − v)

∥
∥

ν
, (2.9)

here 0 < ν ≤ 1 and Df (t, u) denotes the derivative of f (t, u) with respect to u.

For brevity, we will write Lipϕ(f ) = ϕ(t) to represent the function f satisfies the ϕ-
Lipschitz condition as in the above definition.

Suppose that linear operator A satisfies ASSUMPTION (A) and let f : R × Xθ → X be
a ϕ-Lipschitz function for ϕ satisfies ASSUMPTION (F). Let λn and λn+1 be two successive
and different eigenvalues with λn < λn+1. Consider P = Pn is the orthogonal projection
onto the first n eigenvectors of the linear operator A. Set Q = Qn = I − Pn, where I = IX

is the identity operator on the phase space X. Put

α := λn+1 − λn

2
, γ := λn+1 + λn

2
, (2.10)

and Green’s function by

G(t, τ ) =
{

e−(t−τ)AQ, for t > τ,

−e−(t−τ)AP, for t ≤ τ .
(2.11)

Proposition 2.4 (see G.R. Sell and Y. You [35]) For θ > 0 we have the following dichotomy
estimates

∥
∥
∥e−tAP

∥
∥
∥ ≤ Meλn|t |, t ∈ R and for some constant M ≥ 1, (2.12)

∥
∥
∥Aθe−tAP

∥
∥
∥ ≤ Mλθ

ne
λn|t |, t ∈ R, (2.13)

∥
∥
∥e−tA(I − P)

∥
∥
∥ ≤ Me−λn+1t , t ≥ 0, (2.14)

∥
∥
∥Aθe−tA(I − P)

∥
∥
∥ ≤ M

[(
θ

t

)θ

+ λθ
n+1

]

e−λn+1t , t > 0. (2.15)

We then make precisely the notion of inertial manifolds in the following definition.

Definition 2.5 An inertial manifold of equation integral (2.5) is a collection of Lipschitz
manifolds M = (

Mt

)

t∈R in X such that each Mt is the graph of a Lipschitz function
�t : PnX → (I − Pn)Xθ , i.e.,

Mt = {x + �tx : x ∈ PnX} , for t ∈ R (2.16)

and the following conditions are satisfied:

(1) The Lipschitz constants of �t are independent of t , i.e., there exists a constant C

independent of t such that
∥
∥Aθ(�tx1 − �tx2)

∥
∥ ≤ C

∥
∥Aθ(x1 − x2)

∥
∥ , (2.17)

for all t ∈ R and x1, x2 ∈ Xθ .
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(2) There exists γ > 0 such that to each x0 ∈ Mt0 there corresponds one and only one
solution u(t) to (2.5) on (−∞, t0] satisfying that u(t0) = x0 and

esssup
t≤t0

∥
∥
∥e−γ (t0−t)Aθu(t)

∥
∥
∥ < ∞. (2.18)

(3) The collection
(

Mt

)

t∈R is positively invariant under (2.5), i.e., if a solution x(t),
t ≥ s, to (2.5) satisfies xs ∈ Ms , then we have that x(t) ∈ Mt for t ≥ s.

(4) The collection
(

Mt

)

t∈R exponentially attracts all the solutions to (2.5), i.e., for any
solution u(·) of (2.5) and any fixed s ∈ R, there is a positive constant H such that

distXθ (u(t),Mt ) ≤ He−γ (t−s), for t ≥ s, (2.19)

where γ is the same constant as the one in (2.18), and distXθ denotes the Hausdorff
semi-distance generated by the norm in Xθ .

Assume that the inertial manifold for evolution equation (2.4) exists, the notion of the
inertial manifold is closely related to the notion of the inertial form. If we rewrite the
solution in the form u(t) = p(t) + q(t), where

p(t) ∈ Pnu(t), q(t) ∈ Qnu(t) = (I − Pn)u(t)

then evolution equation (2.4) can be rewritten as a system of two differential equations
⎧

⎪⎨

⎪⎩

dp(t)
dt

+ Ap(t) = Pnf (t, p(t) + q(t)),
dq(t)

dt
+ Aq(t) = Qnf (t, p(t) + q(t)) = (I − Pn)f (t, p(t) + q(t)),

p
∣
∣
t=s

= ps ≡ Pnus, q
∣
∣
t=s

= qs ≡ Qnus .

(2.20)

To construct the desired inertial manifolds, we introduce the space

L
γ,t0,θ∞ :=

{

x ∈ C((−∞, t0], Xθ ) : esssup
t≤t0

e−γ (t0−t)
∥
∥Aθx(t)

∥
∥ < ∞

}

, (2.21)

which is a Banach space when endowed with the norm

‖x‖γ,θ,∞ := esssup
t≤t0

e−γ (t0−t)
∥
∥Aθx(t)

∥
∥ . (2.22)

For x ∈ L
γ,t0,θ∞ and y ∈ PnX we consider the formal map

T (x, y)(t) = e−(t−t0)APy +
t0∫

−∞
G(t, s)f (s, x(s))ds. (2.23)

First, the form of the solutions to (2.5) which are rescaledly bounded on the half-line
(−∞, t0] is as follows: For any fixed t0 ∈ R let x(t), t ≤ t0, be a solution to equation (2.5)
such that x(t) ∈ Xθ for t ≤ t0 and x ∈ L

γ,t0,θ∞ . Then, this solution x(t) can be rewritten in
the form

x(t) = e−(t−t0)Ap +
t0∫

−∞
G(t, τ )f (τ, x(τ ))dτ, for a.e. t ≤ t0, (2.24)

where p ∈ PnX.
With this result, we can understand that, we have a mapping from PnX to L

γ,t0,θ∞ . For
convenience in later proofs, the solution x(t) satisfies to the Lyapunov-Perron equation
(2.24) can also be denoted by x(p)(t), or x(p, t).
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Now, construction of an invariant manifold is based on a fixed point argument. A function
x ∈ L

γ,t0,θ∞ is a solution of evolution equation (2.4) if and only if x a fixed point of T . The
idea then is to prove that the map T is well defined from L

γ,t0,θ∞ × PnX, and is a strict
contraction in L

γ,t0,θ∞ , uniformly in PnX. Hence, there will be a map x : PnX → L
γ,t0,θ∞

such that T (x(y0), y0) = x(y0), for all y0 ∈ PnX, with each x(y0) solving (2.4).
We can then define a collection of surfaces

(

Mt0

)

t0∈R by

Mt0 := {

y + �t0y : y ∈ PnX
}

, (2.25)

here �t0 : PnX → QnXθ is defined by

�t0(y) =
t0∫

−∞
e−(t0−s)AQnf (s, x(y)(s))ds = Qnx(y)(t0), (2.26)

Finally, we check that
(

Mt

)

t∈R is Lipschitz, invariant and has the asymptotic complete-
ness property, so that

(

Mt

)

t∈R is the desired inertial manifold. We now fully state the
main results about the existence of an inertial manifold for mild solutions to the semi-linear
evolution equations is as follows.

Theorem 2.6 (see T.H. Nguyen [26, Theorem 3.5]) Let the operator A satisfying ASSUMP-
TION (A) and ϕ belongs to some admissible space E. Let f be ϕ-Lipschitz function such
that the function ϕ satisfying ASSUMPTION (F). Suppose that there are two successive
eigenvalues λn < λn+1 of linear operator A satisfying

kγ < 1 and
kγ M3N2λ

2θ
n ‖�1ϕ‖∞

(1 − kγ )(1 − e−α)
+ kγ < 1, (2.27)

where

kγ :=
⎧

⎨

⎩

M
(

θθN1+λθ
n+1N1+λθ

nN2

)

‖�1ϕ‖∞
1−e−α + MθθR(ϕ, θ)

(
1−θ

α(1+θ)

) 1−θ
1+θ

if 0 < θ < 1,

M(N1+N2)
1−e−α ‖�1ϕ‖∞ if θ = 0.

(2.28)
Then, integral equation (2.5) has an inertial manifold.

2.2 Regularity of the Inertial Manifolds

We now show the main result of this section, namely that the inertial manifold given in
Theorem 2.6 is of class C1 as long as the nonlinear term is of class C1 with respect to the
state of system. Correctly, we will point out that the mapping �t : PnX → QnXθ , y �→
�t(y) is of class C1.

Theorem 2.7 If f (t, ·) ∈ C1(Xθ ,X), then the inertial manifold given in Theorem 2.6 is of
class C1 and �t satisfies the Sacker’s equation

D�t(y)(−Ay + Pnf (t, y + �t(y)) + A�t(y)) = Qnf (t, y + �t(y)), (2.29)

for all y in the domain of �t . Here, D�t(y) is Fréchet differential with respect to y of
y �→ �t(y).

Proof The proof will be carried on in several steps.
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Step 1. A candidate for the differential. By the definition of inertial manifolds, we have
�t0(y) = Qnx(y, t0) and

x(y, t0) = e−(t−t0)Ay −
t0∫

−∞
e−(t−s)AG(t, s)f (s, x(y, s))ds. (2.30)

We will look for the differential of �t by first looking for the differential of x. Then, we just
note that D�t0(y) = Qn∂yx(y, t0). By differentiating (2.30) formally with respect to y, we
see that ∂yx(y) is a fixed point of T ♦(·, y) where T ♦ is given by

T ♦(�, y)(t) = e−(t−t0)Ay +
t0∫

−∞
G(t, s)f (s,�(s))ds. (2.31)

As for T , we must verify that the map T ♦ above is well defined and is a strict contraction
in �, uniformly with respect to y; this in some appropriate function space.

Denote

L
γ,t0,θ
∞,♦ :=

{

� ∈ C((−∞, t0],L(PnX,X)) : sup
t≤t0

e−γ (t0−t)‖�(t)‖L(PnX,X) <∞
}

, (2.32)

endowed with the norm

‖�‖γ,♦ := sup
t≤t0

e−γ (t0−t)‖�(t)‖L(PnX,X). (2.33)

Thanks to definition of a ϕ-Lipschitz function as in ASSUMPTION (F), we have

‖Df (t, u)‖L(Xθ ,X) ≤ ϕ(t), for all u ∈ Xθ . (2.34)

Using the admissibility of function spaces and the dichotomy estimates in (2.12)–(2.15), in
a same way as in T.H. Nguyen [26] we can see that T ♦ is well defined as a function from
L

γ,t0,θ
∞,♦ × PnX into L

γ,t0,θ
∞,♦ and is Lipschitz in � with Lipschitz constant kγ .

Since kγ < 1, we deduce that there exists a mapping � : PnX → L
γ,t0,θ
∞,♦ such that

T ♦(�(y), y) = �(y), for all y ∈ PnX. (2.35)

For simplicity, we set �(y)(t) = �(y, t), then � is our candidate for the differential of the
mapping x.
Step 2. The function � is continous. Fix y0 ∈ PnX and consider y ∈ PnX close to y0. Then
proceeding as in T.H. Nguyen [26, Theorem 3.5] we will check that

‖�(y) − �(y0)‖γ,♦ ≤ 1

1 − kγ

∥
∥
∥T ♦(�(y0), y) − T ♦(�(y0), y0)

∥
∥
∥

γ,♦ . (2.36)

Hence, for the continuity of �, we need
∥
∥
∥T ♦(�(y0), y) − T ♦(�(y0), y0)

∥
∥
∥

γ,♦ → 0 as y → y0. (2.37)

Take μ such that μ < γ , so that by Step 1 we have �(y0) ∈ L
μ,t0,θ
∞,♦ . Thus if we put

N(s, y) = ‖Df (s, x(y0, s)) − Df (s, x(y, s))‖L(Xθ ,X), (2.38)

665Regularity of the Inertial Manifolds for Evolution Equations...



we can write

∥
∥
∥T ♦(�(y0), y)(t) − T ♦(�(y0), y0)(t)

∥
∥
∥

≤ ‖�(y0)‖μ,♦M

t∫

−∞
e−λn+1(t−s)

((
θ

t − s

)θ

+ λθ
n+1

)

N(s, y)e−μ(s−t0)ds

+‖�(y0)‖μ,♦Mλθ
n

t0∫

t

e−λn(t−s)N(s, y)e−μ(s−t0)ds.

Hence,

∥
∥
∥T ♦�(y0), y) − T ♦�(y0), y0)

∥
∥
∥

γ,♦ ≤ {(

Mλθ
n + M

) ‖�(y0)‖μ,♦
}

Ñ(y),

where

Ñ(y) := sup
t≤t0

[

e(γ−λn+1)(t−t0)

t∫

−∞

((
θ

t − s

)θ

+ λθ
n+1

)

e(λn+1−μ)sN(s, y)ds

+e(γ−λn)(t−t0)

t0∫

t

e(λn−μ)sN(s, y)ds

]

.

To prove that Ñ(y) → 0 as y → y0, we argue by contradiction. Suppose that Ñ(yj ) > ε,
for some ε > 0 and some sequence {yj }j∈N in PnX with

‖yj − y0‖ → ∞ as j → ∞.

Thus, there exists a sequence {tj }j∈N, with tj ≤ t0, such that

e(γ−λn+1)(tj −t0)

tj∫

−∞

((
θ

tj − s

)θ

+ λθ
n+1

)

e(λn+1−μ)sN(s, yj )ds +

+e(γ−λn)(tj −t0)

t0∫

tj

e(λn−μ)sN(s, yj )ds

≥ ε, for all j ∈ N. (2.39)

But by (2.34), N = N(s, y) satisfies

‖N(s, y)‖L(PnX,X) ≤ 2ϕ(s), (2.40)

so that the left-hand side (“L.H.S.” for short) of (2.39) is estimated as follows
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|L.H.S. of (2.39)|

≤ 2e(γ−λn+1)(tj −t0)

tj∫

−∞

((
θ

tj − s

)θ

+ λθ
n+1

)

e(λn+1−μ)sϕ(s)ds

+2e(γ−λn)(tj −t0)

t0∫

tj

e(λn−μ)sϕ(s)ds

= 2e(γ−λn+1)(tj −t0)

⎧

⎪⎨

⎪⎩

tj∫

−∞

(
θ

tj − s

)θ

e(λn+1−μ)sϕ(s)ds +
tj∫

−∞
λθ

n+1e
(λn+1−μ)sϕ(s)ds

⎫

⎪⎬

⎪⎭

+2e(γ−λn)(tj −t0)

t0∫

tj

e(λn−μ)sϕ(s)ds.

Since tj ≤ t0, for all j ∈ N, we can therefore write

2e(γ−λn+1)(tj −t0)

⎧

⎪⎨

⎪⎩

tj∫

−∞

(
θ

tj − s

)θ

e(λn+1−μ)sϕ(s)ds +
tj∫

−∞
λθ

n+1e
(λn+1−μ)sϕ(s)ds

⎫

⎪⎬

⎪⎭

+2e(γ−λn)(tj −t0)

t0∫

tj

e(λn−μ)sϕ(s)ds

≤ 2e(γ−λn+1)(tj −t0) ×

×

⎧

⎪⎨

⎪⎩

tj∫

−∞

(
θ

tj − s

)θ

e(λn+1−μ)(s−tj )ϕ(s)ds +
tj∫

−∞
λθ

n+1e
(λn+1−μ)(s−tj )ϕ(s)ds

⎫

⎪⎬

⎪⎭

+2e(γ−λn)(tj −t0)

t0∫

tj

e(λn−μ)(s−tj )ϕ(s)ds

≤ 2e(γ−λn+1)(tj −t0) ×

×

⎧

⎪⎨

⎪⎩

tj∫

−∞

(
θ

tj − s

)θ

e(λn+1−μ)(s−tj )ϕ(s)ds +
tj∫

−∞
λθ

n+1e
(λn+1−μ)(s−tj )ϕ(s)ds

⎫

⎪⎬

⎪⎭

+2e(γ−λn)(tj −t0)

t0∫

tj

e(λn−μ)(s−tj )ϕ(s)ds

≤ 2e(γ−λn+1)(tj −t0)

{

θθN1‖�1ϕ‖∞
1 − e(λn+1−μ)

+ θθR(ϕ, θ)

(
1 − θ

(λn+1 − μ)(1 + θ)

) 1−θ
1+θ ‖�1ϕ‖∞

}

+2e(γ−λn+1)(tj −t0)
λθ

n+1N1

1 − e(λn+1−μ)
‖�1ϕ‖∞ + 2e(γ−λn)(tj −t0)

λθ
nN2

1 − e(λn−μ)
‖�1ϕ‖∞

≤ 2e(γ−μ)(tj −t0)

{
θθN1‖�1ϕ‖∞
1 − e(λn+1−μ)

+ θθR(ϕ, θ)

(
1 − θ

(λn+1 − μ)(1 + θ)

) 1−θ
1+θ ‖�1ϕ‖∞ +

+ λθ
n+1N1

1 − e(λn+1−μ)
‖�1ϕ‖∞ + λθ

nN2

1 − e(λn−μ)
‖�1ϕ‖∞

}

.
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Therefore, in view of (2.39), tj must be bounded from below since μ < γ , say

−∞ < T ≤ tj ≤ t0, for all j and for some T ≤ t0.

Then

|L.H.S. of (2.39)| ≤ e(γ−μ)(tj −t0)

tj∫

−∞

(
θ

tj − s

)θ

e−(λn+1−μ)(tj −s)N(s, yj )ds +

+λθ
n+1e

(γ−λn+1)(T −t0)

t0∫

−∞
e(λn+1−μ)sN(s, yj )ds

+e(γ−λn)(tj −t0)

t0∫

T

e(λn−μ)sN(s, yj )ds.

Hence, by a change of variable in the first integral,

|L.H.S. of (2.39)| ≤
∞∫

t0

s−θ e−(λn+1−μ)sN(tj − s, yj )ds

+λθ
n+1e

(γ−λn+1)(T −t0)

t0∫

−∞
e(λn+1−μ)sN(s, yj )ds

+
t0∫

T

e(λn+1−μ)sN(s, yj )ds. (2.41)

But, using T.H. Nguyen [26, Theorem 3.5] (in the proof of the main theorem) we have

‖x(y0, tj − s) − x(y, tj − s)‖
≤ e−γ (tj −s)‖x(y0) − x(y)‖γ,t0,θ

≤ Mλθ
n

1 − kγ

e−γ (T −s)
∥
∥Aθ(yj − y0)

∥
∥ → 0 as j → ∞, pointwise in s.

Thus N(tj − s, yj ) → 0 as j → ∞, pointwise in s ≥ t0 as well as N(s, yj ) → 0. Then
by the Lebesgue Dominated Convergence Theorem applied to the right-hand side of (2.41),
we find that

|L.H.S. of (2.39)| → 0 as j → ∞, (2.42)

which contradicts (2.39).
Therefore, Ñ(y) → 0 as ‖y−y0‖ → 0 and hence, � = �(y) is continuous as a function

from PnX into L
γ,t0,θ
∞,♦ .
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Step 3. ∂yx(y) = �(y). Consider y, h ∈ PnX. We have

x(y + h, t) − x(y, t) − �(y, t)h

=
t∫

−∞
e−(t−s)AQn

[

f (s, x(y + h, s)) − f (s, x(y, s)) − Df (s, x(y, s))�(y, s)h
]

ds +

+
t0∫

t

e−(t−s)APn

[

f (s, x(y + h, s)) − f (s, x(y, s)) − Df (s, x(y, s))�(y, s)h
]

ds.

(2.43)

Let

ρ(y, h, t) = ‖x(y + h, t) − x(y, t) − �(y, t)h‖
‖h‖ , for all y, h ∈ PnX and t ≤ t0,

r(u,w) = ‖f (t, u + w) − f (t, u) − Df (t, u)w‖
∥
∥Aθw

∥
∥

, for all u, w ∈ Xθ,

and

ϑ(y, h, t) = r
(

x(y, t), x(y + h, t) − x(y, t)
)

, for all y, h ∈ PnX, for all t ≤ t0.

Then, by adding and subtracting Df
(

s, x(y, s)(x(y + h, s) − x(y, s))
)

in the expression
between brackets in (2.43), we can estimate ρ(y, h, t) by

ρ(y, h, t)

≤ M

t∫

−∞
e−λn+1(t−s)

((
θ

t − s

)θ

+ λθ
n+1

)

ϑ(y, h, s)
‖x(y + h, s) − x(y, s)‖

‖h‖ ds

+Mλθ
n

t0∫

t

e−λn(t−s)ϑ(y, h, s)
‖x(y + h, s) − x(y, s)‖

‖h‖ ds

+M

t∫

−∞
e−λn+1(t−s)

((
θ

t − s

)θ

+ λθ
n+1

)

ϕ(s)ρ(y, h, s)ds

+Mλθ
n

t0∫

t

e−λn(t−s)ρ(y, h, s)ϕ(s)ds.

Let

ρ̃(y, h) = sup
t≤t0

{

e−γ (t0−t)ρ(y, h, t)
}

= ‖x(y + h, ·) − x(y, ·) − �(y, ·)h‖γ,θ,∞
‖h‖ , for all y, h ∈ PnX.
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Hence, from the above inequality, we find

ρ̃(y, h) ≤ ϑ̃(y, h) + ρ̃(y, h)

{ t∫

−∞
e(γ−λn+1)(t−s)

((
θ

t − s

)θ

+ λθ
n+1

)

ϕ(s)ds

+Mλθ
n

t0∫

t

e(γ−λn)(t−s)ϕ(s)ds

}

≤ ϑ̃(y, h) + kγ ρ̃(y, h),

where

ϑ̃(y, h)

:= sup
t≤t0

{

Me−γ (t0−t) ×

×
t∫

−∞

((
θ

t − s

)θ

+ λθ
n+1

)

e−λn+1(t−s)ϑ(y, h, s)
‖x(y + h, s) − x(y, s)‖

‖h‖ ds

+Mλθ
ne

−γ (t0−t)

t0∫

t

e−λn(t−s)ϑ(y, h, s)
‖x(y + h, s) − x(y, s)‖

‖h‖ ds

}

.

Thus, since kγ < 1, we obtain

ρ̃(y, h) ≤ 1

1 − kγ

ϑ̃(y, h).

As we did for Ñ = Ñ(y) in Step 2, one can prove that ϑ̃(y, h) → 0 as ‖h‖ → 0, this time
using the fact that

‖x(y + h, s) − x(y, s)‖
‖h‖ ≤ Mλθ

n

1 − kμ

e−μs,

for some μ with μ < γ .
Therefore, ρ̃(y, h) → 0 as ‖h‖ → 0, which shows that ∂yx(y) = �(y).

Step 4. �t0 ∈ C1(PnX,QnXθ). It follows directly from Step 2 and Step 3 above since
�t0(y) = Qnx(y, t0), hence

∥
∥Aθ

(

�t0(y + h) − �t0(y) − D�t0(y)
)∥
∥

‖h‖
=

∥
∥Aθ

(

Qnx(y + h, t0) − Qnx(y, t0) − Q∂yx(y, t0)h
)∥
∥

‖h‖
= ρ(y, h, t0) ≤ ρ̃(y, h) → 0 as ‖h‖ → 0, for all y ∈ PnX

where ρ(y, h, t) and ρ̃(y, h) are as in Step 3.
The theorem is proved.

2.3 Regularity of the Inertial Manifolds for Evolution Equations Involving Sectorial
Operators

This subsection will briefly describes the regularity of inertial manifolds for which the
assumptions used are more general than those in Section 2.2. More specifically, we state the
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regularity of the inertial manifold for evolution equations involving just a sectorial operator
in a general Banach space, no longer self-adjoint on a Hilbert space, nor with a compact
resolvent with a discrete spectrum.

We use the sectorial operator according to the following definition.

Definition 2.8 Let X be a Banach space. A closed and densely defined linear operator
B : X ⊃ D(B) → X is called a sectorial operator if there exist real numbers ω ∈ R,
σ ∈ (

0, π
2

)

and M ≥ 1 such that

ρ(B) ⊃ �σ (ω) :=
{

z ∈ C : | arg(z − ω)| < σ + π

2
, z �= ω

}

, (2.44)

‖R(λ,B)‖ ≤ M

|λ − ω| , for all λ ∈ �σ (ω). (2.45)

We only consider the class of sectorial operators satisfying the following conditions.

Assumption (SO) The linear operator A is a closed linear operator on a Banach space X

such that −A is a sectorial operator and the spectrum σ(−A) of −A can be decomposed
as

σ(−A) = σu(−A) ∪ σc(−A) ⊂ C−
with σc(−A) compact, and ωu < ωc < ω < 0, where

ωu := sup{Reλ : λ ∈ σu(−A)}, ωc := inf{Reλ : λ ∈ σc(−A)} (2.46)

Sectorial operators that satisfy ASSUMPTION (SO) appear, for example, in ecological
models. For example, in the paper T.H. Nguyen and X.-Q. Bui [28] we showed in detail that
a competition model with cross-diffusion with the Neumann boundary condition contains
such a sectorial operator.

ASSUMPTION (SO) allows us to choose real numbers κ and μ such that

ωu < κ < μ < ωc < 0. (2.47)

In this case, we will use the Riesz projection P corresponding to σc(−A) defined by the
formula

P = 1

2πi

∫

�+
R(λ, −A)dλ, (2.48)

where �+ is a closed regular curve contained in ρ(−A), surrounding σc(−A) and positively
oriented.

Consider the evolution equation (2.4) with the linear part satisfying ASSUMPTION (SO)
and the nonlinear term satisfying ASSUMPTION (F). Recently, T.H. Nguyen and X.-Q. Bui
[28, Theorem 3.5] has established a sufficient condition for the existence of an inertial
manifold which can be shortened, inertial manifolds exist if the following two conditions are
satisfied: First, spectral gap μ − κ is sufficiently large, and secondly, the norm ‖�1ϕ‖∞ =
supt∈R

∫ t

t−1 ϕ(τ)dτ is sufficiently small.
Similar to the proof of Theorem 2.7, we obtain the following result :

Theorem 2.9 Consider the evolution equation (2.4) under the conditions that the linear
partial differential operator −A is a sectorial operator on the Banach space X, has a
spectral gap satisfying ASSUMPTION (SO), and the nonlinear term satisfies a ϕ-Lipschitz
condition for some ϕ satisfying (2.8) and satisfies ASSUMPTION (F). If f (t, ·) is C1, then
the inertial manifolds given by T.H. Nguyen and X.-Q. Bui [28, Theorem 3.5] is of class C1.
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3 Finite-Dimensional Feedback Control via Inertial Manifold Theory

3.1 The Open-Loop System

We first start with the following nonlinear one-dimensional reaction-diffusion equation with
zero Dirichlet boundary condition and distributed observation and control

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(t,x)
∂t

= �u(t, x) + f (t, u(t, x)) +
I−1∑

i=1
gi(t, y)ψi(x), t > s, 0 < x < π,

y(t) = (yi(t))
J−1
j=1 = (u(t, xj ))

J−1
j=1 , t ≥ s,

u(t, 0) = u(t, π) = 0, t > s,

u(s, x) = us(x), 0 ≤ x ≤ π,

(3.1)

where u = u(t, x) is the state variable, for x ∈ � := (0, π), y is the observation, g = (gi)i
is the control, f is a nonlinear term, and I, J ∈ N. The functions ψi are called the actuators
and are assumed to lie in the Sobolev space H 1

0 (�), while the points xj are distinct points
in � called the obervation points and assumed to increase with j . We further assume that
we are given another set of points {x̃i}Ii=1, with

0 = x̃0 < . . . < x̃i < x̃i+1 < . . . < x̃I = π,

and that ψi , for i = 1, . . . , I − 1, is given more precisely by

ψi(x) =

⎧

⎪⎨

⎪⎩

x−x̃i−1

h̃i
, x ∈ [x̃i−1, x̃i ),

x̃i+1−x

h̃i+1
, x ∈ [x̃i , x̃i+1),

0, otherwise,

(3.2)

where h̃i = x̃i − x̃i−1. Set also

hj = xj − xj−1, h = max
j

{hj }, h̃ = max
i

{

h̃i

}

. (3.3)

We consider this equation in the phase space X = H 1
0 (�) endowed with the norm

‖u‖ = |Du|, for u ∈ X, where | · | denotes the usual L2-norm on � and Du denotes the
derivative of u. We also denote by ((·, ·)) and (·, ·) the corresponding inner-products in X

and L2(�), respectively. We consider the linear operator A := −� on the domain D(A) :=
{

u ∈ H 2(�) ∩ H 1
0 (�) : Au ∈ H 1

0 (�)
}

. We have that the linear operator A is a self-adjoint
operator with eigenvalues given by {λn = n2}n∈N and eigenfunctions {en = sin(nx)}n∈N.
Moreover, we have θ = 0, Xθ = H 1

0 (�), and the dichotomy constant in the Proposition 2.4
is M = 1, and constants in the Proposition 2.3 are N1 = N2 = 1.

Now, let Z1 and Z2 be two finite-dimensional Hilbert spaces satisfying Z1 �
R

I−1, Z2 � R
J−1 and endowed with the norms

‖g‖2
Z1

=
I−1
∑

i=1

∣
∣
∣
∣

gi − gi−1

hi

∣
∣
∣
∣

2

h̃i , for g ∈ Z1, (3.4)

‖y‖2
Z2

=
J−1
∑

j=1

∣
∣
∣
∣

yj − yj−1

hj

∣
∣
∣
∣

2

hj , for y ∈ Z2. (3.5)
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We define two bounded linear operators

B : Z1 → X by Bg =
I−1
∑

i=1

giψi(x), for g = (gi)
I−1
i=1 ∈ Z1, (3.6)

C : X → Z2 by Cu = ((Cu)j )
J−1
j=1 = (u(xj ))

J−1
j=1 , for u ∈ X. (3.7)

It is known in [32] that with a large number of properly located actuators and observa-
tion points, the operators B and C have respectively right and left inverses on appropriate
spectral spaces of the operator A. The result is exactly stated as follows:

Lemma 3.1 For m and n are two arbitrary natural numbers, we have the following
estimates for the operators B and C

∥
∥
∥(CPm)−1

�

∥
∥
∥
L(Z2,X)

≤
√

2

1 − 2h2λm

, (3.8)

∥
∥
∥(PnB)−1

r

∥
∥
∥
L(PnX,Z1)

≤
√

1

1 − 4h̃2λn

, (3.9)

where Pm, Pn denote the spectral projectors associated with the first m, n eigenvalues of A,
respectively.

It is not very difficult to show that

‖B‖L(Z1,X) = 1 and ‖C‖L(X,Z2) = 1. (3.10)

We can now rewrite the control problem (3.1) in the Sobolev space X = H 1
0 (�) in the

form
{

du
dt

+ Au = f (t, u) + Bg,

y = Cu.
(3.11)

In the next subsection, we will construct a feedback control g = g(t, y) as a function of
both the time t and the observation y so that the closed-loop system behaves in a certain
desired way.

3.2 The Finite-Dimensional Feedback Controller

Consider a nonlinear mapping W : R × Pn0X → Pn0X satisfying the following conditions

‖W(t, u) − W(t, v)‖ ≤ ψ1(t)‖u − v‖, for all u, v ∈ Pn0X, (3.12)

‖DW(t, u) − DW(t, v)‖L(X) ≤ ψ2(t)‖u − v‖ν, for all u, v ∈ Pn0X, (3.13)

for some positive valued functions ψi(t), i = 1, 2, belonging to an admissible space, for ν

as in (2.9), and the finite-dimensional non-autonomous ordinary differential equation

dz(t)

dt
= W(t, z(t)), (3.14)

where n0 ∈ N is fixed. We look forward that the desired dynamics for the system (3.11) will
be determined by system (3.14). Consider m and n arbitrary such that

m ≥ n > n∗, (3.15)
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where n∗ ∈ N such that Theorem 2.6 is satisfied. This means that Theorem 2.6 holds for
λn∗ and λn∗+1. Choose the xj and the x̃i such that

h̃ ≤
√

3

4λ
1/2
n

and h ≤ 1

2λ
1/2
m

. (3.16)

Then, it implies that
√

1

1 − 4h̃λn

≤ 2 and

√

2

1 − 2hλm

≤ 2. (3.17)

We now construct a feedback control g : R × Z2 → Z1 as follows

g(t, y) = (PnB)−1
r

[

APn0(CPm)−1
� y + W

(

t, Pn0(CPm)−1
� y

)

− Pnf
(

t, (CPm)−1
� y

)]

,

(3.18)
for all y ∈ Z2 and t ∈ R. Thanks to Lemma 3.1, we have g is a globally Lipschitz function
with

Lipϕ(g) ≤
∥
∥
∥(PnB)−1

r

∥
∥
∥
L(PnX,Z1)

∥
∥
∥(CPm)−1

�

∥
∥
∥
L(Z2,X)

(‖APn0‖L(X) + Lipϕ(W) + Lipϕ(f )
)

≤
√

1

1 − 4h̃λn

√

2

1 − 2hλm

(

λn0 + ψ1(t) + ϕ1(t)
)

≤ 4
(

λn0 + ψ1(t) + ϕ1(t)
)

.

Thus

Lipϕ(g) ≤ ξ(t), where ξ(t) := 4
(

λn0 + ψ(t) + ϕ(t)
)

, for all t ∈ R. (3.19)

With g given by (3.18), (3.11) becomes in the closed-loop form

du

dt
+ Au = f (t, u) + Bg(t, Cu). (3.20)

We shall also consider the following auxiliary evolution equation

dv

dt
+ Av = Pmf (t, Pmv) + PmBg(t, CPmv). (3.21)

Note that the nonlinear term of both the equations above have Lipschitz coefficient less than
or equal to η(t) := ϕ1(t)+ξ(t), for t ∈ R. We want that, under the suitable conditions, there
will be inertial manifolds for evolution equations (3.20) and (3.21). Applying Theorem 2.6,
with θ = 0, for the evolution equations (3.20) and (3.21), we obtain that, if n∗ is large
enough and the norm ‖�1η‖∞ = supt∈R

∫ t

t−1 η(τ)dτ is sufficiently small, then there exist
inertial manifolds M = (

Mt

)

t∈R and N = (

Nt

)

t∈R, respectively for (3.20) and (3.21).
In more detail, the inertial manifold for the evolution equation (3.20) is

M = (

Mt

)

t∈R, where Mt = {p + �t(p) : p ∈ PnX}, (3.22)

here �t : PnX → QnX, defined by �t0(p) := Qnx(p)(t0) where x(p) is the unique

solution in L
γ,t0,θ∞ to the equation (2.5) satisfying that Pnx(p)(t0) = p. Similarly,

N = (

Nt

)

t∈R, where Nt = {p + �t(p) : p ∈ PnX}, here �t : PnX → QnX (3.23)

is the inertial manifold for the auxiliary evolution equation (3.21).

674 Thieu Huy Nguyen, Xuan-Quang Bui and Duc Thuan Do



When the two evolution equations (3.20) and (3.21) have their inertial manifolds, the
corresponding inertial forms on PnX are

dp

dt
+ Ap = Pnf (t, p + �t(p)) + PnBg(t, C(p + �t(p))), (3.24)

and
dρ

dt
+ Aρ = Pnf (t, Pm(ρ + �t(ρ))) + PnBg(t, CPm(ρ + �t(ρ))). (3.25)

Note that
dρ

dt
+ A(Pn − Pn0)ρ

= −APn0ρ + Pnf (t, Pm(ρ + �t(ρ)))

+PnB(PnB)−1
r

[

APn0(CPm)−1
� CPm(ρ + �t(ρ))

+W
(

t, Pn0(CPm)−1
� CPm(ρ + �t(ρ))

)

− Pnf
(

t, (CPm)−1
� CPm(ρ + �t(ρ)

)]

= −APn0ρ + Pnf
(

t, Pm(ρ + �t(ρ))
)

+
[

APn0Pm(ρ + �t(ρ)) + W
(

t, Pn0Pm(ρ + �t(ρ))
)

− Pnf
(

t, Pm(ρ + �t(ρ))
)]

= W(t, Pn0ρ).

Thus, the inertial form for (3.21) reads

dρ

dt
+ A(Pn − Pn0)ρ = W(t, Pn0ρ), (3.26)

and can be split for ρ = ρ1 + ρ2, where ρ1 ∈ Pn0X, ρ2 ∈ (Pn − Pn0)X as
{

dρ1
dt

= W(t, ρ1),
dρ2
dt

+ A(Pn − Pn0)ρ2 = 0.
(3.27)

The system (3.27) above is now decoupled with

ρ2(t) = e−(t−s)A(Pn−Pn0 )ρ2(s) = O
(

e−(n0+1)2(t−s)
)

, as t → ∞.

Hence, the long-time dynamics of the inertial form and, hence, of the auxiliary equation
(3.21) is given by the system dρ1(t)

dt
= W(t, ρ1).

Concerning the inertial form (3.24), we can write it as

dp

dt
+ A(Pn − Pn0)p = W(t, Pn0p) + ε(t, p), (3.28)

where ε(t, p) is regarded as an error term given by

ε(t, p) = Pnf (t, p + �t(p)) + PnBg(t, C(p + �t(p)))

−Pnf (t, p + Pm�t(p)) − PnBg(t, C(p + Pm�t(p))).

Note that

‖ε(t, p)‖ ≤ (ϕ1(t) + ξ(t)) ‖�t(p) − Pm�t(p)‖
= (ϕ1(t) + ξ(t)) ‖�t(p) − �t(p)‖ , (3.29)

where the equality follows because �t(p) already lies in PmX, which is not difficult to see.
Thus, Lipϕ(ε) = ϕ1(t) + ξ(t) := η(t).
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We expect that, for each t ∈ R, the error term ε(t, p) and Dε(t, p) are small quantities in
the sense that the norms ‖ε(t, p)‖ and ‖Dε(t, p)‖L(PnX) converge to zero as m approaches
infinity for each fixed t , where p ∈ PnX and m, n as in (3.15). For convenience, we put

F(t, u) := f (t, u) + Bg(t, Cu), for u ∈ X and t ∈ R.

For a fixed t0 ∈ R, let us estimate
∥
∥�t0(p) − �t0(p)

∥
∥. We have �t0(p) = Qnx(p)(t0),

�t0(p) = Qnx̃(p)(t0), for t ≤ t0, for the solution x(p) is defined as fixed point of the map
T as in (2.23) with f replaced by F , and similar for x̃(p), x̃(p) is a fixed point of T̃ as in
(2.23) with f replaced by PnF(s, Pnx(s)).

For the derivative of error term, ‖Dε(t, p)‖L(PnX), we have

Dε(t, p)

= PnDF(t, p + �t(p))(IPnX + D�t(p)) − PnDF(p + Pn�t (p))(IPnX + PnD�t(p)),

= Pn

[

DF(t, p + �t(p)) − DF(t, p + �t(p))
]

(IPnX + D�t(p))

+PnDF(t, p + �t(p))
(

D�t(p) − D�t(p)
)

.

Hence

‖Dε(t, p)‖L(PnX) ≤ (1 + Lipϕ(�t )) ‖DF(t, p + �t(p)) − DF(t, p + �t(p))‖L(X) +
+η(t) ‖D�t(p) − Dt�t (p)‖L(PnX,QnX) .

In the first term, the norm ‖DF(t, p + �t(p)) − DF(t, p + �t(p))‖L(X) , for each t ∈
R, satisfies the estimate O

(

1
λ

ν/2
n

)

as n → ∞.

In the second term, to estimate the norm ‖D�t(p) − D�t(p)‖L(PnX,X) , we use the
fixed point technique. We have D�t(p) = Qn∂px(p), and D�t(p) = Qn∂p x̃(p) and
consider the fixed points ∂px(p) = T ♦(∂px(p), p), and ∂p x̃(p) = T̃ ♦(∂p x̃(p), p), where

T ♦(�, p) = e−(t−t0)Ap −
t0∫

−∞
e−(t−s)AG(t, s)DF(s, x(p(s)))�(s)ds,

T̃ ♦(�, p) = e−(t−t0)Ap −
t0∫

−∞
e−(t−s)AG(t, s)DF̃

(

s, x̃(p(s))
)

�(s)ds,

for � ∈ L
γ,t0,θ
∞,♦ .

By using dichotomy estimates and admissibility of function spaces we can obtain

‖ε(t, p)‖ ≤ η(t)

λ
1/2
m

(c1 + c2‖p‖), for all p ∈ PnX, (3.30)

‖Dε(t, p)‖L(PnX) ≤ η(t)

(

c3

λ
1/2
m

+ c4

λ
ν/2
m

)

, for all p ∈ PnX, (3.31)

where the ci’s are constant such that

ci = ci (n0, n, ‖�1ϕ‖∞, ‖�1ψ1‖∞) , for i = 1, 2, 3,

c4 = c4 (n0, n, ‖�1ϕ2‖∞, ‖�1ψ2‖∞, ν) .

Thus for each t ∈ R, we have ‖ε(t, p)‖ → 0 and ‖Dε(t, p)‖L(PnX) → 0 as m → ∞.
We will summarize the above events in the following main results:
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Theorem 3.2 Consider the open-loop system (3.1). Let a non-autonomous ordinary differ-
ential equation (3.14) be given with n0 ∈ N and W satisfying (3.12) and (3.13). Suppose
that n∗ is the natural number that the conditions in the Theorem 2.6 satisfied with λn∗ and
λn∗+1, and conditions (3.15) and (3.16) hold.

If a feedback law g = g(t, y) is given by (3.18), then the closed-loop equation (3.20) has
an inertial manifold whose inertial form (3.28) is close to (3.26), which has essentially the
same dynamics as (3.14), in a weighted metric for the vector fields as estimated in (3.30)
and (3.31).

Similar to the work R. Rosa and R. Temam [32], we state the following result about
structural stability of the dynamical systems.

Theorem 3.3 Assume the hypotheses in Theorem 3.2 hold and the nonlinear funtion W

satisfies condition, for some r0 > 0,

((W(t, z), z)) ≤ −α‖z‖, for all ‖z‖ ≥ r0, and for some α > 0,

and that the flow induced by dz
dt

= W(t, z) for z restricted to the ball

Bn0
r0

:= {z ∈ Pn0X : ‖z‖ ≤ r0}
is structurally stable.

If feedback law g = g(t, y) is given by (3.18) with m chosen large enough, then the long-
time dynamics of the inertial form (3.28) of the closed-loop equation (3.20) is contained in
the ball Bn

r0
= {p ∈ PnX : ‖p‖ ≤ r0} and the corresponding flow restricted to this ball Bn

r0
is topologically equivalent to the flow given by 3.26, so that the dynamics of the closed-loop
system is essentially that of dz

dt
= W(t, z).
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