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Abstract

Using the averaging theory of second order, we study the limit cycles which bifurcate from a
zero-Hopf equilibrium point of polynomial vector fields with cubic nonlinearities in R”. We
prove that there are at least 3"~ limit cycles bifurcating from such zero-Hopf equilibrium
points. Moreover, we provide an example in dimension 6 showing that this number of limit
cycles is reached.
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1 Introduction and Statement of the Main Result

Our goal is to study the limit cycles that bifurcate from a zero-Hopf equilibrium of
polynomial differential systems in R” with cubic nonlinearities by using the averaging
theory.

In [5], the authors studied the Hopf bifurcation in dimension n > 2, by using the first-
order averaging method. They proved that at least 2”3 limit cycles can bifurcate from one
singularity with eigenvalues £bi and n — 2 zeros, i.e., from a zero-Hopf equilibrium of R".
They proved for the first time that the number of bifurcated limit cycles in a Hopf bifurcation
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can grow exponentially with the dimension of the system. For a general information about
Hopf bifurcations, see [7].

In [2], the authors studied the occurrence of the limit cycles bifurcating from the origin
of a differential system with cubic homogeneous nonlinearities in R*. The authors proved
that there are at most 9 = 3*~2 limit cycles.

In this paper, we investigate the limit cycles bifurcating in a zero-Hopf bifurcation at the
origin of coordinates of the following cubic polynomial differential systems in R":

2
. . o .
i = (a1e + a2e?)x — (b + bie + bye?)y + Zef Z Ajiynig X1 Y225 g,
J=0 ir+.Fig=3
2

y = (b+bie +breP)x + (a16 + a2e?)y + Ze-/ Z bj,,'l,,___,,'nx"‘y"zzg3 g,
J=0 i1+ +ip=3

2
dom et PPt Y Y S
J=0  ijt.tin=3
ey
where k =3, ..., n.
Our main result is the following:

Theorem 1 Consider the differential systems (1) in R" with n > 2. Applying to these
systems the averaging theory of second order, they can exhibit at least 32 bifurcating from
the zero-Hopf equilibrium point localized at the origin of coordinates when ¢ = 0.

In the next corollary, we provide a differential system (1) in R® exhibiting the maximum
number of limit cycles stated in Theorem 1.

Corollary 2 Consider the polynomial differential system:

1.2 1.3
58°X —y — 5x7,

y=x+ %82))—1— ixzy -y,
73 = 3e2(z+x%y) — 123,
d= —&2u+ ju’,

Zs = 3e%v — §v3,

Z6 = }Tazw — w3 Fe(—v3 + 23+ ).

It has 81 limit cycles bifurcating from the zero—Hopf equilibrium localized at the origin of
coordinates when ¢ = 0.

2 The Averaging Theory of First and Second Order

The aim of this section is to present the averaging theory of first and second order as it was
developed in [1, 3, 4]. The following result is Theorem 4.2 of [1].

Theorem 3 We consider the following differential system:

(1) = eFi(t, x) + 2 Fa(t, x) + £ R(2, x, €), )
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where Fi, Fo : Rx D — R", R : R x D x (—¢&y,e5) — R" are continuous functions,
T -periodic in the first variable, and D is an open subset of R". Assume that the following
hypotheses (i) and (ii) hold. We assume:

(i)  Fi1, F>, R are locally Lipschitz with respect to x, Fi(t,.) € C! (D) forallt € R, and
R is differentiable with respect to e. We define fi, fo: D —> R" as:

1 T
A= = / Fi(s. 2)ds,

1 Or s 3)
H@) = ?/0 |:DzF1 (s, Z)/O Fi(t,2)dt + Fz(s,Z)] ds.

(i) For V C D an open and bounded set and for each € € (—&y, e5) \ {0}, there exists
a € V such that fi(a) +dg(fi +¢f>, V,a) #0.

Then, for |e| > O sufficiently small, there exists a T -periodic solution ¢(-, €) of the system
(4) such that ¢ (0, €) — a when ¢ — 0.

Where dp(f1 + €f2, V, 0) denotes the Brouwer degree of the function fi + £f> in the
neighborhood V' of zero. It is known that if the function fi + ef; is C!, then it is sufficient
to check that det(D(f1 + €f2(ar))) # 0 in order to have that dg(f1 + ¢f>, V,0) # 0, for
more details: see [6].

For additional information on the averaging theory, see the books [8, 10].

3 Proof of Theorem 1

We consider the polynomial differential system (1) with cubic nonlinearities in R”. By doing
the scaling (x, y,23...,2,) = (X, €Y, eZ3...,eZ,), system (1) becomes:

2
X = (a6 + @)X — (b+bie + bre?)Y + - > elaji i,y z Lzl
j=0
2

V= (0+biet+bed)X +@et+ae)Y + -3 el 3o e by XNYRZE L7 4)
j=0  ij4..4ip=3
2
Zr= (e + P zi + DI DI ) LxXhYRZ Lz,
j=0 i +..+ip=3

for k = 3,...,n. Since we have i + ...+ i, = 3, then /1T = &3 We write system
(4) as:

2
X = (aie+me)X — (b+bie+bpe)Y +2> el Y aji L, XY2ZY .z,

=0 i+..Ain=3
2

Y= (b+bie+be))X + (e +ae®)Y +62 Y el Y by i, XY2ZE . Zh,
Jj=0  ii4.+i=3
2
: L . . . o :
Zr= (Ve + Nz +2Yy el Y M) xhyRz Lz,
Jj=0 ii+..4ip=3

&)
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for k = 3,...,n. We pass now to the cylindric coordinates (X,Y, Z3,...,Z,) =
(pcosB, psind, n3, ..., n,), system (5) becomes:

2
p = ape+ 82(0059 Zsj Z ajiy....i, (0 €OS G)i‘ (p sin@)"zng3 . n,’;”
j=0 i1+ +ip=3

2
+ sinf Zej Z bji...i,(pcos 6)h (p sirl@)’én;3 ...nﬁ,” + a2p>,
j=0 i1+ +in=3

2
6 = l <bp + bipe + g2 cos 0 Z Y Z bji....i, (pcos 6)1 (p sin 9)’A2n§3 ... ni{'
p Jj=0  ii4..4ip=3
2
— siné Zsj Z ajiy....in(pcoOsO)1(psing)™> n? o b2>,
J=0 it tin=3
2
M = cik)ank + 82< el Z Cﬁ'l,ci)l,...,in (pcos0)1(p sin@)’lzng3 ... nf; + cék)nk), (6)
=0 iit..tin=3

for k = 3,...,n. We take 6 as the new independent variable in the neighborhood of

(0,23, s 20) = (0, 0, ..., 0), and system (6) writes:

dp eay g2 . . o .
7 7,0 + > cos @ Z a,iy,....i, (0 c0s0)' (p 51r19)’277'33 Ly
i1+ Fin=3
. o . b
+sin0 Y by, (pcos®) (psing)2n% .yl +azp — “‘T‘) +0@),

it tin =3
(k) 2 (k)
dny ec & ; . S . ¢ by
ik _ 2 me+ 5 ( E ) i, (pcos®) (psin®) 203 ... + cgk)nk - 7lb + 0(%),

4o b PRI
i+ Ain =3

where k =3, ...,n.
By using the notation of Theorem 3, i.e.:

x=z=(0,0,13, -1,
t =20,

Fi(t,x) = (F110, 0,13, ..., 1)y F120, 0,13, ..., 1), F130, 0,13, oo )y o+ F10 (0, 0,13, .., ),

Fa(t,x) = (F21(0, 0,13, -+ s M)y F22(0, 0,03, -+ s )5 F23(0, 0,135 -+ s )y ooy F20(0, 0,13, -0 1)),
T = 2m,

where:
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o a 653) gn)
1= b P, b n3, " Mn
1 . L .
F, = | =(cos6 ao i, ...i (pcos0)(psinf)2ny ... pin
b 3l]seesln 3 n
ir+...4+ip=3
. ; iy i arby
+ sinf Z bo,ij,....i, (pcos0)1(p sm9)’277’33 St 4 ap — T),
i+ 4ip=3
3)
1 3 . . P . 3 C b]
HOX ooty puintyf e~ E)
i+ +ip=3
(n)
1 . . L . c; by
z( D i, (Peos®) (psin)2nl iy 4y — L )
i14...+i,=3

where k =3, ...,n.
We calculate the averaged function of the first order:

1 2
filp,mz, ..o ) = 7/0 Fi0,p,n3,...,1,)d6,

2
and we get:
ap
B
5 3
Silp.nz, ...omn) = ' :
an)
b Tn

The unique solution of f1(p, n3,...,n,) = (0,0, ...,0) with respect to p, 3, ..., 1, is
o,n3,...,0,) = (0,0, ...,0). Then, the averaging theory of the first order can not provide
information about the existence of the periodic solutions. To pass to the second order, we
make the first averaged function identically null: i.e., we take a; = cik) = 0 for k =

3,...,n.
We calculate the averaged function of the second order using the formula (3). We get:

1 2
f2(P»U37~~-aUn)=7/ F2(9,,0”73,-~~’77n)d9,
TJ o

because F1(0, o, n3,...,n,) = (0,0, ...,0), where:

1 2w . . . .
farlo,m3, ... ) = Tnbf (cos@ E ag,iy,....i, (p c0s0)" (p sin )23 ...y
0 . !
i1+...+in=3

+sing Y by, (peos®) (o sing)2y .. .n +a2p)d0

i1+..+ip=3

1
= —1,

2wh

[ ® W i i i )

S, 350 m) = 26 ) o Z Coviy.nin (P COSOY (pSING) 203 oy 4 ¢y i |dO
i1t +in=3

T T
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where k = 3, ..., n, and

2
3 242 4 . 4
I :/ [P ((a0,1,2,0..,0 +b0,2,1,0,.,0) c0s™0sin” 6 + ao,3,0,..0 08" 6 + bo,0,3,0,..0 sIn" 6)
0

+ P( > @010y, c05” ons iy + > boo.1ii, sin? 05 .l +a2>]d9

it in=2 it in =2
1
= z7(@.120.0+ b0.2.1.,0...0 + 3(a0,3,0,..0 + b0,0.3.0...0)P°
" 7T<2a2 D a0n0na s Y boo L, n?-ﬂfi’)ﬂ,
i1+ =2 it in=2
e & 2 9pi3 pi *)
1
= / |:p ( D 0200y O ONT A D g, 1 S 0)
0 i3+.tin=1 i
k
+ Z C(()())013 z,,’h y +C§)nk]d9
i3 tin=3
_ 2 (k) i aoi
- 7T<p ( Z CO,Z,O,i3..,i,, 773 UM + Z CO 0 2,i3,. 7’]3 -1, >
i3+ =1 i3+ =1
(k)
+2 Z COOO!; t,n3 nn +C2 nk)
i3+.+ip=3
where k = 3, ..., n. Then, the averaged function of the second order is:

p
1= A [86124—(&0120, 04+b02.10..0+3(a03.0...0 +b0.05.0..0) 0>

i3 i i3 i
+ > a0y > Bo0 s ~-77i,”],
i1+...+ip=2 i1+ +ip=2

1/, (k) in (k)
fm (P it X At

i3+~-+izz=l i3+~-+in_1

(k)
+2 Z €0,0,0,i3.. zn’73 ny +C2 ’7k>
i3+ tin=3

wherek =3,...,n
Now, we solve the system of the averaged functions of the second order with respect to
0, N3, ..., Ny, First, we isolate the expression of p2 from f>; = 0, and we obtain:

P P
8ay + Z a0,1,0,i3..i M3 -1y + Z b0.,0,1,i3..i M3 115

2 i1otin =2 i1 i =2

ap,1,2,0,..,0 + bo,2,1,0,..,0 + 3(ao,3,0,..,0 + b0,0,3,0,..,0)

After we substitute the expression of p? in for = 0 for k = 3, ..., n. By using the Bezout
Theorem (see [9]), we obtain that these functions admit at most 3”2 real zeros (p*, n,f)
fork = 1,...,3" 2. Since the coefficients of the system f>; = 0 are independent, we can
take these 3”2 real zeros with the coordinate o positive. Therefore, going back through
the changes of coordinates, these zeros provide at least 3”2 periodic solutions bifurcating
from the zero-Hopf equilibrium at the origin of coordinates. Note that since the number of
zeros are the maximum number provided by the Bezout Theorem, the determinants:
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det a(f21, far)
a(p, Mk)

(p,nk)=(p*,n,§)>

are non-zero fork = 1,...,3" 2,
This completes the proof of Theorem 1.

4 Proof of Corollary 2

We consider the cubic polynomial differential system (2). By doing the scaling, pass-
ing to the cylindrical coordinates (p cos 6, p sin6, n3, n4, 15, ) and taking 8 as the new
independent variable, we get that the functions F; (0, p, n3, 14,15, n6) for j = 1,...,5
are:

F21(0, p. 13, 04, M5, M6) = —%p(p2(6c0894 —7cos6? +2) — 1),
F» (0, p, 13, 14, 15, N6) = —%773(2773 -9),

F23(0, p, 13, 14, 15, 16) = %m(ni -3),

F24(0, p, 13, 14, 15, 116) = —éns(%? -9),

1
F>s5(0, p, 13, m4, 15, 16) = —1g + 276

We integrate these last functions from 0 to 27, and we get the averaged functions of the
second order f2(0, n3, N4, N5, n6) = faj for j =0,...,5

1 2
= —gp(3,0 —4),
1 2
f2 = —8773(2773 -9,

23

L2 —3)
3774 N4 )

1 2
fa = —8775(2775 -9,

1
frs = —1%(477% - 1.

We solve the system of the averaged functions of the second order
(a1, f22, /23, f24. f25) = (0,0,0,0,0) with respect to p, 13, 74, 5 and ng, we get 81
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solutionsz,-:(pl.*,nl.j*)withp;‘ >0fori=1,...,8land j =3,...,6

z1 = (24/3,0,0,0,0),
23 = (5+/3,0,0, 32,0,
25 = (34/3,0,=+/3,0,0),

27 = (33,0, =3, 342,0),
29 = (5+/3.0, V3, -342,0),
Z

|
NI

= (%ﬁ, v2,0,0,0),
213 = (3+/3, —3+7/2,0, 342, 0),
215 = (%Ji—%fz, 0, —3v2,0),
217 = (3¢/3, —37/2,+/3,0,0),
219 = (3+/3, =372, —+/3,0,0),
221 = (%ﬁ, —3v2,4/3,34/2,0),
23 = (gﬁ, %{2, ﬁ,—%@ 0),
225 = (j\/g» —'Q\/E, V3, —jﬁ, 0),
227 = (343, =372, —/3, =342,0),
229 = (5+/3,0,0,0, 1),
231 = (%f& 0,0,-3v2, ),
233 = (3+/3,0,0, —3v2, — 1),
235 = (3+/3.0, —+/3,0, ),
237 = é\/ﬁ, 0,—+/3,0,— 1),
739 = (%x@, 0,—/3,3v2, 1),
241 = (34/3,0, -3, =32, ),
3 = (3+/3,0,—v3,3v2, - D),
245 = (%\@, 0,;«5, —%\1[2 -,
247 = (34/3,-34/2,0,0, 1),
240 = (34/3, —3+/2,0,0, = 1),
ts1 = V3 —3v2.0.3v2. 1),
253 = (33, —37/2,0, —3v2, 1),
55 = (%\/5, —%ﬁ, 0, %\[2 —%)1,
57 = (g\/g, —gﬁ, 0, -3 ]27 —j),
759 = (gx/gs —Q\fZ, \/:7’, 0, j),
261 = (3+/3, =372, /3,0, 1),
263 = (34/3. —37/2,/3,0, - 1),
765 = (%ﬁ,—%ﬁ, —«/i, 0, —1%),
21 = (333, —3v2,/3,3V2, D),
269 = (%\@ %\3@ V3, —%\36, %)l,
71 = (g\@, —Q«/E, V3, —j«/i 5),
773 = (%\/g, _éﬁ’ —«/§3, —%«/El )
275 = (g\/g, —j\/i, V3, j\/i, _j),
77 = (3/3.3v2, 43, -3v2, - 1),
279 = (33, —3v2, V3. —3V2, - D),
z81 = (33, =372, -3, -3V2, -4

The determinants
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22 =(34/3,0,0,342,0),
24 = (34/3,0,+/3,0,0),

26 = (34/3,0,/3,24/2,0),
25 = (3.0.43, -3, 0),

z10 = (3+/3,3+/2,0,0,0),

212 = (%\@, 34/2,0,3+/2,0),

214 = (3+/3,3+/2,0, —=3v2,0),

216 = (3+/3,37/2,+/3,0,0),

218 = (34/3, 3+/2, /3,0, 0),

220 = (3+/3. 372, /3, 34/2,0),

22 = (%\/g, 332, —/3,342,0),
24 = (33, -3V2, V3, 3V2,0),
26 = (534/3.3v2, V3, —37/2,0),
228 = (54/3,0,0,0, 1),

230 = (34/3,0,0, 342, 1),

2 = %fa, 0,0,3v2, -1,

234 = (34/3,0,4/3,0, 1),

236 = (% 3,0,4/3,0, 1),

233 = (3+/3.0,4/3,3v2, ),

240 = (5+/3.0,4/3,-3v2, 1),

0 = (34/3,0,43,3v2, - 1),

244 = (543,043, -3V2, - 1),
246 = (%ﬁ, %fz, 0,0, %)i

43 = (gﬁ, 3+/2,0,0, ).

250 = (g\/gv %\/Qv 03 %'\3/53 é)v

52 = (j\/g, j\fz, 0, —Qﬁ, %),

zs4 = (34/3,537/2,0,3v2, - 1),
z56=(§f3,§f2,0,—% 12,—%),
758 = (g\/i %ﬁ’ V3,0, 7)1,

260 = (33/3, 32, —/3,0, %),

262 = (5v/3,372,4/3,0, =),

264 = (343,372, —/3,0, - 1),
266 = (%«/?, 3V2.4/3.3v2,5),
268 = (343,372, -3, 32, 1),
270 = (33, =372, —V/3,3V2. 1),
= (%\[3, %\[2 —\/3:, —%ﬁf .
274 = (333, 3v2, V3,32, - 1),
276 = (%\/g, 32, =332, - 1),
a8 = (5333, =332, =3, 3V2, - ).
280 = (3+/3.3v2, V3, =332, - ),
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(21, f22, 23, f24)
(o, n7) (e.n))=(p¥.n}™)

evaluated at the zeros are given by 19—6, —%, %, —%, —% and 9. All of these determinants are

non-zero. So there are 81 limit cycles bifurcating from the zero Hopf-equilibrium localized
at the origin of coordinates.

det

5 Conclusion

Using the averaging theory of the second order, we show that the number of the limit cycles
bifurcating from a zero-Hopf equilibrium point of a polynomial differential systems with
cubic nonlinearities increases at least exponentially as 3”2 if n is the dimension of the
differential system.
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