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Abstract
In this article, we shall study the approximate controllability of certain non-autonomous
second-order nonlinear differential problems with finite delay in the infinite dimensional
space. Sufficient conditions are proposed and proved for the controllability of such systems.
Further, we briefly discuss the approximate controllability of impulsive as well as integro-
differential problem. We establish these results by utilizing Schauder’s fixed-point analysis
approach. Finally, the application of the proposed results is presented by giving an example.
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1 Introduction

In 1960, Kalman had given a very basic concept of mathematical control theory called
controllability. Generally, controllability is described as qualitative property of dynamical
control systems. It has great importance in several fields of research such as ecology, eco-
nomics and biology. In crude sense, controllability means to check whether a dynamical
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control system can be steer from one state to another state by using some suitable control.
However, approximate controllability means that the system can be steered to an arbitrary
small neighbourhood of a final state. Hence, approximate controllability is a weaker con-
cept of controllability. So, the study of approximate controllability results for the nonlinear
systems involving control parameter in the infinite dimensional spaces is of concern. Con-
trollability results of nonlinear systems have been established by several authors in the past
few decades. Many authors [1, 4, 5, 11, 13, 14, 17, 20] have further investigated the theory
of controllability to infinite dimensional systems and formulated sufficient conditions for
the various types of controllability.

In [19], Sakthivel et al. established the approximate controllability results for the second-
order systems with state-dependent delay by utilizing Schauder’s fixed-point theorem.
Mahmudov et al. [16] studied approximate controllability of second-order neutral stochastic
evolution system using semi-group theory and Banach fixed-point theorem. In [8], Hen-
riquez investigated the existence of solutions of non-autonomous second-order functional
differential equation with infinite delay using Leray-Sachauder’s Alternative fixed-point
theorem. Vijaykumar et al. [26] studied the approximate controllability for a class of
fractional neutral integro-differential inclusion with state-dependent delay using Dhage’s
fixed-point theorem. In [18], Sakthivel et al. studied the approximate controllability of
fractional nonlinear differential inclusion with initial and non-local conditions by using
Bohnenblust-Karlin’s fixed-point theorem. Moreover, in recent, a few survey papers of good
quality and dealing with various types of controllability are published by Babiarz [2, 3,
9]. In these papers, controllability results of various types of dynamical systems with and
without integer-order have been presented. However, to the study of the controllability of
dynamical systems, fixed-point technique has been effectively utilized. Motivated by this
fact, we use Schauder’s fixed-point theorem to study the existence and uniqueness of the
mild solution and approximate controllability of the non-autonomous control problem. The
proposed control problem in a Banach space X is considered as follows:

v′′(t) = A(t)v(t) + A1v+Cu(t) + g(t, v,v(t)), t ∈ I = [0, T ],
v(t) = φ(t), v′(0) = y0, t ∈ [−τ, 0] (1.1)

where v : I → X is the state function. Let u(·) ∈ L2(I, U) be the control function and U is
a Hilbert space. The closed linear operator A generates continuous cosine family �(t). The
operator A1 : C([−τ, T ], X) → L2([0, T ], X) is a bounded linear operator. Also, C is a
bounded linear operator from Y to W . Let W = L2([0, T ], X),Wτ = L2([−τ, T ], X), 0 <

τ < T and Y = L2([0, T ], U). v(θ) = v(t + θ), θ ∈ [−τ, 0] and φ ∈ C([−τ, 0], X).
Function g will be suitably defined in the subsequent section.

Some of the real-world problems can be adequately modeled by functional differential
equations or delay differential equations. Often, it has been observed that the delays are
either distributed delays or fixed constants. Recently, many authors have shown their inter-
est in the time delay of both kinds, finite and infinite [1, 6, 21, 23]. In [3], Babiarz et al.
mentioned that there are many unsolved problems on controllability concepts for different
types of dynamical systems with delay terms, which serve as a motivation to this manuscript.
So far, the study of the approximate controllability of non-autonomous second-order differ-
ential equation with finite delay was an untreated topic, which has been dealt with in this
manuscript. Here, we consider the above (1.1) control problem described by a second-order
differential equation in a Banach space.
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2 Preliminaries

In this segment, we recall some basic concepts, notations and properties that would be
needed to establish our controllability results. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Hilbert spaces
and L(Y,X) be the Banach space of bounded linear operators from Y into X endowed with
its natural topology. In particular, we prefer the notation L(X) when Y = X.

Let us take the abstract non-autonomous second-order problem with initial conditions

v′′(t) = A(t)v(t) + g(t), 0 ≤ t, s ≤ T ,

v(s) = v0, v′(s) = y0, (2.1)

where A(t) : �(A(t)) ⊂ X → X, t ∈ I = [0, T ] is a closed dense operator and g : I → X

is a suitable function. Author refers the reader to [12] and the references therein. Often in
the literature, the existence of solutions to the problem (2.1) is related to the existence of an
evolution operator �(t, s) for the homogeneous equation

v′′(t) = A(t)v(t), 0 ≤ t, s ≤ T . (2.2)

Let us take that the domain of A(t) is a subspace � which is dense in X and independent of
t and for each v ∈ � the function t → A(t)v is continuous. For the fundamental solution of
second-order evolution problem (2.2), we refer to [10].

We will use the following concept of evolution operator for the development of our
results.

Definition 2.1 A family � of bounded linear operators �(t, s) : I × I → L(X) is called
an evolution operator for (2.2) if the following conditions are satisfied:

(D1) For all v ∈ X, the mapping (t, s) ∈ [0, T ] × [0, T ] → �(t, s)v ∈ X is of class C1

and

(i) For all t ∈ [0, T ], �(t, t) = 0,
(ii) For all t, s ∈ [0, T ], and for each v ∈ X,

∂

∂t
�(t, s)v|t=s = v,

∂

∂s
�(t, s)v|t=s = −v.

(D2) For all t, s ∈ [0, T ], and if v ∈ �(A), then �(t, s)v ∈ �(A), the mapping (t, s) ∈
[0, T ] × [0, T ] → �(t, s)v ∈ X is a class C2 and

(i) ∂2

∂t2
�(t, s)v = A(t)�(t, s)v,

(ii) ∂2

∂s2
�(t, s)v = �(t, s)A(s)v,

(iii) ∂
∂s

∂
∂t

�(t, s)v|t=s = 0,

(D3) For all t, s ∈ [0, T ], and if v ∈ �(A), then ∂
∂s

�(t, s)v ∈ �(A), then
∂2

∂t2
∂
∂s

�(t, s)v, ∂
∂s

�(t, s)v ∈ �(A), then ∂2

∂s2
∂
∂t

�(t, s)v and

(i) ∂
∂s

�(t, s)v ∈ �(A), then ∂2

∂t2
∂
∂s

�(t, s)v = A(t) ∂
∂s

�(t, s)v,

(ii) ∂
∂s

�(t, s)v ∈ �(A), then ∂2

∂s2
∂
∂t

�(t, s)v = ∂
∂t

�(t, s)A(s)v, and the mapping

(t, s) ∈ [0, T ] × [0, T ] → A(t) ∂
∂s

�(t, s)v is continuous.

In this entire paper, we consider that there exists an evolution operator �(t, s)

associated with the operator A(t). For the sake of convenience, we take the operator

Approximate Controllability of Second Order... 613



|�(t, s) = − ∂�(t,s)
∂s

. Furthermore, we set N and Ñ for the positive constants such that

sup0≤t,s≤T ‖�(t, s)‖ ≤ Ñ and sup0≤t,s≤T ‖�(t, s)‖ ≤ N . Also, we take a positive constant
N1 such that

‖�(t + l, s) − �(t, s)‖ ≤ N1|l|
for all s, t, t + l ∈ [0, T ]. If g : I → X is an integrable function, then the mild solution
v : [0, T ] → X of the problem (2.1) is given by

v(t) = �(t, s)v0 + �(t, s)y0 +
∫ t

s

�(t, τ )g(τ )dτ .

In the literature, an abundance of techniques have been used to formulate the existence of
the evolution operator �(t, s). In particular, the quite well-known situation is that A(t) is
the perturbation of operator A that generates a cosine family. Because of this, we will be
briefly reviewing definition of the theory of cosine family and related terms.

Definition 2.2 A one parameter family (�(t))t∈R of bounded linear operators mapping the
Banach space X into itself is called a strongly continuous cosine family if and only if

(i) �(s + t) + �(s − t) = 2�(s)(t) for all s, t ∈ R,
(ii) �(0) = I (identity operator),
(iii) �(t)v is continuous in t on R for each fixed point v ∈ X.

Let A : �(A) ⊂ X → X be the infinitesimal generator of a strongly continuous cosine
family of bounded linear operators (�(t))t∈R on Banach space X. We denote (�(t))t∈R is
the sine function associated with the strongly continuous cosine family, (�(t))t∈R which is
defined by

�(t)v =
∫ t

0
�(s)v ds, v ∈ X, t ∈ R.

For more details, we refer the reader [7, 25]. The domain �(A) of the operator A is the
Banach space, which is defined by

�(A) = {v ∈ X : �(t)v is twice continuously differentiable in t}
endowed with norm

‖v‖A = ‖v‖ + ‖Av‖, v ∈ �(A).

Define �̃ = {v ∈ X : �(t)v is once continuously differentiable in t}, endowed with norm

‖v‖�̃ = ‖v‖ + sup
0≤t≤1

‖A�(t)v‖, v ∈ �̃

is a Banach space.
The results related with the existence of solutions for the second-order abstract Cauchy

problem

v′′(t) = Av(t) + κ(t), s ≤ t ≤ T

v(s) = v0, v′(s) = y0, (2.3)

where κ : [0, T ] → X is an integrable function, can be found in [24]. The existence of the
solutions of semilinear second-order abstract Cauchy problem has been treated in [25]. We
only mention here that the function v(·) is given by

v(t) = �(t − s)v0 + �(t − s)y0 +
∫ t

s

�(t − τ)κ(τ )dτ, 0 ≤ t ≤ T (2.4)
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is called a mild solution to the problem (2.3) and when v0 ∈ �̃, v(·) is continuously
differentiable and

v′(t) = A�(t − s)v0 + �(t − s)y0 +
∫ t

s

�(t − τ)κ(τ )dτ, 0 ≤ t ≤ T .

In addition, if v0 ∈ �(A), y0 ∈ �̃ and g is continuously differentiable function, then the
function v(·) is a solution of the initial value problem (2.3).

Let us take that A(t) = A + Ã(t) where Ã(·) : R → L(�̃,X) is a map such that the
function t → Ã(t)v is a continuously differentiable in X for each v ∈ �̃. For more details,
see [22], for each (v0, y0) ∈ �(A) × �̃ the non-autonomous Cauchy problem

v′′(t) = (A + Ã(t))v(t), t ∈ R (2.5)

v(0) = v0, v′(0) = y0 (2.6)

has a unique solution v(·) such that the function t → v(t) is continuously differentiable in
�̃. Following a similar argument, one can conclude that Eq. 2.5 with the initial condition
of Eq. 2.3 has a unique solution v(·, s) such that the function t → v(t, s) is continuously
differentiable in �̃. It follows from (2.4) that

v(t, s) = �(t − s)v0 + �(t − s)y0 +
∫ t

s

�(t − τ)Ã(τ )x(τ, s)dτ .

In particular, for v0 = 0 we have

v(t, s) = �(t − s)y0 +
∫ t

s

�(t − τ)Ã(τ )v(τ, s)dτ .

Consequently,

‖v(t, s)‖1 ≤ ‖�(t − s)‖L(X,�̃)‖y0‖ +
∫ t

s

‖�(t − τ)‖L(X,�̃)‖Ã(τ )‖L(X,�̃)‖v(τ, s)‖1dτ .

Gronwall’s inequality implies that

‖v(t, s)‖1 ≤ M̃‖y0‖, ∀ s, t ∈ I,

where M̃ = ‖�(t − s)‖ exp[‖�(t − τ)‖‖Ã(τ )‖(t − s)].
Let us define the operator �(t, s)y0 = v(t, s). It follows from the previous estimate that

�(t, s) is a bounded linear map on �̃. Since �̃ is dense in X, we can extend �(t, s) to X.
We keep the notation �(t, s) for this extension. It is a very well-known fact that the cosine
family �(t) cannot be compact unless the dim(X) < ∞. By contrast, for the cosine family
that arise in specific applications, the sine family �(t) is very often a compact operator for
all t ∈ R.

Let C([0, T ], X) be the space of continuous functions v : [0, T ] → X. Also, assume
that C([0, T ], X) endowed with uniform convergence norm.

Definition 2.3 A function v : [−τ, T ] → X is said to be mild solution of the control
problem (1.1) if v(·) ∈ C(I, X), v(t) = φ(t) for t ∈ [−τ, 0] and solution of the following
integral equation

v(t) = �(t, 0)φ(0) + �(t, 0)y0 +
∫ t

0
�(t, s)[A1vs + Cu(s) + g(s, vs, v(s)]ds. (2.7)
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Definition 2.4 The system (1.1) is called approximately controllable if E(T ) = X where

E(T ) = {v(T ; u) : u(·) ∈ L2([0, T ]; U)}
and v(t; u) is a mild solution of (1.1).

It is convenient at this point to define the operators


T
0 =

∫ T

0
�(T , s)CC∗�∗(T , s)ds

R(α, 
T
0 ) = (αI + 
T

0 )−1,

where I is an identity operator. It can be easily seen that the operator 
T
0 is a linear operator.

To investigate the approximate controllability of the problem (1.1), we take the following
hypothesis: H αR(α, 
T

0 ) → 0 as α → 0+ in the strong operator topology.
The hypothesis H holds if and only if the following second-order linear control system

v′′(t) = Av(t) + Cu(t), t ∈ I

v(0) = v0, v′(0) = y0, (2.8)

is approximately controllable on I . For more details, see [15].
In order to establish the controllability result of the system (1.1), we consider the

following assumptions.
Assumptions:

(A1): �(t), t > 0 is compact.

(A2): The function g : I × X × X → X satisfies the following conditions:

(i) Let g(t, ξ, ν) be strongly measurable for ξ, ν ∈ X.
(ii) Let g(t, ·, ·) be continuous for each t ∈ I .
(iii) For each q > 0, there exists a function λq ∈ L1(I, R+) such that

sup
‖ν‖, ‖ξ‖≤q

‖g(t, ξ, ν)‖ ≤ λq(t), for a.e. t ∈ I,

and

lim
q→∞ inf

∫ T

0

λq(t)

q
dt = δ < ∞.

(A3): Let g : I × X × X → X be a continuous function. Also, there exists L > 0 such
that ‖g(t, ξ, ν)‖ ≤ L for all (t, ξ, ν) ∈ I × X × X.

3 Approximate Controllability Result

In this segment, we prove the approximate controllability of second-order non-autonomous
finite delay system with deviated argument. For this, we first prove the existence of solu-
tions of the problem (1.1) using Schauder’s fixed-point theorem. After that, the approximate
controllability of the problem (1.1) is derived by the fact that the linear system (2.8) is
approximately controllable.
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It is convenience to introduce some notations which will be useful for further
manipulation.

KA = ‖A1‖, MC = ‖C‖, K = ‖vT ‖ + N‖φ(0)‖ + Ñ‖y0‖,
K∗ = N‖φ(0)‖ + Ñ‖y0‖ + 1

α
Ñ2M2

CT K, �̂ =
(
1 + 1

α
Ñ2M2

CKAT

)
Ñ

Let Z = {v ∈ CL0([−τ, T ], X) : v(0) = φ(0)} be the space endowed with uniform norm
convergence. In space Z , we consider a setW = {v ∈ Z : ‖v‖ ≤ r}, where r is a positive
constant.

For any v ∈ W and 0 ≤ t ≤ t0,

‖vt‖C = sup
−τ≤θ≤0

‖vt (θ)‖X ≤ sup
−τ≤ζ≤t0

‖v(ζ )‖X ≤ r

Theorem 3.1 The system (1.1) has solution on I if the assumptions (A1)-(A2) are satisfied
and for all α > 0

�̂(KAT + δ) < 1.

Proof We define the feedback control function

u(t) = C∗�∗(T , t)R(α, 
T
0 )[

vT − �(T , 0)φ(0) − �(T , 0)y0 −
∫ T

0
�(T , s) [A1vs + g(s, vs, v(s))] ds

]
.

For α > 0, define the operator Fα : Z → Z , which is given by

Fαv(t) = �(t, 0)φ(0) + �(t, 0)y0 +
∫ t

0
�(t, s)[A1vs + Cu(s) + g(s, vs, v(s))]ds.

Proof of this theorem is divided into three steps.

Step 1. It will be shown that for every α > 0 the operator Fα : Z → Z has a fixed
point. For α > 0, we claim that there exists r > 0 such that Fα(W) ⊂ W . Suppose that
our claim is false, then there exists α > 0 such that for all r > 0, there exist ṽ ∈ W and
t0 ∈ I such that r < ‖Fαṽ(t0)‖.

For such α > 0, we see that

r < ‖Fαṽ(t0)‖
≤ N‖φ(0)‖ + Ñ‖y0‖ + ÑrKAT + ÑMC

∫ t

0
‖u(s)‖ds + Ñ

∫ t

0
‖g(s, ṽs , ṽ(s))‖ds

Hence,

r ≤ N‖φ(0)‖ + Ñ‖y0‖ + ÑrKAT

+ÑMCT

[
1

α
ÑMC(K + Ñ

∫ T

0
λr(s)ds)

]
+ Ñ

∫ T

0
λr(s)ds

≤
(
1 + 1

α
T Ñ2M2

C

)
Ñ

[
rKAT +

∫ T

0
λr(s)ds

]
+ K∗

≤ �̂

(
rKAT +

∫ T

0
λr(s)ds

)
+ K∗
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As r → ∞, we have

1 ≤ �̂(KAT + δ).

Which contradicts our condition

�̂(KAT + δ) < 1.

Hence, Fα(W) ⊂ W .
Step 2. It is shown that for each α > 0, the operator Fα maps bounded set W into a

relatively compact subset ofW .
We take set �(t) = {Fαv(t) : v ∈ W}.
For t ∈ (0, T ] and 0 < ε < t ≤ T define

(F ε
αv)(t) = C(t, 0)φ(0) + �(t, 0)y0 +

∫ t−ε

0
�(t, s)[A1vs + Cu(s) + g(s, vs, v(s))]ds.

Since sine family �(t) is compact, the set �ε(t) = {F ε
αv(t) : v ∈ W} is relatively compact

in X for each ε, 0 < ε < t . Moreover for each 0 < ε < t, we have

‖(Fαv)(t) − (F ε
αv)(t)‖ ≤ Ñ

∫ t

t−ε

‖A1vs‖ds + ÑMC

∫ t

t−ε

‖u(s)‖ds

+Ñ

∫ t

t−ε

‖g(s, vs, v(s))‖ds.

Hence, there exist relatively compact set arbitrarily close to �(t) = {Fαv(t) : v ∈ W} as
ε → 0. Since it is compact at t = 0, hence, set �(t) is relatively compact in X ∀ t ∈ [0, T ].

Now we prove that �(t) = {Fαv(t) : v ∈ W} is equicontinuous on [0, T ] for 0 < t1 <

t2 < T,

‖(Fαv)(t2)−(Fαv)(t1)‖ ≤ ‖�(t2, 0) − �(t1, 0)‖‖φ(0)‖ + ‖�(t2, 0) − �(t1, 0)‖y0‖
+ÑKA

∫ t2

t1

‖vs‖ds + KA

∫ t1

0
‖�(t2, s) − �(t1, s)‖‖vs‖ds

+ÑMC

∫ t2

t1

‖u(s)‖ds+MC

∫ t1

0
‖�(t2, s)−�(t1, s)‖‖u(s)‖ds

+Ñ

∫ t2

t1

λr(s)ds +
∫ t1

0
‖�(t2, s) − �(t1, s)‖λr(s)ds.

‖(Fαv)(t2) − (Fαv)(t1)‖
≤ ‖�(t2, 0) − �(t1, 0)‖‖φ(0)‖ + ‖�(t2, 0) − �(t1, 0)‖y0‖

+ÑKA

∫ t2

t1

‖vs‖ds + KA

∫ t1

0
‖�(t2, s) − �(t1, s)‖‖vs‖ds

+ Ñ2M2
C

α

∫ t2

t1

(
‖vT ‖ + N‖φ(0)‖ + Ñ‖y0‖ + ÑKA

∫ T

0
‖vs‖ds + Ñ

∫ T

0
λr(s)ds

)
dη

+ ÑM2
C

α

∫ t1

0
‖�(t2, s) − �(t1, s)‖

(
‖vT ‖ + N‖φ(0)‖ + Ñ‖y0‖

+ ÑKA

∫ T

0
‖vs‖ds + Ñ

∫ T

0
λr(s)ds

)
dη

+Ñ

∫ t2

t1

λr(s)ds +
∫ t1

0
‖�(t2, s) − �(t1, s)‖λr(s)ds.
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Here, it can be seen that ‖(Fαv)(t2) − (Fαv)(t1)‖ → 0 as (t1 − t2) → 0. Also, the
compactness of evolution operator �(t, s) implies the continuity in the uniform operator
topology.

Thus, the set �(t) = {Fαv(t) : v ∈ W} is equicontinuous on [0, T ].
Step 3. It is shown that the operator Fα(·) is continuous onW .
Let (vn)n∈N be a sequence in W and v ∈ W such that vn → v. From the condition, we

find that vn
t → vt as n → ∞ ∀ t ∈ I .

From the inequality, we see that

‖g(s, vn
s , vn(s)) − g(s, vs, v(s))‖

≤ ‖g(s, vn
s , vn(s)) − g(s, vn

s , v(s))‖
+‖g(s, vn

s , v(s)) − g(s, vs, v(s))‖

We infer that

g(s, vn
s , vn(s)) → g(s, vs, v(s)) as n → ∞ ∀ s ∈ I

By the help of Lebesgue dominated convergence theorem and assumption (A2), it can be
asserted that Fαvn → Fαv in W . Hence, Fα(·) is continuous on W . Thus by Schauder’s
fixed-point theorem, Fα has a fixed point and the problem (1.1) has a solution on I .

Theorem 3.2 Assume that the linear system (2.8) is approximately controllable on I . If the
assumptions (A1)–(A3) are satisfied then the system (1.1) is approximately controllable.

Proof Let vα(·) be a fixed point of Fα in W . Any fixed point of Fα is a mild solution of
the problem (1.1) under the control

uα(t) = C∗�∗(T , t)R(α, 
T
0 )p(vα),

where

p(vα) = vT − �(T , 0)φ(0) − �(T , 0)y0 −
∫ T

0
�(T , s)

[
A1v

α
s + g(s, vα

s , vα(s))
]
ds

and satisfies the inequality

vα(T ) = vT + αR(α, 
T
0 )p(vα).

By the assumption (A3)

∫ T

0
‖A1v

α
s + g(s, vα

s , vα(s))‖2ds ≤ T (KAr + L)2.

Hence, the sequence {A1v
α
s + g(s, vα

s , vα(s))} is bounded in L2(I,X) and there exists a
subsequence denoted by {A1v

α
s +g(s, vα

s , vα(s))} that weakly converges toA1v(s)+g(s) in
L2(I,X). By using infinite dimensional version of the Ascoli-Arzela theorem, an operator
l(·) → ∫ .

0 �(·, s)l(s)ds : L2(I,X) → C(I, X) is compact.
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We obtain

‖p(vα) − w‖ =
∣∣∣∣
∣∣∣∣
∫ T

0
�(T , s)

[
(A1v

α
s + g(s, vα

s , vα(s)))

− (A1vs + g(s, vs, v(s)))ds
] ∣∣∣∣

∣∣∣∣
≤ sup

t∈I

∣∣∣∣
∣∣∣∣
∫ t

0
�(T , s)

[
(A1v

α
s + g(s, vα

s , vα(s)))

− (A1vs + g(s, vs, v(s)))
]
ds

∣∣∣∣
∣∣∣∣ → 0

as α → 0+, where

w = vT − �(T , 0)φ(0) − �(T , 0)y0 −
∫ T

0
�(T , s)[A1vs + g(s, vs, v(s))]ds.

Then,

‖vα(T ) − vT ‖ ≤ ‖αR(α, 
T
0 )(w)‖ + ‖αR(α, 
T

0 )‖‖p(vα) − w‖
≤ ‖αR(α, 
T

0 )(w)‖ + ‖p(vα) − w‖.
It follows from the hypothesis (H) and above estimate that ‖vα(T ) − vT ‖ → 0 as α → 0+.
Hence, the approximate controllability of the problem (1.1) is proved.

4 Second-order Systemwith Non-instantaneous Impulses

In this segment, we prove the approximate controllability of the impulsive system non-
instantaneous impulses.⎧⎪⎪⎨
⎪⎪⎩

v′′(t) = A(t)v(t) + A1vt + Cu(t) + g(t, vt , v(t)), t ∈ (si , ti+1], i = 0, 1, · · · ,m,

v(t) = ψ1
i (t, v(t−i )), t ∈ (ti , si], i = 1, 2, · · · ,m,

v′(t) = ψ2
i (t, v(t−i )), t ∈ (ti , si], i = 1, 2, · · · ,m,

v(t) = φ(t), v′(0) = y0, t ∈ [−τ, 0],
(4.1)

where A,A1, C and g are defined as in Eq. 1.1 and v(t) is a state function with time interval
0 = s0 = t0 < t1 < s1 < t2, · · · , tm < sm < tm+1 = T < ∞. Consider the state
function v ∈ C((ti , ti+1],Rn), i = 0, 1, · · · ,m and there exist v(t−i ) and v(t+i ), i =
1, 2, · · · ,m with v(t−i ) = v(ti). The functions ψ1

i (t, v(t−i )) and ψ2
i (t, v(t−i )) represent

non-instantaneous impulses which occur in the intervals (ti , si] , i = 1, 2, · · · ,m. Further,
let us consider PC([0, T ], X) be the Banach space of piecewise continuous functions v :
[0, T ] → X endowed with the norm ‖v‖PC= supt∈I‖v(t)‖ .

Definition 4.1 A function v ∈ PC([0, T ], X) is called a mild solution of the impul-
sive problem (4.1) if it satisfies the following: relations v(t) = φ(t), v′(0) = y0,

the non-instantaneous impulse conditions v(t) = ψ1
i (t, v(t−i )), t ∈ (ti , si], i =

1, 2, · · · ,m, v′(t) = ψ2
i (t, v(t−i )), t ∈ (ti , si], i = 1, 2, · · · , m, and v(t) is the solution

of the following integral equations

v(t) = �(t, 0) ψ1
i (t, v(t−i )) + �(t, 0)ψ2

i (t, v(t−i ))

+
∫ t

0
�(t, s)[A1vs + Cu(s) + g(s, vs, v(s))]ds.
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(A4) There exist positive constants Cψ1
i
and Cψ2

i
, i = 1, 2, · · · , m such that Cψ1

i
=

max
t∈Ii

‖ψ1
i (t, ·)‖ and Cψ2

i
= max

t∈Ii

‖ψ2
i (t, ·)‖, where Ii := [ti , si].

(A5) ψk
i ∈ C(Ii × R,R) and there are positive constants Lψk

i
, i = 1, 2, · · · ,m, k =

1, 2, such that ‖ψk
i (t, u) − ψk

i (t, v)‖ ≤ Lψk
i
‖u − v‖, ∀ t ∈ Ii and u, v ∈ R.

Let Z = {v ∈ CL0([−τ, T ], X) : v(0) = φ(0)} be the space endowed with uniform norm
convergence. In space Z , we consider a setW = {v ∈ Z : ‖v‖ ≤ r}, where r is a positive
constant.

For any v ∈ W and 0 ≤ t ≤ t0,

‖vt‖C = sup
−τ≤θ≤0

‖vt (θ)‖X ≤ sup
−τ≤ζ≤t0

‖v(ζ )‖X ≤ r

Theorem 4.2 The system (4.1) is approximately controllable on I if the assumptions (A1)–
(A5) are satisfied and for all α > 0

�̂(KAT + δ) < 1.

Proof For the proof of this theorem, we use some notations for convenience as follows

K̃ = ‖vT ‖ + NCψ1
i

+ ÑCψ2
i
, �̂ =

(
1 + 1

α
Ñ2M2

CKAT

)
Ñ

K = NCψ1
i

+ ÑCψ2
i

+ 1

α
Ñ2M2

CT K̃,

Now, we define the feedback control function

u(t) = C∗�∗(T , t)R(α, 
T
0 )

[
vT − �(T , 0)ψ1

i (t, v(t−i ))

−�(T , 0)ψ2
i (t, v(t−i )) −

∫ T

0
�(T , s) [A1vs + g(s, vs, v(s))] ds

]
.

For α > 0, define the operator Fα : Z → Z , which is given by

Fαv(t) = �(t, 0) ψ1
i (t, v(t−i )) + �(t, 0)ψ2

i (t, v(t−i ))

+
∫ t

0
�(t, s)[A1vs + Cu(s) + g(s, vs, v(s))]ds.

It will be shown that for every α > 0, the operator Fα : Z → Z has a fixed point. For
α > 0, we claim that there exists r > 0 such that Fα(W) ⊂ W . Suppose that our claim is
false, then there exists α > 0 such that for all r > 0, there exist ṽ ∈ W and t0 ∈ I such that
r < ‖Fαṽ(t0)‖.

For such α > 0, we see that

r < ‖Fαṽ(t0)‖
≤ N‖ψ1

i (t, v(t−i ))‖ + Ñ‖ψ2
i (t, v(t−i ))‖ + ÑrKAT

+ÑMC

∫ ti

si

‖u(s)‖ds + Ñ

∫ ti

si

‖g(s, ṽs , ṽ(s))‖ds
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Hence,

r ≤ NCψ1
i

+ ÑCψ2
i

+ ÑrKAT

+ÑMCT

[
1

α
ÑMC(K̃ + Ñ

∫ T

si

λr (s)ds)

]
+ Ñ

∫ T

si

λr (s)ds

≤
(
1 + 1

α
T Ñ2M2

C

)
Ñ

∫ T

0
λr(s)ds + 1

α
Ñ3M2

CKAT 2r + ÑrKAT + K

≤
(
1 + 1

α
T Ñ2M2

C

)
Ñ

[
rKAT +

∫ T

0
λr(s)ds

]
+ K

≤ �̂

(
rKAT +

∫ T

0
λr(s)ds

)
+ K

As r → ∞, we have

1 ≤ �̂(KAT + δ).

Which contradicts our condition

�̂(KAT + δ) < 1.

Hence, Fα(W) ⊂ W . Further, we can easily prove that Fα has a fixed point for all α > 0
by employing the technique used in Theorem (3.1).

5 Second-order Integro-differential Equation

In this segment, we consider a control system represented by an integro-differential equation
in the Banach space X.

v′′(t)=A(t)v(t)+A1vt +Cu(t)+g(t, vt , v(t))+
∫ t

0
ω(t−s)f (s, v(s))ds, t ∈ I =[0, T ],

v(t) = φ(t), v′(0) = y0, t ∈ [−τ, 0] (5.1)

where A, A1, C and g are defined as in Eq. 1.1 and f and ω are the suitable functions to be
specified later. In order to prove the approximate controllability of the integro-differential
Eq. 5.1, we need the following assumptions:

(A6) ωT = ∫ t

0ω(s)ds

(A7) (i): ‖f (t, ·)‖ ≤ Mg

(i): ‖f (t, u1(t)) − f (t, u2(t))‖ ≤ Lg‖(u1(t)) − u2(t))‖
where Mg and Lg are positive constants.

Definition 5.1 A function v : [−τ, T ] → X is said to be mild solution of the control
problem (5.1) if v(·) ∈ C(I, X), v(t) = φ(t) for t ∈ [−τ, 0] and solution of the following
integral equation

v(t) = �(t, 0)φ(0) + �(t, 0)y0 +
∫ t

0
�(t, s)

[
A1vs + Cu(s) + g(s, vs, v(s))

+
∫ t

0
ω(t − ζ )f (ζ, v(ζ ))dζ

]
ds. (5.2)
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Let Ẑ = {v ∈ CL0([−τ, T ], X) : v(0) = φ(0)} be the space endowed with uniform

norm convergence. In space Ẑ , we consider a set Ŵ = {v ∈ Ẑ : ‖v‖ ≤ r̂}, where r̂ is a
positive constant.

For any v ∈ Ŵ and 0 ≤ t ≤ t0,

‖vt‖C = sup
−τ≤θ≤0

‖vt (θ)‖X ≤ sup
−τ≤ζ≤t0

‖v(ζ )‖X ≤ r̂

Theorem 5.2 The system (5.1) is approximately controllable on I if the assumptions (A1)–
(A3) and (A6)–(A7) are satisfied and for all α > 0

�̂(KAT + δ) < 1.

Proof We define the feedback control function for (5.1)

u(t) = C∗�∗(T , t)R(α, 
T
0 )

[
vT − �(T , 0)φ(0) − �(T , 0)y0

−
∫ T

0
�(T , s)

[
A1vs + g(s, vs, v(s)) +

∫ t

0
ω(t − ζ )f (ζ, v(ζ ))dζ

]
ds

]
.

For α > 0, define the operator F̂ : Ẑ → Ẑ , which is given by

F̂αv(t) = �(t, 0)φ(0) + �(t, 0)y0 +
∫ t

0
�(t, s)

[
A1vs + Cu(s) + g(s, vs, v(s))

+
∫ t

0
ω(t − ζ )f (ζ, v(ζ ))dζ

]
ds.

It will be shown that for every α > 0 the operator F̂ : Ẑ → Ẑ has a fixed point. For
α > 0, we claim that there exists r̂ > 0 such that F̂α(Ŵ) ⊂ Ŵ . Suppose that our claim is
false, then there exists α > 0 such that for all r̂ > 0, there exist ṽ ∈ Ŵ and t0 ∈ I such that
r̂ < ‖F̂αṽ(t0)‖.

For such α > 0, we see that

r̂ < ‖F̂αṽ(t0)‖
≤ N‖φ(0)‖ + Ñ‖y0‖ + Ñ r̂KAt0 + ÑMC

∫ t

0
‖u(s)‖ds

+Ñ

∫ t

0

[
‖g(s, ṽs , ṽ(s))‖ds +

∫ t

0
‖ω(t − ζ )f (ζ, v(ζ ))dζ

]

Hence,

r̂ ≤ N‖φ(0)‖ + Ñ‖y0‖ + Ñ r̂KAT

+ ÑMCT

[
1

α
ÑMC(K + Ñ

∫ T

0
λr̂ (s)ds + ωT Mg)

]
+ Ñ

∫ T

0
λr̂ (s)ds + ωT Mg

≤
(
1 + 1

α
T Ñ2M2

C

)
Ñ

[
ωT Mg + r̂KAT +

∫ T

0
λr̂ (s)ds

]
+ K∗

≤
(
1 + 1

α
T Ñ2M2

C

)
Ñ

[
r̂KAT +

∫ T

0
λr̂ (s)ds

]
+ K∗ + K̃

As r̂ → ∞, we have

1 ≤ �̂(KAT + δ)
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Which contradicts our condition

�̂(KAT + δ) < 1.

Hence, F̂α(Ŵ) ⊂ Ŵ . Further, we can easily prove that F̂α has a fixed point for all α > 0
by employing the technique used in Theorem (3.1).

6 Example

In this segment, we introduce a few technical terms to give an example. From Eqs. (2.5)–
(2.6), we consider A(t) = A + Ã(t) where A is the infinitesimal generator of a cosine
function �(t) with associated sine function �(t) and Ã(t) : �(Ã(t)) → X is a closed
linear operator.

Let us take the space X = L2(T,C) where group T is defined as the quotient R/2πZ.
Also, we will use the identification between functions on T and 2π periodic functions on R.
Furthermore, we denote by L2(T,C) the space of 2π periodic 2- integrable functions from
R to C. Besides, H 2(T,C) denotes the Sobolev space of 2π periodic from R to C such that
v′′ ∈ L2(T,C).

We consider the operator Av(t) = v′′(t) with domain �(A) = H 2(T,C). Operator A is
an infinitesimal generator of a strongly continuous cosine family �(t) on X. Furthermore,
A has discrete spectrum and the spectrum of A consists of eigenvalues −n2 for n ∈ Z, with
associated normalized eigenvectors

ϑn(t) = 1√
2π

eint , n ∈ Z, the set {ϑn : n ∈ Z} is an orthonormal basis of X. In

particular,

Av = −
∞∑

n=1

n2〈v, ϑn〉ϑn

for v ∈ �(A). The cosine function �(t) is given by

�(t)v =
∞∑

n=1

cos(nt)〈v, ϑn〉ϑn, t ∈ R

with associated sine function

�(t)v =
∞∑

n=1

sin(nt)

n
〈v, ϑn〉ϑn, t ∈ R

It is clear that ‖�(t)‖ ≤ 1 for all t ∈ R. Hence, �(t) is uniformly bounded on R.
We consider the second-order partial differential equation with control

∂2

∂t2
V(t, y) = ∂2

∂y2
V(t, y) + b(t)

∂

∂y
V(t, y) + η(t + θ, y) + μ(t, y)

+g2(y,V(t + θ, y)) + g3(t, y,V(t, y)) (6.1)

for t ∈ I = [0, T ], θ ∈ [−τ, 0], 0 ≤ y ≤ π, subject to the IBCs

V(t, 0) = V(t, π) = 0, t ∈ [0, T ], 0 < T < ∞,

V(t, y) = φ(t, y),
∂

∂t
V(0, y) = V1(y), y ∈ [0, π ], t ∈ [−τ, 0]

where b : R → R, μ : I × [0, π ] → [0, π ] are continuous functions. We fix a > 0 and set
β = sup0≤t≤a |b(t)|
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We take Ã(t)v(y) = b(t)v′(y) defined on H 1(T,C). It is easy to see that A(t) = A +
Ã(t) is a closed linear operator. Initially we will show that A + Ã(t) generates an evolution
operator. It is well-known that the solution of the scalar initial value problem

x′′(t) = −n2x(t) + z(t).

x(s) = 0, x′(s) = x1,

is given by

x(t) = x1

n
sin n(t − s) + 1

n

∫ t

s

sin n(t − y)z(y)dy.

Therefore, the solution of the scalar initial value problem

x′′(t) = −n2x(t) + inb(t)x(t),

x(s) = 0, x′(s) = x1, (6.2)

is given by

x(t) = x1

n
sin n(t − s) + i

∫ t

s

sin n(t − y)b(y)x(y)dy.

Applying Gronwall-Bellman lemma, we have

|x(t)| ≤ |x1|
n

ec(t−s) (6.3)

for s ≤ t and c is a constant. We denote by xn(t, s) the solution of (6.2).
We define

�(t, s)v =
∞∑

n=1

xn(t, s)〈v, ϑn〉ϑn.

It follows from the estimate (6.3) that �(t, s) : X → X is well defined and satisfies the
conditions of definition (2.1).

Equation 6.1 with IBCs can be reformulated as the following abstract equation in X =
L2(T,C):

v′′ = A(t)v(t) + A1vt + Cu(t) + g(t, vt , v(t)), t ∈ I = [0, T ],
v(t) = φ(t), v′(0) = y0, t ∈ [−τ, 0]

where v(t) = V(t, ·) that is v(t)(y) = V(t, y), y ∈ [0, π ].
The function g : R+ × X × X → X, is given by

g(t, ψ, ξ)(y) = g2(y, ξ) + g3(t, y, ψ),

where g2 : [0, π ] × X → H 1
0 (T,C) is given by

g2(y, ξ) =
∫ y

0
K(y, x)ξ(x)dx,

and

g3(t, y,V(t, y)) =
∫ y

0
K(y, s)V(s)(c1|V(t, s)| + c2|V(t, s)|))ds.

Let us assume that c1, c2 ≥ 0, (c1, c2) �= (0, 0) and K : [0, π ]×[0, π ] → R. Also, we have

‖g3(t, y, ψ)‖ ≤ f (y, t)(1 + ‖ψ‖H 2(T,C))
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with f (·, t) ∈ X and f is continuous in its second argument and u : I → U be defined as

C(u(t))(y) = μ(t, y), y ∈ [0, π ],
where μ : I × [0, π ] → [0, π ] is continuous. H : [−τ, 0] × [0, π ] → [0, π ] be defined by
as

A1V(t + θ, y) = η(t + θ, y), y ∈ [0, π ], θ ∈ [−τ, 0],
where η : [−τ, 0] × [0, π ] → [0, π ] is continuous.

It can be easily verified that the function g satisfies the assumptions (A2)–(A3). For more
details, see [19]. Thus, Theorem 3.2 can be applied to the problem (6.1).
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