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Abstract
In this paper, we study the existence and stability of traveling waves of infinite-dimensional
lattice differential equations with time delay, where the equation may be not quasi-
monotone. Firstly, by applying Schauder’s fixed point theorem, we get the existence of
traveling waves with the speed c > c∗ (here c∗ is the minimal wave speed). Using a limit-
ing argument, the existence of traveling waves with wave speed c = c∗ is also established.
Secondly, for sufficiently small initial perturbations, the asymptotic stability of the travel-
ing waves � := {�(n + ct)}n∈Z with the wave speed c > c∗ is proved. Here we emphasize
that the traveling waves � := {�(n + ct)}n∈Z may be non-monotone.
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1 Introduction

This paper is concerned with the traveling waves of infinite-dimensional lattice differential
equations with time delay

{
d
dt

wn(t) = ρ(J � w − w)n(t) − δwn(t) + (R ⊗ f (w))n(t − τ), t > 0,
wn(s) = w0

n(s), s ∈ [−τ, 0], n ∈ Z,
(1.1)

where (J � w)n(t) := �i∈Z\{0}J (i)wn−i (t) and (R ⊗ f (w))n(t) := �i∈ZR(i)f (wn−i (t)).
Here wn(t) represents the matured population density in the n-th patch environment at
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the time t , ρ > 0 represents the diffusion coefficient of matured population, and τ is the
maturation delay. The kernels J (·) and R(·) satisfy
(K1) J (·) : Z → R

+ and R(·) : Z → R
+ are even.

(K2) �i∈Z\{0}J (i) = 1, �i∈ZR(i) = 1.
(K3) There is λ̂ such that �i∈Z\{0}eλiJ (i) and �i∈ZeλiR(i) are convergent for every λ ∈

[0, λ̂), and at least one of lim
λ↑λ̂

�i∈Z\{0}eλiJ (i) = +∞ and lim
λ↑λ̂

�i∈ZeλiR(i) =
+∞ hold, where λ̂ may be +∞.

The term ρ�i∈Z\{0}J (k − i)wi(t) indicates the individuals jump from all other points to
point k, and the population mobile from point k to all other points is denoted as −ρwk(t).
The function f (·) denotes the birth function, and the death rate is denoted by δ.

As we know, the traveling waves can reveal certain dynamical behavior of the scientific
inquiry. Thus, it is significant to investigate traveling wave solutions of Eq. 1.1. A traveling
wave solution of Eq. 1.1 is a solution in the form of w(t) = {wn(t)}n∈Z = {�(n + ct)}n∈Z,
and it satisfies{

c�′(ξ) = ρ(J � � − �)(ξ) − δ�(ξ) + (R ⊗ f (�))(ξ − cτ),

limξ→−∞ �(ξ) = 0, lim infξ→+∞ �(ξ) > 0,
(1.2)

where (J ��)(ξ) := �i∈Z\{0}J (i)�(ξ − i) and (R⊗f (�))(ξ −cτ) := �i∈ZR(i)f (�(ξ −
i − cτ)).

The traveling wave solutions of lattice differential equations with or without delay have
been widely studied, see [1–8, 10, 12–14, 22–26]. Chen and Guo [1, 2] proved the exis-
tence and uniqueness of traveling fronts in the following lattice equations with monostable
nonlinearity

d

dt
wn(t) = (
g(w))n(t) + f (wn)(t), n ∈ Z,

where (
g(w))n(t) := g(wn+1)(t) − 2g(wn)(t) + g(wn−1)(t), see also in [3]. Weng et al.
[22] proposed and studied a model which describes the growth of a single specie with age
structure living in a patchy environment

d

dt
un(t) = ρ

2
(
w)n(t) − δwn(t) + (R ⊗ f (w))n(t − τ), (1.3)

where (R ⊗ f (w))n(t − τ) = �i∈ZR(i)f (wn−i (t − τ)). When the birth function f (·)
in Eq. 1.3 is monostable and monotone, they showed that traveling fronts with speed c >

c∗ exist and the minimal wave speed c∗ is also the spreading speed of Eq. 1.3. Ma and
Zou [12] also studied the traveling wave solutions of Eq. 1.3 with quasi-monotone bistable
nonlinearity. When the birth function f (·) is monostable and non-monotone, Fang et al. [6]
established the existence of traveling wave solutions and the spreading speed of Eq. 1.3. It
is clear that in Eq. 1.3, spatial diffusion occurs only in the local effects of adjacent patches.
To model the effects of the arbitrary movement of the population, Ma et al. [14] proposed
the more general lattice differential Eq. 1.1. When the function f (·) is monostable and
monotone, they established the spreading speed and existence of traveling fronts of Eq. 1.1.
However, when the function f (·) is monostable and non-monotone, the spreading speed and
existence of traveling waves of Eq. 1.1 are unknown so far. This is our first objective in this
paper.

We first study the spreading speed by comparison arguments and a fluctuation method,
and then establish the existence of traveling waves by Schauder’s fixed point theorem and
a limiting process. Although the method used in this paper is standard and similar to that
of Fang et al. [6], the construction of our super- and subsolutions to prove the existence
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of traveling waves is different from that in [6]. In fact, Fang et al. [6] constructed super-
and subsolutions by using traveling waves of two auxiliary systems, while in this paper,
we construct super- and subsolutions by using the eigenfunction of the linearized equation.
Hence, we can get the exact exponential asymptotic behavior of traveling waves at minus
infinity (see Eq. 1.4), which will be very useful to establish the uniqueness and stability of
traveling waves. The following assumptions are needed to establish the spreading speed and
existence of traveling waves.

(H1) 0 and K are two equilibrium points, namely, f (0) = f (K)− δK = 0. Furthermore,
assume that f ′(0) > δ, f ′(K) < δ and f (w) 	= δw for w ≥ 0 with w 	= 0,K .

(H2) f (·) : [0,∞) → R
+ is of C2, and f ′(0)w ≥ f (w) > 0 for any w > 0.

The assumption (H1) shows that Eq. 1.1 is a monostable system, while the birth function
f (·) in Eq. 1.1 may be non-monotone. Define f ∗(w) := maxv∈[0,w] f (v) for w ≥ 0.
According to the assumptions (H1) and (H2), the equation f ∗(w) = δw has the smallest
positive root K∗ ≥ K > 0. Define f∗(w) by f∗(w) = minv∈[w,K∗] f (v) for w ∈ [0, K∗]
and f∗(w) = f (w) for w > K∗. Then the equation f∗(w) = δw has the smallest positive
solutionK∗ ∈ [0, K∗]. Based on the above assumptions, we have the following conclusions,
which will be proved in Section 2.

Theorem 1.1 (Spreading speed) Suppose that (K1)-(K3) and (H1)-(H2) hold. Let
w(t) := {wn(t)}n∈Z be the unique global solution of Eq. 1.1 with the initial value
w0 := {w0

n(s)}n∈Z, where u0n(s) ∈ [0, K∗] for s ∈ [−τ, 0]. Then we get:
(1) When w0

n(s) = 0,∀ s ∈ [−τ, 0], |n| ≥ k > 0, there holds lim
t→∞,|n|≥ct

wn(t) =
0, ∀c > c∗;

(2) When w0
n(·) 	≡ 0 on [−τ, 0] for some n ∈ Z, there holds

K∗ ≥ lim sup
t→∞,|n|≤ct

wn(t) ≥ lim inf
t→∞,|n|≤ct

wn(t) ≥ K∗, ∀ c ∈ (0, c∗).

Furthermore, limt→∞,|n|≤ct wn(t) = K once the following assumption holds,

(F) f (u)
u

<
f (v)

v
for u, v ∈ [K∗,K∗] satisfying u > v. In particular, there must be

u = v provided that u, v satisfy K∗ ≥ u ≥ K ≥ v ≥ K∗, δv ≥ f (u), and
δu ≤ f (v).

Theorem 1.2 (Existence of traveling waves) Suppose that (K1)-(K3) and (H1)-(H2)
hold. Then Eq. 1.1 has a traveling wave solution � := {wn(t)}n∈Z = {�(n + ct)}n∈Z with
c ≥ c∗ satisfying

lim
ξ→−∞ e−λ1ξ�(ξ) = 1 and K∗ ≥ lim sup

ξ→+∞
�(ξ) ≥ lim inf

ξ→+∞ �(ξ) ≥ K∗ > 0, (1.4)

where ξ = n + ct . Furthermore, if the assumption (F) holds, then limξ→+∞ �(ξ) = K . In
addition, if c ∈ (0, c∗), Eq. 1.1 has no traveling wave satisfying 0 ≤ �(ξ) ≤ K∗ for all
ξ ∈ R and lim infξ→−∞ �(ξ) < K∗.

Here we would like to note that functions f (w) = pwe−aw and f (w) = pw
a+awq , where

p > 0, q > 0, and a > 0, are typical examples satisfying the assumptions (H1)-(H2) and
(F).

Besides the spreading speed and existence of traveling waves, the stability is also a cen-
tral question in the study of traveling waves. For lattice differential Eqs. 1.1 and 1.3, if
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the spatial non-local effects were not considered, there have been many results about the
stability of traveling waves [1, 2, 5, 13, 21, 24] whether the function f is monotone or
non-monotone. For Eqs. 1.1 and 1.3 with the spatial non-local effects, the global stability
of traveling waves was studied by Zhang [26] only for the case when the function f (·) is
monostable and monotone. However, when the function f (·) is non-monotone and monos-
table, there are few results on the stability of traveling waves of Eqs. 1.1. Therefore, our
second objective in this paper is to solve the issue.

In fact, when f is not monotone, the method in Zhang [26] is invalid, where they used the
comparison principle together with the semi-discrete Fourier transform. In addition, though
there have been some results studying the stability of traveling waves of non-monotone
delayed equations without spatial non-local effects by weighted energy method (see [5, 15,
17]), they usually used a piecewise weighted function (that is, ω(ξ) := min{e−2λ(ξ−ξ0), 1}).
However, for Eqs. 1.1 and 1.3 with the spatial non-local effects, we can only prove the
stability of the traveling waves with sufficiently large speeds due to the influences of the
non-local terms if we choose such a piecewise weighted function. Indeed, a sufficiently
large speed c is needed to ensure that some term in the l2-estimates is positive. Therefore, in
this paper, we choose the non-piecewise weighted function {ωn(t)} := {e−2λ(n+ct)}n∈Z with
λ ∈ (λ1, λ2) to establish the expected energy estimates, which can be done for any c > c∗.
By applying the anti-weighted energy method and the nonlinear Halanay’s inequality [11],
we could obtain that for any given c > c∗, the solution w(t) of Eq. 1.1 converges to the
corresponding traveling waves �(n + ct) in the given space. Here we emphasize that some
similar works have been done for the non-local dispersal equations in continuous media,
see [9, 16, 18, 23].

Now we state our results on the stability of traveling waves, which will be proved in
Section 3. The notations appeared in the following theorem can also be found in Section 3.
The following hypothesis is needed:

(H3) f ′(0) ≥ |f ′(w)| for w ∈ (0,+∞).

Theorem 1.3 (Stability) Suppose that (K1)-(K3), (H1)-(H3), and (F) hold. Let {�(n +
ct)}n∈Z = �(ξ)(c > c∗) be the traveling waves satisfying �(−∞) = 0, �(+∞) =
K . Suppose that W0(s) = w0(s) − �(n + cs) ∈ C([−τ, 0]; l∞),

√
ω(s)W0(s) ∈

C([−τ, 0]; l2) ∩ L2([−τ, 0]; l2). Then there exist constants δ0 > 0, C > 1, and α > 0 such
that when

sup
s∈[−τ,0]

(∥∥∥W0(s)

∥∥∥2
l∞

+
∥∥∥W0(s)

∥∥∥2
l2ω

+
∫ 0

−τ

∥∥∥W0(s)

∥∥∥2
l2ω

ds

)
≤ δ0,

the solution w(t) = {wn(t)}n∈Z of equation (1.1) globally exists and satisfies

‖W(t)‖l∞ ≤ Ce−αt , 0 ≤ t < ∞,

whereW(t) := {wn(t) − �(n + ct)}n∈Z.

Finally, for the sake of convenience, in the remainder of this paper, we always use the
following notations:

�i∈Z\{0}J (i)wn−i (t) = (J � w)n(t), �i∈ZR(i)wn−i (t) = (R ⊗ w)n(t),

�i∈Z\{0}J (i)V (ξ − i) = (J � V )(ξ), �i∈ZR(i)V (ξ − i) = (R ⊗ V )(ξ),

�i∈Z\{0}J (i)eλ(ξ−i) = (J � exp(λ))(ξ), �i∈ZR(i)eλ(ξ−i) = (R ⊗ exp(λ))(ξ).
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2 Spreading Speed and Existence of the TravelingWaves

In this section, we are dedicated to solving the spreading speed and existence of the traveling
waves of Eq. 1.1. The characteristic equation of the linearized equation of Eq. 1.2 at zero
equilibrium is as follows

E(λ, c) = −ρ�i∈Z\{0}e−λiJ (i) + ρ + δ + cλ − f ′(0)e−λcτ�i∈Ze−λiR(i) = 0.

Lemma 2.1 Suppose that (K1)-(K3) hold and f ′(0) > δ. Then there are positive constants
c∗ and λ∗ such that

E(λ∗, c∗) = 0,
∂

∂λ
E(λ, c∗)

∣∣∣∣
λ=λ∗

= 0.

In addition, when c > c∗, the equation E(λ, c) = 0 admits two distinct roots which satisfy
0 < λ1(c) < λ∗ < λ2(c) < λ̂, E(λ, c) > 0 for λ1(c) < λ < λ2(c), E(λ, c) < 0 for
λ ∈ (0, λ̂)\(λ1(c), λ2(c)).

Proof Since the proof is similar to Ma et al. [14, Lemma 2.2], here we omit it.

Define C := C([−τ, 0];R) with the maximum norm ‖ · ‖, D := {u0(s) = {u0n(s)}n∈Z :
u0n(s) ∈ C} with the supremum norm. For u0(·), v0(·) ∈ D, u0(·) ≤ v0(·) means that
u0n(s) ≤ v0n(s), ∀ s ∈ [−τ, 0], n ∈ Z. Let X = {φ ∈ C(R;R)| supx∈R |φ(x)| < ∞}
with the supremum norm. For any α > 0, define Cα := {v(s) ∈ C : v(s) ∈ [0, α] for
s ∈ [−τ, 0]}, Dα := {u0(s) ∈ D : 0 ≤ u0n(s) ≤ α,∀ n ∈ Z,∀ s ∈ [−τ, 0]}, Xα := {φ ∈
X : 0 ≤ φ(x) ≤ α,∀ x ∈ R}.

From the definition of f ∗(w) and f∗(w), there exists a η ∈ (0,K) such that f ∗(w) =
f∗(w) = f (w) for w ∈ [0, η]. Clearly, f ∗(w) and f∗(w) are non-decreasing and Lipschitz
continuous in [0, K∗], and satisfy 0 < f∗(w) ≤ f (w) ≤ f ∗(w) ≤ f ′(0)w forw ∈ (0,K∗].
Note that f ∗(·) (or f∗(·)) satisfies the assumption (H1) with f (·) = f ∗(·) (or f∗(·)) and
K = K∗( or K∗), respectively, and f ∗(·)( or f∗(·)) has the same linearization as that of f (·)
at 0. In particular, the following two auxiliary quasi-monotone systems could be obtained

d

dt
wn(t) = ρ(J � w − w)n(t) − δwn(t) + (R ⊗ f ∗(w))n(t − τ), (2.1)

d

dt
wn(t) = ρ(J � w − w)n(t) − δwn(t) + (R ⊗ f∗(w))n(t − τ). (2.2)

Proposition 2.2 Suppose that (K1)-(K3) and (H1)-(H2) hold. For any w0 ∈ DK∗ ,
Eqs. 1.1, 2.1, and 2.2 have unique solutionw(t,w0) = {wn(t)}n∈Z, w̄(t,w0) = {w̄n(t)}n∈Z,
w(t,w0) = {wn(t)}n∈Z with wn(t), w̄n(t), wn(t) ∈ C1([0,+∞), [0, K∗]), respectively.
Furthermore, for any w0

1,w
0
2 ∈ DK∗ with w0

1 ≤ w0
2, there hold w̄n(t,w0

1) ≤ w̄n(t,w0
2),

wn(t,w
0
1) ≤ wn(t,w

0
2), respectively. In addition, for any w̄

0,w0,w0 ∈ DK∗ , if w0 ≤ w0 ≤
w̄0, then 0 ≤ wn(t,w

0) ≤ wn(t,w0) ≤ w̄n(t, w̄0) ≤ K∗,∀ n ∈ Z, t ≥ 0.

Here we omit the proof, since it is similar to Ma et al. [14, Lemma 2.1]. The following
conclusion indicates that the spreading speed of the Eq. 1.1 is c∗.

Proof of Theorem 1.1 Since f ∗(w) and f∗(w) are non-decreasing in [0, K∗] and satisfy
f ′(0)w ≥ f ∗(w) ≥ f∗(w) ≥ 0 for w ≥ 0 and f (w) = f ∗(w) = f∗(w) for
0 ≤ w ≤ η, it follows from Ma et al. [15, Theorem 1.1] that Eqs. 2.1 and 2.2 admit
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the same spreading speed c∗. From Proposition 2.2, for any w0, w̄0,w0 ∈ DK∗ with
w0 ≤ w0 ≤ w̄0, Eqs. 1.1, 2.1, and 2.2 have solutions w(t,w0), w̄(t, w̄0), w(t,w0)

with wn(t,w
0) ≤ wn(t,w0) ≤ w̄n(t, w̄0) respectively. In particular, there holds 0 ≤

wn(t,w
0) ≤ wn(t,w0) ≤ w̄n(t, w̄0) ≤ K∗,∀ t ∈ [−τ,∞), n ∈ Z. Therefore, the

spreading speed of Eq. 1.1 is c∗, which implies (1) and the first part of (2).
The upward convergence, namely, the second part of (ii), can be proved by the same

arguments as those in Thieme [20, §3.9] and Fang et al. [6]. This completes the proof.

Proof of Theorem 1.2 We will give the proof by three steps.

Step 1: Fix c > c∗. Take γ >
ρ
c

+ δ
c
. Define

�(�)(ξ) := (
γ − ρ

c
− δ

c

)
�(ξ) + 1

c
(R ⊗ f (�))(ξ − cτ) + ρ

c
(J � �)(ξ), (2.3)

then Eq. 1.2 can be expressed as

�′(ξ) + γ�(ξ) = �(�)(ξ), ∀ξ ∈ R. (2.4)

We can define �∗ and �∗ by substituting f with f ∗ and f∗ in Eq. 2.3, respectively.
From the definition of f ∗ and f∗, we can conclude that
�(K) = γK, �∗(K∗) = γK∗, �∗(K∗) = γK∗, �(0) = �∗(0) = �∗(0) = 0

and �∗ and �∗ are non-decreasing, that is, for any �, � ∈ C(R, [0, K∗]) with �(ξ) ≥
�(ξ),∀ ξ ∈ R, there are �∗[�](ξ) ≥ �∗[�](ξ) and �∗[�](ξ) ≥ �∗[�](ξ) for all
ξ ∈ R. It follows from the definition of X that �(ξ) = e−γ ξ

∫ ξ

−∞ eγy�(�)(y)dy

satisfies Eq. 2.4 for � ∈ X . Therefore, we can define an operator F : X → X by

F(�)(ξ) =
∫ ξ

−∞
e−γ (ξ−y)�(�)(y)dy.

In a same way, by virtue of �∗ and �∗, we can similarly define F ∗ : X → X and
F∗ : X → X . Obviously, F ∗(K∗) = K∗, F∗(K∗) = K∗, F (K) = K , F ∗(w) ≥
F(w) ≥ F∗(w) for 0 < w < K∗. F ∗ and F∗ are also non-decreasing, that is, for
�, � ∈ C(R, [0, K∗]) with �(ξ) ≥ �(ξ),∀ ξ ∈ R, we have F ∗[�](ξ) ≥ F ∗[�](ξ)

and F∗[�](ξ) ≥ F∗[�](ξ) for ξ ∈ R.
Define

V +(ξ) = min
ξ∈R{eλ1ξ ,K∗} and V −(ξ) = eλ1ξ max

ξ∈R
{1 − ζeεξ , 0}.

where 0 < ε < λ1
2 , λ1 + ε < λ2, and ζ > 1 are parameters. From

the definition of V −(ξ), by calculating, maxξ∈R V −(ξ) = V −( 1
ε
ln λ1

ζ(λ1+ε)
) =

ε( λ1
ζ

)(λ1/ε)( 1
λ1+ε

)(λ1/ε+1). Thus, there exists a constant η > 0 such that for ζ > 1 large

enough, 0 ≤ V −(ξ) < η for any ξ ∈ R. Let

N∗(�)(ξ) := d�

dξ
+ γ�(ξ) − �∗(�)(ξ), N∗(�)(ξ) := d�

dξ
+ γ�(ξ) − �∗(�)(ξ).

When ξ ≥ 1
ε
ln 1

ζ
, we have V −(ξ) = 0 and note the fact that f (w) is nonnegative;

hence,

N∗(V −)(ξ) = (V −)′ + ρ + δ

c
V − − ρ

c
(J � V −)(ξ) − 1

c
(R ⊗ f (V −))(ξ − cτ)

≤ −ρ

c
(J � V −)(ξ) − 1

c
(R ⊗ f (V −))(ξ − cτ) ≤ 0.
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When ξ < 1
ε
ln 1

ζ
, we have V −(ξ) = eλ1ξ (1 − ζeεξ ) and V −(ξ − i) ≥ eλ1(ξ−i)(1 −

ζeε(ξ−i)). By the Taylor expansion, we get f ′(0)w − Mw2 ≤ f (w), ∀ w ∈ [0, η),
where M = maxw∈[0,η] |f ′′(w)|. Then
N∗(V −)(ξ) = (V −)′ + ρ + δ

c
V − − ρ

c
(J � V −)(ξ) − 1

c
(R ⊗ f (V −))(ξ − cτ)

≤ 1

c

[
cλ1e

λ1ξ − c(λ1 + ε)ζ e(λ1+ε)ξ + (ρ + δ)eλ1ξ − (ρ + δ)ζ e(λ1+ε)ξ

−ρ(J � exp(λ1))(ξ) + ρζ(J � exp(λ1 + ε))(ξ)

−f ′(0)(R ⊗ V −)(ξ − cτ) + M(R ⊗ (V −)2)(ξ − cτ)
]

= 1

c

(
eλ1ξE(λ1, c) − ζE(λ1 + ε, c)e(λ1+ε)ξ + M(R ⊗ (V −)2)(ξ − cτ)

)

= 1

c

(
−ζE(λ1 + ε, c)e(λ1+ε)ξ + M(R ⊗ (V −)2)(ξ − cτ)

)
.

From the definition of V −(ξ), for ζ > 1 large enough, when ζeε(ξ−i−cτ) < 1, it yields

eε(ξ−i−cτ) < ζ−1, e(λ1−ε)(ξ−i−cτ) = (eε(ξ−i−cτ))
λ1−ε

ε ≤ ζ− λ1−ε

ε < 1.

Consequently, we have

(R ⊗ (V −)2)(ξ − cτ) = �i∈ZR(i)e2λ1(ξ−i−cτ)
(
max{0, 1 − ζeε(ξ−i−cτ)}

)2

≤ �i∈ZR(i)e(λ1+ε)(ξ−i−cτ)e(λ1−ε)(ξ−i−cτ)
(
max{0, 1 − ζeε(ξ−i−cτ)}

)2
≤ (R ⊗ exp(λ1 + ε))(ξ − cτ) = e(λ1+ε)ξ�i∈ZR(i)e−(λ1+ε)(i+cτ),

and hence,

N∗(V −)(ξ) = 1

c

(
−ζe(λ1+ε)ξE(λ1 + ε, c) + M(R ⊗ (V −)2)(ξ − cτ)

)

≤ 1

c

(
−ζE(λ1 + ε, c) + M�i∈ZR(i)e−(λ1+ε)i

)
e(λ1+ε)ξ .

Finally, when ζ is sufficiently large, we always have that N∗(V −)(ξ) < 0 for any
ξ ∈ R. Since F∗ are non-decreasing, similar to [22, Lemma 3.3], we can obtain that
F∗(V −)(ξ) ≥ V −(ξ) for any ξ ∈ R. Similarly, we can show F ∗(V +)(ξ) ≤ V +(ξ) for
any ξ ∈ R.

For λ ∈ (0, λ1(c)), define a Banach space (Xλ, || · ||Xλ),

Xλ =
{

� ∈ C(R,R)||| sup
ξ∈R

e−λξ |�(ξ)| < +∞
}

, ‖�(ξ)‖Xλ = sup
ξ∈R

e−λξ |�(ξ)|.

Clearly, V + and V − are elements of Xλ. Let

Y := {� ∈ Xλ : V − ≤ � ≤ V +} ⊂ Xλ.

Obviously, Y is convex and closed. Since

V + ≥ F ∗(V +) ≥ F ∗(w) ≥ F(w) ≥ F∗(w) ≥ F∗(V −) ≥ V −, w ∈ Y,

we have Y ⊃ F(Y ).
Similar to Fang et al. [6, Theorem 4.1] and Ma et al. [14, Theorem 3.1], we get that

F is compact on Y . Thus, F has a fixed point � in Y by using the Schauder’s fixed
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point theorem. Obviously, limξ→−∞ �(ξ)e−λ1ξ = 1 and � is non-trivial. Therefore,
� = {�(n + ct)}n∈Z is a traveling wave solution satisfying �(−∞) = 0. Because of
{wn(t)}n∈Z = {�(n + ct)}n∈Z is the solution of the Eq. 1.1, from Theorem 1.1 (1), we
have

K∗ ≥ lim sup
t→∞,|n|≤c̄t

�(n + ct) ≥ lim inf
t→∞,|n|≤c̄t

�(n + ct) ≥ K∗, 0 < c̄ < c∗.

Especially, we have K∗ ≥ lim supt→∞ �(ct) ≥ lim inft→∞ �(ct) ≥ K∗. Let ξ = ct ,
then we have K∗ ≥ lim supξ→∞ �(ξ) ≥ lim infξ→∞ �(ξ) ≥ K∗. If the assumption
(F) holds, we further have limξ→+∞ �(ξ) = K .
Step 2: Here we demonstrate the existence of the critical traveling waves (c =
c∗). Taking a sequence {cj }j∈N which satisfies c∗ + 1 > cj > cj+1 > c∗ and
lim

j→+∞ cj = c∗. From Step 1, we know that Eq. 1.1 admits a traveling wave �j :=
{�j(n + cj t)}n∈Z which satisfies �j(−∞) = 0 and K∗ ≥ lim supξ→+∞ �j(ξ) ≥
lim infξ→+∞ �j(ξ) ≥ K∗. Then for some α ∈ (0,K∗), by a shift we can assume that
�j(0) = α < K∗ and �j(ξ) ≤ α, ∀ ξ < 0, j ∈ N. From Eq. 1.2, we obtain that for
any ξ ,

cj

d

dξ
�j (ξ) = ρ(J � �j − �j)(ξ) − δ�j (ξ) + (R ⊗ f (�j ))(ξ − cj τ ).

It follows from�j(ξ) ∈ [0,K∗] that there exists a constantC1 > 0 such that |�′
j (ξ)| ≤

C1, ∀ ξ ∈ R, j ∈ N. Differentiating the above equation with respect to ξ , we can find
another constant C2 > 0 such that |�′′

j (ξ)| ≤ C2, ∀ j ∈ N, ξ ∈ R. Consequently, up

to a subsequence, we have that �j(ξ) converges to �∗(ξ) in C1
loc(R) as j → ∞. Note

that

�j(ξ) =
∫ 0

−∞
eγy�[�j ](ξ + y)dy, ∀ j ∈ N, ξ ∈ R. (2.5)

Let j → +∞ in Eq. 2.5, it holds that F(�∗)(ξ) = �∗(ξ) (c = c∗, ξ ∈ R)
by applying the dominated convergence theorem. In addition, we have �∗(0) = α,
�∗(ξ) ≤ α for any ξ < 0. Similar to Step 1, we also haveK∗ ≥ lim supξ→+∞ �∗(ξ) ≥
lim infξ→+∞ �∗(ξ) ≥ K∗.

Next, we prove that �∗(−∞) = 0. Suppose lim supξ→−∞ �∗(ξ) = β > 0, then
there must be β ≤ α. Choose ξj → −∞ satisfying limj→+∞ �∗(ξj ) = β. Let
�∗,j (ξ) = �∗(ξ + ξj ) and ��(ξ) = limj→+∞ �∗,j (ξ) up to a subsequence, then it
yields ��(0) = β ≤ α and ��(ξ) ≤ β. Since ��(ξ) satisfies

c∗
d

dξ
��(ξ) = ρ(J � (��) − ��)(ξ) − δ��(ξ) + (R ⊗ f (��))(ξ − i − c∗τ)),

it follows from Theorem 1.1 that lim inft→∞,|n|≤c̃t ��(n + c∗t) ≥ K∗, 0 < c̃ < c∗,
which means K∗ ≤ lim inft→∞ ��(c∗t), namely, lim infξ→∞ ��(ξ) ≥ K∗ > β. This
is contradictory to ��(ξ) ≤ β above. Therefore, �∗(−∞) = 0 is proved. Using
the analogous arguments as above, if the assumption (F) holds, we can show that
�∗(+∞) = K .
Step 3: For the non-existence of the traveling wave solution, since the proof is similar
to that of Fang et al. [6, Theorem 3.4], we omit it for simplicity.
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3 Stability of TravelingWaves

We have already proved that Eq. 1.1 admits traveling wave {�(n + ct)}n∈Z with c ≥ c∗
in Section 2. Based on the fact and the assumptions of (H1)-(H3) and (F), in this section,
we mainly study the stability of the noncritical traveling waves {�(n + ct)}n∈Z (c > c∗)
satisfying �(−∞) = 0 and �(+∞) = K . First of all, we need take some transforms to
Eq. 1.1.

Define Wn(t) = wn(t) − �(n + ct) for t ≥ 0, and W 0
n (s) = w0

n(s) − �(n + cs) for
s ∈ [−τ, 0], where n ∈ Z. Then system (1.1) reduces to

⎧⎨
⎩

dWn

dt
(t) − ρ(J � W − W)n(t) + δWn(t) − (R ⊗ (f ′(�)W))n(t − τ)

= (R ⊗ Q(W))n(t − τ)), t > 0, n ∈ Z,

Wn(s) = W 0
n (s), s ∈ [−τ, 0], n ∈ Z,

(3.1)

where

(Q(W))n(t − τ) := f (�(n + ct − cτ) + Wn(t − τ)) − f (�(n + ct − cτ))

−f ′(�(n + ct − cτ))Wn(t − τ).

By Taylor’s formula, it holds

|(Q(W))n| ≤ �|Wn|2, ∀ n ∈ Z, (3.2)

where � > 0 depends on the bound of the second derivative of f and the value of ‖W‖l∞ .
Before presenting the results about the stability, we introduce some notations. In the

following, a generic constant is denoted as C > 0 and a specific constant is denoted as
Ck > 0 (k = 1, 2, · · · ). Denote B as a Banach space with a norm ‖ · ‖B and T > 0 as a
number. Furthermore, we define:

C0([0, T ];B) := {φ : [0, T ] → B is continuous}.
L1([0, T ];B) :=

{
φ maps [0, T ] to B,

∫ T

0
‖φ(t)‖Bdt < ∞

}
.

l∞ = {u = {un}n∈Z : un ∈ R, ‖u‖l∞ < ∞}, ‖u‖l∞ = sup
n∈Z

|un|.

l1 = {u = {un}n∈Z : un ∈ R, ‖u‖l1 < ∞}, ‖u‖l1 =
∑
n∈Z

|un|.

l2 = {u = {un}n∈Z : un ∈ R, ‖u‖l2 < ∞}, ‖u‖l2 =
(∑

n∈Z
u2n

) 1
2

.

l2ω = {u = {un}n∈Z : un ∈ R, ‖u‖l2ω
< ∞}, ‖u‖l2ω

=
(∑

n∈Z
ωnu

2
n

) 1
2

, ω = {ωn}n∈Z.

Define the weight function as

ω(t) := {ωn(t)}n∈Z :=
{
e−2λ(n+ct)

}
n∈Z , λ ∈ (λ1, λ2).
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For 0 < T ≤ ∞, define

Cunif [−τ, T ] := {w(t) := {wn(t)}n∈Z ∈ C([−τ, T ]; l∞), and

lim
n→+∞ wn(t) exists uniformly in t ∈ [−τ, T ]},

X(−τ, T ) := {
W|W(t) = {Wn(t)}n∈Z ∈ Cunif [−τ, T ], and

W(t) ∈ C([−τ, T ]; l2ω) ∩ L2([−τ, T ]; l2ω)
}

,

with the norm

‖W‖2X(−τ,T ) := sup
t∈[−τ,T ]

(
‖W(t)‖2l∞ + ‖W(t)‖2

l2ω
+
∫ t

−τ

‖W(t)‖2
l2ω

dt

)
,

where ‖W(t)‖l2ω
:= (∑

n∈Z ωn(t)W
2
n (t)

) 1
2 .

Meanwhile, give the definition of discrete Fourier transform (refer to [19]) as follows:
For v = {vj }j∈Z ∈ l2, the Fourier transform of v is given by

F [u](η) = û(η) = 1√
2π

�j∈Ze−iηjuj , η ∈ [−π, π ].

The inverse Fourier transform of û is denoted as

F−1[û] = 1√
2π

∫ π

−π

eiηj û(η)dη, j ∈ Z, i2 = −1.

3.1 Local Existence and Uniqueness

In this subsection, our main goal is to give the proof of the local existence of the solution
W(t) of system (3.1).

Theorem 3.1 Suppose that (K1)-(K3), (H1)-(H3), and (F) hold. Let {�(n + ct)}n∈Z =
�(ξ), (c > c∗) be the traveling waves which satisfy �(−∞) = 0, �(+∞) = K . For
any δ1 > 0, suppose W0(s) := {

W 0
n (s)

}
n∈Z ∈ X(−τ, 0) satisfying

∥∥W0(s)
∥∥

X(−τ,0) ≤ δ1,
then there exist a sufficiently small t0 = t0(δ1) such that the solution W(t) of the per-
turbed equation (3.1) unique exists for −τ ≤ t ≤ t0, and satisfies W(t) ∈ X(−τ, t0) and
‖W(t)‖X(−τ,t0)

< C1
∥∥W0(s)

∥∥
X(−τ,0) for some constant C1 > 1, where C1 is independent

of δ1 and t0.

Proof Fix W0(s) ∈ X(−τ, 0). For t0 > 0, let

Y (−τ, t0) = {W(t) ∈ X(−τ, t0) | W(s) = W0(s), s ∈ [−τ, 0]}. (3.3)

For W(t) ∈ Y (−τ, t0), define Ŵ(t) = T (W)(t) by

⎧⎨
⎩

d

dt
Ŵ(t) + (ρ + δ)Ŵ(t) = g(W)(t), t > 0,

Ŵ(s) = W0(s), s ∈ [−τ, 0],
(3.4)

where Ŵ(t) = {Ŵn(t)}n∈Z, g(W)(t) := {gn(W)(t)}n∈Z , and

gn(W)(t) = ρ(J � W)n(t) + (R ⊗ [f (� + W) − f (�)])n(t − τ).
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Clearly, Ŵ(t) is well defined. And the Eq. 3.4 is equivalent to

Ŵ(t) = W0(0)e−(ρ+δ)t + e−(ρ+δ)t

∫ t

0
e(ρ+δ)sg(W)(s)ds, t ∈ [0, t0]. (3.5)

Step 1.We prove that the mapping T satisfies T (Y (−τ, t0)) ⊂ Y (−τ, t0).

(i) Firstly, we show Ŵ(t) ∈ Cunif [−τ, t0]. It follows from W(t) ∈ Cunif [−τ, t0]
that there exists W∞(t) ∈ C[−τ, t0] satisfying limn→∞ Wn(t) := W∞(t) uni-
formly for t ∈ [−τ, t0]. Then by virtue of the assumptions on J (·), R(·), and f (·),
we have that

lim
n→∞ gn(W)(t) = ρW∞(t) + f (K + W∞(t − τ)) − f (K)

uniformly for t ∈ [0, t0]. By Eq. 3.5, we get

lim
n→∞ Ŵn(t) = e−(ρ+δ)tW 0∞(0)

+e−(ρ+δ)t

∫ t

0
e(ρ+δ)s [ρW∞(s) + f (K + W∞(s − τ)) − f (K)] ds

(3.6)

uniformly for t ∈ [0, t0]. From Eq. 3.5, we can also obtain

∥∥∥Ŵ(t)

∥∥∥
l∞

≤
∥∥∥W0(0)

∥∥∥
l∞

+ C′t0 sup
t∈[−τ,t0]

‖W(t)‖l∞ , t ∈ [0, t0], (3.7)

where C′ := ρ + f ′(0) > 0. For any 0 ≤ t1 ≤ t2 ≤ t0, we have

∥∥∥Ŵ(t1) − Ŵ(t2)

∥∥∥
l∞

≤
∥∥∥W0(0)e−(ρ+δ)t1(1 − e−(ρ+δ)(t2−t1))

∥∥∥
l∞

+
∥∥∥∥
∫ t2

t1

e−(ρ+δ)(t2−s)g(W)(s)ds

∥∥∥∥
l∞

+
∥∥∥∥
∫ t1

0
e−(ρ+δ)(t1−s)(1 − e−(ρ+δ)(t2−t1))g(W)(s)ds

∥∥∥∥
l∞

≤
∣∣∣1 − e−(ρ+δ)(t2−t1)

∣∣∣
(∥∥∥W0(0)

∥∥∥
l∞

+ C′t0 sup
s∈[−τ,t0]

‖W(s)‖l∞

)

+C′|t1 − t2| sup
s∈[−τ,t0]

‖W(s)‖l∞ ,

which combining Eqs. 3.6 and 3.7 and the fact that Ŵ(s) = W0(s) (−τ ≤ s ≤ 0)
imply that Ŵ(t) ∈ Cunif [−τ, t0].
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(ii) Secondly, we show the energy estimates for Ŵ(t) ∈ C
([−τ, t0]; l2ω

) ∩
L2

([−τ, t0]; l2ω
)
. By taking the regular energy estimates

∑
n∈Z

∫ t

0ωn(s)Ŵn(s) ×
(3.4)ds, we get

∑
n∈Z

∫ t

0
ωn(s)

dŴn(s)

ds
Ŵn(s)ds +

∫ t

0
(ρ + δ)

∑
n∈Z

ωn(s)Ŵn(s)Ŵn(s)ds

=
∑
n∈Z

∫ t

0
(J � W)n(s)ωn(s)Ŵn(s)ds

+
∑
n∈Z

∫ t

0
ωn(s)Ŵn(s)(R ⊗ (f (� + W) − f (�)))n(s − τ)ds

:= P1(t) + P2(t). (3.8)

For any t ∈ [0, t0], a direct computation gives

∑
n∈Z

∫ t

0

dŴn(s)

ds
ωn(s)Ŵn(s)ds

= 1

2

∥∥∥√ω(t)Ŵ(t)

∥∥∥2
l2

− 1

2

∥∥∥√ω(0)W0(0)
∥∥∥2

l2
+ λc

∫ t

0

∥∥∥√ω(s)Ŵ(s)

∥∥∥2
l2

ds.

(3.9)

Applying Young’s inequality 2ab ≤ ηa2 + 1
η
b2 for any η > 0, we have

P2(t) ≤
∑
n∈Z

∫ t

0
f ′(0)ωn(s)(R ⊗ |W |)n(s − τ)|Ŵn(s)|ds

≤ ε

2

∫ t

0

∥∥∥Ŵ(s)

∥∥∥2
l2ω

ds+ C0(f
′(0))2

2ε

(∫ 0

−τ

‖W(s)‖2
l2ω

ds+
∫ t

0
‖W(s)‖2

l2ω
ds

)
,

(3.10)

for t ∈ [0, t0], where C0 = ∑
i∈Z R(i)

ωn(s)
ωn−i (s−τ)

= ∑
i∈Z R(i)e−2λ(i+cτ) and

ε > 0 is a constant which will be determined later. Similarly, we have

P1(t) ≤ C′
0ρ

2

∫ t

0
‖W(s)‖2

l2ω
ds + ρ

2

∫ t

0

∥∥∥Ŵ(s)

∥∥∥2
l2ω

ds, (3.11)

for t ∈ [0, t0], where C′
0 = ∑

i∈Z\{0} J (i)
ωn(s)

ωn−i (s)
= ∑

i∈Z\{0} J (i)e−2λi .
Substituting Eqs. 3.9, 3.10, and 3.11 into 3.8, we obtain

∥∥∥Ŵ(t)

∥∥∥2
l2ω

+ 2A
∫ t

0

∥∥∥Ŵ(s)

∥∥∥2
l2ω

ds

≤
∥∥∥W0(0)

∥∥∥2
l2ω

+ C′
0ρ

∫ t

0
‖W(s)‖2

l2ω
ds

+C0(f
′(0))2

ε

(∫ 0

−τ

‖W(s)‖2
l2ω

ds +
∫ t

0
‖W(s)‖2

l2ω
ds

)
,
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whereA = λc+ δ + ρ
2 − ε

2 . Choose ε = ρ, thenA := λc+ δ > 0. Consequently,
there exists C > 0, which depends on λ, c, δ, C0, C

′
0, ρ, and f ′(0), such that

∥∥∥Ŵ(t)

∥∥∥2
l2ω

+
∫ t

0

∥∥∥Ŵ(s)

∥∥∥2
l2ω

ds ≤ C

(∥∥∥W0(0)
∥∥∥2

l2ω

+
∫ 0

−τ

∥∥∥W0(s)

∥∥∥2
l2ω

ds +
∫ t

0
‖W(s)‖2

l2ω
ds

)

(3.12)

for t ∈ [0, t0], which implies that Ŵ(t) ∈ l2ω, and Ŵ(t) ∈ L2([−τ, t0]; l2ω). In
addition, for any 0 ≤ t1 ≤ t2 ≤ t0, it holds

∥∥∥√ω(t1)Ŵ(t1) −√
ω(t2)Ŵ(t2)

∥∥∥2
l2

≤
∑
n∈Z

(
W 0

n (0)e−λ(n+ct1)e−(ρ+δ)t1 +
∫ t1

0
e−λ(n+ct1)e−(ρ+δ)(t1−s)gn(W)(s)ds

−W 0
n (0)e−λ(n+ct2)e−(ρ+δ)t2 −

∫ t2

0
e−λ(n+ct2)e−(ρ+δ)(t2−s)gn(W)(s)ds

)2

≤
∑
n∈Z

3

[(
W 0

n (0)e−(ρ+δ)t1e−λ(n+ct1)
(
1 − e−(ρ+δ)(t2−t1)e−λc(t2−t1)

))2

+
(∫ t1

0
e−(ρ+δ)(t1−s)e−λ(n+ct1)

(
1−e−(ρ+δ)(t2−t1)e−λc(t2−t1)

)
gn(W)(s)ds

)2

+
(∫ t2

t1

e−(ρ+δ)(t2−s)e−λ(n+ct2)gn(W)(s)ds

)2
]

= J1(t1, t2) + J2(t1, t2) + J3(t1, t2).

The estimates of J1(t1, t2)−J3(t1, t2) are given below. Firstly,

J1(t1, t2) = 3
∥∥W0(0)

∥∥2
l2ω

(
e−(ρ+δ+λc)t1

(
1 − e−(ρ+δ)(t2−t1)e−λc(t2−t1)

))2
,

thus, J1(t1, t2) → 0 as |t1 − t2| → 0. Secondly,

J2(t1, t2) ≤ 6
(
1 − e−(ρ+δ)(t2−t1)e−λc(t2−t1)

)2 [
ρ2
∑
n∈Z

(∫ t1

0
e−λ(n+ct1)(J � W)n(s)ds

)2

+ (
f ′(0)

)2∑
n∈Z

(∫ t1

0
e−λ(n+ct1)(R ⊗ W)n(s − τ)ds

)2
]
.

Denote Ċ = ∑
i∈Z\{0} J (i)e−2λi, C̈ = ∑

i∈Z R(i)e−2λi . It follows from the

assumption (K3) that Ċ and C̈ are bounded. Since
∑

i∈Z\{0} J (i) = ∑
i∈Z R(i) =

1, andW(t) ∈ X(−τ, t0), it yields

J2(t1, t2) ≤ 6
(
1 − e−(ρ+δ)(t2−t1)e−λc(t2−t1)

)2 (
ρ2Ċ

∫ t1

0
‖W(s)‖2

l2ω
ds

+ (
f ′(0)

)2
C̈

∫ t1

0
‖W(s − τ)‖2

l2ω
ds

)
−→ 0, as |t1 − t2| → 0.
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Finally, calculated as above, we have

J3(t1, t2) ≤ 6ρ2Ċ ‖W(s)‖X(−τ,t0)
|t2 − t1| + 6(f ′(0))2C̈ ‖W(s − τ)‖X(−τ,t0)

|t2 − t1|
−→ 0, as |t1 − t2| → 0.

Thus, we get Ŵ(t) ∈ C([−τ, t0]; l2ω). Based on the proof of (i) and (ii), it holds
that Ŵ = T (V) maps from Y (−τ, t0) to Y (−τ, t0).

In addition, it follows from Eqs. 3.7 and 3.12 that there exists a constant Ĉ > 0,
which depends on λ, c, δ, C0, C

′
0, ρ, and f ′(0), such that

‖Ŵ(t)‖2X(−τ,t0)
≤ Ĉ sup

s∈[−τ,0]

(∥∥∥W0(s)

∥∥∥2
l∞

+
∥∥∥W0(s)

∥∥∥2
l2ω

+
∫ 0

−τ

∥∥∥W0(s)

∥∥∥2
l2ω

ds

)
+ Ĉt0 ‖W(t)‖2X(−τ,t0)

. (3.13)

Step 2. We prove that T is a contraction mapping on Y (−τ, t0). For any
W1(t),W2(t) ∈ Y (−τ, t0), define Ŵ1 = T W1, Ŵ2 = T W2. By a series of calcu-
lations similar to Step 1, we have ‖Ŵ1 − Ŵ2‖2X(−τ,t0)

≤ C4t0‖W1 − W2‖2X(−τ,t0)
,

where C4 > 0 is a constant depending on λ, c, δ, C0, C
′
0, ρ, and f ′(0). Take 0 < t0 <

min
{

1
C4

, 1
2Ĉ

}
, then

‖Ŵ1 − Ŵ2‖2X(−τ,t0)
= ‖T W1 − T W2‖2X(−τ,t0)

≤ ι‖W1 − W2‖2X(−τ,t0)
,

where ι < 1. Thus, T is a contraction mapping on given space. Hence, the local exis-
tence of the solution in Y (−τ, t0) (see Eq. 3.3 for the definition of Y (−τ, t0)) can be
proved by using the Banach fixed point theorem. Furthermore, by the similar calcula-
tion as above (see Eq. 3.13), we get ‖W‖X(−τ,t0)

< C1
∥∥W0

∥∥
X(−τ,0) for some constant

C1 > 1, which depends on λ, c, δ, C0, C
′
0, ρ, and f ′(0). Clearly, the constant C1 > 1

is independent of δ1 and t0. This completes the proof.

3.2 Key Estimate

In Section 3.1, we have proved the local existence of solutions of Eq. 3.1. In this subsection,
we give a key estimate for local solutions of Eq. 3.1 when the solutions are sufficiently
small.

Theorem 3.2 Suppose that (K1)-(K3), (H1)-(H3), and (F) hold. Let W(t) ∈ X(−τ, T )

be a local solution of system (3.1) on [0, T ] for a given constant T > 0. Then there exist
constants α > 0, C̃ > 1, and � ∈ (0, 1), which are independent of T andW(t) ∈ X(−τ, T ),
such that, when ‖W‖X(−τ,T ) ≤ �, there holds

‖W(t)‖2l∞ + ‖W(t)‖2
l2ω

+ ∫ t

0 e−2α(t−s) ‖W(s)‖2
l2ω

ds

≤ C̃e−2αt sups∈[−τ,0]
(∥∥W0(s)

∥∥2
l∞ + ∥∥W0(s)

∥∥2
l2ω

+ ∫ 0
−τ

∥∥W0(s)
∥∥2

l2ω
ds
)

∀t ∈ [0, T ].

To prove this theorem, we first show four lemmas in the following.
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Lemma 3.3 Suppose ‖W(·)‖X(−τ,T ) ≤ �1 for some �1 ∈ (0, 1) small enough. Then there
exist constants C5 > 0, ε ∈ (0, δ

2 ) and an integer n0 � 1, which are independent of T ,
satisfying

‖W(t)‖l∞[n0−[cT ]−1,+∞) ≤ C5e
−εt sup

s∈[−τ,0]
‖W0(s)‖l∞ , ∀t ∈ [0, T ].

Proof We have limn→+∞ Wn(t) exists uniformly with respect to t ∈ [−τ, T ] due to the fact
that W(t) := {Wn(t)}n∈Z ∈ X(−τ, T ). Let limn→+∞ Wn(t) := W∞(t) for −τ ≤ t ≤ T

and limn→+∞ W 0
n (s) := W 0∞(s) for any s ∈ [−τ, 0]. Taking the limits to Eq. 3.1, we can

obtain{
d
dt

W∞(t) + δW∞(t) − f ′(K)W∞(t − τ) = Q(W∞(t − τ)), 0 < t ≤ T ,

W∞(s) = W 0∞(s), s ∈ [−τ, 0].
It is clear that ‖W∞(·)‖L∞[−τ,0] ≤ ‖W(t)‖X(−τ,0). Using the nonlinear Halanay’s inequality
(see [11]), we have that there exist �1 ∈ (0, 1) small enough, 0 < ε < δ

2 , and C > 0 such
that

|W∞(t)| ≤ C‖W 0∞(·)‖L∞[−τ,0]e−2εt ≤ C sup
s∈[−τ,0]

∥∥∥W0(s)

∥∥∥
l∞

e−2εt , t > 0, (3.14)

provided ‖W(t)‖X(−τ,T ) < �1. In particular, the constants �1, ε, and C > 0 are indepen-
dent of W(t). Multiplying both sides of Eq. 3.1 by eδt and integrating the two sides of the
equation on [0, t] yield

Wn(t) = e−δt

(
W 0

n (0) + ρ

∫ t

0
eδs(J � W − W)n(s)ds

+
∫ t

0
eδs(R ⊗ f ′(�)W)n(s − τ)ds +

∫ t

0
eδs(R ⊗ Q(W))n(s − τ)ds

)
.

Furthermore, multiplying both sides of the above equation by eεt , and taking the limit of the
above equation as n → +∞, we can obtain

lim
n→+∞ eεtWn(t)

≤ e−(δ−ε)t

(
W 0∞(0) + f ′(K)

∫ t

0
eδsW∞(s − τ)ds + �

∫ t

0
eδs |W∞(s − τ)|2ds

)

≤ Ce−(δ−ε)t sup
s∈[−τ,0]

∥∥∥W0(s)

∥∥∥
l∞

(
1 + f ′(K)

∫ t

0
eδse−2ε(s−τ)ds + �

∫ t

0
eδse−2ε(s−τ)ds

)

≤ Ce−εt sup
s∈[−τ,0]

∥∥∥W0(s)

∥∥∥
l∞

, uniformly in t ≥ 0,

where we have used the inequality (3.2) with � := maxu∈[0,K∗+1] |f ′′(u)|. In particular,
the last constant C > 0 is independent of t and the choosing of the constants �1 ∈ (0, 1)
and ε ∈ (0, δ

2 ). Thus, for each ε > 0, there is n0 = n0(ε) � 1, which is independent of t ,
satisfying ∣∣eεtWn(t) − eεtW∞(t)

∣∣ < ε ∀ n ≥ n0 − 1 − [cT ],
which together with Eq. 3.14 yields

eεt |Wn(t)| ≤ C sup
s∈[−τ,0]

∥∥∥W0(s)

∥∥∥
l∞

+ ε, ∀ n ≥ n0 − 1 − [cT ].
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Letting ε = sups∈[−τ,0]
∥∥W0(s)

∥∥
l∞ , we have

sup
n∈[n0−[cT ]−1,+∞)

|Wn(t)| ≤ C5e
−εt sup

s∈[−τ,0]

∥∥∥W0(s)

∥∥∥
l∞

, ∀ t ≥ 0.

Clearly, C5 > 0 and ε ∈ (0, δ
2 ) only depend on �1. The proof is completed.

Clearly, Lemma 3.3 gives an estimate of Wn(t) for n ≥ n0 − 1 − [cT ]. In the following,
we derive a similar estimate ofWn(t) for n ≤ n0−1−[cT ]. For n0 ∈ Z given in Lemma 3.3,
define

Wn(t) = √
ωn(t)Wn+n0(t) = e−λ(n+ct)Wn+n0(t),

and letW(t) := {Wn(t)}n∈Z. Substituting Wn+n0(t) = 1√
ωn(t)

Wn(t) into Eq. 3.1, we derive

the following equation:⎧⎪⎨
⎪⎩

W
′
n(t) − ρ((J · exp(−λ)) � W)n(t) + (ρ + δ + cλ)Wn(t)

−e−λcτ ((R · exp(−λ)) ⊗ f ′(�)W)n(t−τ) = √
ωn(t)(R ⊗ Q(W))n+n0(t−τ), t > 0,

Wn(s) = W
0
n(s), s ∈ [−τ, 0],

(3.15)
where ((J ·exp(−λ))�W)n(t) = ∑

i∈Z\{0} J (i)e−λiWn−i (t) and ((R ·exp(−λ))⊗W)n(t) =∑
i∈Z R(i)e−λiWn−i (t).

Lemma 3.4 Suppose (K1)-(K3), (H1)-(H3), and (F) hold. Then

1

2

d
∥∥W(t)

∥∥2
l2

dt
+ μ

∥∥W(t)
∥∥2

l2
+ C6

(∥∥W(t)
∥∥2

l2
− ∥∥W(t − τ)

∥∥2
l2

)
≤ I1(t), 0 ≤ t ≤ T ,

(3.16)
where

μ := −ρ
∑

i∈Z\{0}
e−λiJ (i) + cλ + ρ + δ − f ′(0)e−λcτ

∑
i∈Z

e−λiR(i) > 0,

C6 := 1

2
f ′(0)e−λcτ

∑
i∈Z

e−λiR(i), I1(t) :=
∑
n∈Z

√
ωn(t)(R ⊗ Q(W))n+n0(t − τ)Wn(t).

Proof Taking the regular energy estimates
∑

n∈Z Wn(t) × (3.15), we get

1

2

d
∥∥W(t)

∥∥2
l2

dt
+ (ρ + δ + cλ)

∥∥W(t)
∥∥2

l2
− ρ

∑
n∈Z

((J · exp(−λ)) � W)n(t)Wn(t)

−
∑
n∈Z

e−λcτ ((R · exp(−λ)) ⊗ f ′(�)W)n(t − τ)Wn(t)

=
∑
n∈Z

√
ωn(t)(R ⊗ Q(W))n+n0(t − τ)Wn(t) := I1(t). (3.17)

Define I2(t) := ρ
∑

n∈Z((J · exp(−λ)) ⊗ W)n(t)Wn(t) and

I3(t) :=
∑
n∈Z

e−λcτ ((R · exp(−λ)) ⊗ f ′(�)W)n(t − τ)Wn(t).
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Via the Hölder inequality and Fourier transform, we have

|I2(t)| ≤ ρ
∥∥W(t)

∥∥
l2

∥∥{((J · exp(−λ)) � W)n(t)
}
n∈Z

∥∥
l2

= ρ
∥∥W(t)

∥∥
l2

∥∥F [{
((J · exp(−λ)) � W)n(t)

}
n∈Z

]∥∥
L2[−π,π]

= ρ
∥∥W(t)

∥∥
l2

∥∥∥∥
√
2πF

[{
J (i)e−λi

}
i∈Z\{0}

]
· F [

W(t)
]∥∥∥∥

L2[−π,π]

≤ ρ
∥∥W(t)

∥∥
l2

⎛
⎜⎝
∫ π

−π

∣∣∣∣∣∣
∑

i∈Z\{0}
J (i)e−λi

∣∣∣∣∣∣
2

· ∣∣F [
W(t)

]∣∣2 dξ

⎞
⎟⎠

1
2

= ρ

⎛
⎝ ∑

i∈Z\{0}
e−λiJ (i)

⎞
⎠∥∥W(t)

∥∥2
l2
. (3.18)

By the hypothesis (H3) and the calculations similar to Eq. 3.18, we can obtain

|I3(t)| ≤ f ′(0)
(∑

i∈Z R(i)e−λi−λcτ
) ( 1

2

∥∥W(t)
∥∥2

l2
+ 1

2

∥∥W(t − τ)
∥∥2

l2

)
. (3.19)

Substituting Eqs. 3.18 and 3.19 into Eq. 3.17, we get

I1(t) ≥ 1

2

d
∥∥W(t)

∥∥2
l2

dt
+ 1

2
f ′(0)

(∑
i∈Z

R(i)e−λi−λcτ

)(∥∥W(t)
∥∥2

l2
− ∥∥W(t − τ)

∥∥2
l2

)

+
⎛
⎝−ρ

∑
i∈Z\{0}

e−λiJ (i) + cλ + ρ + δ − f ′(0)
(∑

i∈Z
e−λ(i+cτ)R(i)

)⎞
⎠∥∥W(t)

∥∥2
l2
.

The proof is completed.

Lemma 3.5 Suppose (K1)-(K3), (H1)-(H3), and (F) hold. Then there exist constants �2 ∈
(0, 1), σ ∈ (

0, μ
2

)
, and C7 > 0 such that

∥∥W(t)
∥∥2

l2
+ e−2σ t

∫ t

0
e2σs

∥∥W(s)
∥∥2

l2
ds

≤ C7e
−2σ t

(∥∥∥W0
(0)

∥∥∥2
l2

+
∫ 0

−τ

e2σs
∥∥∥W0

(s)

∥∥∥2
l2

ds

)
, t ∈ [0, T ],

provided ‖W(t)‖X(−τ,T ) ≤ �2, where μ is defined in Lemma 3.4. In particular, constants
�2, σ , and C7 are independent of T and W(t).

Proof Multiplying inequality (3.16) by e2σ t and integrating it from 0 to t , that is

e2σ t
∥∥W(t)

∥∥2
l2

+ 2(μ − σ)

∫ t

0
e2σs

∥∥W(s)
∥∥2

l2
ds

+2C6

∫ t

0
e2σs

(∥∥W(s)
∥∥2

l2
− ∥∥W(s − τ)

∥∥2
l2

)
ds ≤ ‖W0

(0)‖2
l2

+ 2
∫ t

0
e2σsI1(s)ds.

(3.20)
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By changing variables, we get

2C6

∫ t

0
e2σs

∥∥W(s − τ)
∥∥2

l2
ds

≤ 2C6

∫ 0

−τ

e2σ(s+τ)
∥∥∥W0

(s)

∥∥∥2
l2

ds + 2C6

∫ t

0
e2σ(s+τ)

∥∥W(s)
∥∥2

l2
ds.

Substituting the above inequality into Eq. 3.20, we can obtain

∥∥W(t)
∥∥2

l2
+ 2Ã

∫ t

0
e−2σ(t−s)

∥∥W(s)
∥∥2

l2
ds

≤ C′e−2σ t

(∥∥∥W0
(0)

∥∥∥2
l2

+
∫ 0

−τ

e2σs
∥∥∥W0

(s)

∥∥∥2
l2

ds

)
+ 2

∫ t

0
e−2σ(t−s)I1(s)ds,(3.21)

where C′ = 1 + 2C6e
2στ and Ã = (μ − σ) + C6(1 − e2στ ).

Now we estimate I1(t). It follows from W(t) := {Wn(t)}n∈Z ∈ X(−τ, T ) that W(t) ∈
C([−τ, T ]; l2) and supt∈[−τ,T ]

∣∣Wn+n0(t)
∣∣ ≤ ‖W(t)‖X(−τ,T ) ≤ �2 < 1. Obviously,

Wn(t) = √
ωn(t)Wn+n0(t) = e−λn−λctWn+n0(t),

Wn−i (t − τ) = √
ωn−i (t − τ)Wn−i+n0(t − τ) = e−λ(n−i)−λc(t−τ)Wn−i+n0(t − τ).

Consequently, we have

2
∫ t

0
e−2σ(t−s)I1(s)ds

≤ 2�
∫ t

0
e−2σ(t−s)

∑
n∈Z

√
ωn(s)(R ⊗ W 2)n+n0(s − τ)Wn(s)ds

= 2�
∫ t

0
e−2σ(t−s)

∑
n∈Z

∣∣Wn(s)
∣∣
(∑

i∈Z
R(i)e−λ(i+cτ)

∣∣Wn−i (s−τ)
∣∣ ∣∣Wn+n0−i (s−τ)

∣∣
)

ds

≤ �

(∑
i∈Z

e−λ(i+cτ)R(i)

)
‖W(t)‖X(−τ,T ) e−2σ t

∫ t

0
e2σs

(∥∥W(s)
∥∥2

l2
+ ∥∥W(s−τ)

∥∥2
l2

)
ds

≤ C′′ ‖W(t)‖X(−τ,T )

(
e−2σ t

∫ t

0
e2σs

∥∥W(s)
∥∥2

l2
ds + e−2σ t

∫ 0

−τ

e2σs
∥∥∥W0

(s)

∥∥∥2
l2

ds

)
,

(3.22)

where C′′ = �
∑

i∈Z e−λ(i+cτ)R(i) and � := maxu∈[0,K∗+1] |f ′′(u)|. Substitute Eq. 3.22
into Eq. 3.21, that is

∥∥W(t)
∥∥2

l2
+ 2

(
Ã − C′′ ‖W(t)‖X(−τ,T )

)
e−2σ t

∫ t

0
e2σs

∥∥W(s)
∥∥2

l2
ds

≤ C′′′e−2σ t

(∥∥∥W0
(0)

∥∥∥2
l2

+
∫ 0

−τ

e2σs
∥∥∥W0

(s)

∥∥∥2
l2

ds

)
,
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where C′′′ = C′ + C′′. Here, we can choose a sufficiently small 0 < σ <
μ
2 such that

Ã = (μ−σ)+C6(1− e2στ ) ≥ μ
2 , where μ > 0 is defined in Lemma 3.4. Take �2 ∈ (0, 1)

satisfying C′′�2 ≤ μ
4 . Therefore, there exists a constant C7 > 0 such that

∥∥W(t)
∥∥2

l2
+
∫ t

0
e−2σ(t−s)

∥∥W(s)
∥∥2

l2
ds ≤C7e

−2σ t

(∥∥∥W0
(0)

∥∥∥2
l2

+
∫ 0

−τ

e2σs
∥∥∥W0

(s)

∥∥∥2
l2

ds

)
.

(3.23)
Clearly, �2, σ , and C7 are independent of T andW(t). The proof is completed.

Lemma 3.6 Suppose (K1)-(K3), (H1)-(H3), and (F) hold. Let �2, σ , and C7 be defined in
Lemma 3.5. Then there exists C8 > 0 such that

‖W(t)‖l∞(−∞,n0−[cT ]−1] ≤ C8κe−σ t , t > 0, (3.24)

provided ‖W(t)‖X(−τ,T ) ≤ �2, where n0 � 1 is defined in Lemma 3.3 and

κ2 =
∥∥∥W0(0)

∥∥∥2
l2ω

+
∫ 0

−τ

e2σs
∥∥∥W0(s)

∥∥∥2
l2ω

ds.

Proof It follows from Eq. 3.23 that

∥∥W(t)
∥∥2

l2
+
∫ t

0
e−2σ(t−s)

∥∥W(s)
∥∥2

l2
ds ≤C7e

−2σ t

(∥∥∥W0
(0)

∥∥∥2
l2

+
∫ 0

−τ

e2σs
∥∥∥W0

(s)

∥∥∥2
l2

ds

)
.

By Sobolev’s embedding inequality l2 ↪→ l∞, it yields

∥∥W(t)
∥∥

l∞ ≤ ∥∥W(t)
∥∥

l2
≤ √

C7e
−σ t

(∥∥∥W0
(0)

∥∥∥2
l2

+
∫ 0

−τ

∥∥∥W0
(s)

∥∥∥2
l2

e2σsds

) 1
2

.

Since Wn(t) = √
ωn(t)Wn+n0(t) = e−λ(n+ct)Wn+n0(t) ≥ e−λ(n+[cT ]+1)Wn+n0(t), and

e−λ(n+[cT ]+1) ≥ 1 for any n + [cT ] + 1 ∈ (−∞, 0], we can obtain

sup
n+[cT ]+1∈(−∞,0]

|Wn+n0(t)| ≤ √
C7e

−σ t

(∥∥∥W0
(0)

∥∥∥2
l2

+
∫ 0

−τ

∥∥∥W0
(s)

∥∥∥2
l2

e2σsds

) 1
2

.

Consequently, we have

sup
n∈(−∞,n0−[cT ]−1]

|Wn(t)| ≤ C8κe−σ t , t ∈ [0, T ]

where C8 > 0 is a constant. Thus, Eq. 3.24 is proved.

Proof of Theorem 3.2 Combining Lemmas 3.3, 3.5, and 3.6, there are 0 < � ≤ min{�1, �2},
α = min{ε, σ }, and C̃ > 1 such that

‖W(t)‖2l∞ + ‖W(t)‖2
l2ω

+
∫ t

0
e−2α(t−s) ‖W(s)‖2

l2ω
ds

≤ C̃e−2αt sup
s∈[−τ,0]

(∥∥∥W0(s)

∥∥∥2
l∞

+
∥∥∥W0(s)

∥∥∥2
l2ω

+
∫ 0

−τ

∥∥∥W0(s)

∥∥∥2
l2ω

ds

)
,

provided ‖W(·)‖X(−τ,T ) < �, t ∈ [0, T ]. This completes the proof.
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3.3 Asymptotic Stability

Proof of Theorem 1.3 According to the local existence (Theorem 3.1) and the key estimate
(Theorem 3.2), we prove the theorem via the continuity extension method [15]. Let α, C̃,
and � be defined in Theorem 3.2, which are independent of T andW(t). Let C1 be defined
in Theorem 3.1. Set

δ0 = min

{
�

C1
,

�√
C̃C1

}
, δ1 = max {δ0, �} , (3.25)

‖W(s)‖X(−τ,0) ≤ δ0 < δ1. (3.26)

By Theorem 3.1, there exists t0 = t0(δ1) > 0 so that W(t) ∈ X(−τ, t0) and

‖W(t)‖X(−τ,t0)
≤ C1

∥∥∥W0(s)

∥∥∥
X(−τ,0)

≤ C1δ0 ≤ �.

It follows from Theorem 3.2 that

‖W(t)‖X(0,t0) ≤
√

C̃e−2αt‖W0(s)‖X(−τ,0) ≤
√

C̃δ0 ≤ �

C1
. (3.27)

Now consider Eq. 3.1 on the initial time interval [t0−τ, t0]. Combining Eqs. 3.25, 3.26, and
3.27, we have

‖W(t)‖X(t0−τ,t0)
≤ max

{
‖W0(s)‖X(−τ,0), ‖W(t)‖X(0,t0)

}

≤ max

{
‖W0(s)‖X(−τ,0),

�

C1

}
≤ δ1.

Applying Theorem 3.1 once more, we obtain that W(t) ∈ X(−τ, 2t0) and

‖W(t)‖X(t0−τ,2t0) ≤ C1‖W(s)‖X(t0−τ,t0). In addition, ‖W(t)‖X(t0−τ,t0) ≤ max
{
δ0,

�
C1

}
≤

�
C1

, which indicates ‖W(t)‖X(t0−τ,2t0) ≤ �. Thus,

‖W(t)‖X(−τ,2t0) ≤ max
{
‖W(t)‖X(t0−τ,2t0), ‖W(t)‖X(0,t0−τ), ‖W0(s)‖X(−τ,0)

}

≤ max

{
δ0,

�

C1
, �

}
≤ �.

Then, by Theorem 3.2, for t ∈ [0, 2t0], there is
‖W(t)‖X(0,2t0) ≤ C̃e−2αt‖W(s)‖X(−τ,0) ≤ C̃δ0 ≤ �

C1
.

Repeating this process step by step, we can obtain the solution W(t) exists globally in
X(−τ, ∞) and satisfies

‖W(t)‖l∞ ≤ Ce−αt , 0 ≤ t < ∞.

The proof is completed.
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