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Abstract
We consider specific sub-Finslerian structures in the neighborhood of 0 in R

2, defined by
fixing a family of vector fields (F1, F2) and considering the norm defined on the non-
constant rank distribution � = vect{F1, F2} by

|G| = inf
u

{max{|u1|, |u2|} | G = u1F1 + u2F2}.
If F1 and F2 are not proportional at p, then we obtain a Finslerian structure; if not, the
structure is sub-Finslerian on a distribution with non-constant rank. We are interested in
the study of the local geometry of these Finslerian and sub-Finslerian structures: generic
properties, normal form, short geodesics, cut locus, switching locus, and small spheres.

Keywords Sub-Finslerian geometry · Maximum norm · Geodesics · Small spheres ·
Cut locus

Mathematics Subject Classification (2010) 53B40 · 53C22 · 49J15 · 49K15

1 Introduction

From the 1980s, the interest for the sub-Riemannian geometry increases with a lot of con-
tributions in several domains as PDEs, analysis, probability, geometry, and control. One of
the questions was to understand the local geometry of sub-Riemannian metrics, as the sin-
gularities of small spheres, local cut locus, local conjugate locus, and so on motivated in
particular by new results on the heat kernel in the sub-Riemannian context (see [9, 10, 22,
23]). The contact and the Martinet cases were deeply studied (see [1, 2, 11, 12, 19]). The
quasi-contact case in dimension 4 was also studied (see [15]). These results allowed to give
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new results on the asymptotics of the heat kernel at cut and conjugate loci in the 3D contact
and 4D quasi-contact cases [5, 7].

In this article, we start the same work for Finslerian and sub-Finslerian metrics associated
with a maximum norm: consider a manifold M , a vector bundle π : E → M with fibers of
same dimension as M endowed with a maximum norm, and a morphism of vector bundles
f : E → T M such that the map from �(E) → V ec(M) defined by σ �→ f ◦σ is injective.
An admissible curve is a curve γ in M such that exists a lift σ in E with γ̇ (t) = f (σ(t))

a.e. The length of such a curve is the infimum of the
∫ T

0 |σ(t)|dt for all possible such σ

and the distance between two points q0 and q1 is the infimum of the lengths of the curves
joining q0 and q1. Remark that the map f itself is not assumed to be injective everywhere:
at points where f is injective the structure is Finslerian when at points where it is not, it is
sub-Finslerian.

Here, we concentrate our attention on the local study of such structures in dimension 2,
that is when M and the fibers of E have dimension 2.

Equivalently, with a control point of view and since we are interested in local properties,
we consider control systems in a neighborhood of 0 in R

2 of the type

q̇ = u1F1(q) + u2F2(q) (1)

where F1 and F2 are smooth vector fields and u1 and u2 are control functions satisfying

|u1| ≤ 1 and |u2| ≤ 1. (2)

Up to reparameterization, minimizing the distance in the geometric context is equivalent to
minimizing the time of transfer in the control context.

We are interested in the study of the time optimal synthesis of such systems. Of course,
the general situation cannot be completely described since singular cases may have very
special behavior. For example, in the case F1 = ∂x and F2 = ∂y , any admissible trajectory

with u1 ≡ 1 and
∫ 1

0 u2(t)dt = 0 joins optimally (0, 0) to (1, 0). Hence, in the following, we
will consider only “generic” situations as defined in Section 2.1.

Few works exist concerning sub-Finsler geometry since it is a new subject. Let us men-
tion the works [17, 18] for dimension 3, considering norms which are assumed to be smooth
outside the zero section. In [14], the sphere of a left invariant sub-Finsler structure associ-
ated with a maximum norm in the Heisenberg group is described. In the preprint [6], the
authors describe the extremals (and discuss in particular their number of switches before the
loss of optimality) for the Heisenberg, Grushin, and Martinet distributions. In the preprint
[4], we describe, in the 3D generic contact case, the small spheres and the local cut locus.

The paper is organized as follows.
In Section 2, we recall Thom’s transversality theorem and some of its corollaries, define

what we mean by generic, give generic properties of the couples of vector fields on two-
dimensional manifolds and give a normal form for the generic couples.

In Section 3, we give first general results about the optimal synthesis; recalling classical
results as Chow-Rashevski, Filippov, and Pontryagin theorems; analyzing the possibili-
ties for extremals to switch or to be singular depending on their initial conditions; giving
details on the weights of coordinates in the normal form and on the associated nilpotent
approximation.

In Section 4, we present the local synthesis in all the generic cases presented in the
normal form of Section 2.
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2 Normal Form

In this section, the goal is to give a list of properties of generic couples (F1, F2) and to
construct a normal form for the couple (G1, G2) defined by G1 = F1 + F2 and G2 =
F1 − F2. As we will see, ±G1 and ±G2 are the velocities of a large class of the minimizers
of the optimal control system defined by Eqs. 1 and 2.

In all this article, we will consider the following sets. We define

�A = {q ∈ M | F1(q) and F2(q) are colinear},
�1 = {q ∈ M | F1(q) and [F1, F2](q) are colinear},
�2 = {q ∈ M | F2(q) and [F1, F2](q) are colinear}.

In order to give the list of properties, we use the Thom’s transversality theorem and some
of its corollaries.

2.1 Generic Properties of Couples of Smooth Vector Fields on 2DManifolds

2.1.1 Thom’s Transversality Theorem

Denote J k(M,N) the set of k-jets of maps from M to N .

Theorem 1 (Thom Transversality Theorem, [21], Page 82) Let M,N be smooth mani-
folds and k ≥ 1 an integer. If S1, · · · , Sr are smooth submanifolds of J k(M,N) then the
set

{f ∈ C∞(M,N) : J kf � Si for i = 1, 2, · · · , r},
is residual in the C∞-Whitney topology.

Corollary 1 Assume that codim Si > dim M for i = 1, · · · , r and k ≥ 1. Then, the set

{f ∈ C∞(M,N) : J kf (M) ∩ Si = ∅ for i = 1, · · · , r},
is residual in the C∞-Whitney topology.

Corollary 2 For every f in the residual set defined in Theorem 1, the inverse images S̃i :=
(J kf )−1(Si) are a smooth submanifold of M and codim Si = codim S̃i for i = 1, · · · , r .

Remark 1 Let ϕ be a diffeomorphism of M and φ be a diffeomorphism of N . The map

σϕ,φ :
{

C∞(M,N) −→ C∞(M,N)

f �−→ ϕ ◦ f ◦ φ

induces a diffeomorphism σ ∗
ϕ,φ of J k(M,N) sending submanifolds of J k(M,N) on sub-

manifolds of J k(M,N). Moreover, f is in the residual set defined in theorem 1, if and only
if σϕ,φ(f ) is in the residual set

{g ∈ C∞(M,N) : J kg � σ ∗
ϕ,φ(Si) for i = 1, · · · , r}.

This remark is important to facilitate the presentation of the proofs of the generic
properties given in the next section.

Definition 1 In the following, we will say that a property of maps is generic if it is true on
a residual set for the C∞-Whitney topology.
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2.1.2 First Generic Properties

Here, we give a list of generic properties for couples of vector fields on 2D manifolds. In
order to use Thom transversality theorem, we work locally in coordinates: we fix a point
and consider the Taylor series of a couple of vector fields at this point. Locally, one can
consider such a couple as the data of a map

g :
{

U ⊂ R
2 → R

2 × R
2

(x, y) �→ ((g1(x, y), g2(x, y)), (g3(x, y), g4(x, y)))

and the k-jet at q = (0, 0) ∈ U of g as the data of the map

J kg :
{

R
2 → Rk[x, y]4

(x, y) �→ (P1(x, y), . . . , P4(x, y))

where Pi (1 ≤ i ≤ 4) is the Taylor series of order k of gi at q.
In order to describe submanifolds of Rk[x, y]4 in coordinates, we write:

P
(x, y) =
k∑

i=0

k−i∑

j=0

p
,i,j x
iyj , ∀
 = 1, .., 4.

In the following, (g1, g2) are the coordinates of G1 and (g3, g4) the coordinates of G2 in
a local coordinate system.

Generic property 1 (GP1): for generic couples of vector fields (F1, F2) on M , the set of
points where G1 = G2 = 0 is empty.

Indeed in coordinates, such points correspond to jets with p1,0,0 = p2,0,0 = p3,0,0 =
p4,0,0 = 0 which form a submanifold of Rk[x, y]4 of codimension 4. Hence, thanks to
corollary 1, the property is proven.

Denote J k
N the set of k − jets such that P1 ≡ 1 and P2 ≡ 0. Once assumed that we

choose a coordinate system such that G1 = (1, 0), then J kg is in J k
N .

Assume that a set S of J k(R2,R4) is defined as the zero level of a finite number of
functions hi , i = 1 . . . k, whose differentials form a free family when restricted to T J k

N .
Then locally, the differentials of the functions hi form a free family and hence, close to J k

N ∩
S, the set S is locally a submanifold. In this context, the codimension of S in J k(R2,R4) is
equal to the codimension of S′ = S ∩ J k

N in J k
N .

Thanks to remark 1, up to a permutation between ±F1 and ±F2 and a good choice of
coordinates, we will assume in all the following that G1 ≡ (1, 0) locally. This implies that

is g1 ≡ 1 and g2 ≡ 0 and that the jet of (G1,G2) is in J k
N . As a consequence, if a set S

is defined by a finite number of functions hi , i = 1 . . . k, whose differentials form a free
family when restricted to T J k

N , then to apply Thom’s theorem and its corollaries we are
reduced to apply them to the map

g :
{

U ⊂ R
2 → R

2

(x, y) �→ (g3(x, y), g4(x, y))

and the set S′ = S ∩ J k
N seen as a submanifold of J k(R2,R2).

Generic property 2 (GP2): for generic couples of vector fields (F1, F2) on M , the set of
points where G2 = 0 is a discrete set. The same holds for the set where F1 = 0 or the set
where F2 = 0.
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Indeed, such points correspond to jets with p3,0,0 = p4,0,0 = 0 which is a submanifold
of Rk[x, y]2 of codimension 2. Hence, thanks to corollary 2, the set where G2 = 0 is
generically a submanifold of M of codimension 2 that is a discrete set. For F2 = 0, the
equations are p3,0,0 = 1 and p4,0,0 = 0 and for F1 = 0 the equations are p3,0,0 = −1 and
p4,0,0 = 0.

Generic property 3 (GP3): for generic couples of vector fields (F1, F2) on M , the set �A

of points where G2 is parallel to G1 is an embedded submanifold of codimension 1.

Indeed, �A is exactly the set of points where g4 = 0, corresponding to jets with p4,0,0 =
0. This last set is an embedded submanifold of Rk[x, y]2 of codimension 1. Thanks to (GP1)
and to corollary 2, we can conclude that generically �A is an embedded submanifold of
codimension 1.

Generic property 4 (GP4): for generic couples of vector fields (F1, F2) on M , the set �1
of points where F1 is parallel to [F1, F2] is an embedded submanifold of codimension 1.
The same holds for �2 where F2 is parallel to [F1, F2].
In order to prove (GP4), compute [F1, F2] and describe �1 in coordinates. [F1, F2] =

− 1
2 [G1,G2] hence it has coordinates − 1

2p3,1,0 and − 1
2p4,1,0 and F1 has coordinates 1

2 (1+
p3,0,0) and 1

2p4,0,0. Hence, �1 corresponds to jets satisfying
∣
∣
∣
∣
− 1

2p3,1,0
1
2 (1 + p3,0,0)

− 1
2p4,1,0

1
2p4,0,0

∣
∣
∣
∣ = 0.

The differential of this determinant is not degenerate hence the set of Rk[x, y]2 satisfy-
ing this equality is an embedded submanifold of codimension 1. Hence, generically, �1 is
the preimage of an immersed submanifold of codimension 1 which, thanks to corollary 2,
permits to conclude that �1 is an immersed submanifold of codimension 1.

Generic property 5 (GP5): for generic couples of vector fields (F1, F2) on M , the sets
(�A ∩ �1), (�A ∩ �2) and (�1 ∩ �2) are discrete.

Since G1 = (1, 0), the set (�1 ∩ �2) \ �A is the set of points where (F1, F2) is free and
[F1, F2] = 0 that is

p4,0,0 �= 0,

p3,1,0 = 0

p4,1,0 = 0.

This set is an immersed submanifold of codimension 2 of Rk[x, y]2 hence, thanks to
corollary 2, the set (�1 ∩ �2) \ �A is generically a discrete set.

The set (�A ∩ �2) \ �1 is a set of points where F2 = 0. By (GP2) it is a discrete set.
The same holds for (�A ∩ �1) \ �2 which is a set of points where F1 = 0.

The set �A ∩ �1 ∩ �2 is the union of the subset where F1 �= 0 and F1 � F2 � [F1, F2]
with a subset where F1 = 0. The second is discrete. The first set is also defined by G1 �
G2 � [G1,G2] that is p4,0,0 = 0 and p4,1,0 = 0. Hence, thanks to corollary 2, the set where
F1 �= 0 and F1 � F2 � [F1, F2] is a submanifold of codimension 2 that is a discrete set.

Generic property 6 (GP6): for generic couples of vector fields (F1, F2) on M , the set of
points where G1 � G2 � [G1,G2] � [G1, [G1,G2]] is empty.
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The set where G1 � G2 � [G1, G2] � [G1, [G1,G2]] is such that p4,0,0 = p4,1,0 =
p4,2,0 = 0. Hence, thanks to corollary 2, it is a submanifold of codimension 3 that is an
empty set.

Generic property 7 (GP7): for generic couples of vector fields (F1, F2) on M , at the
points q where G1(q) � G2(q) � [G1,G2](q) one gets G1(q) ∈ Tq�A.

The property G1(q)�G2(q)�[G1, G2](q) implies that p4,0,0 = p4,1,0 = 0. If p4,0,1 �= 0
then �A can be written p4,0,1y = o(x) that is �A is tangent to the x axis and G1 ∈ Tq�A.
Hence, the set of points where G1(q) � G2(q) � [G1, G2](q) and G1(q) /∈ Tq�A corre-
sponds to jets with p4,0,0 = p4,1,0 = p4,0,1 = 0 which is a submanifold of codimension
3. Hence, generically, at the points q where G1(q) � G2(q) � [G1,G2](q), one has
G1(q) ∈ Tq�A.

One can even detail more the generic properties: using Thom transversality theorem and
its corollaries, we can prove that generically

Generic property 8 (GP8): along �1 \ (�2 ∪ �A), the points where G1 or G2 is tangent
to �1 are isolated. The same holds true for �2 \ (�1 ∪ �A).

Generic property 9 (GP9): at points of (�1 ∩�2) \�A, neither G1 nor G2 are tangent to
�1 or �2.

Generic property 10 (GP10): along �A \ (�1 ∪ �2), the set of points where G2 = 0 or
G2 = ±G1 is discrete.

2.2 Normal Form

Thanks to the generic properties established in the previous section, we prove

Theorem 2 (Normal form) For a generic couple of vector fields (F1, F2) on a 2d manifold
M , at each point q of M , up to an exchange between ±F1 and ±F2, we get that G1(q) �=
0 and that it exists a unique coordinate system (x, y) centered at q such that one of the
following normal form holds

(NF1) G1(x, y) = ∂x,

G2(x, y) = ∂y + x(a10 + a20x + a11y + o(x, y))∂x

+x(b10 + b20x + b11y + o(x, y))∂y ,
and q /∈ �A.

(NF2) G1(x, y) = ∂x,

G2(x, y) = (a0 + a10x + a01y + o(x, y))∂x + x(1 + x(b20 + O(x, y)))∂y,

with 0 ≤ a0 ≤ 1, and q ∈ �A \ �1.
(NF3) G1(x, y) = ∂x,

G2(x, y) = (a0 + o(1))∂x + (b01y + 1
2x2 + b11xy + b02y

2 + o(x2, y2))∂y ,
with b01 > 0 and 0 < a0 < 1, q ∈ �A ∩ �1 ∩ �2 and G1(q) ∈ Tq�A.

For (NF1) and (NF2) one of the following subcases holds

(NF1a) (NF1) holds with a10 − b10 �= 0 and a10 + b10 �= 0. It corresponds to q /∈
�A ∪ �1 ∪ �2.

(NF1b) (NF1) holds with a10 − b10 = 0 and a10 + b10 �= 0. It corresponds to q ∈
�1 \ (�A ∪ �2).

(NF1c) (NF1) holds with a10 − b10 �= 0 and a10 + b10 = 0. It corresponds to q ∈
�2 \ (�A ∪ �1).
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(NF1d) (NF1) holds with a10 = b10 = 0. It corresponds to q ∈ (�1 ∩ �2) \ �A.
(NF2a) (NF2) holds with 0 ≤ a0 < 1. It corresponds to q ∈ �A \ (�1 ∪ �2).
(NF2b) (NF2) holds with a0 = 1. It corresponds to q ∈ (�A ∩ �2) \ �1 that is to

q ∈ �A \ �1 such that F2(q) = 0.

Such coordinate system is called the normal coordinate system associated with F1 and F2.

Proof In order to prove this normal form, we construct in each situation a coordinate chart
by mean of the flow of some linearly independent vector fields associated with the sub-
Finslerian structure. More precisely, once identified such a couple of vector fields (X, Y ),
we define the coordinate system by defining the map (x, y) �→ exXeyY q.

We assume that all the generic properties given before are satisfied. Thanks to (GP1),
and thanks to the fact that we are working locally, we can assume that G1 is not zero.

Thanks to (GP3), we know that �A is a submanifold of dimension 1. Let us start by
considering a point q outside �A. We define the map ϕ which to (x, y) in a neighborhood
U of (0, 0) in R

2 associates the point reached by starting at q and following G2 during time
y and then G1 during time x that is

ϕ :
{

U → M

(x, y) �→ exG1 eyG2q

Since ∂xϕ(0, 0) = G1(q) and ∂yϕ(0, 0) = G2(q), ϕ is a local diffeomorphism hence
defines a local coordinate system. One proves easily that at each point of coordinates (x, y)

the vector G1(x, y) = (1, 0). Moreover, along the y axis, since ϕ(0, y) = eyG2q then
G2(0, y) = (0, 1). This implies the normal form (NF1). With the normal form (NF1), one
gets that

[F1, F2](0) = −1

2
[G1, G2](0) = −1

2
(a10, b10),

F1(0) = 1

2
(G1(0) + G2(0)) = (

1

2
,

1

2
),

F2(0) = 1

2
(G1(0) − G2(0)) = (

1

2
,−1

2
)

which implies that

[F1, F2](0) = −a10 + b10

2
F1(0) − a10 − b10

2
F2(0).

The subcases follow immediately.
Assume now that q ∈ �A \ �1. Hence, G1(q) and G2(q) are parallel and since we

assume that G1(q) is not 0, we can assume up to a change of role that G2(q) = αG1(q)

with α ∈ [0, 1]. Since q /∈ �1, G1(q) and [G1,G2](q) are not parallel. This implies
that G1 is not tangent to �A. As a consequence, one can choose a local parameteriza-
tion γ (t) of �A such that γ (0) = q and γ̇ (t) has second coordinate 1 in the basis
(G1(γ (t)), [G1, G2](γ (t))). We can know define the map ϕ which to (x, y) in a neighbor-
hood U of (0, 0) in R

2 associates the point reached by starting at γ (y) and following G1
during time x that is

ϕ :
{

U → M

(x, y) �→ exG1γ (y)

In this coordinate system, �A is the y axis, G1(x, y) = (1, 0) and the second coordinate
of G2 is null at x = 0 hence it is the product of the function (x �→ x) with a smooth
function g. Moreover, thanks to the property of γ , g(0, y) = 1 which implies that g(x, y) =
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1 + xh(x, y) with h a smooth function. This is exactly (NF2). If 0 ≤ a0 < 1 then F1(q)

and F2(q) are not null and since they are parallel but not parallel to [F1, F2](q) then q ∈
�A \ (�1 ∪ �2). If a0 = 1 then F2(q) = 0 and q ∈ (�A ∩ �2) \ �1.

The case where q ∈ (�A ∩ �1) \ �2 can de treated by exchanging the roles of G1 and
G2 since in this case G2(q) �= 0.

Assume finally that q ∈ �A ∩ �1 ∩ �2. Thanks to (GP6) and (GP7) at such a point G1
and [G1, [G1,G2]] are not parallel. Hence, we can define the map ϕ which to (x, y) in a
neighborhood U of (0, 0) in R

2 associates the point reached by starting at q and following
[G1, [G1,G2]] during time y and then G1 during time x that is

ϕ :
{

U → M

(x, y) �→ exG1 ey[G1,[G1,G2]]q

The fact that G2 and [G1,G2] are parallel to G1 implies b0 = 0 and b10 = 0. The fact that,
along the y axis, [G1, [G1,G2]] = (0, 1) implies in particular that b20 = 1

2 .

3 General Facts About the Computation of the Optimal Synthesis

3.1 Local Controllability and Existence of Minimizers

In the three cases of the normal form (NF1), (NF2) and (NF3) one checks that

span(F1, F2, [F1, F2], [F1, [F1, F2]], [F2, [F1, F2]]) = R
2.

Hence, as a consequence of Chow-Rashevski theorem (see [3, 16, 25]), generically such a
control system is locally controllable that is locally, for any two points, always exists an
admissible curve joining the two points.

Moreover, since at each point, the set of admissible velocities is convex and compact,
thanks to Filippov theorem (see [3, 20]), locally for any two points, always exists at least a
minimizer.

3.2 Pontryagin Maximum Principle

The Pontryagn Maximum Principle (PMP for short, see [3, 24]) gives necessary conditions
for a curve to be a minimizer of a control problem. For our problem, it takes the following
form.

Theorem 3 (PMP) Define the Hamiltonian

H(q, λ, u, λ0) = u1λ.F1(q) + u2λ.F2(q) + λ0

where q ∈ R
2, λ ∈ T ∗

R
2, u ∈ R

2 and λ0 ∈ R. For any minimizer (q(t), u(t)), there exist a
never vanishing Lipschitz covector λ : t �→ λ(t) ∈ T ∗

q(t)R
2 and a constant λ0 ≤ 0 such that

– q̇(t) = ∂H
∂λ

(q(t), λ(t), u(t), λ0),

– λ̇(t) = − ∂H
∂q

(q(t), λ(t), u(t), λ0),
– 0 = H(q(t), λ(t), u(t), λ0) = maxv{H(q, λ, v, λ0) | |vi | ≤ 1 for i = 1, 2}.
A couple (q, λ) satisfying the previous conditions is called an extremal. If λ0 = 0, it is called
abnormal, if not, normal. A curve q may be associated with both abnormal and normal
extremals.
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Proposition 1 For a generic SF metric on a 2D manifold defined with a maximum norm,
there is no non trivial abnormal extremal. Hence, we can fix λ0 = −1. This is our choice in
the following.

Proof It is a classical fact that an abnormal extremal should correspond to a covector λ �= 0
orthogonal to F1, F2, and [F1, F2]. This implies that along the trajectory the three vectors
are parallel. But generically this happens only on a discrete set, which forbids to get a non
trivial curve.

3.3 Switchings

In this section, we follow the ideas of [13]. Recall that �A is the set of point q where F1(q)

and F2(q) are collinear, �1 is the set of point q where F1(q) and [F1, F2](q) are collinear,
and �2 is the set of point q where F2(q) and [F1, F2](q) are collinear.

Definition 2 For an extremal triplet (q(.), λ(.), u(.)), define the switching functions

φi(t) =< λ(t), Fi(q(t)) >, i = 1, 2,

and the function φ3(t) =< λ(t), [F1, F2](q(t)) >.

Thanks to λ0 = −1, the φi functions satisfy

u1(t)φ1(t) + u2(t)φ2(t) = 1, for a.e. t .

A direct consequence of the maximality condition is

Proposition 2 If φi(t) > 0 (resp. φi(t) < 0) then ui(t) = 1 (resp. ui(t) = −1).
If φi(t) = 0 and φ̇i (t) > 0 (resp. φ̇i (t) < 0) then φi changes sign at time t and the

control ui switches from −1 to +1(resp. from +1 to −1).

Definition 3 We call bang an extremal trajectory corresponding to constant controls with
value 1 or −1 and bang-bang an extremal which is a finite concatenation of bangs. We call
ui-singular an extremal corresponding to a null switching function φi . A time t is said to be
a switching time if u is not bang in any neighborhood of t .

Definition 4 Outside �A, define the functions f1 and f2 by

[F1, F2](q) = f2(q)F1(q) − f1(q)F2(q).

It is clear that

�1 \ �A = f −1
1 (0), �2 \ �A = f −1

2 (0).

Proposition 3 (Switching rules) Outside�A∪�1∪�2 the possible switches of the controls
are

– if f1 > 0 then u1 can only switch from -1 to +1 when φ1 goes to 0,
– if f1 < 0 then u1 can only switch from +1 to -1 when φ1 goes to 0,
– if f2 > 0 then u2 can only switch from -1 to +1 when φ2 goes to 0,
– if f2 < 0 then u2 can only switch from +1 to -1 when φ2 goes to 0.
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Proof The fact that φ̇1(t) = −u2.λ.[F1, F2] and φ̇2(t) = u1.λ.[F1, F2] implies that, outside
�A ∪ �1 ∪ �2,

φ̇1(t) = u2(t) (f1(q(t))φ2(t) − f2(q(t))φ1(t)) = −u2(t)φ3(t), (3)

φ̇2(t) = u1(t) (f2(q(t))φ1(t) − f1(q(t))φ2(t)) = u1(t)φ3(t). (4)

Now, if φ1(t) = 0 then |φ2(t)| = 1 which implies u2(t)φ2(t) = 1 and hence φ̇1(t) and
f1(q(t)) have same sign and the sign of f1(q(t)) determines the switch.

The same holds true for f2, φ2 and u2.

As a consequence, on each connected component of the complement of �A ∪ �1 ∪ �2,
each control ui can take only values − 1 and + 1 and can switch only once from − 1 to + 1
if fi > 0 or from + 1 to - 1 if fi < 0.

Proposition 4 At any point q outside �A it exists a τ > 0 such that for any extremal issued
from q and of length less than τ , only one of the two controls may switch.

Proof If φ1(t) = 0 then |φ2(t)| = 1. Hence, if φ1(t) = 0 and φ2(t
′) = 0 then φ1 passes

from value 0 to ±1 in time t ′ − t which implies that |φ̇1| takes values larger than 1
|t ′−t | . But,

since φ̇1(t) = −u2(f2(q(t))φ1(q(t)) − f1(q(t))φ2(q(t))), we have |φ̇1(t)| ≤ |f1(q(t))| +
|f2(q(t))|. As a consequence, if locally |f1 + f2| < M then |t ′ − t | cannot be smaller than
1/M .

A consequence of the previous proposition is

Proposition 5 At any point q outside �A, consider the normal coordinate system centered
at q. Any local extremal stays in one of the following domains:R+×R+,R+×R−,R−×R+
or R− × R−.

Proof Thanks to previous proposition, only one control may switch in short time. Assume
that u1 ≡ 1. Then at each time u1F1 + u2F2 = F1 + u2F2 hence the dynamics takes the
form αG1 + (1 − α)G2 with α ∈ [0, 1]. This dynamics leaves invariant the set R+ × R+,
hence the extremal does not leave this set. By the same argument one proves that if u1 ≡ −1
then the extremal stays in R− ×R−, if u2 ≡ 1 then the extremal stays in R+ ×R− and that
if u2 ≡ −1 then the extremal stays in R− × R+.

3.4 Initial Conditions and Their Parameterization

On proves easily that in the (NF1) case, max(|λx(0)|, |λy(0)|) = 1. Hence, the set of initial
conditions λ is compact and extremals switching in short time or singular extremals should
have a φi null or close to zero. Moreover, only one control can switch in short time (see
Proposition 4).

In the (NF2) and (NF3) cases |λx(0)| = 1 and there is no condition on λy . Hence, the set
of initial condition is not compact. This allows to consider initial conditions with |λy | >> 1
and hence will appear optimal extremals along which the two controls switch. It is not in
contradiction with the Proposition 4 since in this case the base point belongs to �A.

In the (NF2a) and (NF3) cases, φ1(0) = ± 1+a0
2 and φ2(0) = ± 1−a0

2 . Hence, if one
considers a compact set of initial conditions, the corresponding extremals do not switch in
short time. And are not singular. As a consequence, to consider the extremal switching at
least once, one should consider initial conditions with |λy(0)| >> 1.
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Let us give an idea of how to estimate the |λy(0)| corresponding to a u1-switch at small
time t and the consequence in terms of choice of change of coordinates.

In the (NF2) case, φ1(0) = 1+a0
2 ≥ 1

2 . Hence, if along an extremal the control u1

switches for t small hence one gets, since x(t) = O(t) and y(t) = O(t2),

0 = λ(t).F1(x(t), y(t)) = 1 + a0

2
+ λy(0)

x(t)

2
+ O(t)

and it implies that if an extremal sees its control u1 switching at τ then λy(0) should be
like 1

τ
. Hence, in order to make estimations of the corresponding extremals, it is natural to

choose as small parameter r0 = 1
λy(0)

, to make the change of coordinate r = 1
λy

, the change

of time s = t
r

and the change of coordinate px = rλx . This is what we do in the Sections 4.2
and 4.3.

In the (NF3) case, φ1(0) = 1+a0
2 ≥ 1

2 . Hence, if along an extremal the control u1

switches for t small hence one gets, since x(t) = O(t) and y(t) = O(t3),

0 = λ(t).F1(x(t), y(t)) = 1 + a0

2
+ λy(0)

x2(t)

4
+ O(t)

and it implies that if an extremal sees its control u1 switching at τ then λy(0) should be
like 1

τ 2 . Hence, in order to make estimations of the corresponding extremals, it is natural

to choose as small parameter r0 such that λy(0) = ± 1
r2
0

, to make the change of coordinate

r = ±1√|λy | and the change of time s = t
r
. This is what we do in the Section 4.4.

3.5 Weights, Orders and Nilpotent Approximation

Privileged coordinates and nilpotent approximations are well-known notions in SR Geom-
etry. Their definitions being too long and classical we refer to [8]. The coordinates we
constructed in the normal form are privileged coordinates.

In the (NF1) case, x and y have weight 1 and ∂x and ∂y have weight −1 as operators of
derivation. In the (NF2) case x has weight 1 and y has weight 2, ∂x has weight −1 and ∂y

have weight −2. In the (NF3) case, x has weight 1 and y has weight 3, ∂x has weight −1
and ∂y have weight −3.

In privileged coordinates, one way to understand the weights of the variables naturally is
to estimate how they vary with time in small time along an admissible curve. As seen before,
in the (NF1) case x and y are O(t) (and may be not o(t)), in the (NF2) case x = O(t) and
y = O(t2) and in the (NF3) case x = O(t) and y = O(t3).

In the following, ok(x, y) will denote a function whose valuation at 0 has order larger
than k respectively to the weights of x and y. For example x7 has always weight 7 and y3

has weight 3 in the (NF1) case but 9 in the (NF3) case.
With this notion of weights, we define the nilpotent approximation of our normal forms

in the three cases

(NF1) G1(x, y) = ∂x,

G2(x, y) = ∂y,

(NF2) G1(x, y) = ∂x,

G2(x, y) = a0∂x + x∂y,

(NF3) G1(x, y) = ∂x,

G2(x, y) = a0∂x + 1

2
x2∂y,
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which corresponds to an approximation up to order − 1. In the following, when we will
compute developments with respect to the parameter r0, that is for |λy(0)| >> 1, we will
need the approximation up to order 0 for (NF2a) and (NF3), and the approximation up to
order 1 for (NF2b)

(NF2a) G1(x, y) = ∂x,

G2(x, y) = (a0 + a10x)∂x + x(1 + b20x)∂y,

(NF2b) G1(x, y) = ∂x,

G2(x, y) = (1 + a10x + a01y + a20x
2)∂x + x(1 + b20x + b30x

2)∂y,

(NF3) G1(x, y) = ∂x,

G2(x, y) = (a0 + a10x)∂x +
(

x2

2
+ b01y + b30x

3
)

∂y,

In the (NF1) case, we will need the approximation up to order 2 in order to compute the cut
locus, when present

(NF1) G1(x, y) = ∂x,

G2(x, y) = x(a10 + a20x + a11y + a30x
2 + a21xy + a12y

2)∂x +
+(1 + x(b10 + b20x + b11y + b30x

2 + b21xy + b12y
2))∂y,

3.6 Symbols of Extremals

As we will see in the following, the local extremals will be finite concatenations of bang arcs
and ui-singular arcs. In order to facilitate the presentation, a bang arc following ±Gi will be
symbolized by [[±Gi]], a u1-singular arc with control u2 ≡ 1 will be symbolized by [[S+

1 ]],
a u1-singular arc with control u2 ≡ −1 will be symbolized by [[S−

1 ]], and we will combine
these symbols in such a way that [[−G1,G2, S

+
2 ]] symbolizes the concatenation of a bang

arc following −G1 with a bang arc following G2 and a u2-singular arc with control u1 ≡ 1.

3.7 Symmetries

One can change the roles of the vectors F1 and F2 and look at the effect on the functions fi

or on the invariants appearing in the normal form. For this last part, one should be careful
that changing the role of F1 and F2 implies changing G1 and G2 and hence changing the
coordinates x and y.

First look at the effect on the functions fi on an example: F̄1 = −F1 and F̄2 = F2. If
we define the control system with (F̄1, F̄2), it defines the same SF structure. We compute
easily that

[F̄1, F̄2] = [−F1, F2] = −[F1, F2] = −(f2F1 − f1F2) = f2F̄1 − (−f1)F̄2

hence f̄1 = −f1 and f̄2 = f2. With this choice Ḡ1 = −G2 and Ḡ2 = −G1. Of course,
with such a change on the vectors G1 and G2 the change on the invariants is not so trivial
to compute.

In the following, we consider changes that send G1 to ±G1 and G2 to ±G2. These
changes are interesting from a calculus point of view. Effectively, once computed the jet
of a bang-bang extremals with symbol [[G1,G2]] and of its switching times, we are able
to get the expressions for the bang-bang extremals with symbols [[±G1,±G2]] without
new computations. For example, if one gets the expression of an extremal with symbol
[[G1,G2]] as function of the initial conditions, one gets the expression of an extremal with
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symbol [[−G1,G2]] by respecting the effect on the coordinates and the invariants a0, a10,
etc. of the corresponding change of role of F1 and F2.

3.7.1 Ḡ1 = −G1 and Ḡ2 = G2

Consider the change F̄1 = −F2 and F̄2 = −F1. Then Ḡ1 = −G1 and Ḡ2 = G2,
[Ḡ1, Ḡ2] = −[G1,G2] and [Ḡ1, [Ḡ1, Ḡ2]] = [G1, [G1,G2]]. With this choice,

[F̄1, F̄2] = [−F2,−F1] = −[F1, F2] = −(f2F1 − f1F2) = (−f1)F̄1 − (−f2)F̄2

hence f̄1 = −f2 and f̄2 = −f1.
We can know consider the effect of this change of role on the coordinates and on the

invariants in the three cases of the normal form

(NF1) In this case, x̄ = −x and ȳ = y, hence ∂x̄ = −∂x and ∂ȳ = ∂y and

Ḡ1 = ∂x̄,

Ḡ2 = (a10x̄ − a20x̄
2 + a11x̄ȳ + o2(x̄, ȳ))∂x̄ +

(1 − b10x̄ + b20x̄
2 − b11x̄ȳ + o2(x̄, ȳ))∂ȳ .

(NF2) In this case, x̄ = −x and ȳ = −y, hence ∂x̄ = −∂x and ∂ȳ = −∂y and

Ḡ1 = ∂x̄,

Ḡ2 = (−a0 + a10x̄ − a01ȳ − a20x̄
2 + o2(x̄, ȳ))∂x̄ +

(x̄ − b20x̄
2 + b30x̄

3 + o3(x̄, ȳ))∂ȳ .

(NF3) In this case, x̄ = −x and ȳ = y, hence ∂x̄ = −∂x and ∂ȳ = ∂y and

Ḡ1 = ∂x̄,

Ḡ2 = (−a0 + a10x̄ + o1(x̄, ȳ))∂x̄ +
(x̄2/2 + b01ȳ − b30x̄

3 + o3(x̄, ȳ))∂ȳ .

3.7.2 Ḡ1 = G1 and Ḡ2 = −G2

Consider the change F̄1 = F2 and F̄2 = F1. Then Ḡ1 = G1, Ḡ2 = −G2, [Ḡ1, Ḡ2] =
−[G1, G2] and [Ḡ1, [Ḡ1, Ḡ2]] = −[G1, [G1,G2]]. With this choice,

[F̄1, F̄2] = [F2, F1] = −[F1, F2] = −(f2F1 − f1F2) = (f1)F̄1 − (f2)F̄2

hence f̄1 = f2 and f̄2 = f1.
We can know consider the effect of this change of role on the coordinates and on the

invariants in the three cases of the normal form

(NF1) In this case, x̄ = x and ȳ = −y, hence ∂x̄ = ∂x and ∂ȳ = −∂y and

Ḡ1 = ∂x̄,

Ḡ2 = (−a10x̄ − a20x̄
2 + a11x̄ȳ + x̄o(x̄, ȳ))∂x̄ +

(1 + b10x̄ + b20x̄
2 − b11x̄ȳ + x̄o(x̄, ȳ))∂ȳ .

(NF2) In this case, x̄ = x and ȳ = −y, hence ∂x̄ = ∂x and ∂ȳ = −∂y and

Ḡ1 = ∂x̄,

Ḡ2 = (−a0 − a10x̄ + a01ȳ − a20x̄
2 + o2(x̄, ȳ))∂x̄ +

(x̄ + b20x̄
2 + b30x̄

3 + o3(x̄, ȳ))∂ȳ .
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(NF3) In this case, x̄ = x and ȳ = −y, hence ∂x̄ = ∂x and ∂ȳ = −∂y and

Ḡ1 = ∂x̄,

Ḡ2 = (−a0 − a10x̄ + o1(x̄, ȳ))∂x̄ +
(x̄2/2 − b01ȳ + b30x̄

3 + o3(x̄, ȳ))∂ȳ .

3.7.3 Ḡ1 = −G1 and Ḡ2 = −G2

Consider the change F̄1 = −F1 and F̄2 = −F2. Then Ḡ1 = −G1, Ḡ2 = −G2, [Ḡ1, Ḡ2] =
[G1,G2] and [Ḡ1, [Ḡ1, Ḡ2]] = −[G1, [G1, G2]]. With this choice,

[F̄1, F̄2] = [−F1,−F2] = [F1, F2] = (f2F1 − f1F2) = (−f2)F̄1 − (−f1)F̄2

hence f̄1 = −f1 and f̄2 = −f2.
We can know consider the effect of this change of role on the coordinates and on the

invariants in the three cases of the normal form

(NF1) In this case, x̄ = −x and ȳ = −y, hence ∂x̄ = −∂x and ∂ȳ = −∂y . Moreover

Ḡ1 = ∂x̄,

Ḡ2 = (−a10x̄ + a20x̄
2 + a11x̄ȳ + x̄o(x̄, ȳ))∂x̄ +

(1 − b10x̄ + b20x̄
2 + b11x̄ȳ + x̄o(x̄, ȳ))∂ȳ .

(NF2) In this case, x̄ = −x and ȳ = y, hence ∂x̄ = −∂x and ∂ȳ = ∂y . Moreover

Ḡ1 = ∂x̄,

Ḡ2 = (a0 − a10x̄ + a01ȳ + a20x̄
2 + o2(x̄, ȳ))∂x̄ +

(x̄ − b20x̄
2 + b30x̄

3 + o3(x̄, ȳ))∂ȳ .

(NF3) In this case, x̄ = −x and ȳ = −y, hence ∂x̄ = −∂x and ∂ȳ = −∂y . Moreover

Ḡ1 = ∂x̄,

Ḡ2 = (a0 − a10x̄ + o1(x̄, ȳ))∂x̄ +
(x̄2/2 − b01ȳ − b30x̄

3 + o3(x̄, ȳ))∂ȳ .

4 The Generic Local Optimal Synthesis

We present for generic couples (F1, F2) the local synthesis issued from a point q. The coor-
dinates (x, y), centered at q, are those which have been constructed in the corresponding
normal form in Section 2.
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4.1 (NF1) Case

At points q where (NF1) holds, one can compute that

f1(x, y) = 1

2
(a10 − b10)

+(2(a20 − b20) − b10(a10 − b10))
x

2
+ (a11 − b11)

y

2

+(3(a30 − b30) − b10(a20 − b20) − (2b20 − b2
10)(a10 − b10))

x2

2

+(2(a21 − b21) − b11(a10 − b10) − b10(a11 − b11))
xy

2

+(a12 − b12)
y2

2
+ o2(x, y),

f2(x, y) = −1

2
(a10 + b10)

−(2(a20 + b20) − b10(a10 + b10))
x

2
− (a11 + b11)

y

2

−(3(a30 + b30) − b10(a20 + b20) − (2b20 − b2
10)(a10 + b10))

x2

2

−(2(a21 + b21) − b11(a10 + b10) − b10(a11 + b11))
xy

2

−(a12 + b12)
y2

2
+ o2(x, y).

Hence, thanks to Proposition 3, if a10 − b10 > 0 (resp. < 0) then u1 is bang-bang and the
only possible switch is −1 → +1 (resp +1 → −1) and if a10 + b10 < 0 (resp. > 0) then
u2 is bang-bang and the only possible switch is −1 → +1 (resp +1 → −1).

Remark 2 (Generic invariants) Remark that generically, in the (NF1) case, one of the
following situation occurs

• |a10| �= |b10| (NF1a),
• a10 = b10 �= 0 and a20 − b20 �= 0 and a11 − b11 �= 0,
• a10 = b10 �= 0 and a20 − b20 = 0 and a30 − b30 �= 0 and a11 − b11 �= 0,
• a10 = b10 �= 0 and a20 − b20 �= 0 and a11 − b11 = 0 and a12 − b12 �= 0,
• a10 = −b10 �= 0 and a20 + b20 �= 0 and a11 + b11 �= 0,
• a10 = −b10 �= 0 and a20 + b20 = 0 and a30 + b30 �= 0 and a11 + b11 �= 0,
• a10 = −b10 �= 0 and a20 + b20 �= 0 and a11 + b11 = 0 and a12 + b12 �= 0.
• a10 = b10 = 0 and a20 + b20 �= 0 and a11 + b11 �= 0.

4.1.1 Singular Extremals

We consider now the properties of singular extremals and their support.

Proposition 6 Under the generic assumption that �A, �1 and �2 are submanifolds
transversal by pair then

1. The support of a ui-singular is included in �i .
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2. A u1-singular extremal can follow �1 being optimal only if, at each point q(t) of the
singular, G1(q(t)) and G2(q(t)) are pointing on the same side of �1 (or one is tangent
to �1) where f1 > 0.

3. A u2-singular extremal can follow�2 being optimal only if, at each point q(t) of the sin-
gular, G1(q(t)) and −G2(q(t)) are pointing on the same side of �2 (or one is tangent
to �2) where f2 > 0.

4. Consider a ui-singular q(.) satisfying 2 or 3. If it does not intersect �A and if at each
time G1(q(t)) and G2(q(t)) are not tangent to �i then q(.) is a local minimizer that is
at each time t exists ε such that q(.) realizes the SF-distance between q(t1) and q(t2)

for any t1 and t2 in ]t − ε, t + ε[.

Proof 1. Outside �A ∪�i , φi has isolated zero hence any ui-singular should live in �A ∪
�i . Moreover, since generically the set of points of �A where the dynamics is tangent to
�A is isolated, a ui-singular crosses �A only at isolated times, which are consequently
also in �i .

2. Same proof as for point 3.
3. If a u2-singular q(.) has u1 = 1 then its speed is F1(q(t)) + u2(t)F2(q(t)) which is

tangent to �2. But u2 ∈ [−1, 1] hence either |u2(t)| = 1 and G1 or G2 are tangent to
�2 or |u2(t)| < 1 and G2(q(t)) = F1(q(t)) − F2(q(t)) and G1(q(t)) = F1(q(t)) +
F2(q(t)) point on opposite sides.

Now, assume that �2 is such that G1 and −G2 point in the same side where f2 < 0
at q and that the u2-singular is optimal. Consider the normal coordinate system centered
at q and the domain R+ × R+. One can show, with the previous analysis, that the
only possible extremals issued form q and entering the domain are the singular arc
[[S+

2 ]] following �2 and the bang-bang extremals starting with symbol [[G1,G2]] or
[[G2,G1]].

Let us prove that these last ones do not switch again before crossing �2. If an
extremal starts with [[G2, G1]], switching for the first time at t = ε and hence at y = ε

then along the second bang x = t − ε, y = ε, λ ≡ (1, 1) and one computes easily that
for t > ε

φ2(t) = −1

2
((a20 + b20)(t − ε)2 + (a11 + b11)(t − ε)ε + o2(ε, (t − ε))).

If (a20+b20)(a11+b11) < 0 then the second time of switch satisfies t−ε = − a11+b11
a20+b20

ε+
o(ε) and hence the second switching locus has the form (− a11+b11

a20+b20
ε, ε). But �2 satisfies

that x = − 1
2

a11+b11
a20+b20

y + o(y) and hence the second bang crosses �2 before ending.
In the case a20 + b20 = 0 hence (a11 − b11)(a30 + b30) < 0 and one shows that

the second switching locus has the form (

√
− a11+b11

a30+b30
ε, ε) and �2 satisfies that x =

√
− a11+b11

3(a30+b30)
y+o(y) hence again the second bang crosses �2 before ending. The same

kind of computations show the same result when a11 + b11 = 0 and (a20 + b20)(a12 +
b12) < 0. The same holds for extremal starting by [[G1,G2]].

Finally, the different extremals with symbol [[G1, G2]] do not intersect each other
after their first switch hence they cannot lose optimality by crossing each other. Idem for
those with symbol [[G2,G1]]. Hence, they can lose optimality by crossing the singular
extremal or extremals with the other symbol.

The last argument implies that optimal extremals are coming back to �2 with symbol
[[G1,G2]] or [[G2,G1]]. But this is not possible since in this case, since [[S+

2 ]] is
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optimal, an optimal extremal with symbol [[G1,G2, S
+
2 ]] would exist which is not the

case since the switching is coming strictly after the crossing with �2 as seen before.
Hence, in this case, the u2-singular is not optimal.

4. Assume that the u2-singular satisfies 3, that it does not intersect �A and that G1(q) and
G2(q) are pointing on opposite sides of �2. Let construct normal coordinates centered
at q, then the only local extremals entering the domains {xy > 0} are the one starting
by a u2-singular and switching or not locally only once to u2 = ±1. For example, if we
consider R+ ×R+, since G1(q) points in the side of the domain {q ′ | f2(q

′) > 0} then
an extremal starting by G1 enters the domain {q ′ | f2(q

′) > 0} and hence u2 cannot
switch and the extremal stays on the boundary of R+ × R+ and do not enter it. As a
consequence the u2-singular is locally optimal.

Remark 3 For what concerns the point 4, assume that q is a point where G1 or G2 is tangent
to �1 and �1 ∩{xy < 0} is such that at each point G1 and G2 are transverse to �1 and point
in the domain {f1 > 0}. Then, starting from q, a u1-singular can run on �1 ∩ {xy < 0} and
is locally optimal. The same arguments as those exposed at point 4 work.

Definition 5 If a connected part of �1 (resp. �2) is such that at each point G1 and G2 (resp.
G1 and −G2) point on the same side where f1 > 0 (resp. f2 > 0), it is called a turnpike. If
it does not at each point, it is called an anti-turnpike (see [13]).

Remark 4 Along a ui-singular extremal the control ui is completely determined by the fact
that the dynamics should be tangent to �i .

4.1.2 Optimal Synthesis in the DomainR+ × R+

Consider a point q and the normal coordinate system (x, y) centered at q. The dynamics
entering R

∗+ × R
∗+ is with u1 ≡ 1 since u2 switches (Propositions 4 and 5). Three different

cases can be identified.

1st. case. �2 ∩ (R+ ×R+ \ {0}) is empty locally. Thanks to proposition 6, no u2-singular
enters the domain. It corresponds to the case (NF1a) where |a10| �= |b10| and to the cases
(NF1c) and (NF1d) where a10 + b10 = 0 and

• (a20 + b20)(a11 + b11) > 0,
• or a20 + b20 = 0 and (a30 + b30)(a11 + b11) > 0,
• or a11 + b11 = 0 and (a20 + b20)(a12 + b12) > 0.

Only one u2-switch can occur along the extremal. One has f2 > 0 in the domain if

• a10 + b10 < 0,
• or a10 + b10 = 0 and a20 + b20 < 0,
• or a10 + b10 = 0 and a20 + b20 = 0 and a11 + b11 < 0,

and in this case the possible extremals of the domain have symbol [[G1]] or [[G2]] or
[[G2, G1]]. One has f2 < 0 in the domain if

• a10 + b10 > 0,
• or a10 + b10 = 0 and a20 + b20 > 0,
• or a10 + b10 = 0 and a20 + b20 = 0 and a11 + b11 > 0.
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and in this case, the possible extremals of the domain have symbol [[G1]] or [[G2]] or
[[G1, G2]].
In this case 1, the picture of the synthesis is given in Fig. 1.

2nd. case. �2 ∩ (R∗+ × R
∗+) is not empty locally and is a turnpike. We are in the context

of point 4 of proposition 6. It corresponds to the cases where a10 + b10 = 0 and

• a20 + b20 < 0 and a11 + b11 > 0,
• or a20 + b20 = 0 and a11 + b11 > 0 and a30 + b30 < 0,
• or a11 + b11 = 0 and a20 + b20 < 0 and a12 + b12 > 0.

Then f2 > 0 locally along {x > 0, y = 0} and f2 < 0 along {x = 0, y > 0}. Hence,
no bang-bang extremal with symbol [[G1,G2]] or [[G2,G1]] exists and any extremal
entering the domain starts with a u2-singular arc. If it switches to G1 then it enters the
domain (R∗+×R

∗+)∩{f2 > 0} which is invariant by G1 hence it does not switch anymore.
If it switches to G2 it enters the domain (R∗+ ×R

∗+) ∩ {f2 < 0} which is invariant by G2
hence it does not switch anymore.

As a consequence, the only possible symbols for extremals are [[G1]], [[G2]], [[S+
2 ,G1]]

and [[S+
2 ,G2]].

In this case 2, the picture of the synthesis is given in Fig. 2.

3rd. case. �2 ∩ (R∗+ × R
∗+) is not empty locally and is a anti-turnpike. Then, thanks

to proposition 6, no singular can enter the domain. It corresponds to the cases where
a10 + b10 = 0 and

• a20 + b20 > 0 and a11 + b11 < 0,
• or a20 + b20 = 0 and a11 + b11 < 0 and a30 + b30 > 0,
• or a11 + b11 = 0 and a20 + b20 > 0 and a12 + b12 < 0.

Then, as seen in Proposition 6, no u2-singular is extremal. Hence, the possible beginning
of symbols entering the domain are [[G1,G2]] and [[G2,G1]]. In order to complete the
synthesis in this case, we have to compute the cut time and cut locus. In fact, the two
kinds of extremals intersect before their second switching time. Let us prove it.

Fig. 1 The syntheses when f2 �= 0 in (R+ × R+) \ {0}
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Fig. 2 The syntheses when a10 + b10 = 0 and �2 is a turnpike

Fix an ε2 > 0 and consider at time t > ε2 the extremal with symbol [[G2,G1]] switching
at time ε2. One computes easily that x(t) = t − ε2 and y(t) = ε2. For an ε1 > 0 and the
extremal with symbol [[G1,G2]] switching at time ε1, one gets by integrating the equations

x(t) = ε1 + a10ε1(t − ε1) + a20ε
2
1(t − ε1) + 1

2
(a2

10 + a11)ε1(t − ε1)
2

+a30ε
3
1(t − ε1) + 1

2
(3a10a20 + a21 + a11b10)ε

2
1(t − ε1)

2

+1

3
(
1

2
a3

10 + 3

2
a10a11 + a12)ε1(t − ε1)

3

y(t) = (t − ε1) + b10ε1(t − ε1) + b20ε
2
1(t − ε1) + 1

2
(a10b10 + b11)ε1(t − ε1)

2

+b30ε
3
1(t − ε1) + 1

2
(a20b10 + b10b11 + 2a10b20 + b21)ε

2
1(t − ε1)

2

+1

3
(
1

2
(a2

10 + a11)b10 + a10b11 + b12)ε1(t − ε1)
3

Assume first that a20 + b20 > 0 and a11 + b11 < 0. Along the first front (depending on
ε2) x + y = t when along the second x + y = t + ε1(t − ε1)((a20 + b20)ε1 + 1

2 (a11 + b11),

hence, they are transverse at

ε1 = t

1 − 2(a20+b20)
a11+b11

and they intersect at a point such that y = −2 a20−b20
a11−b11

x + o(x). As seen previously, the

switching locus for extremals with symbol [[G2,G1]] satisfies y = − a20−b20
a11−b11

x+o(x) hence
it stops to be optimal before switching. The same holds true for the extremals with symbol
[[G1,G2]]. Finally, the cut locus satisfies

ycut = −2
a20 − b20

a11 − b11
xcut + o(xcut )

and is tangent to �2.
The same computations can be done when G1 or G2 is tangent to �2. Then one computes

that the extremals lose optimality by crossing the cut before the second switch and that

• if a20 + b20 = 0 then

ycut = −3
a30 + b30

a11 + b11
x2
cut + o(x2

cut ),
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• if a11 + b11 = 0 then

xcut = −1

2

a12 + b12

a20 + b20
y2
cut + o(y2

cut ).

In all cases, the cut is tangent to �2 and the contact is of order 2 when (a20 + b20)(a11 +
b11) = 0.

In this case 3, the picture of the synthesis is given in Fig. 3.

Remark 5 Using the symmetries presented in Section 3.7, one can obtain from the optimal
synthesis in the domain R+ × R+ the optimal synthesis in the three other domains.

4.1.3 Optimal Synthesis in the DomainR− × R−

The dynamics entering R
∗− ×R

∗− is with u1 ≡ −1 since u2 switches (Propositions 4 and 5).
Three different cases can be identified.

1st. case. �2 ∩ (R− × R− \ {0}) is empty locally. No u2-singular enters the domain. It
corresponds to the case (NF1a) where |a10| �= |b10| and to the cases (NF1c) and (NF1d)

where a10 + b10 = 0 and

• (a20 + b20)(a11 + b11) > 0,
• or a20 + b20 = 0 and (a30 + b30)(a11 + b11) < 0,
• or a11 + b11 = 0 and (a20 + b20)(a12 + b12) < 0.

Only one u2-switch can occur along the extremal. One has f2 > 0 in the domain if

• a10 + b10 < 0,
• or a10 + b10 = 0 and a20 + b20 > 0,
• or a10 + b10 = 0 and a20 + b20 = 0 and a11 + b11 > 0,

and in this case the possible extremals of the domain have symbol [[−G1]] or [[−G2]] or
[[−G1,−G2]]. One has f2 < 0 in the domain if

• a10 + b10 > 0,
• or a10 + b10 = 0 and a20 + b20 < 0,
• or a10 + b10 = 0 and a20 + b20 = 0 and a11 + b11 < 0.

and in this case, the possible extremals of the domain have symbol [[−G1]] or [[−G2]] or
[[−G2,−G1]].

Fig. 3 The syntheses when a10 + b10 = 0 and �2 is not a turnpike
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2nd. case. �2 ∩ (R∗− × R
∗−) is not empty locally and is a turnpike. It corresponds to the

cases where a10 + b10 = 0 and

• a20 + b20 < 0 and a11 + b11 > 0,
• or a20 + b20 = 0 and a11 + b11 > 0 and a30 + b30 > 0,
• or a11 + b11 = 0 and a20 + b20 < 0 and a12 + b12 < 0.

In this case, the possible symbols for extremals are [[−G1]], [[−G2]], [[S−
2 , −G1]] and

[[S−
2 ,−G2]].

3rd. case. �2 ∩ (R∗− × R
∗−) is not empty locally and is a anti-turnpike. It corresponds to

the cases where a10 + b10 = 0 and

• a20 + b20 > 0 and a11 + b11 < 0,
• or a20 + b20 = 0 and a11 + b11 < 0 and a30 + b30 < 0,
• or a11 + b11 = 0 and a20 + b20 > 0 and a12 + b12 > 0.

The only optimal symbols are [[−G1]], [[−G2]], [[−G1,−G2]], and [[−G2,−G1]].
Moreover

• if a20 + b20 > 0 and a11 + b11 < 0, the cut locus satisfies

ycut = −2
a20 + b20

a11 + b11
xcut + o(xcut ),

• if a20 + b20 = 0 then

ycut = −3
a30 + b30

a11 + b11
x2
cut + o(x2

cut ),

• if a11 + b11 = 0 then

xcut = −1

2

a12 + b12

a20 + b20
y2
cut + o(y2

cut ).

In all cases, the cut is tangent to �2 and the contact is of order 2 when (a20 + b20)(a11 +
b11) = 0.

4.1.4 Optimal Synthesis in the DomainR+ × R−

The dynamics entering R
∗+ × R

∗− is with u2 ≡ 1 since u1 switches (Propositions 4 and 5).
Three different cases can be identified.

1st. case. �1 ∩ (R+ × R− \ {0}) is empty locally. No u1-singular enters the domain. It
corresponds to the case (NF1a) where |a10| �= |b10| and to the cases (NF1b) and (NF1d)

where a10 − b10 = 0 and

• (a20 − b20)(a11 − b11) < 0,
• or a20 − b20 = 0 and (a30 − b30)(a11 − b11) < 0,
• or a11 − b11 = 0 and (a20 − b20)(a12 − b12) > 0.

Only one u1-switch can occur along the extremal. One has f1 > 0 in the domain if

• a10 − b10 > 0,
• or a10 − b10 = 0 and a20 − b20 > 0,
• or a10 − b10 = 0 and a20 − b20 = 0 and a11 + b11 < 0,

and in this case, the possible extremals of the domain have symbol [[G1]] or [[−G2]] or
[[−G2,G1]]. One has f1 < 0 in the domain if
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• a10 − b10 < 0,
• or a10 − b10 = 0 and a20 − b20 < 0,
• or a10 − b10 = 0 and a20 − b20 = 0 and a11 − b11 > 0.

and in this case, the possible extremals of the domain have symbol [[G1]] or [[−G2]] or
[[G1, −G2]].

2nd. case. �1 ∩ (R∗+ × R
∗−) is not empty locally and is a turnpike. It corresponds to the

cases where a10 − b10 = 0 and

• a20 − b20 > 0 and a11 − b11 > 0,
• or a20 − b20 = 0 and a11 − b11 > 0 and a30 − b30 > 0,
• or a11 − b11 = 0 and a20 − b20 > 0 and a12 − b12 < 0.

In this case, the possible symbols for extremals are [[G1]], [[−G2]], [[S+
1 ,G1]], and

[[S+
1 , −G2]].

3rd. case. �1 ∩ (R∗+ × R
∗−) is not empty locally and is a anti-turnpike. It corresponds to

the cases where a10 − b10 = 0 and

• a20 − b20 < 0 and a11 − b11 < 0,
• or a20 − b20 = 0 and a11 − b11 < 0 and a30 − b30 < 0,
• or a11 − b11 = 0 and a20 − b20 < 0 and a12 − b12 > 0.

Then, the only optimal symbols are [[G1]], [[−G2]], [[G1,−G2]], and [[−G2,G1]].
Moreover,

• if a20 − b20 < 0 and a11 + b11 < 0, the cut locus satisfies

ycut = −2
a20 − b20

a11 − b11
xcut + o(xcut ),

• if a20 − b20 = 0 then

ycut = −3
a30 − b30

a11 − b11
x2
cut + o(x2

cut ),

• if a11 − b11 = 0 then

xcut = −1

2

a12 − b12

a20 − b20
y2
cut + o(y2

cut ).

In all cases, the cut is tangent to �1 and the contact is of order 2 when (a20 − b20)(a11 −
b11) = 0.

4.1.5 Optimal Synthesis in the DomainR− × R+

The dynamics entering R
∗− ×R

∗+ is with u2 ≡ −1 since u1 switches (Propositions 4 and 5).
Three different cases can be identified.

1st. case. �1 ∩ (R− × R+ \ {0}) is empty locally. No u1-singular enters the domain. It
corresponds to the case (NF1a) where |a10| �= |b10| and to the cases (NF1b) and (NF1d)

where a10 − b10 = 0 and

• (a20 − b20)(a11 − b11) < 0,
• or a20 − b20 = 0 and (a30 − b30)(a11 − b11) > 0,
• or a11 − b11 = 0 and (a20 − b20)(a12 − b12) < 0.

Only one u1-switch can occur along the extremal. One has f1 > 0 in the domain if
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• a10 − b10 > 0,
• or a10 − b10 = 0 and a20 − b20 < 0,
• or a10 − b10 = 0 and a20 − b20 = 0 and a11 + b11 > 0,

and in this case, the possible extremals of the domain have symbol [[−G1]] or [[G2]] or
[[−G1,G2]]. One has f1 < 0 in the domain if

• a10 − b10 < 0,
• or a10 − b10 = 0 and a20 − b20 > 0,
• or a10 − b10 = 0 and a20 − b20 = 0 and a11 − b11 < 0,

and in this case, the possible extremals of the domain have symbol [[−G1]] or [[G2]] or
[[G2, −G1]].

2nd. case. �1 ∩ (R∗− × R
∗+) is not empty locally and is a turnpike. It corresponds to the

cases where a10 − b10 = 0 and

• a20 − b20 > 0 and a11 − b11 > 0,
• or a20 − b20 = 0 and a11 − b11 > 0 and a30 − b30 < 0,
• or a11 − b11 = 0 and a20 − b20 > 0 and a12 − b12 > 0.

In this case, the possible symbols for extremals are [[−G1]], [[G2]], [[S−
1 ,−G1]], and

[[S−
1 ,G2]].

3rd. case. �1 ∩ (R∗− × R
∗+) is not empty locally and is a anti-turnpike. It corresponds to

the cases where a10 − b10 = 0 and

• a20 − b20 < 0 and a11 − b11 < 0,
• or a20 − b20 = 0 and a11 − b11 < 0 and a30 − b30 > 0,
• or a11 − b11 = 0 and a20 − b20 < 0 and a12 − b12 < 0.

Then the only optimal symbols are [[−G1]], [[G2]], [[−G1, G2]], and [[G2,−G1]].
Moreover

• if a20 − b20 < 0 and a11 + b11 < 0, the cut locus satisfies

ycut = −2
a20 − b20

a11 − b11
xcut + o(xcut ),

• if a20 − b20 = 0 then

ycut = −3
a30 − b30

a11 − b11
x2
cut + o(x2

cut ),

• if a11 − b11 = 0 then

xcut = −1

2

a12 − b12

a20 − b20
y2
cut + o(y2

cut ).

In all cases, the cut is tangent to �1 and the contact is of order 2 when (a20 − b20)(a11 −
b11) = 0.

4.2 (NF2a ) Case

Recall that the normal form (NF2a) gives

G1(x, y) = ∂x, G2(x, y) = (a0 + a10x + o1(x, y))∂x + (x + b20x
2 + o(x, y))∂y,

with 0 ≤ a0 < 1.
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A point where the normal form is given by (NF2a) is neither in �1 nor in �2. Hence, no
singular extremal will appear in the study of the local synthesis.

One can compute easily that, for any extremal starting at 0, φ1(0) = 1
2λx(0)(1 + a0) and

φ2(0) = 1
2λx(0)(1 − a0). With H = 0 it gives |λx(0)| = 1. Hence, since φ̇1 = −u2φ3 and

φ̇2 = u1φ3, if we want to study extremals that switch in short time, we need to consider φ3
large that is |λy | large.

Moreover, since along an extremal issued from 0 |ẋ(t)| ≤ 1 for t small, one gets easily
that |x(t)| ≤ t and |y(t)| ≤ t2 for t small enough. Hence φ1(t) = 1+a0

2 λx(0)+ x(t)λy(0)+
o(t, x(t)λy(0)) and φ2(t) = 1−a0

2 λx(0)+x(t)λy(t)+o(t, x(t)λy(t)). This implies that if one
wants to consider an extremal switching at time τ small, he should consider initial condi-
tions λy(0) ∼ 1

τ
. Inversing the point of view, if we consider an initial condition λy(0) = 1

r0
with r0 small, the switching time should be of order 1 in r0. This motivates the following
change of coordinates on the fibers of the cotangent: r = 1

λy
, p = rλx and the change of

time s = t/r .

4.2.1 Equations of the Dynamics

With the new variables (x, y, p, r) and the new time s, the Hamiltonian equations become

x′ = r ∂H
∂λx

(x, y, p, −1) , p′ = −r ∂H
∂x

(x, y, p, −1) + rp ∂H
∂y

(x, y, p, −1) ,

y′ = r ∂H
∂λy

(x, y, p, −1) , r ′ = r2 ∂H
∂y

(x, y, p, −1) .

Now, looking for the solutions as taylor series in r0, that is under the form

x(r0, s) = x1(s)r0 + x2(s)r
2
0 + o(r2

0 ), p(r0, s) = p1(s)r0 + p2(s)r
2
0 + o(r2

0 ),

y(r0, s) = y2(s)r
2
0 + y3(s)r

3
0 + o(r3

0 ), r(r0, s) = r0 + r2(s)r
2
0 + o(r2

0 ),

one finds the equations

x′
1 = u1+u2

2 + u1−u2
2 a0, x′

2 = u1−u2
2 a10x1,

y′
2 = u1−u2

4 x1, y′
3 = u1−u2

2 (b20x
2
1 + x2),

p′
1 = −u1−u2

2 x1, p′
2 = −u1−u2

2 (a10p1 + 2b20x1),

r ′
2 = 0,

with the initial conditions x1(0) = x2(0) = y2(0) = y3(0) = p2(0) = r2(0) = 0 and
p1(0) = ±1.

4.2.2 Computation of the Jets

Using these equations, we are able to compute the jets with respect to r0 of four types of
extremals: depending on the sign of p1(0) = ±1 and of r0. For each of these types, we can
compute the functions x1, x2, y2, y3, p1, p2 of the variable s for the first bang. We can then
compute the jets of φ1 and φ2 for the first bang and look for the first switching time under
the form s1 = s10 + s11r0 and then repeat the procedure for the second bang and so on.
Finally, if we denote δp = sign(p(0)) and δr = sign(r0) then the controls during the first
bang are u1 = u2 = δp. The first time of switch is

s1 = δr (1 − δra0) − δp(1 − δra0)(δra10 + b20 − δra0b20)r0 + o(r0)

and corresponds to φ2(s1) = 0 if δr = 1 or φ1(s1) = 0 if δr = −1. The second bang
corresponds to u1 = δpδr and u2 = −δpδr and the second switch is at

s2 = δr (3 − δra0) − δp((1 − δra0)(δra10 + b20 − δra0b20) + 4b20)r0 + o(r0)
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where φ1(s2) = 0 if δr = 1 and φ2(s2) = 0 if δr = −1. At this time

x(s2) = δp(δr + a0)r0 − δr (δr + a0)(−δra10 + b20 + δra0b20)r
2
0 + o(r2

0 ),

y(s2) = 2δrr
2
0 − δp

4

3
(−a0a10 + 3b20 + a2

0b20)r
3
0 + o(r3

0 ).

The third bang corresponds to u1 = u2 = −1 if δp = 1 and to u1 = u2 = 1 if δp = −1.
The third switching time satisfies s3 = δr (5 − δra0) + O(r0) and the corresponding time t3
is larger than the cut time as we will see later.

Let us analyze a little the situation in terms of cut locus for these extremals: if we consider
the extremals with δp = δr = 1, they all start following G1, without loosing optimality.
Then they switch to G2 at t = r0(1 − a0) + o(r0). During this second bang, they do not
intersect one each other since they are all following G2 with a different initial condition
on {x > 0, y = 0}. Then they switch to −G1 but at a different y hence again they cannot
intersect. The loss of optimality cannot come from an intersection with extremals with δr =
−1 since these last one live in {y ≤ 0}. As we will see in the following, the loss of optimality
will come from the intersection with an extremal with −δp = δr = 1 during the third bang.
Of course, the same occurs for extremals with δr = −1.

Fix a small parameter ρ > 0. Since the dynamics during the third bang of all the
extremals is given by ±G1 = ±∂x , y is constant during these third bangs. Hence, for the
extremals with δr = 1, we can look for the r0, as a jet in ρ, such that y = 2ρ2 during the
third bang, and for the extremals with δr = −1, we can look for the r0, as a jet in ρ, such
that y = −2ρ2 during the third bang. The result is

r0 = δrρ + δrδp

1

3
(−a0a10 + 3b20 + a2

0b20)ρ
2 + o(ρ2)

which allows to compute

t2 = (3 − δra0)ρ − δrδp

3a10 − a2
0a10 + δr6b20 − 3a0b20 + a3

0b20

3
ρ2 + o(ρ2).

Hence, we can compute x(t) = x(t2) + (t − t2) for this r0 that is

x(t) = −δpt + δp4ρ − 2

3
(−a0a10 + 3b20 + a2

0b20)ρ
2 + o(ρ2).

We are now in situation to complete the computation of the jet of the cut locus: an
extremal intersects an extremal of same length at the time tcut = 4ρ + o(ρ2) which is less
than t3 = (5 − δra0)ρ hence tcut is the cut time. When δr = 1 the cut point satisfies

xcut = −2

3
(−a0a10 + 3b20 + a2

0b20)ρ
2 + o(ρ2), ycut = 2ρ2,

and when δr = −1 the cut point satisfies

xcut = −2

3
(−a0a10 + 3b20 + a2

0b20)ρ
2 + o(ρ2), ycut = −2ρ2.

Finally, if one wants to describe the sphere at time t small, one have that the first
switching time is

t1 = δr (1 − δra0)r0 − δp(1 − δra0)(δra10 + b20 − δra0b20)r
2
0 + o(r2

0 )

and hence, at t small, the r0 corresponding to a first switching point is

r1 = t

δr (1 − δra0)
+ δrδp

δra10 + b20(1 − δra0)

(1 − a0)2
t2 + o(t2).
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The second switching time is

t2 = δr (3 − δra0)r0 − δp((1 − δra0)(δra10 + b20 − δra0b20) + 4b20)r
2
0 + o(r2

0 )

which implies that, at t small, the r0 corresponding to a second switching point is

r2 = t

δr (3 − δra0)
+ δp

(1 − δra0)(δra10 + b20 − δra0b20) + 4b20

δr (3 − δra0)3
t2 + o(t2).

And the cut time is

tcut = 4δr (r0 − δrδp

1

3
(−a0a10 + 3b20 + a2

0b20)r
2
0 ) + o(r2

0 )

which implies that at t small the r0 corresponding to a cut point is

rcut = δr

4
(t + δp

12
(−a0a10 + 3b20 + a2

0b20)t
2) + o(t2).

4.3 (NF2b ) Case

Recall that the normal form (NF2b) gives G1(x, y) = ∂x, and

G2(x, y) = (1 + a10x + a01y + a20x
2 + o2(x, y))∂x + (x + b20x

2 + b30x
3 + o3(x, y))∂y .

In this case, the extremals with initial condition |λy(0)| >> 1 are the limit when a0 goes
to 1 of the extremal presented in the case (NF2a). If λy(0) >> 1 then the symbol starts
with [[G2, −G1]] or with [[−G2,G1]] and if −λy(0) >> 1 then the symbol starts with
[[G1,−G2]] or with [[−G1,G2]] (Fig. 4).

But F2(0) = 0 then for all extremals φ2(0) = 0. Hence, an extremal may also, depending
on the invariants, have symbol starting by [[G2,G1]], [[G1, G2]], [[S+

2 ,G1]] or [[S+
2 ,G2]]

if λx(0) = 1, or starting by [[−G2,−G1]], [[−G1,−G2]], [[S−
2 ,−G1]] or [[S−

2 ,−G2]] if
λx(0) = −1.

If λx(0) = 1 then at least for small time u1(t) = 1 and x(t) = t + o(t) and y(t) = o(t).
Then, computing φ2 one finds φ2(t) = −λx(t)

a10
2 −λy(t)

x(t)
2 +o(t) = −(

a10+λy(0)

2 )t+o(t).
Hence if λy(0) > −a10 then, since φ2(0) < 0 for small time, the extremal starts by a bang
following G2. If λy(0) < −a10 then φ2(0) > 0 for small time and the extremal starts by a
bang following G1.

Fig. 4 The optimal synthesis in the (NF2a) case
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If λx(0) = −1 then at least for small time u1(t) = −1 and x(t) = −t + o(t) and
y(t) = o(t). Then φ2(t) = (

a10−λy(0)

2 )t + o(t). Hence if λy(0) > a10 then, since φ2(0) < 0
for small time, the extremal starts by a bang following −G1. If λy(0) < a10 then φ2(0) > 0
for small time and the extremal starts by a bang following −G2.

In coordinates, one can compute that

det(F2, [F1, F2])(x, y) = 1

4
((a10b20 − a20)x

2 + a01y) + o2(x, y)

where x has weight 1 and y has weight 2. Since generically at such points (which are isolated
points) a01 �= 0 then an equation for �2 is given by

y = a20 − a10b20

a01
x2 + o(x2).

Remark that generically a20−a10b20
a01

is neither 0 nor 1
2 . Moreover

f2(x, y) = det(F2, [F1, F2])(x, y)

det(F2, F1)(x, y)
= ((a10b20 − a20)x

2 + a01y) + o2(x, y)

2x
.

Recall that an equation of the support of the integral curve of G1 passing by 0 is y = 0

and that an equation for the support of the integral curve of G2 passing by 0 is y = x2

2 +
o(x2).

If a20−a10b20
a01

< 0 or if a20−a10b20
a01

> 1
2 then �2 does not enter the domain D = {x >

0, 0 < y < x2

2 } and along it G1 and G2 point on the same side of �2 hence �2 is not a
turnpike. In these cases

– if a10b20 − a20 > 0 then f2 > 0 in D and the new extremals, that are not described as
limit of the case NF2a , have symbol [[G2,G1]].

– if a10b20 − a20 < 0 then f2 < 0 in D and the new extremals, that are not described as
limit of the case NF2a , have symbol [[G1,G2]].

If 0 <
a20−a10b20

a01
< 1

2 then �2 enters D and along it G1 and G2 point on opposite sides of
�2. In this case:

– if a10b20 − a20 > 0 then, along �2 ∩ D, G1 points in direction of f2 > 0 and �2 is a
turnpike. Then, the only extremals entering the domain D start with a singular arc and
have symbols [[S+

2 ]], [[S+
2 ,G1]] or [[S+

2 , G2]].
– if a10b20 − a20 < 0 then, along �2 ∩ D, G1 points in direction of f2 < 0 and �2

is not a turnpike. In this case, the symbols start with [[G1,G2]] and [[G2,G1]]. One
can compute, with the same techniques that in Section 4.2.2, the switching times and
the second switching locus for extremals that enter the domain D, that is for extremal
with initial condition λy(0) = −a10 + δε with ε > 0 small and δ = ±1. If δ < 0
then the symbol is [[G1,G2,G1]] and the switching times are t1 = ε

a20−a10b20
and

t2 = t1 + 2ε
a01−2a20+2a10b20

, the second switching locus being

x(ε) = a01ε

(a20 − a10b20)(a01 − 2a20 + 2a10b20)
,

y(ε) = 2(a01 − a20 + a10b20)ε
2

(a20 − a10b20)(a01 − 2a20 + 2a10b20)2
.
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If δ > 0 then the symbol is [[G2,G1,G2]] and the switching times are t1 =
2ε

a01−2a20+2a10b20
and t2 = t1 + ε

a20−a10b20
, the second switching locus being

x(ε) = a01ε

(a20 − a10b20)(a01 − 2a20 + 2a10b20)
,

y(ε) = 2ε2

(a01 − 2a20 + 2a10b20)2
.

In fact, these extremals lose optimality before the second switching. Effectively, the two
fronts intersect before creating cut locus. In order to compute this cut locus, one can
compute the jets of the two corresponding families of curves: the first one following G1
during time ε11 then following G2 during time ε12, with ε11 + ε12 = t ; the second one
following G2 during time ε21 then following G1 during time ε22, with ε21 + ε22 = t .
Writing ε11 = t − ε12 and ε22 = t − ε21 and then ε12 = s1t + s2t

2 + o(t2) and
ε21 = t1t + t2t

2 + o(t2), one can compute the jets with respect to t of both families and
compute the cut locus. On finds

t1 = a01 − 6(α − a10β) − 2(a01 − 3(α − a10β))s1 + (a01 − 2(α − a10β))s2
1

2(α − a10β)(−2 + s1)

and

s1 = 1 − 2γ + 8γ 2 − 2
√

γ

1 + 4γ 2

where α = a01+2a20+a2
10

6 , β = 2b20+a10
6 , γ = α−a10β

a01−2(α−a10β)
. Under the hypotheses of

this case, one proves easily that 1
4 ≤ γ ≤ 1 which allows to prove that the expression in

the formula of s1 varies between 0 and 1. Finally, one gets the formula for the cut locus

x(t) = t + 1

2
(2a10s1 − a10s

2
1 )t2 + o(t2), y(t) = 1

2
(2s1 − s2

1 )t2 + o(t2).

Hence, the only optimal symbols entering the domain D are [[G1,G2]] and
[[G2,G1]].

Pictures for the (NF2b) case are in Figs. 5 and 6.

Fig. 5 (NF2b) case: when 0 <
a20−a10b20

a01
< 1

2
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Fig. 6 (NF2b) case: when a20−a10b20
a01

< 0 or a20−a10b20
a01

> 1
2

4.4 (NF3) Case

Recall that in the (NF3) case, x has weight 1 and y has weight 3. Hence, we can write

G1(x, y) = ∂x

G2(x, y) = (a0 + a10x + o(x, y))∂x +
(

x2

2
+ b01y + b30x

3 + o3(x, y)

)

∂y

with b0,1 �= 0 and 0 < a0 < 1, where ok(x, y) has the meaning given in Section 3.5. As in
the (NF2b) case, for any extremal starting at 0,

φ1(0) = 1

2
λx(0)(1 + a0) and φ2(0) = 1

2
λx(0)(1 − a0).

And for the same reasons, if we want to study extremals that switch in short time, we need
to consider |λy | large.

The set of initial condition is {(λx(0), λy(0)) | λx(0) = ±1}. We parameterize the upper
part of this set by setting λy(0) = 1

r2
0

and the lower part by λy(0) = − 1
r2
0

.

As explained in Section 3.4, in order to compute extremals with λy(0) >> 1 we make
the change of coordinates r = 1√

λy
, X = x

r
, Y = y

r3 and the change of time s = t
r
.

Now, looking for the solutions as taylor series in r0, that is under the form

X(r0, s) = X0(s) + r0X1(s) + o(r0), λx(r0, s) = λx0(s) + r0λx1(s) + o(r0),

Y (r0, s) = Y0(s) + r0Y1(s) + o(r0), r(r0, s) = r0 + r2
0 r2(s) + o2(r0)
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one finds the equations

X′
0(s) = 1

2
(u1 + u2) + a0

2
(u1 − u2),

X′
1(s) = (u1 − u2)

4
(2a10 − b01)X0(s),

Y ′
0(s) = 1

4
(u1 − u2)X

2
0(s),

Y ′
1(s) = (u1 − u2)

4
(2b30X

3
0(s) + 2X0(s)X1(s) − b01Y0(s)),

λ′
x0(s) = −1

2
(u1 − u2)X0(s),

λ′
x1(s) = − (u1 − u2)

2
(a10λx0(s) + 3b30X

2
0(s) + X1(s)),

r ′
2(s) = b01

4
(u1 − u2),

For an initial condition λx(0) = 1, one find φ1(0) > 0 and φ2(0) > 0, hence u1(0) =
u2(0) = 1. One can integrate the equations and look for the first switching time as a Taylor
series s1 = s1

0 + r0s
1
1 + o(r0) and compute φ2(r0, s

1
0 + r0s

1
1 + o(r0)) in order to compute

s1
0 = √

2
√

1 − a0 and s1
1 = −a10 − 2b30(1 − a0).

At the switching time

X(s1) = √
2
√

1 − a0 − (a10 + 2b30)(1 − a0)r0, λx(s
1) = 1,

Y (s1) = 0, r(s1) = r0.

After this first switch φ1(0) > 0 and φ2(0) < 0, hence u1(0) = 1 and u2(0) = −1.
We can compute and look for the next switching time and one finds that φ1 goes to 0 at
s2 = s2

0 + r0s
2
1 + o(r0) with

s2
0 = s1

0 + √
2

√
1 + a0 − √

1 − a0

a0
,

s2
1 = s1

1 + b01((1 − a0)
3
2 − √

1 + a0(1 − 2a0)) − 12b30a
2
0

√
1 + a0

3a2
0

√
1 + a0

.

At the second switching time

X(s2) = √
2
√

1 + a0

+ 3a10a0
√

1 + a0 + b01((1 − a0)
3
2 − (1 + a0)

3
2 ) − 6b30a0(1 + a0)

3
2

3a0
√

1 + a0
r0,

Y (s2) =
√

2((1 + a0)
3
2 − (1 − a0)

3
2 )

3a0

− 2b01(1 − a0 + a2
0 − (1 − a0)

3
2
√

1 + a0) + 12a2
0b30

3a2
0

r0,

λx(s
2) = −1,

r(s2) = r0 + (
√

1 + a0 − √
1 − a0)b01√

2a0
r2

0 .
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After this second switch, φ1(0) < 0 and φ2(0) < 0, hence u1(0) = u2(0) = −1. One can
compute the third switch as being s3 = s3

0 + r0s
3
1 + o(r0) with

s3
0 = s2

0 + 2
√

2
√

1 + a0, s3
1 = s2

1 − 2((1 + a0)
3
2 − (1 − a0)

3
2 )b01

3a0
√

1 + a0
.

At this time X(s3) = −√
2
√

1 + a0 + O(r0) and we will see that this third switching time
comes after the cut time.

The same computations can be done for the extremals starting with λx(0) = −1. We use
the notation z̄ for variables z corresponding to these extremals. During the first bang the
controls are ū1 = ū2 = −1, during the second ū1 = 1 and ū2 = −1 and during the third
one ū1 = ū2 = 1. The switching times are s̄1 and s̄2 satisfying

s̄1
0 = √

2
√

1 + a0, s̄1
1 = −a10 + 2b30(1 + a0),

s̄2
0 = s̄1

0 + √
2

√
1+a0−√

1−a0
a0

, s̄2
1 = s̄1

1 + b01((1+a0)
3
2 −√

1−a0(1+2a0))+12b30a
2
0

√
1−a0

3a2
0

√
1−a0

.

And at the second switching time

X̄(s̄2) = −√
2
√

1 − a0

+ −3a10a0
√

1 − a0 + b01((1 + a0)
3
2 − (1 − a0)

3
2 ) − 6b30a0(1 − a0)

3
2

3a0
√

1 − a0
r̄0,

Ȳ (s̄2) =
√

2((1 + a0)
3
2 − (1 − a0)

3
2 )

3a0

− 2b01(1 + a0 + a2
0 − √

1 − a0(1 + a0)
3
2 ) − 12a2

0b30

3a2
0

r̄0,

λ̄x(s̄
2) = −1,

r̄(s̄2) = r̄0 + (
√

1 + a0 − √
1 − a0)b01√

2a0
r̄2

0 .

One can compute that at the third switching time X̄(s̄3) = √
2
√

1 − a0 + O(r0).
We are now ready to compute the cut locus. As one can estimate easily, an extremal

starting with λx(0) > 0 intersects an extremal starting with λx(0) < 0, both during their
third bang. Moreover, since Y (s2) = Ȳ (s̄2) + o(r0) one have that r̄0 = r0 + o(r0).

Fix ρ and look for the extremals intersecting at y =
√

2((1+a0)
3
2 −(1−a0)

3
2 )

3a0
ρ3. We write

r0 = ρ + Rcutρ
2 + o(ρ2) and look for Rcut such that r0Y (s2) =

√
2((1+a0)

3
2 −(1−a0)

3
2 )

3a0
ρ3 +

o(ρ4). We find

Rcut =
√

2((−2a2
0 + (2 + a0)(−1 +

√
1 − a2

0))b01 + 6a2
0b30)

3a0((1 + a0)
3
2 − (1 − a0)

3
2 )

.

For r̄0 = ρ + R̄cutρ
2 + o(ρ2) one finds

R̄cut =
√

2((−2a2
0 + (2 − a0)(−1 +

√
1 − a2

0))b01 − 6a2
0b30)

3a0((1 + a0)
3
2 − (1 − a0)

3
2 )

.
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With these values, we can compute the second switching times t2 = rs2 = t2
1 ρ + t2

2 ρ2 +
o(ρ3) and t̄2 = r̄ s̄2 = t̄2

1 ρ + t̄2
2 ρ2 + o(ρ3) with

t2
1 = √

2

(√
1 − a0 +

√
1 + a0 − √

1 − a0

a0

)

t2
2 = −a10 +

2(−4 + a0 − 2a2
0 + a3

0 + (−1 + a0)

√
1 − a2

0)

3 + a2
0

b30

+ (−5 + 2a0 − 6a2
0 + a3

0)
√

1 + a0 − (−5 − 3a0 + a2
0 + 3a3

0)
√

1 − a0

3a2
0

√
1 + a0(2 +

√
1 − a2

0)

b01

t̄2
1 = √

2

(√
1 + a0 +

√
1 + a0 − √

1 − a0

a0

)

t̄2
2 = −a10 +

2(4 + a0 + 2a2
0 + a3

0) + (1 + a0)

√
1 − a2

0)

3 + a2
0

b30

− (−5 + 3a0 + a2
0 − 3a3

0)
√

1 + a0 + (5 + 2a0 + 6a2
0 + a3

0)
√

1 − a0

3a2
0

√
1 − a0(2 +

√
1 − a2

0)

b01

and the x coordinates of the point of second switching under the form x = x1ρ + x2ρ
2 +

o(ρ3) and x̄ = x̄1ρ + x̄2ρ
2 + o(ρ3) with

x1 = 2
√

2(1 + 3a2
0 − (1 − a2

0)
3
2 )

a0((1 + a0)
3
2 − (1 − a0)

3
2 )

,

x2 = −
5 + a0 + 5a2

0 − (5 + a0)

√
1 − a2

0

3a2
0

b01 − 4b30,

x̄1 = −2
√

2(1 + 3a2
0 − (1 − a2

0)
3
2 )

a0((1 + a0)
3
2 − (1 − a0)

3
2 )

,

x̄2 =
5 − a0 + 5a2

0 + (−5 + a0)

√
1 − a2

0

3a2
0

b01 − 4b30.

One find easily that the cut locus is at xc = x1+x̄1
2 ρ + x2+x̄2

2 ρ2 + o(ρ2) that is

x+
cut = −

⎛

⎜
⎝

a0

3(1 +
√

1 − a2
0)

b01 + 4b30

⎞

⎟
⎠ ρ2 + o(ρ2),

y+
cut =

√
2((1 + a0)

3
2 − (1 − a0)

3
2 )

3a0
ρ3.



Local (Sub)-Finslerian Geometry for the Maximum Norms in Dimension 2 489

Fig. 7 The synthesis in the (NF3) case

When −λy(0) >> 1, then we set r = 1√−λy
. Equations are changed but the final result

is very similar

x−
cut = −

⎛

⎜
⎝

a0

3(1 +
√

1 − a2
0)

b01 + 4b30

⎞

⎟
⎠ ρ2 + o(ρ2),

y−
cut = −

√
2((1 + a0)

3
2 − (1 − a0)

3
2 )

3a0
ρ3.

Finally, the cut locus appears to be a cusp whose tangent at the singular point is the
tangent to �A, see Fig. 7.
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Math. Birkhäuser: Basel; 1996. p. 1–78.

https://doi.org/10.1051/cocv:1997114
https://doi.org/10.1016/S0294-1449(00)00064-0
http://arXiv.org/abs/1506.04339


490 Entisar Abdul-Latif Ali and Grégoire Charlot
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11. Bonnard B, Chyba M. Méthodes géométriques et analytiques pour étudier l’application exponentielle,
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