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Abstract
In this paper, we consider a viscoleastic equation with a nonlinear feedback localized on
a part of the boundary and a relaxation function satisfying g′(t) ≤ −ξ(t)G(g(t)). We
establish an explicit and general decay rate results, using the multiplier method and some
properties of the convex functions. Our results are obtained without imposing any restrictive
growth assumption on the damping term. This work generalizes and improves earlier results
in the literature, in particular those of Messaoudi (Topological Methods in Nonlinear Analy-
sis 51(2):413–427, 2018), Messaoudi and Mustafa (Nonlinear Analysis: Theory Methods &
Applications 72(9–10):3602–3611, 2010), Mustafa (Mathematical Methods in the Applied
Sciences 41(1): 192–204, 2018) and Wu (Zeitschrift für angewandte Mathematik und
Physik 63(1):65–106, 2012).
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1 Introduction

In this paper, we consider the following viscoelastic problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt (t) − �u(t) + ∫ t

0g(t − s)�u(s)ds = 0, in � × R
+

∂u
∂ν

(t) − ∫ t

0g(t − s) ∂u
∂ν

(s)ds + h(ut (t)) = 0, on �1 × R
+

u(t) = 0, on �0 × R
+

u(x, 0) = u0(x), ut (x, 0) = u1(x), in � × R
+

(1.1)
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where u denotes the transverse displacement of waves, � is a bounded domain of RN(N ≥
1) with a smooth boundary ∂� = �0 ∪ �1 such that �0 and �1 are closed and disjoint, with
meas. (�0) > 0, ν is the unit outer normal to ∂�, and g and h are specific functions.

During the last half century, a great attention has been devoted to the study of viscoelastic
problems and many existence and long-time behavior results have been established. We
start with the pioneer work of Dafermos [5, 6], where he considered a one-dimensional
viscoelastic problem of the form

ρutt = cuxx −
∫ t

−∞
g(t − s)uxx(s)ds,

and established various existence results and then proved, for smooth monotone decreasing
relaxation functions, that the solutions go to zero as t goes to infinity. However, no rate of
decay has been specified. Hrusa [7] considered a one-dimensional nonlinear viscoelastic
equation of the form

utt − cuxx +
∫ t

0
m(t − s)(ψ(ux(s)))xds = f (x, t),

and proved several global existence results for large data. He also proved an exponential
decay result for strong solutions when m(s) = e−s and ψ satisfies certain conditions. In
[8] Dassios and Zafiropoulos considered a viscoelatic problem in R

3 and proved a poly-
nomial deacy result for exponentially decaying kernels. In their book, Fabrizio and Morro
[9] established a uniform stability of some problems in linear viscoelasticity. In all the
above mentioned works, the rates of decay in relaxation functions were either of exponen-
tial or polynomial type. In 2008, Messaoudi [10, 11] generalized the decay rates allowing
an extended class of relaxation functions and gave general decay rates from which the expo-
nential and the polynomial decay rates are only special cases. However, the optimality in
the polynomial decay case was not obtained. Precisely, he considered relaxation functions
that satisfy

g′(t) ≤ −ξ(t)g(t), t ≥ 0, (1.2)

where ξ : R+ → R
+ is a nonincreasing differentiable function and showed that the rate of

the decay of the energy is the same rate of decay of g, which is not necessarily of exponential
or polynomial decay type. After that a series of papers using Eq. 1.2 has appeared see, for
instance, [12–18] and [19].

Inspired by the experience with frictional damping initiated in the work of Lasiecka and
Tataru [20], another step forward was done by considering relaxation functions satisfying

g′(t) ≤ −χ(g(t)). (1.3)

This condition, where χ is a positive function, χ(0) = χ ′(0) = 0, and χ is strictly
increasing and strictly convex near the origin, with some additional constraints imposed on
χ , was used by several authors with different approaches. We refer to previous studies [21–
27] and [28], where general decay results in terms of χ were obtained. Here, it should be
mentioned that, in [26], it was the first time where Lasiecka and Wang established not only
general but also optimal results in which the decay rates are characterized by an ODE of the
same type as the one generated by the inequality (1.3) satisfied by g. Mustafa andMessaoudi
[29] established an explicit and general decay rate for relaxation function satisfying

g′(t) ≤ −H(g(t)), (1.4)
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where H ∈ C1(R), with H(0) = 0 and H is linear or strictly increasing and strictly convex
function C2 near the origin. In [30], Cavalcanti et al. considered the following problem

⎧
⎨

⎩

|ut |ρutt − �u − �utt + ∫ t

0g(t − s)�u(s)ds = 0, in � × R
+,

u(x, t) = 0, on � × R
+,

u(x, 0) = u0(x), ut (x, 0) = u1(x), in � × R
+,

(1.5)

with a relaxation function satisfying Eq. 1.4 and the additional requirement:

lim inf
x→0+ x2H ′′ − xH ′ + H(x) ≥ 0,

and that y1−α0 ∈ L1(1, ∞), for some α0 ∈ [0, 1), where y(t) is the solution of the problem

y′(t) + H(y(t)) = 0, y(0) = g(0) > 0.

They characterized the decay of the energy by the solution of a corresponding ODE as
in [20]. Recently, Messaoudi and Al-Khulaifi [31] treated (1.5) with a relaxation function
satisfying

g′(t) ≤ −ξ(t)gp(t), ∀t ≥ 0, 1 ≤ p <
3

2
. (1.6)

They obtained a more general stability result for which the results of [10, 11] are only
special cases. Moreover, the optimal decay rate for the polynomial case is achieved without
any extra work and conditions as in [25] and [20]. For stabilization by mean of boundary
feedback, Cavalcanti et al. [32] studied (1.1) and proved a global existence result for weak
and strong solutions. Moreover, they gave some uniform decay rate results under some
restrictive assumptions on both the kernel g and the damping function h. These restrictions
had been relaxed by Cavalcanti et al. [33] and further they established a uniform stability
depending on the behavior of h near the origin and on the behavior of g at infinity. In the
absence of the viscoelastic term (g = 0), problem (1.1) has been investigated by many
authors and several stability results were established. We refer the reader to the work of
Lasiecka and Tataru [20], Alabau-Boussouira [34], Cavalcanti et al. [35], Guesmia [36, 37],
Cavalcanti [38] and the references therein.

2 Preliminaries

In this section, we present some materials needed in the proof of our results. We use the stan-
dard Lebesgue space L2(�) and the Sobolev space H 1

0 (�) with their usual scalar products
and norms and denote by V the following space

V = {v ∈ H 1(�) : v = 0 on �0}.
Throughout this paper, c is used to denote a generic positive constant.

We consider the following hypotheses:

(A1) g : R+ → R
+ is a C1 nonincreasing function satisfying

g(0) > 0, 1 −
∫ +∞

0
g(s)ds = � > 0, (2.1)

and there exists a C1 function G : (0, ∞) → (0, ∞) which is linear or it is strictly
increasing and strictly convex C2 function on (0, r1], r1 ≤ g(0), with G(0) =
G′(0) = 0, such that

g′(t) ≤ −ξ(t)G(g(t)), ∀t ≥ 0, (2.2)
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where ξ(t) is a positive nonincreasing differentiable function.
(A2) h : R → R is a nondecreasingC0 function such that there exists a strictly increasing

function h0 ∈ C1(R+), with h0(0) = 0, and positive constants c1, c2, ε such that

h0(|s|) ≤ |h(s)| ≤ h−1
0 (|s|) for all |s| ≤ ε,

c1|s| ≤ |h(s)| ≤ c2|s| for all |s| ≥ ε. (2.3)

In addition, we assume that the function H , defined by H(s) = √
sh0(

√
s), is a

strictly convex C2 function on (0, r2], for some r2 > 0, when h0 is nonlinear.

Remark 2.1 It is worth noting that condition (2.3) was considered first in [20].

Remark 2.2 Hypothesis (A2) implies that sh(s) > 0, for all s �= 0.

Remark 2.3 If G is a strictly increasing and strictly convex C2 function on (0, r1], with
G(0) = G′(0) = 0, then it has an extension G, which is strictly increasing and strictly
convex C2 function on (0, ∞). For instance, if G(r1) = a, G′(r1) = b,G′′(r1) = c, we can
define G, for t > r1, by

G(t) = c

2
t2 + (b − cr1)t +

(
a + c

2
r1

2 − br1

)
. (2.4)

The same remark can be established for H .

For completeness we state, without proof, the existence result of [32].

Proposition 2.4 Let (u0, u1) ∈ V × L2(�) be given. Assume that (A1) and (A2) are
satisfied, then the problem (1.1) has a unique global (weak) solution

u ∈ C(R+; V ) ∩ C1(R+; L2(�).

Moreover, if

(u0, u1) ∈ (H 2(�) ∩ V ) × V,

and satisfies the compatibility condition

∂u0

∂ν
+ h(u1) = 0 on �1,

then the solution

u ∈ L∞(R+; H 2(�) ∩ V ) ∩ W 1,∞(R+; V ) ∩ W 2,∞(R+; L2(�)).

We introduce the “modified” energy associated to problem (1.1):

E(t) = 1

2
||ut (t)||22 + 1

2

(

1 −
∫ t

0
g(s)ds

)

|| ∇u(t)||22 + 1

2
(g ◦ ∇u)(t), (2.5)

where

(g ◦ ∇u)(t) =
∫ t

0
g(t − s)||∇u(t) − ∇u(s)||22ds.

Direct differentiation, using Eq. 1.1, leads to

E′(t) = 1

2
(g′ ◦ ∇u)(t) − 1

2
g(t)

∫

�

|∇u|2dx −
∫

�1

ut (t)h(ut (t))d� ≤ 0. (2.6)
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3 Technical Lemmas

In this section, we establish several lemmas needed for the proof of our main result.

Lemma 3.1 Under the assumptions (A1) and (A2), the functional

ψ1(t) :=
∫

�

u(t)ut (t)dx

satisfies, along the solution of Eq. 1.1, the estimate

ψ ′
1(t) ≤ − �

2
|| ∇u(t)||22 + ||ut (t)||22 + cCα

2�
(k ◦ ∇u)(t) + c

∫

�1

h2(ut (t))d�, ∀t ∈ R
+,

(3.1)
where, for any 0 < α < 1,

Cα =
∫ ∞

0

g2(s)

αg(s) − g′(s)
ds and k(t) = αg(t) − g′(t). (3.2)

Proof Direct computations, using Eq. 1.1, yield

ψ ′(t) =
∫

�

u2t dx +
∫

�

u�udx −
∫

�

u

∫ t

0
g(t − s)�u(s)dsdx

=
∫

�

u2t dx −
(

1 −
∫ t

0
g(s)ds

)∫

�

|∇u|2dx −
∫

�1

uh(ut )d�

+
∫

�

∇u.
∫ t

0
g(t − s)(∇u(s) − ∇u(t))dsdx. (3.3)

Using Young’s and Cauchy Schwarz’ inequalities, we obtain
∫

�

∇u.
∫ t

0
g(t − s)(∇u(s) − ∇u(t))dsdx

≤ δ

∫

�

|∇u|2dx + 1

4δ

∫

�

(∫ t

0
g(t − s)|∇u(s) − ∇u(t)|ds

)2

dx

≤ δ

∫

�

|∇u|2dx +

1

4δ

∫

�

(∫ t

0

g(t − s)
√

αg(t − s) − g′(t − s)

√
αg(t − s) − g′(t − s)|∇u(s) − ∇u(t)|ds

)2

dx

≤ δ

∫

�

|∇u|2dx +
1

4δ

(∫ t

0

g2(s)

αg(s) − g′(s)
ds

)∫

�

∫ t

0

[
αg(t − s) − g′(t − s)

] |∇u(s) − ∇u(t)|2dsdx

≤ δ

∫

�

|∇u|2dx + 1

4δ
Cα(k ◦ ∇u)(t). (3.4)

Also, use of Young’s and Poincaré’s inequalities and the trace theorem gives

−
∫

�1

uh(ut )d� ≤ δ

∫

�1

u2d� + 1

4δ

∫

�1

h2(ut )d�

≤ cpδ

∫

�

|∇u|2d� + 1

4δ

∫

�1

h2(ut )d�. (3.5)
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From Eqs. 3.4 and 3.5, we have
∫

�

∇u.
∫ t

0
g(t − s)(∇u(s) − ∇u(t))dsdx −

∫

�1

uh(ut )d�

≤ (1 + cp)δ

∫

�

|∇u|2dx + 1

4δ
Cα(k ◦ ∇u)(t) + 1

4δ

∫

�1

h2(ut )d�

≤ cδ

∫

�

|∇u|2dx + 1

4δ
Cα(k ◦ ∇u)(t) + 1

4δ

∫

�1

h2(ut )d� (3.6)

Combining Eqs. 3.3 and 3.6 and choosing δ = �
2c leads to Eq. 3.1.

Lemma 3.2 Under the assumptions (A1) and (A2), the functional

ψ2(t) := −
∫

�

ut (t)

∫ t

0
g(t − s)(u(t) − u(s))dsdx

satisfies, along the solution of Eq. 1.1, the estimate

ψ ′
2(t) ≤ δ|| ∇u(t)||22 −

(∫ t

0g(s)ds − δ
)

||ut (t)||22 +
(
( 3c

δ
+ 1)Cα + c

δ

)
(ko∇u)(t)

+c
∫

�1
h2(ut (t))d�, ∀t ∈ R

+ and ∀δ > 0. (3.7)

Proof By exploiting Eq. 1.1 and performing integration by parts, we arrive at

ψ ′
2(t) =

∫

�

∇u.
∫ t

0
g(t − s)(∇u(t) − ∇u(s))dsdx

−
∫

�

(∫ t

0
g(t − s)∇u(s)ds

)

.

(∫ t

0
g(t − s)(∇u(t) − ∇u(s))ds

)

dx

+
∫

�1

(∫ t

0
g(t − s)(u(t) − u(s))ds

)

h(ut )d�

−
∫

�

ut

∫ t

0
g′(t − s)(u(t) − u(s))dsdx −

(∫ t

0
g(s)ds

)∫

�

ut
2dx

=
(

1 −
∫ t

0
g(s)ds

)∫

�

∇u.
∫ t

0
g(t − s)(∇u(t) − ∇u(s))dsdx

+
∫

�

∣
∣
∣
∣

∫ t

0
g(t − s)(∇u(t) − ∇u(s))ds

∣
∣
∣
∣

2

dx

+
∫

�1

(∫ t

0
g(t − s)(u(t) − u(s))ds

)

h(ut )d�

−
∫

�

ut

∫ t

0
g′(t − s)(u(t) − u(s))dsdx −

(∫ t

0
g(s)ds

)∫

�

u2t dx.

Using Young’s inequality and performing similar calculations as in Eq. 3.4, we obtain
(

1−
∫ t

0
g(s)ds

)∫

�

∇u.
∫ t

0
g(t−s)(∇u(s)−∇u(t))dsdx ≤ δ

∫

�

|∇u|2dx+ cCα

δ
(k◦∇u)(t)

and
∫

�1

(∫ t

0
g(t − s)(u(t) − u(s))ds

)

h(ut )d� ≤ cCα

δ
(k ◦ ∇u)(t) + δ

∫

�1

h2(ut )d�.
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Also,

−
∫

�

ut

∫ t

0
g′(t − s)(u(t) − u(s))dsdx =

∫

�

ut

∫ t

0
k(t − s)(u(t) − u(s))dsdx

−
∫

�

ut

∫ t

0
αg(t − s)(u(t) − u(s))dsdx ≤ δ

∫

�

u2t dx

+ 1

2δ

∫

�

(∫ t

0

√
k(t − s)

√
k(t − s)|u(t) − u(s)|ds

)2

dx

+α2

2δ

∫

�

(∫ t

0
g(t − s)|u(t) − u(s)|ds

)2

dx ≤ δ

∫

�

u2t dx

+
(∫ t

0 k(s)ds
)

2δ
(k ◦ u)(t) + α2Cα

2δ
(k ◦ ∇u)(t) ≤ δ

∫

�

u2t dx

+c

δ
(k ◦ ∇u)(t) + cCα

δ
(k ◦ ∇u)(t).

Combining all the above estimates, Eq. 3.7 is established.

Lemma 3.3 Under the assumptions (A1) and (A2), the functional

ψ3(t) =
∫

�

∫ t

0
r(t − s)|∇u(s)|2dsdx, (3.8)

satisfies, along the solution of Eq. 1.1, the estimate

ψ ′
3(t) ≤ −1

2
(g ◦ ∇u)(t) + 3(1 − �)

∫

�

|∇u(t)|2dx. (3.9)

where r(t) = ∫ +∞
t

g(s)ds.

Proof By Young’s inequality and the fact that r ′(t) = −g(t), we see that

ψ ′
3(t) = r(0)

∫

�

|∇u(t)|2dx −
∫

�

∫ t

0
g(t − s)|∇u(s)|2dx

= −
∫

�

∫ t

0
g(t − s)|∇u(s) − ∇u(t)|2dsdx

−2
∫

�

∇u(t).
∫ t

0
g(t − s)(∇u(s) − ∇u(t))dsdx + r(t)

∫

�

|∇u(t)|2dx.

Now,

−2
∫

�

∇u(t).
∫ t

0
g(t − s)(∇u(s) − ∇u(t))dsdx

≤ 2(1 − �)

∫

�

|∇u(t)|2dx +
∫ t

0g(s)ds

2(1 − �)

∫

�

∫ t

0
g(t − s)|∇u(s) − ∇u(t)|2dsdx.

Using the facts that r(t) ≤ r(0) = 1 − � and
∫ t

0g(s)ds ≤ 1 − �, Eq. 3.9 is established.

Lemma 3.4 There exist positive constants d and t1 such that

g′(t) ≤ −dg(t), ∀t ∈ [0, t1]. (3.10)
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Proof By (A1), we easily deduce that limt→+∞ g(t) = 0. Hence, there is t1 ≥ 0 large
enough such that

g(t1) = r

and
g(t) ≤ r, ∀t ≥ t1.

As g and ξ are positive nonincreasing continuous and H is a positive continuous function,
then, for all t ∈ [0, t1], {

0 < g(t1) ≤ g(t) ≤ g(0)
0 < ξ(t1) ≤ ξ(t) ≤ ξ(0),

which implies that there are two positive constants a and b such that

a ≤ ξ(t)H(g(t)) ≤ b.

Consequently, for all t ∈ [0, t1],
g′(t) ≤ −ξ(t)H(g(t)) ≤ − a

g(0)
g(0) ≤ − a

g(0)
g(t). (3.11)

Remark 3.5 Using the fact that αg2(s)
αg(s)−g′(s) < g(s) and recalling the Lebesgue dominated

convergence theorem, we can easily deduce that

αCα =
∫ ∞

0

αg2(s)

αg(s) − g′(s)
ds → 0 as α → 0. (3.12)

Lemma 3.6 Assume that (A1) and (A2) hold. Then there exist constants
N,N1, N2, m, m0, c > 0 such that the functional

L(t) = NE(t) + N1ψ1(t) + N2ψ2(t) + m0E(t)

satisfies, for all t ≥ t1,

L′(t) ≤ −mE(t) + c

∫ t

t1

g(t − s)

∫

�

|∇u(t) − ∇u(s)|2dxds + c

∫

�1

h2(ut (t))d� (3.13)

Proof By using Eqs. 2.6, 3.1 and 3.7, recalling that g′ = (αg − k) and taking δ = �
4N2

, we
easily see that

L′(t) ≤ −
(

�

2
N1 − �

4

)

|| ∇u||22 −
(

N2g1 − �

4
− N1

)

||ut ||22 + α

2
N(g ◦ ∇u)(t)

−
(
1

2
N − 4c

�
N2
2 − Cα

(
c

2�
N1 + 12c

�
N2
2 + N2

))

(k ◦ ∇u)(t)]

+c(N1 + N2)

∫

�1

h2(ut )d� + m0E
′(t). (3.14)

At this point, we choose N1 large enough so that

�

2
N1 − �

4
> 4(1 − �)

and then N2 large enough so that

N2g1 − �

4
− N1 − 1 > 0.
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Now, using Remark 3.5, there is 0 < α0 < 1 such that if α < α0, then

αCα <
1

8

(
cN1
2� + 12cN2

2
�

+ N2

) . (3.15)

Now, we choose N large enough and α so that

1

4
N − 4c

N2
2

> 0 and α = 1

2N
< α0,

which gives
1

2
N − 4c

�
N2
2 − Cα

(
c

2�
N1 + 12c

�
N2
2 + N2

)

> 0.

Therefore, we arrive at

L′(t) ≤ −4(1− �)|| ∇u||22 − ||ut ||22 + 1

4
(g ◦ ∇u)(t) + c

∫

�1

h2(ut )d� + m0E
′(t). (3.16)

Using Eqs. 2.6 and 3.10 we conclude that, for any t ≥ t1,
∫ t1

0
g(s)

∫

�

|∇u(t) − ∇u(t − s)|2dxds ≤ −1

d

∫ t1

0
g′(s)

∫

�

|∇u(t) − ∇u(t − s)|2dxds

≤ −cE′(t) (3.17)

Combining Eqs. 3.16 and 3.17 and selecting a suitable choice of m0, Eq. 3.13 is established.
On the other hand (see [39]), we can choose N even larger (if needed) so that

L ∼ E. (3.18)

4 Stability

In this section, we state and prove the main result of our work. For this purpose, we have
the following lemmas and remarks.

Lemma 4.1 Under the assumptions (A1) and (A2), the solution of Eq. 1.1 satisfies the
estimates ∫

�1

h2(ut )d� ≤ c

∫

�1

uth(ut )d�, if h0 is linear (4.1)
∫

�1

h2(ut )d� ≤ cH−1(J (t)) − cE′(t), if h0 is nonlinear (4.2)

where

J (t) := 1

|�12|
∫

�12

ut (t)h(ut (t))d� ≤ −cE′(t) (4.3)

and
�12 = {x ∈ �1 : |ut (t)| ≤ ε1}.

Proof Case 1: h0 is linear. Then, using (A2) we have

c′
1|ut | ≤ |h(ut )| ≤ c′

2|ut |,
and hence

h2(ut ) ≤ c′
2uth(ut ), (4.4)
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So, Eq. 4.1 is established.
Case 2: h0 is nonlinear on [0, ε].

We establish this case, borrowing some ideas from [20]. So, we first assume that
max {r2, h0(r2)} < ε; otherwise we take r2 smaller. Let ε1 = min {r2, h0(r2)}. Using (A2),
we have, for ε1 ≤ |s| ≤ ε,

|h(s)| ≤ h−1
0 (|s|)
|s| |s| ≤ h−1

0 (|ε|)
|ε1| |s|

and

|h(s)| ≥ h0(|s|)
|s| |s| ≥ h0(|ε1|)

|ε| |s|
So, we deduce that

{
h0(|s|) ≤ |h(s)| ≤ h−1

0 (|s|) for all |s| < ε1
c′
1|s| ≤ |h(s)| ≤ c′

2|s| for all |s| ≥ ε1
(4.5)

Then Eq. 4.5, yields, for all |s| ≤ ε1,

H(h2(s)) = |h(s)|h0(|h(s)|) ≤ sh(s)

which gives
h2(s) ≤ H−1(sh(s)) for all |s| ≤ ε1. (4.6)

Now, we define the following partition which was first introduced by Komornik [40]:

�11 = {x ∈ �1 : |ut (t)| > ε1}, �12 = {x ∈ �1 : |ut (t)| ≤ ε1}
Using Eq. 4.5, we get on �12

uth(ut (t)) ≤ ε1h
−1
0 (ε1) ≤ h0(r2)r2 = H(r22 ). (4.7)

Then, Jensen’s inequality gives (note that H−1 is concave)

H−1 (J (t)) ≥ c

∫

�12

H−1(ut (t)h(ut (t)))d�. (4.8)

Thus, combining Eqs. 4.6 and 4.8, we arrive at
∫

�1

h2(ut (t))d� =
∫

�12

h2(ut (t))d� +
∫

�11

h2(ut (t))d�

≤
∫

�12

H−1 (uth(ut (t))) d� +
∫

�11

h2(ut (t))d�

≤ cH−1(J (t)) − cE′(t) (4.9)

Lemma 4.2 Assume that (A1) and (A2) hold and h0 is linear. Then, the energy functional
satisfies the following estimate

∫ +∞

0
E(s)ds < ∞ (4.10)

Proof Let F(t) = L(t) + ψ3(t), then using Eqs. 3.9 and 3.16, we obtain

F ′(t) ≤ −(1 − �)

∫

�

|∇u|dx −
∫

�

u2t dx − 1

4
(go∇u)(t) + c

∫

�1

h2(ut )d� (4.11)
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Using Eqs. 2.6, 4.1 and 4.11, we obtain

F ′(t) ≤ −bE(t) + c

∫

�

uth(ut )dx

≤ −bE(t) − cE′(t),

where b is some positive constant. Therefore,

b

∫ t

t1

E(s)ds ≤ F1(t1) − F1(t) ≤ F1(t1) < ∞, (4.12)

where F1(t) = F(t) + cE(t) ∼ E.

Let’s define

I (t) := −
∫ t

t1

g′(s)
∫

�

|∇u(t) − ∇u(t − s)|2dxds ≤ −cE′(t), (4.13)

Lemma 4.3 Under the assumptions (A1) and (A2), we have the following estimates
∫ t

t1

g(s)

∫

�

|∇u(t) − ∇u(t − s)|2dxds ≤ 1

q
G

−1
(

qI (t)

ξ(t)

)

, if h0 is linear (4.14)

∫ t

t1

g(s)

∫

�

|∇u(t) − ∇u(t − s)|2dxds ≤ (t − t1)

q
G

−1
(

qI (t)

(t − t1)ξ(t)

)

, if h0 is nonlinear

(4.15)
where q ∈ (0, 1) and G is an extension of G such that G is strictly increasing and strictly
convex C2 function on (0,∞); see Remark 2.3.

Proof First we establish (4.14). For this, we define the following quantity

λ(t) := q

∫ t

t1

∫

�

|∇u(t) − ∇u(t − s)|2dxds,

where, by Eq. 4.10, q is chosen so small that, for all t ≥ t1,

λ(t) < 1. (4.16)

Since G is strictly convex on (0, r1] and G(0) = 0, then

G(θz) ≤ θG(z), 0 ≤ θ ≤ 1 and z ∈ (0, r1]. (4.17)

The use of Eqs. 2.2, 4.16, and 4.17 and Jensen’s inequality leads to

I (t) = 1

qλ(t)

∫ t

t1

λ(t)(−g′(s))
∫

�

q|∇u(t) − ∇u(t − s)|2dxds

≥ 1

qλ(t)

∫ t

t1

λ(t)ξ(s)G(g(s))

∫

�

q|∇u(t) − ∇u(t − s)|2dxds

≥ ξ(t)

qλ(t)

∫ t

t1

G(λ(t)g(s))

∫

�

q|∇u(t) − ∇u(t − s)|2dxds

≥ ξ(t)

q
G

(

q

∫ t

t1

g(s)

∫

�

|∇u(t) − ∇u(t − s)|2dxds

)

= ξ(t)

q
G

(

q

∫ t

t1

g(s)

∫

�

|∇u(t) − ∇u(s)|2dxds

)

(4.18)
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This gives (4.14).
For the proof of (4.15), we define the following

λ1(t) := q

(t − t1)

∫ t

t1

∫

�

|∇u(t) − ∇u(t − s)|2dxds,

then using (2.5) and (2.6), we easily see that

λ1(t) ≤ 8qE(0)

�
,

then choosing q ∈ (0, 1) small enough so that, for all t ≥ t1,

λ1(t) < 1. (4.19)

The use of Eqs. 2.2, 4.17 and 4.19 and Jensen’s inequality leads to

I (t) = 1

qλ1(t)

∫ t

t1

λ1(t)(−g′(s))
∫

�

q|∇u(t) − ∇u(t − s)|2dxds

≥ 1

qλ1(t)

∫ t

t1

λ1(t)ξ(s)G(g(s))

∫

�

q|∇u(t) − ∇u(t − s)|2dxds

≥ ξ(t)

qλ1(t)

∫ t

t1

G(λ1(t)g(s))

∫

�

q|∇u(t) − ∇u(t − s)|2dxds

≥ (t − t1)ξ(t)

q
G

(
q

(t − t1)

∫ t

t1

g(s)

∫

�

|∇u(t) − ∇u(t − s)|2dxds

)

= (t − t1)ξ(t)

q
G

(
q

(t − t1)

∫ t

t1

g(s)

∫

�

|∇u(t) − ∇u(t − s)|2dxds

)

. (4.20)

This implies that

∫ t

t1

g(s)

∫

�

|∇u(t) − ∇u(t − s)|2dxds ≤ (t − t1)

q
G

−1
(

qI (t)

(t − t1)ξ(t)

)

Theorem 4.4 Let (u0, u1) ∈ V ×L2(�) be given. Assume that (A1) and (A2) are satisfied
and h0 is linear. Then there exist strictly positive constants c1, c2, k1 and k2 such that the
solution of Eq. 1.1 satisfies, for all t ≥ t1,

E(t) ≤ c1e
−c2

∫ t
t1

ξ(s)ds
, if G is linear (4.21)

E(t) ≤ k2G
−1
1

(

k1

∫ t

t1

ξ(s)ds

)

, if G is nonlinear, (4.22)

where G1(t) = ∫ r1
t

1
sG′(s) ds.
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Proof Case 1: G is linear
Multiplying (3.13) by ξ(t) and using Eqs. 2.2, 2.6, 4.1, 4.3 and 4.13, we get

ξ(t)L′(t) ≤
−mξ(t)E(t) + cξ(t)

∫ t

t1

g(t − s)

∫

�

|∇u(t) − ∇u(s)|2dxds + cξ(t)

∫

�1

h2(ut (t))d�

≤ −mξ(t)E(t) + c

∫ t

t1

ξ(s)g(s)

∫

�

|∇u(t) − ∇u(s)|2dxds + cξ(t)

∫

�1

h2(ut (t))d�

≤ −mξ(t)E(t) − c

∫ t

t1

g′(s)
∫

�

|∇u(t) − ∇u(s)|2dxds + cξ(t)

∫

�1

uth(ut (t))d�

≤ −mξ(t)E(t) − 2cE′(t)

which gives, as ξ(t) is non-increasing,

(ξL + 2cE)′ ≤ −mξ(t)E(t),∀t ≥ t1. (4.23)

Hence, using the fact that ξL + 2cE ∼ E, we easily obtain

E(t) ≤ c′e−c̄
∫ t
t1

ξ(s)ds
. (4.24)

Case 2: G is non-linear.

Using Eqs. 3.13, 4.1 and 4.14, we obtain

L′(t) ≤ −mE(t) + c
(
G

)−1
(

qI (t)

ξ(t)

)

− cE′(t), (4.25)

Let F1(t) = L(t) + cE(t) ∼ E, then Eq. 4.25 becomes

F ′
1(t) ≤ −mE(t) + c

(
G

)−1
(

qI (t)

ξ(t)

)

, (4.26)

we find that the functional F2, defined by

F2(t) := G
′
(

ε0
E(t)

E(0)

)

F1(t)

satisfies, for some α1, α2 > 0.

α1F2(t) ≤ E(t) ≤ α2F2(t) (4.27)

and

F ′
2(t) = ε0

E′(t)
E(0)

G
′′
(

ε0
E(t)

E(0)

)

F1(t) + G
′
(

ε0
E(t)

E(0)

)

F1
′(t)

≤ −mE(t)G
′
(

ε0
E(t)

E(0)

)

+ cG
′
(

ε0
E(t)

E(0)

)

G
−1

(
qI (t)

ξ(t)

)

. (4.28)

Let G
∗
be the convex conjugate of G in the sense of Young (see [41]), then

G
∗
(s) = s(G

′
)−1(s) − G

[
(G

′
)−1(s)

]
, if s ∈ (0,G

′
(r1)] (4.29)

and G
∗
satisfies the following generalized Young inequality

AB ≤ G
∗
(A) + G(B), if A ∈ (0, G

′
(r1)], B ∈ (0, r1]. (4.30)
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So, with A = G
′ (

ε0
E′(t)
E(0)

)
and B = G

−1
(

qI (t)
ξ(t)

)
and using Eqs. 2.6 and 4.28–4.30, we

arrive at

F ′
2(t) ≤ −mE(t)G

′
(

ε0
E(t)

E(0)

)

+ cG
∗
(

G
′
(

ε0
E(t)

E(0)

))

+ c

(
qI (t)

ξ(t)

)

≤ −mE(t)G
′
(

ε0
E(t)

E(0)

)

+ cε0
E(t)

E(0)
G

′
(

ε0
E(t)

E(0)

)

+ c

(
qI (t)

ξ(t)

)

. (4.31)

So, multiplying Eq. 4.31 by ξ(t) and using the fact that ε0
E(t)
E(0) < r1, G

′ (
ε0

E(t)
E(0)

)
=

G′
(
ε0

E(t)
E(0)

)
, gives

ξ(t)F ′
2(t) ≤ −mξ(t)E(t)G′

(

ε0
E(t)

E(0)

)

+ cξ(t)ε0
E(t)

E(0)
G′

(

ε0
E(t)

E(0)

)

+ cqI (t)

≤ −mξ(t)E(t)G′
(

ε0
E(t)

E(0)

)

+ cξ(t)ε0
E(t)

E(0)
G′

(

ε0
E(t)

E(0)

)

− cE′(t)

Consequently, with a suitable choice of ε0, we obtain, for all t ≥ t1,

F ′
3(t) ≤ −kξ(t)

(
E(t)

E(0)

)

G′
(

ε0
E(t)

E(0)

)

= −kξ(t)G2

(
E(t)

E(0)

)

, (4.32)

where F3 = ξF2 + cE ∼ E and G2(t) = tG′(ε0t). Since G′
2(t) = G′(ε0t) + ε0tG

′′(ε0t),
then, using the strict convexity of G on (0, r1], we find that G′

2(t), G2(t) > 0 on (0, 1].
Thus, with

R(t) = ε
α1F3(t)

E(0)
, 0 < ε < 1,

taking in account (4.27) and (4.32), we have

R(t) ∼ E(t) (4.33)

and, for some k1 > 0.

R′(t) ≤ −k1ξ(t)G2(R(t)), ∀t ≥ t1.

Then, the integration over (t1, t) yields
∫ t

t1

−R′(s)
G2(R(s))

ds ≥ k1

∫ t

t1

ξ(s)ds.

Hence, by an approprite change of variable, we get
∫ ε0R(t1)

ε0R(t)

1

τG′(τ )
dτ ≥ k1

∫ t

t1

ξ(s)ds

Thus, we have

R(t) ≤ 1

ε0
G−1

1

(

k1

∫ t

t1

ξ(s)ds

)

, (4.34)

where G1(t) = ∫ r1
t

1
sG′(s) ds. Here, we have used the fact that G1 is strictly decreasing on

(0, r1]. Therefore Eq. 4.22 is established by virtue of Eq. 4.33.

Remark 4.5 The decay rate of E(t) given by Eq. 2.2 is optimal because it is consistent with
the decay rate of g(t) given by Eq. 4.22. In fact,

g(t) ≤ G−1
0

(∫ t

g−1(r1)

ξ(s)ds

)

, ∀t ≥ g−1(r1),
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where G0(t) = ∫ r

t
1

G(s)
.

Using the properties of G, G0 and G1, we can see that

G1(t) =
∫ r1

t

1

sG′(s)
ds ≤

∫ r1

t

1

G(s)
ds = G0(t).

This implies
G−1

1 (t) ≤ G−1
0 (t).

This shows that Eq. 4.22 provides the best decay rates expected under the very general
assumption (2.2).

Theorem 4.6 Let (u0, u1) ∈ V ×L2(�) be given. Assume that (A1) and (A2) are satisfied
and h0 is nonlinear. Then there exist strictly positive constants c3, c4, k2, k3 and ε2 such
that the solution of Eq. 1.1 satisfies, for all t ≥ t1,

E(t) ≤ H−1
1

(

c3

∫ t

t1

ξ(s)ds + c4

)

, if G is linear, (4.35)

where H1(t) = ∫ 1
t

1
H2(s)

ds.

E(t) ≤ k3(t − t1)W2
−1

(
k2

(t − t1)
∫ t

t1
ξ(s)ds

)

, if G is non-linear, (4.36)

where W2(t) = tW ′(ε2t) and W =
(
G

−1 + H
−1

)−1
.

Proof Case 1: G is linear

Multiplying Eq. 3.13 by ξ(t) and using Eq. 4.2, we get

ξ(t)L′(t) ≤ −mξ(t)E(t) + cξ(t)

∫ t

t1

g(t − s)

∫

�

|∇u(t) − ∇u(s)|2dxds

+cξ(t)

∫

�1

h2(ut (t))d�

≤ −mξ(t)E(t) − cE′(t) + cξ(t)

∫

�1

h2(ut (t))d�

≤ −mξ(t)E(t) − cE′(t) + cξ(t)H−1(J (t)) − cξ(t)E′(t)
≤ −mξ(t)E(t) − cE′(t) + cξ(t)H−1(J (t)) − cξ(0)E′(t)
≤ −mξ(t)E(t) − cE′(t) + cξ(t)H−1(J (t))

which gives, as ξ(t) is non-increasing,

(ξL + cE)′ ≤ −mξ(t)E(t) + cξ(t)H−1(J (t)),∀t ≥ t1. (4.37)

Therefore, Eq. 4.37 becomes

L′(t) ≤ −mξ(t)E(t) + cξ(t)H−1(J (t)),∀t ≥ t1, (4.38)

where L := ξL+2cE, which is clearly equivalent to E. Now, for ε1 < r2 and c0 > 0, using
Eq. 4.38 and the fact that E′ ≤ 0, H ′ > 0, H ′′ > 0 on (0, r2], we find that the functional
L1, defined by

L1(t) := H ′
(

ε1
E(t)

E(0)

)

L(t) + c0E(t)
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satisfies, for some α3, α4 > 0.

α3L1(t) ≤ E(t) ≤ α4L1(t) (4.39)

and

L′
1(t) = ε0

E′(t)
E(0)

H ′′
(

ε0
E(t)

E(0)

)

L(t) + H ′
(

ε0
E(t)

E(0)

)

L′(t) + c0E
′(t)

≤ −mE(t)H ′
(

ε0
E(t)

E(0)

)

+ cξ(t)H ′
(

ε0
E(t)

E(0)

)

H−1(J (t)) + c0E
′(t) (4.40)

Let H ∗ be the convex conjugate of H in the sense of Young (see [41]), then, as in Eqs. 4.29

and 4.30, with A = H ′
(
ε1

E(t)
E(0)

)
and B = H−1(J (t)), using Eqs. 2.6 and 4.7, we arrive at

L′
1(t) ≤ −mE(t)H ′

(

ε1
E(t)

E(0)

)

+ cξ(t)H ∗
(

H ′
(

ε1
E(t)

E(0)

))

+ cξ(t)J (t) + c0E
′(t)

≤ −mE(t)H ′
(

ε1
E(t)

E(0)

)

+ cε1ξ(t)
E(t)

E(0)
H ′

(

ε1
E(t)

E(0)

)

− cE′(t) + c0E
′(t)

Consequently, with a suitable choice of ε1 and c0, we obtain, for all t ≥ t1,

L′
1(t) ≤ −cξ(t)

E′(t)
E(0)

H ′
(

ε1
E(t)

E(0)

)

= −cξ(t)H2

(

ε1
E(t)

E(0)

)

, (4.41)

where H2(t) = tH ′(ε1t). Since H ′
2(t) = H ′(ε1t) + ε1tH

′′(ε1t), then, using the strict
convexity of H on (0, r2], we find that H ′

2(t), H2(t) > 0 on (0, 1]. Thus, with

R1(t) = ε
α3L1(t)

E(0)
, 0 < ε < 1,

taking in account (4.39) and (4.41), we have

R1(t) ∼ E(t) (4.42)

and, for some c3 > 0.

R′
1(t) ≤ −c3ξ(t)H2(R1(t)), ∀t ≥ t1.

Then, a simple integration gives, for some c4 > 0,

R1(t) ≤ H−1
1 (c3

∫ t

t1

ξ(s)ds + c4), ∀t ≥ t1, (4.43)

where H1(t) = ∫ 1
t

1
H2(s)

ds.

Case 2. G is non-linear.

Using Eqs. 3.13, 4.2 and 4.15, we obtain

L′(t) ≤ −mE(t) + c(t − t1)
(
G

)−1
(

qI1(t)

(t − t1)ξ(t)

)

+ cH−1(J (t)) − cE′(t). (4.44)

Since limt→+∞ 1
t−t1

= 0, there exists t2 > t1 such that 1
t−t1

< 1 whenever t > t2.

Combining this with the strictly increasing and strictly convex properties of H , setting θ =
1

t−t1
< 1 and using Eq. 4.17, we obtain

H
−1

(J (t)) ≤ (t − t1)H
−1

(
J (t)

(t − t1)

)

,∀t ≥ t2
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and, then, Eq. 4.44 becomes

L′(t) ≤ −mE(t) + c(t − t1)
(
G

)−1
(

qI1(t)

(t − t1)ξ(t)

)

+ c(t − t1)H
−1

(
J (t)

(t − t1)

)

−cE′(t), ∀t ≥ t2. (4.45)

Let L1(t) = L(t) + cE(t) ∼ E, then Eq. 4.45 takes the form

L′
1(t) ≤ −mE(t)+c(t − t1)

(
G

)−1
(

qI1(t)

(t − t1)ξ(t)

)

+c(t − t1)H
−1

(
J (t)

(t − t1)
)

)

, (4.46)

Let r0 = min {r1, r2}, χ(t) = max { qI1(t)

(t − t1)ξ(t)
,

J (t)

(t − t1)
} and W =

((
G

)−1 + H
−1

)−1
.

So, Eq. 4.46 reduces to

L′
1(t) ≤ −mE(t) + c(t − t1)W

−1(χ(t)),∀t ≥ t2 (4.47)

Now, for ε2 < r0 and using Eq. 4.44 and the fact that E′ ≤ 0, W ′ > 0,W ′′ > 0 on (0, r0],
we find that the functional L2, defined by

L2(t) := W ′
(

ε2

t − t1
· E(t)

E(0)

)

L1(t), ∀t ≥ t2,

satisfies, for some α5, α6 > 0.

α5L2(t) ≤ E(t) ≤ α6L2(t) (4.48)

and, for all t ≥ t2,

L′
2(t) =

( −ε2

(t − t1)2

E(t)

E(0)
+ ε2

(t − t1)

E′(t)
E(0)

)

W ′′
(

ε2

t − t1
· E(t)

E(0)

)

L1(t)

+W ′
(

ε2

t − t1
· E(t)

E(0)

)

L′
1(t) ≤ −mE(t)W ′

(
ε2

t − t1
· E(t)

E(0)

)

+c(t − t1)W
′
(

ε2

t − t1
· E(t)

E(0)

)

W−1(χ(t)). (4.49)

Let W ∗ be the convex conjugate of W in the sense of Young (see [41]), then, as in

Eqs. 4.29 and 4.30, and with A = W ′
(

ε2
t−t1

· E(t)
E(0)

)
and B = W−1(χ(t)), using (2.6), we

arrive at

L′
2(t) ≤ −mE(t)W ′

(
ε2

t − t1
· E(t)

E(0)

)

+ c(t − t1)W
∗
(

W ′
(

ε2

t − t1
· E(t)

E(0)

))

+c(t − t1)χ(t)

≤ −mE(t)W ′
(

ε2

t − t1
· E(t)

E(0)

)

+ c(t − t1)
ε2

t − t1
· E(t)

E(0)
W ′

(
ε2

t − t1
· E(t)

E(0)

)

+c(t − t1)χ(t). (4.50)

Using Eqs. 4.3 and 4.13, we observe that

(t − t1)ξ(t)χ(t) ≤ qI (t) + ξ(t)J (t)

≤ qI (t) + ξ(0)J (t)

≤ −cE′(t) − cE′(t)
≤ −cE′(t)
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So, multiplying Eq. 4.50 by ξ(t) and using the fact that, ε2
E(t)
E(0) < r0, give

ξ(t)L′
2(t) ≤ −mξ(t)E(t)W ′

(
ε2

t − t1
· E(t)

E(0)

)

+ cε2ξ(t) · E(t)

E(0)
W ′

(
ε2

t − t1
· E(t)

E(0)

)

−cE′(t),∀t ≥ t2.

Using the non-increasing property of ξ , we obtain, for all t ≥ t2,

(ξL2 + cE)′(t) ≤ −mξ(t)E(t)W ′
(

ε2

t − t1
· E(t)

E(0)

)

+cε2ξ(t)
E(t)

E(0)
W ′

(
ε2

t − t1
· E(t)

E(0)

)

Therefore, by setting L3 := ξL2 + cE ∼ E, we get

L′
3(t) ≤ −mξ(t)E(t)W ′

(
ε2

t − t1
· E(t)

E(0)

)

+ cε2ξ(t) · E(t)

E(0)
W ′

(
ε2

t − t1
· E(t)

E(0)

)

This gives, for a suitable choice of ε2,

L′
3(t) ≤ −kξ(t)

(
E(t)

E(0)

)

W ′
(

ε2

t − t1
· E(t)

E(0)

)

, ∀t ≥ t2

or

k

(
E(t)

E(0)

)

W ′
(

ε2

t − t1
· E(t)

E(0)

)

ξ(t) ≤ −L′
3(t), ∀t ≥ t2 (4.51)

An integration of Eq. 4.51 yields
∫ t

t2

k

(
E(s)

E(0)

)

W ′
(

ε2

s − t1
· E(s)

E(0)

)

ξ(s)ds ≤ −
∫ t

t2

L′
3(s)ds ≤ L3(t2). (4.52)

Using the facts that W ′,W ′′ > 0 and the non-increasing property of E, we deduce that the

map t �→ E(t)W ′
(

ε2
t−t1

· E(t)
E(0)

)
is non-increasing and consequently, we have

k

(
E(t)

E(0)

)

W ′
(

ε2

t − t1
· E(t)

E(0)

)∫ t

t2

ξ(s)ds

≤
∫ t

t2

k

(
E(s)

E(0)

)

W ′
(

ε2

s − t1
· E(s)

E(0)

)

ξ(s)ds ≤ L3(t2), ∀t ≥ t2 (4.53)

Multiplying each side of Eq. 4.53 by 1
t−t1

, we have

k

(
1

t − t1
· E(t)

E(0)

)

W ′
(

ε2

t − t1
· E(t)

E(0)

)∫ t

t2

ξ(s)ds ≤ k2

t − t1
, ∀t ≥ t2 (4.54)

Next, we set W2(s) = sW ′(ε2s) which is strictly increasing, then we obtain,

kW2

(
1

t − t1
· E(t)

E(0)

) ∫ t

t2

ξ(s)ds ≤ k2

t − t1
, ∀t ≥ t2 (4.55)

Finally, for two positive constants k2 and k3, we obtain

E(t) ≤ k3(t − t1)W2
−1

(
k2

(t − t1)
∫ t

t2
ξ(s)ds

)

. (4.56)

This finishes the proof.
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Example 4.7 The following examples illustrate our results:

1. h0 and G are linear
Let g(t) = ae−b(1+t), where b > 0 and a > 0 is small enough so that Eq. 2.1 is

satisfied, then g′(t) = −ξ(t)G(g(t)) where G(t) = t and ξ(t) = b. For the frictional
nonlinearity, assume that h0(t) = ct and H(t) = √

th0(
√

t) = ct . Therefore,, we can
use Eq. 4.21 to deduce

E(t) ≤ c1e
−c2t (4.57)

which is the exponential decay.
2. h0 is linear and G is non-linear

Let g(t) = ae−tq , where 0 < q < 1 and a > 0 is small enough so that g satisfies

(2.1), then g′(t) = −ξ(t)G (g(t)) where ξ(t) = 1 and G(t) = qt

(ln(a/t))
1
q −1

. For, the

boundary feedback, let h0(t) = ct , and H(t) = √
th0(

√
t) = ct . Since

G′(t) = (1 − q) + qln(a/t)

(ln(a/t))1/q

and

G′′(t) = (1 − q) (ln(a/t) + 1/q)

(ln(a/t))
1
q
+1

.

then the function G satisfies the condition (A1) on (0, r1] for any 0 < r1 < a.

G1(t) =
∫ r1

t

1

sG′(s)
ds =

∫ r1

t

[
ln a

s

] 1
q

s
[
1 − q + q ln a

s

]ds

=
∫ ln a

t

ln a
r1

u
1
q

1 − q + qu
du

= 1

q

∫ ln a
t

ln a
r1

u
1
q
−1

[
u

1−q
q

+ u

]

du

≤ 1

q

∫ ln a
t

ln a
r1

u
1
q
−1

du ≤
(
ln

a

t

) 1
q
.

Then, Eq. 4.22 gives
E(t) ≤ ke−ktq (4.58)

3. h0 is non-linear and G is linear
Let g(t) = ae−b(1+t), where b > 0 and a > 0 is small enough so that Eq. 2.1 is

satisfied, then g′(t) = −ξ(t)G(g(t)) where G(t) = t and ξ(t) = b. Also, assume that

h0(t) = ctq , where q > 1 and H(t) = √
th0(

√
t) = ct

q+1
2 . Then,

H1
−1(t) = (ct + 1)

−2
q−1 .

Therefore, applying Eq. 4.35, we obtain

E(t) ≤ (c1t + c2)
−2
q−1 (4.59)

4. h0 is non-linear and G is non-linear
Let g(t) = a

(1+t)2
, where a is chosen so that hypothesis (2.1) remains valid. Then

g′(t) = −bG(g(t)), with G(s) = s
3
2 ,



570 Mohammad M. Al-Gharabli, Adel M. Al-Mahdi and Salim A. Messaoudi

where b is a fixed constant. For the boundary feedback, let h0(t) = ct5 andH(t) = ct3.
Then,

W(s) = (G−1 + H−1)−1 =
(

−1 + √
1 + 4s

2

)3

and

W2(s) = 3s√
1 + 4s

(
−1 + √

1 + 4s

2

)2

= 3s

2
√
1 + 4s

+ 3s2√
1 + 4s

− 3s

2

≤ 3s

2
+ 3s2

2
√

s
− 3s

2
= cs

3
2

Therefore, applying Eq. 4.36, we obtain

E(t) ≤ c

(t − t1)
1
3
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