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Abstract
We observe that under certain conditions on the Lyapunov exponents, a semi-invertible
cocycle is, indeed, invertible. As a consequence, if a semi-invertible cocycle generated by
a Hölder continuous map A : M → M(d,R) over a hyperbolic system f : M → M
satisfies a Livšic’s type condition, that is, if A(f n−1(p)) · . . . · A(f (p))A(p) = Id for
every p ∈ Fix(f n), then the cocycle is invertible, meaning that A(x) ∈ GL(d,R) for every
x ∈ M, and a Livšic’s type theorem is satisfied.
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1 Introduction

Linear cocycles are classical objects in the fields of Dynamical Systems and Ergodic Theory.
As a simple example, we can cite the derivative of a smooth map. This example also reveals
the importance of these objects: it is, for instance, in the core of the study of hyperbolic
dynamics and its variations. Nevertheless, the notion of linear cocycle is much broader
than that and includes, for instance, stochastic processes and random matrices and arises
naturally in many other contexts like in the spectral theory of Schrödinger operators.

In the present work, we are interested in a particular type of linear cocycles, namely, the
semi-invertible ones. Given a homeomorphism f : M → M acting on a compact metric
space (M,d) and a measurable matrix-valued map A : M → M(d,R), the pair (A, f ) is
called a semi-invertible linear cocycle. Sometimes, one calls semi-invertible linear cocycle
(over f generated by A), instead, the sequence {An}n∈N defined by

An(x) =
{

A(f n−1(x)) . . . A(f (x))A(x) if n > 0
Id if n = 0

for all x ∈ M. The word “semi-invertible” refers to the fact that the action of the underlying
dynamical system f is invertible while the action on the fibers given by A may fail to be
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invertible. Whenever the map A takes values on GL(d,R), that is, A : M → GL(d,R),
we call the cocycle generated by A over f an invertible cocycle.

The theories of these two classes of objects share many similarities but they also may
exhibit very different behaviors. For instance, it was proved by Cao in [2] that if an invertible
cocycle (A, f ) has only positive Lyapunov exponents with respect to every f -invariant
probability measure, then it is a uniformly expanding cocycle. On the other hand, in [1],
we exhibited an example showing that this is no longer true in the semi-invertible setting:
there exists a semi-invertible cocycle (A, f ) whose Lyapunov exponents are all larger than
a certain constant c > 0 and a point x ∈ M for which A(x) /∈ GL(d,R) and, in particular,
(A, f ) cannot be uniformly expanding.

Bearing in mind the relation between these two theories, this note was mainly motivated
by the following problem: it was proved by Kalinin [5] that whenever A : M → GL(d,R)

is a Hölder map and f exhibits enough hyperbolicity, if

An(p) = Id for every p ∈ Fix(f n) and n ∈ N, (1)

then A is a coboundary, that is, there exists a Hölder map P : M → GL(d,R) satisfying

A(x) = P(f (x))P (x)−1 for every x ∈ M.

So, a natural question that arises is what happens if instead of an invertible cocycle we have
a semi-invertible cocycle satisfying (1). It turns out that a similar conclusion is still true
(Corollary 2.3). As we are going to see, this follows from Kalinin’s original result and the
fact that the invertibility of the cocycle (A, f ) can be read out of its asymptotic behavior
(Theorem 2.1).

2 Statements

Let (M,d) be a compact metric space, f : M → M a homeomorphism and A : M →
M(d,R) an α-Hölder continuous map. This means that there exists a constant C1 > 0 such
that

‖A(x) − A(y) ‖ ≤ C1d(x, y)α

for all x, y ∈ M where ‖A ‖ denotes the operator norm of a matrix A, that is, ‖ A ‖ =
sup{‖Av ‖/‖ v ‖; ‖ v ‖ �= 0}.

2.1 Lyapunov Exponents

Given an ergodic f -invariant Borel probability measure μ, it was proved in [3] that there
exists a full μ-measure set Rμ ⊂ M, whose points are called μ-regular points, such that
for every x ∈ Rμ there exist numbers λ1 > . . . > λl ≥ −∞, called Lyapunov exponents,
and a direct sum decomposition R

d = E
1,A
x ⊕ . . . ⊕ E

l,A
x into vector subspaces which are

called Oseledets subspaces and depend measurably on x such that, for every 1 ≤ i ≤ l,

• dim(E
i,A
x ) is constant,

• A(x)E
i,A
x ⊆ E

i,A
f (x) with equality when λi > −∞

and

• λi = limn→+∞
1

n
log ‖ An(x)v ‖ for every non-zero v ∈ E

i,A
x .
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This result extends a famous theorem due to Oseledets [8] known as the multiplicative
ergodic theorem which was originally stated in both invertible (both f and the matrices are
assumed to be invertible) and non-invertible (neither f nor the matrices are assumed to be
invertible) settings (see also [10]). While in the invertible case the conclusion is similar to
the conclusion above (except that all Lyapunov exponents are finite), in the non-invertible
case, instead of a direct sum decomposition into invariant vector subspaces, one only gets
an invariant filtration (a sequence of nested subspaces) of Rd . We denote by

γ1(A,μ) ≥ γ2(A,μ) ≥ . . . ≥ γd(A,μ)

the Lyapunov exponents of (A, f ) with respect to the measure μ counted with multiplicities.

2.2 Periodic Exponential Specification Property and the Anosov Closing Property

We say that f satisfies the periodic exponential specification property if there exists θ > 0
so that for every δ > 0, there exists S = S(δ) > 0 so that for any x ∈ M and any n ∈ N,
there exists a periodic point p ∈ M such that f n+S(p) = p satisfying

d(f j (p), f j (x)) < δe−θ min{j,n−j} for all j = 0, 1, . . . , n.

Observe that this is a particular version of the sometimes called Bowen’s exponential specifi-
cation property where one requeries that the previous property holds for unions of segments
of orbits. See [9], for instance.

We say that f satisfies the Anosov Closing property if there exist C2, ε0, θ > 0 such that
if z ∈ M satisfies d(f n(z), z) < ε0, then there exists a periodic point p ∈ M such that
f n(p) = p and

d(f j (z), f j (p)) ≤ C2e
−θ min{j,n−j}d(f n(z), z) for every j = 0, 1, . . . , n

and a point y ∈ M satisfying

d(f j (y), f j (p)) ≤ C2e
−θjd(f n(z), z) and d(f j (z), f j (y)) ≤ C2e

−θ(n−j)d(f n(z), z)

for every j = 0, 1, . . . , n (see [5]).
Every topologically mixing locally maximal hyperbolic set has the periodic exponential

specification property as well as the Anosov closing property (see for instance [7, 9]). In
particular, transitive Anosov diffeomorphism satisfy both properties. Moreover, it is easy to
see that if a homeomorphism f is topologically conjugated to a map g satisfying both of the
previous properties and the conjugacy and its inverse are Hölder continuous, then f itself
satisfies both properties. In particular, it follows from [4] that there are non-uniformly hyper-
bolic systems satisfying the periodic exponential specification property and the Anosov
closing property.

2.3 Main Results

The main result of this note is the following:

Theorem 2.1 Let f : M → M be a homeomorphism satisfying the periodic exponential
specification property and A : M → M(d,R) an α-Hölder continuous map. Assume there
exist ρ, τ > 0 satisfying ρ + τ < αθ

2 so that

− τ ≤ γd(A,μ) + . . . + γ1(A,μ) ≤ ρ (2)

for every ergodic f -invariant measure μ onM. Then, A(x) ∈ GL(d,R) for every x ∈ M.
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A simple observation is that hypothesis (2) is satisfied, for instance, whenever

−τ

d
≤ γd(A,μ) ≤ . . . ≤ γ1(A,μ) ≤ ρ

d

for every ergodic f -invariant measure μ. In particular, if all Lyapunov exponents of (A, f )

are in a small neighborhood of zero, then the semi-invertible cocycle (A, f ) is, indeed,
invertible. Moreover, under the additional assumption that f satisfies the Anosov closing
property, assumption (2) can be replaced by the assumption that

−τ ≤ γd(A,μp) + . . . + γ1(A, μp) ≤ ρ

for every ergodic f -invariant measure μp supported on a periodic orbit. In fact, by Theorem
2.1 of [1], they are equivalent.

Remark 2.2 Observe that assuming that all Lyapunov exponents of (A, f ) are uniformly
bounded below, that is, γd(A, μ) > c for every ergodic f -invariant measure μ on M and
some c ∈ R, implies that A(x) ∈ GL(d,R) for μ-almost every x ∈ M with respect to
every f -invariant measure μ (see Corollary 1 of [1]). On the other hand, as observed in
Example 2.2 of [1] and already mentioned in Section 1, this does not imply, in general, that
A(x) ∈ GL(d,R) for every x ∈ M. In fact, in the aforementioned example, we exhibited
a cocycle (A, f ) satisfying

0 < c ≤ γd(A,μ) ≤ . . . ≤ γ1(A, μ) ≤ log

(
max
x∈M ‖A(x)‖

)

for every ergodic f -invariant measure μ so that A(x) /∈ GL(d,R) for some x ∈ M.
Moreover, the map f in that example satisfies the assumptions of Theorem 2.1.

As an interesting consequence of the previous result, we get a Livšic’s type theorem in
the, a priori, semi-invertible setting.

Corollary 2.3 Let f : M → M be a topologically transitive homeomorphim satisfying
the Anosov closing property and the periodic exponential specification property and let
A : M → M(d,R) be an α-Hölder continuous map. Assume that

An(p) = Id for every p ∈ Fix(f n) and n ∈ N.

Then, there exists an α-Hölder continuous map P : M → GL(d,R) so that

A(x) = P(f (x))P (x)−1 for every x ∈ M.

Proof Since An(p) = Id for every p ∈ Fix(f n) and n ∈ N, it follows from the comments
after our main result that the hypotheses of Theorem 2.1 are satisfied. In particular, A(x) ∈
GL(d,R) for every x ∈ M. Let C = maxx∈M{‖A(x)‖ ,

∥∥A(x)−1
∥∥}. Then,∥∥A(x)−1 − A(y)−1

∥∥ = ∥∥ A(x)−1(A(y) − A(x))A(y)−1
∥∥

≤ ∥∥A(x)−1
∥∥∥∥ A(y)−1

∥∥‖ A(x) − A(y) ‖
≤ C2C1d(x, y)α .

In particular, A : M → GL(d,R) is an α-Hölder continuous map with respect to the
distance given by

d̃(A(x),A(y)) = ‖A(x) − A(y) ‖ +
∥∥∥ A(x)−1 − A(y)−1

∥∥∥
on GL(d,R). Now, the result follows from [5, Theorem 1.1].
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3 Proof of theMain Result

Let f : M → M be a homeomorphism satisfying the periodic exponential specification
property and A : M → M(d,R) an α-Hölder continuous map. We start with an auxiliary
result.

Proposition 3.1 Suppose there exists ρ > 0 so that

γ1(A,μ) ≤ ρ

for every ergodic f -invariant measure μ on M. Then, for every ε > 0, there exists a
constant Cε > 0 so that

‖An(x)‖ ≤ Cεe
(ρ+ε)n

for every x ∈ M and n ∈ N.

Proof Let us consider Ã : M → M(d + 1,R) given by

Ã(x) =
(

1 0
0 A(x)

)
.

Observe that the cocycle (Ã, f ) also satisfies γ1(Ã, μ) ≤ ρ for every ergodic f -invariant
measure μ on M. Moreover, ‖Ãn(x)‖ �= 0 for every x ∈ M and n ∈ N. Thus, by
Proposition 4.9 of [6] applied to

an(x) = log ‖Ãn(x)‖ − (ρ + ε)n

it follows that there exists N ∈ N so that aN(x) < 0 for every x ∈ M. That is,

‖ÃN (x)‖ ≤ e(ρ+ε)N for every x ∈ M.

Consequently, taking Cε = supj=0,1,...,N {supx∈M ‖Ãj (x)‖} and using the submultiplica-
tivity of the norm, it follows that

‖Ãn(x)‖ ≤ Cεe
(ρ+ε)n

for every x ∈ M and n ∈ N. Now, observing that ‖An(x)‖ ≤ ‖Ãn(x)‖ for every x ∈ M
and n ∈ N, the result follows. It is useful to point out that the only reason for using Ã

instead of A is to guarantee that an(x) ∈ R for every x ∈ M so to fall in the setting of
[6, Proposition 4.9].

Our next proposition tells us that under some conditions on the largest Lyapunov
exponent, the map A cannot be equal to the zero matrix in any point of the domain.

Proposition 3.2 Suppose there exist ρ, τ > 0 satisfying ρ + τ < αθ
2 so that

−τ ≤ γ1(A,μ) ≤ ρ

for every ergodic f -invariant measure μ onM. Then,

A(x) �= 0 for every x ∈ M.

Proof Suppose there exists x ∈ M so that A(x) = 0. Given n ∈ N, let pn ∈ M be a
periodic point associated to δ, S, and

{f −n(x), . . . , f −1(x), x, f (x), . . . , f n(x)}
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by the periodic exponential specification property. In particular, f 2n+S(pn) = pn and

d(f j (f −n(pn)), f
j (f −n(x))) < δe−θ min{j,2n−j} for all j = 0, 1, . . . , 2n.

Fix ε > 0 so that ρ + τ + ε < αθ
2 and let Cε > 0 be given by Proposition 3.1 associated

to it. We start observing that, since A(x) = 0,

‖A2n+S(pn)‖ = ‖A2n+S(pn) − A2n+S−1(f (pn))A(x)‖
≤ ‖A2n+S−1(f (pn))‖‖A(pn) − A(x)‖
≤ Cεe

(ρ+ε)(2n+S−1)C1d(pn, x)α

≤ Cεe
(ρ+ε)(2n+S−1)C1δ

αe−θαn ≤ Ĉe(ρ+ε− θα
2 )(2n+S)

where Ĉ = CεC1δ
αeθαS > 0 is independent of n. Thus, denoting by μpn the ergodic

f -invariant measure supported on the orbit of pn, it follows that

−τ ≤ γ1(A,μpn) = limk→+∞ 1
k

log ‖Ak(pn)‖
= limk→+∞ 1

k(2n+S)
log ‖Ak(2n+S)(pn)‖

= limk→+∞ 1
k(2n+S)

log ‖(A(2n+S)(pn))
k‖

≤ limk→+∞ 1
k(2n+S)

log ‖A(2n+S)(pn)‖k

= 1
(2n+S)

log ‖A(2n+S)(pn)‖
≤ ρ + ε − θα

2 + log Ĉ
(2n+S)

.

In particular,

0 ≤ ρ + τ + ε − θα

2
+ log Ĉ

(2n + S)
.

Therefore, since ρ + τ + ε − θα
2 < 0 and Ĉ is independent of n, we get a contradiction

whenever n � 0 concluding the proof of the proposition.

3.1 Conclusion of the Proof

Let f : M → M and A : M → M(d,R) be as in Theorem 2.1. To complete the proof
of our main result, the idea is to apply Proposition 3.2 to the cocycle induced by (A, f ) on
a suitable exterior power. In order to do so, for every i ∈ {1, . . . , d}, let 
i(Rd) be the ith
exterior power of Rd which is the space of alternate i-linear forms on the dual (Rd)∗ and

iA(x) : 
i(Rd) → 
i(Rd) be the linear map given by


iA(x)(ω) : (φ1, . . . , φi) → ω(φ1 ◦ A(x), . . . , φi ◦ A(x)) (3)

for ω ∈ 
i(Rd) and φj ∈ (Rd)∗. Then, the cocycle induced by (A, f ) on the ith exterior
power is just the cocyle generated by x → 
iA(x) over f . A very well-known fact about
this cocycle (see for instance [10, Section 4.3.2]) is that its Lyapunov exponents are given by

{γj1(A,μ) + . . . + γji
(A,μ); 1 ≤ j1 < . . . < ji ≤ d}.

In particular, its largest Lyapunov exponent is given by γ1(A,μ)+γ2(A,μ)+. . .+γi(A,μ).
Applying this fact to the case when i = d, we get that the only Lyapunov exponent of
(
dA, f ) with respect to μ is

γ1(

dA,μ) = γ1(A,μ) + γ2(A,μ) + . . . + γd(A,μ).

In particular,
−τ ≤ γ1(


dA,μ) ≤ ρ

for every ergodic f -invariant measure μ on M. Thus, applying Proposition 3.2 to the cocy-
cle (
dA, f ), we conclude that 
dA(x) �= 0 for every x ∈ M. From Eq. 3, it follows then
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that ker(A(x)) = {0} for every x ∈ M. Consequently, A(x) ∈ GL(d,R) for every x ∈ M
concluding the proof of our main result.

Remark 3.3 As one can easily see from the proof, we have not used the full strength of the
periodic specification property. Indeed, the following property on f suffices: suppose there
exist constants θ, δ, c, S > 0 so that for any point x ∈ M and n ∈ N there exists a periodic
point pn ∈ M such that f kn(pn) = pn where kn ≤ cn + S satisfying

d(pn, x) < δe−θn.

In this case, assuming there are ρ, τ > 0 satisfying ρ + τ < αθ
c

so that

−τ ≤ γd(A,μ) + . . . + γ1(A,μ) ≤ ρ

for every ergodic f -invariant measure μ on M, we get that A(x) ∈ GL(d,R) for every
x ∈ M. The proof is the same, mutatis mutandis, as the one presented above.

Note that if f satisfies the periodic specification property then it satisfies the previ-
ous property with c = 2. We chose to present the main result in terms of the periodic
specification property because it is more recurrent in the literature.

Moreover, Theorem 2.1 is still true under slightly weaker assumptions on the Lyapunov
exponents. Namely, it is enough to assume that γd(A,μ) + . . . + γ1(A,μ) ∈ (τ, ρ) for
every ergodic f -invariant measure μ on M where τ, ρ ∈ R are such that 0 < ρ − τ < αθ

2 .
Indeed, this case can be deduced from the previous one simply by multiplying the original
cocycle by a suitable multiple of the identity matrix.
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