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Abstract In this paper, we consider a one-dimensional porous system damped with a sin-
gle weakly nonlinear feedback. Without imposing any restrictive growth assumption near
the origin on the damping term, we establish an explicit and general decay rate, using a
multiplier method and some properties of convex functions in case of the same speed of
propagation in the two equations of the system. The result is new and opens more research
areas into porous-elastic system.
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1 Introduction

In this paper, we consider the following porous system:

ρutt − μuxx − bφx = 0, x ∈ (0, 1), t > 0,
Jφtt − δφxx + b ux + ξφ + α(t)g(φt ) = 0, x ∈ (0, 1), t > 0,
u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ (0, 1),
φ(x, 0) = φ0(x), φt (x, 0) = φ1(x), x ∈ (0, 1),
ux(0, t) = ux(1, t) = φ(0, t) = φ(1, t) = 0, t ≥ 0,

(1.1)

where the functions u is the displacement of the solid elastic material and φ is the volume
fraction. The term α(t)g(φt ) is the nonlinear damping term, which acts only on the second
equation. Here, g and α are specific functions to be specified later. The mass density ρ and
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the coefficient J are always assumed positive. The parameters μ, b, δ, ξ are constitutive
constants, which satisfy the following conditions

μ > 0, δ > 0, ξ > 0, μξ > b2.

The conditions are imposed to guarantee the positivity of the internal energy (see Cowin
and Nunziato [3] for details). As coupling is concerned, b must be different from 0, but its
sign does not matter in the analysis. Our aim is to establish an explicit and a general decay
rate result for the energy of system (1.1) in case of the same speed of propagation in the two
equations of the system, that is

μ

ρ
= δ

J
. (1.2)

In the last decades, a great deal of attention has been devoted to determine the asymptotic
behavior of solutions for porous-elastic systems, since the pioneer work of Goodman and
Cowin [1], in which they introduced the concept of a continuum theory of granular materi-
als with interstitial voids into the theory of elastic solids with voids. In addition to the usual
elastic effects, the materials with voids possess a microstructure with the property that the
mass at each point is obtained as the product of the mass density of the material matrix by
the volume fraction. This latter idea was introduced by Nunziato and Cowin [2] when they
developed a nonlinear theory of elastic materials with voids. The importance of materials
with microstructure has been demonstrated by the huge number of papers published in dif-
ferent fields of human endeavors most importantly, in petroleum industry, material science,
soil mechanics, foundation engineering, powder technology, biology, and others. We refer
the reader to [3, 4] and the references therein for more details.

The basic evolution equations for one-dimentional theories of porous materials are given
by

ρutt = Tx, Jφtt = Hx + G, (1.3)
where T is the stress tensor, H is the equilibrated stress vector, G is the equilibrated body
force. The constitutive equations with nonlinear damping term are as follows:

T = μux + bφ, H = δφx, G = − bux − ξφ − α(t)g(φt ). (1.4)

By substituting (1.4) into (1.3), we obtain the first two equations in Eq. 1.1.
Replacing the nonlinear damping term in Eq. 1.1 with porous dissipation gives

ρutt = μuxx + bφx,

Jφtt = δφxx − b ux − ξφ − αφt .
(1.5)

Quintanilla [5] considered (1.5) with some initial and boundary conditions, using Hurtwitz
theorem to prove that the damping through porous-viscosity (αφt ) is not strong enough to
obtain an exponential decay but only a slow (nonexponential) decay. However, Apalara [6]
considered the same system and proved that the system is exponentially stable provided the
wave speeds of the two systems are equal. Similarly, when the porous dissipation in Eq. 1.5

is replaced with memory term of the form
∫ t

0
g(t − s)φxx(x, s)ds, Apalara [7] established

a general decay result depending on the kernel of the memory term and the wave speeds
of the system. We refer reader to [8, 9] for similar results. Relatedly, when α = 0 and
viscoelasticity (−γ utxx) is added to the elastic equation, that is

ρutt − μuxx − bφx − γ utxx = 0, x ∈ (0, 1), t > 0,
Jφtt − δφxx + b ux + ξφ = 0, x ∈ (0, 1), t > 0

with some initial and boundary conditions, Magańa and Quintanilla [10] proved that the
viscoelasticity damping is not strong enough to bring about exponential stability. However,
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they showed that the presence of both porous-viscosity and viscoelasticity stabilizes the
system exponentially. For various other damping mechanisms used and more results on
porous-elastic system, we refer reader to [11–17] and the references therein.

It is to be noted that when μ = b = ξ , then Eq. 1.1 becomes

ρutt − μ(ux + φ)x = 0, x ∈ (0, 1), t > 0,
Jφtt − δφxx + μ(ux + φ) + α(t)g(φt ) = 0, x ∈ (0, 1), t > 0,

(1.6)

which is a well-known Timoshenko system with nonlinear feedback control. Alabau-
Boussouira [18] considered (1.6) with α(t) ≡ 1 and established a general semi-explicit
formula for the decay rate of the energy at infinity subject to Eq. 1.2. Mustafa and Mes-
saoudi [19] considered (1.6) with all the coefficients (ρ, μ, J, δ) equal to one and obtained
an explicit and general decay result, depending on α and g. See [20–22] for similar result.
According to this observation and results, two questions naturally arise:

1. Is it possible to consider a porous system with a weakly nonlinear dissipation only on
the second equation and obtain the same result as in Timoshenko system?

2. Is it possible to obtain the stability result with same conditions on α, g, and the
assumption of equal wave speed as in Timoshenko system?

The aim of the present work is to give satisfactory answers to these questions by considering
(1.1) and establish an explicit and general decay result depending on α and g and providing
that Eq. 1.2 holds. In other words, we consider (1.1) and establish an explicit and general
decay result subject to Eq. 1.2 and depending on α and g. Our result provides an explicit
energy decay formula that allows for a larger class of functions α and g, from which the
energy decay rates are not necessarily of exponential or polynomial types.

In view of the boundary conditions, our system can have solutions (uniform in the vari-
able x), which do not decay. To avoid such case and also to be able to use Poincaré’s
inequality, we perform the following transformation.

From the first equation in Eq. 1.1, we observe that
∫ 1

0
uttdx = 0.

So, if v(t) :=
∫ 1

0
udx then v(0) =

∫ 1

0
u0dx and v′(0) =

∫ 1

0
u1dx. Thus, we have the

following initial value problem
⎧⎨
⎩

v′′(t) = 0, ∀t ≥ 0

v(0) =
∫ 1

0
u0dx, v′(0) = ∫ 1

0 u1dx.
(1.7)

Solving (1.7), we obtain

v =
∫ 1

0
u(x, t)dx = t

∫ 1

0
u1(x)dx +

∫ 1

0
u0(x)dx.

Consequently, if we let

u(x, t) = u(x, t) − t

∫ 1

0
u1(x)dx −

∫ 1

0
u0(x)dx, (1.8)

we obtain ∫ 1

0
u(x, t)dx = 0, ∀t ≥ 0.
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Therefore, the use of Poincaré’s inequality in the sequel is justified. In addition, a simple
substitution shows that (u, φ) satisfies system (1.1) with initial data for u given as

u0(x) = u0(x) −
∫ 1

0
u0(x)dx and u1(x) = u1(x) −

∫ 1

0
u1(x)dx.

Henceforth, we work with u instead of u but write u for simplicity of notation.
The paper is organized as follows. In Section 2, we give some notations and material

needed for our work. In addition, we state, without proof, the well-posedness of system
(1.1). In Section 3, we state and proof some technical lemmas needed in the proof of our
main result. Section 4 is devoted to the statements and proofs of our stability result. We use
c throughout this paper to denote a generic positive constant.

2 Preliminaries

In this section, we present some materials needed in the proof of our result.
We assume α and g satisfy the following hypotheses:

(H1) α : R+ → R+ is a non-increasing differentiable function;
(H2) g : R → R is a non-decreasing C0−function such that there exist positive constants

c1, c2, ε, and a strictly increasing function G ∈ C1([0, +∞)), with G(0) = 0, and
G is linear or strictly convex C2−function on (0, ε] such that{

s2 + g2(s) ≤ G−1(sg(s)) for all |s| ≤ ε,

c1|s| ≤ |g(s)| ≤ c2|s| for all |s| ≥ ε.

Remark 2.1 • Hypothesis (H2) implies that sg(s) > 0, for all s 
= 0.
• According to our knowledge, hypothesis (H2) with ε = 1 was first introduced by

Lasiecka and Tataru [23]. They established a decay result, which depends on the solu-
tion of an explicit nonlinear ordinary differential equation. Furthermore, they proved
that the monotonicity and continuity of g guarantee the existence of the function G

defined in (H2).

For completeness purpose we state, without proof, the existence and regularity result of
system (1.1). First, we introduce the following spaces:

H = H 1
	 (0, 1) × L2

	(0, 1) × H 1
0 (0, 1) × L2(0, 1),

and

H̃ = 
0 ∈
[
H 2

	 (0, 1) ∩ H 1
	 (0, 1)

]
× H 1

	 (0, 1) ×
[
H 2(0, 1) ∩ H 1

0 (0, 1)
]

× H 1
0 (0, 1),

where

L2
	(0, 1) = {ψ ∈ L2(0, 1) : ∫ 1

0 ψ(x)dx = 0}, H 1
	 (0, 1) = H 1(0, 1) ∩ L2

	(0, 1),
H 2

	 (0, 1) = {ψ ∈ H 2(0, 1) : ψx(0) = ψx(1) = 0}.
For 
 = (u, ut , φ, φt ), we have the following existence and regularity result:

Proposition 2.2 Assume that (H1) and (H2) are satisfied. Then for all 
0 ∈ H, the system
(1.1) has a unique global (weak) solution

u ∈ C(R+; H 1
	 (0, 1)) ∩ C1(R+; L2

	(0, 1)), φ ∈ C(R+; H 1
0 (0, 1)) ∩ C1(R+;L2(0, 1)).
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Moreover, if 
0 ∈ H̃, then the solution satisfies

u ∈ L∞(R+; H 2
	 (0, 1) ∩ H 1

	 (0, 1)) ∩ W 1,∞(R+; H 1
	 (0, 1)) ∩ W 2,∞(R+;L2

	(0, 1))

φ ∈ L∞(R+; H 2(0, 1) ∩ H 1
0 (0, 1)) ∩ W 1,∞(R+; H 1

0 (0, 1)) ∩ W 2,∞(R+; L2(0, 1)).

Remark 2.3 This result can be proved using the theory of maximal nonlinear monotone
operators (see [24]).

3 Technical Lemmas

In this section, we state and prove several lemmas needed for the proof of our stability result.

Lemma 3.1 Let 
0 ∈ H. Then the energy functional E, defined by

E(t) = 1

2

∫ 1

0

[
ρu2t + μu2x + Jφ2

t + δφ2
x + ξφ2 + 2buxφ

]
dx, (3.1)

satisfies

E′(t) = −α(t)

∫ 1

0
φtg(φt )dx ≤ 0. (3.2)

Proof Equation 3.2 follows by multiplying the first and the second equation of Eq. 1.1 by ut

and φt , respectively, integrating by parts over (0, 1) and using the boundary conditions.

Remark 3.2 The energy functional E(t) defined by Eq. 3.1 is nonnegative. In fact, it can
easily be verified that

μu2x + 2buxφ + ξφ2 = 1

2

[
μ

(
ux + b

μ
φ

)2

+ ξ

(
φ + b

ξ
ux

)2

+
(

μ − b2

ξ

)
u2x +

(
ξ − b2

μ

)
φ2

]
.

So, using the fact that μξ > b2, we obtain

μu2x + 2buxφ + ξφ2 >
1

2

[(
μ − b2

ξ

)
u2x +

(
ξ − b2

μ

)
φ2

]
> 0.

Consequently,

E(t) >
1

2

∫ 1

0

[
ρu2t + μ1u

2
x + δφ2

x + ξ1φ
2 + Jφ2

t

]
dx, (3.3)

where 2μ1 = μ − b2

ξ
> 0 and 2ξ1 = ξ − b2

μ
> 0.

Lemma 3.3 Assume that (H1) and (H2) hold. Then, for all 
0 ∈ H, the functional

F1(t) := J

∫ 1

0
φtφdx + bρ

μ

∫ 1

0
φ

∫ x

0
ut (y)dydx



316 T. A. Apalara

satisfies for any ε1 > 0,

F ′
1(t) ≤ −δ

∫ 1

0
φ2

xdx − ξ1

∫ 1

0
φ2dx + c

(
1 + 1

ε1

)∫ 1

0
φ2

t dx

+ε1

∫ 1

0
u2t dx + c

∫ 1

0
g2(φt )dx.

(3.4)

Proof Direct computations using integration by parts and Young’s inequality, for ε1 > 0,
yield

F ′
1(t) = −δ

∫ 1

0
φ2

xdx −
(

ξ − b2

μ

) ∫ 1

0
φ2dx + J

∫ 1

0
φ2

t dx

+bρ

μ

∫ 1

0
φt

∫ x

0
ut (y)dydx − α(t)

∫ 1

0
φg(φt )dx

≤ −δ

∫ 1

0
φ2

xdx − 1

2

(
ξ − b2

μ

)∫ 1

0
φ2dx + c

(
1 + 1

ε1

) ∫ 1

0
φ2

t dx (3.5)

+ε1

∫ 1

0

(∫ x

0
ut (y)dy

)2

dx + c

∫ 1

0
g2(φt )dx.

By Cauchy-Schwarz inequality, it is clear that

∫ 1

0

(∫ x

0
ut (y)dy

)2

dx≤
∫ 1

0

(∫ 1

0
utdx

)2

dx≤
∫ 1

0
u2t dx. (3.6)

Estimate (3.4) follows by substituting (3.6) into Eq. 3.5 and recalling that 2ξ1 = ξ − b2

μ
>

0.

Lemma 3.4 Assume (H1), (H2), and Eq. 1.2 hold. Then, for all 
0 ∈ H, the functional

F2(t) := b

∫ 1

0
φxutdx + b

∫ 1

0
uxφtdx

satisfies

F ′
2(t) ≤ − b2

2J

∫ 1

0
u2xdx + c

∫ 1

0
φ2

xdx + c

∫ 1

0
g2(φt )dx. (3.7)

Proof By differentiating F2, using (1.1), and then integrating by parts, we obtain

F ′
2(t) = −b2

J

∫ 1

0
u2xdx − bξ

J

∫ 1

0
uxφdx + b2

ρ

∫ 1

0
φ2

xdx − bα(t)

J

∫ 1

0
uxg(φt )dx

+b

(
μ

ρ
− δ

J

)∫ 1

0
uxxφxdx.

The use of Young’s and Poincaré’s inequalities, bearing in mind (1.2), yields estimate (3.7).

Lemma 3.5 Let 
0 ∈ H. Then the functional defined by

F3(t) := −ρ

∫ 1

0
utudx
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satisfies

F ′
3(t) ≤ −ρ

∫ 1

0
u2t dx + 3μ

2

∫ 1

0
u2xdx + c

∫ 1

0
φ2dx. (3.8)

Proof Direct computations give

F ′
3(t) = −ρ

∫ 1

0
u2t dx + μ

∫ 1

0
u2xdx + b

∫ 1

0
uxφdx.

Estimate (3.8) easily follows by using Young’s inequality.

Lemma 3.6 Suppose (H1), (H2), and Eq. 1.2 hold. Let 
0 ∈ H. Then, for N,N1, N2 > 0
sufficiently large, the Lyapunov functional defined by

L(t) := NE(t) + N1F1(t) + N2F2(t) + F3(t)

satisfies, for some positive constants d1, d2, k1,

d1E(t) ≤ L(t) ≤ d2E(t), ∀t ≥ 0 (3.9)

and

L′(t) ≤ −k1E(t) + c

∫ 1

0
(φ2

t + g2(φt ))dx, ∀t ≥ 0. (3.10)

Proof It follows that

|L(t) − NE(t)| ≤ N1

∫ 1

0
|Jφtφ| dx + bρN1

μ

∫ 1

0

∣∣∣∣φ
∫ x

0
ut (y)dy

∣∣∣∣ dx + ρ

∫ 1

0
|utu|dx

+bN2

∫ 1

0
|φxut + uxφt | dx.

Exploiting Young’s, Cauchy-Schwarz, and Poincaré inequalities, we obtain

|L(t) − NE(t)| ≤ c

∫ 1

0

(
u2t + φ2

x + u2x + φ2 + φ2
t

)
dx.

Using (3.3), we obtain
|L(t) − NE(t)| ≤ cE(t),

that is
(N − c)E(t) ≤ L(t) ≤ (N + c)E(t).

Now, by choosing N (depending on N1 and N2) sufficiently large we obtain (3.9).
The proof of Eq. 3.10 is as follows: We let ε1 = ρ

2N1
and then combine Eqs. 3.2, 3.4, 3.7,

and 3.8, to obtain

L′(t) ≤ −ρ

2

∫ 1

0
u2t dx −

[
b2

2J
N2 − 3μ

2

]∫ 1

0
u2xdx − [δN1 − cN2]

∫ 1

0
φ2

xdx

− [ξ1N1 − c]
∫ 1

0
φ2dx + cN1(1 + N1)

∫ 1

0
φ2

t dx + c(N1 + N2)

∫ 1

0
g(φ2

t )dx.

We choose N2 so large that

α1 = b2

2J
N2 − 3μ

2
> 0 ,



318 T. A. Apalara

then we choose N1 so large that

α2 = δN1 − cN2 > 0 and α3 = ξ1N1 − c > 0.

So, we end up with

L′(t) ≤ −ρ

2

∫ 1

0
u2t dx − α1

∫ 1

0
u2xdx − α2

∫ 1

0
φ2

xdx − α3

∫ 1

0
φ2dx

+c

∫ 1

0
(φ2

t + g2(φt ))dx.
(3.11)

On the other hand, from Eq. 3.1, using Young’s inequality, we obtain

E(t) ≤ 1

2

∫ 1

0

[
ρu2t + (μ + b)u2x + δφ2

x + (ξ + b)φ2 + Jφ2
t

]
dx

≤ c

∫ 1

0

[
u2t + u2x + φ2

x + φ2 + φ2
t

]
dx

which implies that

−
∫ 1

0

[
u2t + u2x + φ2

x + φ2
]
dx ≤ −c′E(t) + c′′φ2

t . (3.12)

The combination of Eqs. 3.11 and 3.12 gives (3.10).

4 Stability Result

In this section, we state and prove our stability result.

Theorem 4.1 Suppose (H1), (H2), and Eq. 1.2 hold. Let 
0 ∈ H. Then there exist positive
constants a1, a2, a3, and ε0 such that the solution of Eq. 1.1 satisfies

E(t) ≤ a1G
−1
1

(
a2

∫ t

0
α(s)ds + a3

)
, t ≥ 0, (4.1)

where

G1(t) =
∫ 1

t

1

G0(s)
ds and G0(t) = tG′(ε0t).

Remark 4.2 G1 strictly decreases and is convex on (0, 1] and lim
t→0

G1(t) = +∞.

Proof We multiply (3.10) by α(t) to get

α(t)L′(t) ≤ −k1α(t)E(t) + cα(t)

∫ 1

0
(φ2

t + g2(φt ))dx. (4.2)

Now, we discuss two cases:

Case I: G is linear on [0, ε]. In this case, using (H2) and Eq. 3.2, we deduce that

α(t)L′(t) ≤ −k1α(t)E(t) + cα(t)

∫ 1

0
φtg(φt )dx = −k1α(t)E(t) − cE′(t),

which can be rewritten as

(α(t)L(t) + cE(t))′ − α′(t)L(t) ≤ −k1α(t)E(t).
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Using (H1), we obtain

(α(t)L(t) + cE(t))′ ≤ −k1α(t)E(t).

By exploiting (3.9), it can easily be shown that

R0(t) := α(t)L(t) + cE(t) ∼ E(t). (4.3)

So, for some positive constant λ1, we obtain

R′
0(t) + λ1α(t)R0(t) ≤ 0, ∀t ≥ 0. (4.4)

The combination of Eq. 4.4 and 4.3, gives

E(t) ≤ E(0)e−λ1
∫ t
0α(s)ds = E(0)G−1

1

(
λ1

∫ t

0
α(s)ds

)
. (4.5)

Case II: G is nonlinear on [0, ε]. In this case, we first choose 0 < ε1 ≤ ε such that

sg(s) ≤ min {ε,G(ε)} , ∀|s| ≤ ε1. (4.6)

Using (H2) along with fact that g is continuous and |g(s)| > 0, for s 
= 0, it follows that{
s2 + g2(s) ≤ G−1(sg(s)), ∀|s| ≤ ε1,

c1|s| ≤ |g(s)| ≤ c2|s|, ∀|s| ≥ ε1.
(4.7)

To estimate the last integral in Eq. 4.2, we consider the following partition of (0, 1):

I1 = {x ∈ (0, 1) : |φt | ≤ ε1} , I2 = {x ∈ (0, 1) : |φt | > ε1} .

Now, with I (t) defined by

I (t) =
∫

I1

φtg(φt )dx,

we have, using Jensen inequality (note that G−1 is concave and recall (4.6))

G−1(I (t)) ≥ c

∫
I1

G−1 (φtg(φt )) dx. (4.8)

The combination of Eq. 4.7 and 4.8 yields

α(t)

∫ 1

0

(
φ2

t + g2(φt )
)
dx = α(t)

∫
I1

(
φ2

t + g2(φt )
)
dx + α(t)

∫
I2

(
φ2

t + g2(φt )
)
dx

≤ α(t)

∫
I1

G−1 (φtg(φt )) dx + cα(t)

∫
I2

φtg(φt )dx

≤ cα(t)G−1(I (t)) − cE′(t). (4.9)

So, by substituting (4.9) into (4.2) and using (4.3) and (H1), we have

R′
0(t) ≤ −k1α(t)E(t) + cα(t)G−1(I (t)). (4.10)

Now, for ε0 < ε and δ0 > 0, using (4.10) and the fact that E′ ≤ 0,G′ > 0,G′′ > 0 on
(0, ε], we find that the functionalR1, defined by

R1(t) := G′
(

ε0
E(t)

E(0)

)
R0(t) + δ0E(t),

satisfies, for some b1, b2 > 0,

b1R1(t) ≤ E(t) ≤ b2R1(t) (4.11)
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and

R′
1(t) := ε0

E′(t)
E(0)

G′′
(

ε0
E(t)

E(0)

)
R0(t) + G′

(
ε0

E(t)

E(0)

)
R′

0(t) + δ0E
′(t)

≤ −k1α(t)E(t)G′
(

ε0
E(t)

E(0)

)
+ cα(t)G′

(
ε0

E(t)

E(0)

)
G−1 (I (t)) + δ0E

′(t). (4.12)

Let G∗ be the convex conjugate of G defined by

G∗(s) = s(G′)−1(s) − G[(G′)−1(s)], if s ∈ (0,G′(ε)],
satisfying the following general Young’s inequality

AB ≤ G∗(A) + G(B), if A ∈ (0,G′(ε)], B ∈ (0, ε].
With A = G′

(
ε0

E(t)

E(0)

)
and B = G−1 (I (t)) , using (4.6), we obtain

cα(t)G′
(

ε0
E(t)

E(0)

)
G−1 (I (t)) ≤ cα(t)G∗

(
G′

(
ε0

E(t)

E(0)

))
+ cα(t)I (t).

By exploiting (3.2) and the fact that G	(s) ≤ s(G′)−1(s), we get

cα(t)G′
(

ε0
E(t)

E(0)

)
G−1 (I (t)) ≤ cε0α(t)

E(t)

E(0)
G′

(
ε0

E(t)

E(0)

)
− cE′(t). (4.13)

By substituting (4.13) into Eq. 4.12, we obtain

R′
1(t) ≤ −k1α(t)E(t)G′

(
ε0

E(t)

E(0)

)
+ cε0α(t)

E(t)

E(0)
G′

(
ε0

E(t)

E(0)

)
− cE′(t) + δ0E

′(t)

≤ − (k1E(0) − cε0) α(t)
E(t)

E(0)
G′

(
ε0

E(t)

E(0)

)
+ (δ0 − c)E′(t).

Letting ε0 = k1
2cE(0), δ0 = 2c, and recall that E′(t) ≤ 0, we end up with

R′
1(t) ≤ −kα(t)

E(t)

E(0)
G′

(
ε0

E(t)

E(0)

)
= −kα(t)G0

(
E(t)

E(0)

)
, (4.14)

where k > 0 and G0(t) = tG′(ε0t).
Note that

G′
0(t) = G′(ε0t) + ε0tG

′′(ε0t).
So, using the strict convexity of G on (0, ε], we find that G0(t),G

′
0(t) > 0 on (0, 1].

With R(t) := b1R1(t)
E(0) it is obvious that R(t) ≤ E(t)

E(0) ≤ 1. Now, using Eqs. 4.11 and
4.14, we have

R(t) ∼ E(t) (4.15)

and, for some a2 > 0,
R′(t) ≤ −a2α(t)G0(R(t)). (4.16)

Inequality (4.16) implies that
d

dt

[
G1(R(t))

] ≥ a2α(t), where

G1(t) =
∫ 1

t

1

G0(s)
ds.

Thus, by integrating over [0, t], we obtain, for some a3 > 0,

R(t) ≤ G−1
1

(
a2

∫ t

0
α(s)ds + a3

)
. (4.17)
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Here, we used, based on the properties ofG0, the fact thatG1 is strictly decreasing on (0, 1].
Finally, using (4.15) and (4.17), we obtain (4.1).

Examples We give some examples to illustrate the energy decay rates given by Theorem
4.1.

(1) If g satisfies

k2 min
{|s|, |s|q} ≤ |g(s)| ≤ k3 max

{
|s|, |s|1/q

}

for some k2, k3 > 0 and q ≥ 1, then G(s) = csq satisfies (H2). Then, we end up with
the following energy decay rate:

E(t) ≤

⎧⎪⎪⎨
⎪⎪⎩

c exp

(
−k4

∫ t

0
α(s)ds

)
if q = 1,

c

(
k4

∫ t

0
α(s)ds + k5

)− 1
q−1

if q > 1.

(2) If G(s) = e−1/s near zero, then we have the following energy decay rate:

E(t) ≤ c

ln

(
k4

∫ t

0
α(s)ds + k5

) .
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