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Abstract The aim of this paper is to study a stochastic partially observed optimal con-
trol problem, for systems of forward backward stochastic differential equations (FBSDE
for short), which are driven by both a family of Teugels martingales and an independent
Brownian motion. By using Girsavov’s theorem and a standard spike variational technique,
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convexity conditions, we prove that these partially observed necessary conditions are suffi-
cient. In fact, compared to the existing methods, we get the last achievement in two different
cases according to the linearity or the nonlinearity of the terminal condition for the back-
ward component. As an illustration of the general theory, an application to linear quadratic
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1 Introduction

In this paper, we are interested in partially observed optimal control of systems driven by a
forward backward stochastic differential equation of the type

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxt = b (t, xt , ut ) dt + g (t, xt , ut ) dWt +
∞∑
i=1

σ (i) (t, xt−, ut ) dH
(i)
t ,

x0 = x,

−dyt = f (t, xt−, yt−, zt , Zt , ut ) dt − ztdWt −
∞∑
i=1

Z
(i)
t dH

(i)
t ,

yT = ϕ (xT ) ,

(1)

whereWt is a brownian motion and (H
(i)
t )∞i=1 is a family of pairwise orthogonal martingales

associated with some Lévy process Lt , which is independent from Wt . These martingales
are called Teugels martingales. The control problem consists in minimizing the following
cost functional

J (u) = E

[∫ T

0
l (t, xt , yt , zt , kt , ut ) dt + h (xT ) + M (y0)

]

,

over a partially observed class of admissible controls to be specified later.
Since 1990, more precisely since the work of Pardoux and Peng [12], the theory of

backward stochastic differential equations (BSDEs) and FBSDEs has found important
applications and has become a powerful tool in many fields. For instance, the finan-
cial mathematics, optimal control, stochastic games, partial differential equations and
homogenization, see e.g. [1, 5–7].

In the literature, optimal control problems are handled in two different approaches. One
is the Bellman dynamic programming principle, and the second is the maximum principle.
Our purpose in this framework is precisely to deal with the second approach in the case
where the full range of information available to the controller is assumed to be partially
observed. It is well-known that a partially observed stochastic optimal control of BSDEs
and FBSDEs driven only by a brownian motion has been studied by many authors through
several articles, such as [3, 13, 14, 16, 18] and the references therein. The case of FBSDEs
driven by both a brownian motion and a Lévy process has been considered in [19], by using
certain classical convex variational techniques.

A worthy and powerful motivation for studying SDEs and BSDEs driven by a brownian
motion and Teugels martingales is due to the very useful representation theorem provided
by Nualart and Schoutens [10]. This theorem asserts that every square integrable martingale
adapted to the natural filtration of a brownian motion and an independent Lévy process,
can be written as the sum of a stochastic integral with respect to the brownian motion and
the sum of stochastic integrals with respect to the Teugels martingales associated to the
Lévy process. In other words, this representation formula put brownian motion and Lévy
processes in a unified theory of square integrable martingales. See the excellent accounts
by Davis [4], Schoutens [17]. In another paper [11], the authors have proved an existence
and uniqueness result for BSDEs driven by Teugels martingales, under Lipschitz conditions.
Moreover, an application to Clark–Ocone and Feynman–Kac formulas for Lévy processes
is presented. Their result has been extended to the locally Lipschitz property in [2].

It then becomes quite natural to investigate control problems for systems driven by this
kind of equations. Let us point out that the first work in this direction has been carried
out by Mitsui-Tabata [9], for the case of a linear quadratic problem. Then Meng-Tang [8]
studied the stochastic maximum principle for systems driven by an Itô forward SDE, by
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using convex perturbations technique. Optimal control of BSDEs driven by Teugels martin-
gales has been addressed in Tang and Zhang [16], where necessary and sufficient conditions
have been established. It is worth noting that in all previous control problems the infor-
mation of the control problem is assumed to be completely observed. In return, this is not
always reasonable in the real world applications because the controllers can only get partial
information at most cases. This gives us a motivation to study this kind of control problems.

However, up to now, there is only one literature (see Bahlali et al. [3]) dealing with a par-
tial information control problem for a system governed by SDEs driven by a both Teugels
martingales and an independent brownian motion. In this work, the control variable is
allowed to enter into the both coefficient and is assumed to be adapted to subfiltration which
is possibly less than the whole one. The authors investigated a partial information necessary
as well as sufficient conditions by using certain classical convex variational techniques.

The main contribution of our present paper is to investigate a partially observed neces-
sary as well as sufficient conditions satisfied by an optimal control. To obtain the optimality
necessary conditions, we use the convex perturbation method and differentiate the perturbed
both the state equations and the cost functional, in order to get the adjoint process, which is
a solution of a backward forward SDE, driven by both a brownian motion and a family of
Teugels martingales, on top of the variational inequality between the Hamiltonians. More-
over, an additional technical assumptions are required to prove that these partially observed
necessary conditions are in fact sufficient.

The rest of the paper is structured as follows. A brief introduction to Teugels martingales
and a precise formulation of the control problem are presented in Section 2. Section 3 con-
sists of the proof of partially observed necessary conditions of optimality in term of classical
convex variational techniques. Under some additional convexity conditions, we show that
these partially observed necessary conditions of optimality are also sufficient in Section 4.
Finally in Section 5, we illustrate the general results by solving an example.

2 Preliminaries and Problem Formulation

2.1 Preliminaries and Assumptions

Let (�,F , P ) be a complete filtered probability space equipped with two mutually inde-
pendent standard brownian motions W and Y valued in R

d and R
r , respectively and an

independent Rm-valued Lévy process {Lt , t ∈ [0, T ]} of the form Lt = bt + lt , where lt
is a pure jump process. Assume further that the Lévy measure ν (dz) corresponding to the
Lévy process Lt satisfies

i)
∫

R

(
1 ∧ z2

)
ν (dz) < ∞,

ii)
∫

(]−ε,ε[)c eα|z|ν (dz) < ∞, for every ε > 0 and some α > 0.

The two above settings imply that the random variable Lt have moments in all orders.
We also assume that

Ft = FW
t ∨ FY

t ∨ FL
t ∨ N ,

where N denotes the totality of the P -null set and FW
t , FY

t and FL
t denotes the

P -completed natural filtration generated by W , Y and L respectively.
Let us recall briefly the L2 theory of Lévy processes as it is investigated in Nualart-

Schoutens [10] and Schoutens [17]. A convenient basis for martingale representation
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is provided by the so-called Teugels martingales. This means that this family has the
predictable representation property.

Denote by �Lt = Lt − Lt− and define the power jump processes L
(1)
t = Lt and

L
(i)
t = ∑

0<s≤t

(�Ls)
(i) for i ≥ 2. If we denoteY(i)

t = L
(i)
t −E

[
L

(i)
t

]
, i ≥ 1, then the family

of Teugels martingales
(
H

(i)
t

)∞
i=1

, is defined by H
(i)
t =

j=i∑

j=1
aijY

(j)
t . The coefficients aij

correspond to the orthonormalization of the polynomials 1, x, x2, ... with respect to the
measure μ (dx) = x2ν (dx) .

Then
(
H

(i)
t (t)

)∞
i=1

is a family of strongly orthogonal martingales such that
〈
H

(i)
t , H (j)

〉

t

= δij .t and that
[
H(i), H (j)

]

t
− 〈

H(i), H (j)
〉

t
is an Ft -martingale, see [15]. We refer the

reader to [2, 4, 10] for the detailed proofs.
Throughout what follows, we shall assume the following notations
l2 : the Hilbert space of real-valued sequences x = (xn)n≥0 such that

‖x‖ =
( ∞∑

i=1

xi

) 1
2

< ∞.

For any integer m ≥ 1, we define
l2 (Rm) : the space of Rm-valued sequences (xi)i≥1 such that

( ∞∑

i=1

‖xi‖2Rm

) 1
2

< ∞.

(a, b) : the inner product in R
n, ∀a, b ∈ R

n.

|a| = √
(a, a) : the norm of Rn, ∀a ∈ R

n.

(A,B) : the inner product in R
n×d , |A| = √

(A,A) : the norm of Rn×n.

l2F (0, T ,Rm) : the Banach space of l2 (Rm)- valued Ft - predictable processes such that

(

E

∫ T

0

∞∑

i=1

∥
∥
∥f

(i) (t)

∥
∥
∥
2

Rm
dt

) 1
2

< ∞.

L2
F (0, T ,Rm) : the Banach space of Rm-valued Ft -adapted process such that

(

E

∫ T

0
|f (t)|2

Rm dt

) 1
2

< ∞.

S2
F (0, T ,Rm) : the Banach space ofRm-valuedFt -adapted and càdlàg process such that

(

E sup
0≤t≤T

|f (t)|2
) 1

2

< ∞.

L2 (�,F , P ,Rm) : the Banach space of Rm-valued square integrable random variables
on (�,F , P ) .
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2.2 Formulation of the Control Problem

Let T be a strictly positive real number. An admissible control is anFY
t - predictable process

u = (ut ) with values in some convex subset U of Rk and satisfies E

[

sup
0≤t≤T

|ut |2
]

< ∞.

We denote the set of all admissible controls by U . The control u is called partially observ-
able. Let us also assume that the coefficient of the controlled FBSDE (1) are defined as
follows

b : [0, T ] × � × R
n × U → R

n,

g : [0, T ] × � × R
n × U → R

n×d ,

σ : [0, T ] × � × R
n × U → l2 (Rn) ,

f : [0, T ] × � × R
n × R

m × R
m×d × l2 (Rm) × U → R

m,

ϕ : Rn × � → R
m.

We assume that the state processes (x, y, z, Z) cannot be observed directly, but the con-
trollers can observe a related noisy process Y , which we call the observation process, via
the following Itô process

dYt = ξ
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt

)
dt + dWυ

t , Y0 = 0, (2)

where
ξ : [0, T ] × R

n × R
m × R

m×d × l2
(
R

m
)× U → R

n,

and Wυ is an R
r -valued stochastic processes depending on the control υ. Define dP υ =

�υdP , where

�υ
t := exp

{∫ t

0
(ξ (s, xs, ys, zs, Zs, υs) , dYs) − 1

2

∫ t

0
|ξ (s, xs, ys, zs, Zs, υs)|2 ds

}

.

Obviously, �υ is the unique FY
t -adapted solution of

d�υ
t = �υ

t (ξ (t, xt , yt , zt , Zt , υt ) , dYt ) , �υ
0 = 1. (3)

Then Girsanov’s theorem shows that

dWυ
t = dYt −

∫ t

0
ξ
(
s, xυ

s , yυ
s , zυ

s , Zυ
s , υs

)
ds,

is an R
r -valued brownian motion and (H

(i)
t )∞i=1 is still a Teugels martingale under the

probability measure P υ.

The objective is to characterize an admissible controls which minimize the following
cost functional.

J (u) = E
u

[

h (y0) + M (xT ) +
∫ T

0
l (t, xt , yt , zt , Zt , ut ) dt

]

, (4)

where Eu denotes the expectation with respect to the probability measure space P u and

M : Rn × � → R,

h : Rm × � → R,

l : [0, T ] × � × R
n × R

m × R
m×d × l2(Rm) × U → R.

It is obvious that the cost functional (4) can be rewritten as the following

J (u) = E

[

h (y0) + �T M (xT ) +
∫ T

0
�t l (t, xt , yt , zt , Zt , ut ) dt

]

. (5)

Now, we can state our partially observed control problem.
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Problem A Minimize (5) over u ∈ U , subject to Eqs. 1 and 3.

A control is said to be partially observed if the control is a non-anticipative functional of
the observation Y . A set of controls is said to be partially observed if its every element is
partially observed. Hence, the set of admissible controls U is partially observed.

An admissible control û is called a partially observed optimal if it attains the minimum
of J (u) over U . The Eqs. 1 and 2 are called respectively the state and the observation

equations, and the solution
(
x̂, ŷ, ẑ, Ẑ

)
corresponding to û is called an optimal trajectory.

Throughout this paper, we shall make the following assumptions
(A1)

• The random mappings b, g, σ and ϕ are measurable with b(., 0, 0) ∈ L2
F (0, T ,Rn),

g(., 0, 0) ∈ L2
F (0, T ,Rn), σ(., 0, 0) ∈ l2F (0, T ,Rm) and ϕ(0) ∈ L2 (�,F , P ,Rm).

• b, g, σ and ϕ are continuously differentiable in (x, u). They are bounded by
(1 + |x| + |u|) and their derivatives in (x, u) are continuous and uniformly bounded.

• The random mapping f is measurable with f (., 0, 0, 0, 0) ∈ L2
F (0, T ,Rm), f is

continuous and continuously differentiable with respect to (x, y, z, Z, u). Moreover
it is bounded by (1 + |x| + |y| + |z| + |Z| + |u|) and their derivatives are uniformly
bounded.

(A2)

• l is continuously differentiable with respect to (x, y, z, Z, u) and bounded by(
1 + |x|2 + |y|2 + |z|2 + |Z|2 + |u|2). Furthermore, their derivatives are uniformly
bounded.

• M is continuously differentiable in x and h is continuously differentiable in y. More-
over, for almost all (t, ω) ∈ [0, T ] × �, there exists a constant C, for all (x, y) ∈
R

n × R
m,

|Mx | ≤ C (1 + |x|) and
∣
∣hy

∣
∣ ≤ C (1 + |y|) .

(A3) ξ is continuously differentiable in (x, y, z, Z, u) and their derivatives in
(x, y, z, Z, u) are uniformly bounded.

Following [11], it holds that under assumptions (A1), there is a unique solution

(x, y, z, Z) ∈ S2
F
(
0, T ,Rn

)× S2
F
(
0, T ,Rm

)× L2
F

(
0, T ,Rm×d

)
× l2F

(
0, T ,Rm

)
,

which solves the state Eq. 1.
Let

(
x1
t , y1

t , z1t , Z
1
t

)
and �1

t be the solutions at time t of the following linear FBSDE and
SDE, respectively,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
t = (

bx (t) x1
t + bu (t) (υt − ut )

)
dt+ (

gx (t) x1
t + gu (t) (υt − ut )

)
dWt

+
∞∑
i=1

(
σ

(i)
x (t) x1

t− + σ
(i)
u (t) (υt − ut )

)
dH

(i)
t ,

−dy1
t = [

fx (t) x1
t + fy (t) y1

t + fz (t) z1t + fZ (t) Z1
t

+ fu (t) (υt − ut )] dt − z1t dW t−
∞∑
i=1

Z
(i),1
t− dH

(i)
t ,

x1
0 = 0, y1

T = ϕx (xT ) x1
T ,

(6)
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and ⎧
⎪⎪⎨

⎪⎪⎩

d�1
t =

[
�1

t ξ
∗ (t) + �t

(
ξx (t) x1

t

)∗ + �t

(
ξy (t) y1

t

)∗ + �t

(
ξz(t)z

1
t

)∗

+�t

(
ξZ (t) Z1

t

)∗ + �t (ξu (t) (υt − ut ))
∗
]
dYt ,

�1
0 = 0,

(7)

where

bρ (t) = bρ (t, xt , ut ) for ρ = x, u and b = b, g, σ,

fρ (t) = fρ (t, xt , yt , zt , Zt , ut ) for ρ = x, y, z, Z, u and f = f, ξ.

Set ϑt = �−1�1 satisfies the following dynamics
{

dϑt = (
ξxx

1
t + ξyy

1
t + ξzz

1
t + ξZZ1

t + ξu (υt − ut )
)
dW̃ ,

ϑ0 = 0.
(8)

For any u ∈ U and the corresponding state trajectory (x, y, z, Z), we introduce the
following system of forward backward SDE, called the adjoint equations,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dpt = (
b∗
x (t) pt + f ∗

x (t) qt + g∗
x (t) kt + ξ∗

x (t)�t +
∞∑
i=1

σ
(i)∗
x (t) Qt + lx (t)) dt

−ktdWt−
∞∑
i=1

Q
(i)
t dH

(i)
t ,

dqt =
(
f ∗

y (t) qt + ξ∗
y (t)�t + ly (t)

)
dt+ (

f ∗
z (t) qt + ξ∗

z (t)�t + lz (t)
)
dWt

+
∞∑
i=1

(
f ∗

Z(i) (t) qt + ξ∗
Z(i) (t)�t + lZ(i) (t)

)
dH

(i)
t ,

pT = Mx (xT )+ϕ∗
x (xT ) qT , q0= hy (y0) .

(9)
It is clear that (p, k,Q) is the adjoint process corresponding to the forward part of our

system (1) and q is corresponding to the backward part. Manifestly, the above FBSDE admit
a unique solution

(p, k,Q, q) ∈ S2
F
(
0, T ,Rn

)× L2
F

(
0, T ,Rn×d

)
× l2F

(
0, T ,Rn

)× S2
F
(
0, T ,Rm

)
.

under the assumptions (A1). We further introduce the following auxiliary BSDE, which also
admit a unique solution under the assumptions (A1),

−dPt = l(t, xt , yt , zt , Zt , υt )dt − �tdW̃t , PT = M(xT ). (10)

Let us now, define the Hamiltonian function

H : [0, T ] × R
n × R

m × R
m×d × l2 (Rm) × U×R

n

×R
m × R

n×d × l2 (Rn) × R
n → R,

by

H (t, x, y, z, Z, u, p, q, P,Q,�) := (p, b (t, x, u)) + (q, f (t, x, y, z, Z, u)) + (�, ξ)

+
i=d∑

i=1

(
k(i), g(i) (t, x, u)

)+
∞∑
i=1

(
Q(i), σ (i) (t, x, u)

)+ l (t, x, y, z, Z, u) .

3 A Partial Information Necessary Conditions for Optimality

In this section, we derive a partially observed necessary conditions for optimality for our control
problem under the previous assumptions. The main objective is to solve the problem A.
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3.1 Some Auxiliary Results

Let υ be an arbitrary element of U , then for a sufficiently small θ > 0 and for each t ∈
[0, T ], we define a perturbed control as follows

uθ
t = ut + θ (υt − ut ) .

Since the action space being convex, it is clear that uθ
t is an admissible control. Let us

now, pointing out that we need the following two lemmas to state and prove the main result
of this section. In fact, they play a crucial role in the sequel.

Lemma 4.1 If the assumptions (A1) and (A3) hold true, then we have the following
estimates

lim
θ→0

E

[

sup
0≤t≤T

∣
∣xθ

t − xt

∣
∣2
]

= 0, (11)

lim
θ→0

E

[

sup
0≤t≤T

∣
∣yθ

t − yt

∣
∣2 +

∫ T

0

(∣
∣zθ

t − zt

∣
∣2 + ∥

∥Zθ
t − Zt

∥
∥2

l2(Rm)

)
ds

]

= 0, (12)

lim
θ→0

E

[

sup
0≤t≤T

∣
∣�θ

t − �t

∣
∣2
]

= 0. (13)

Proof We first prove (11). Applying Itô’s formula to
∣
∣xθ

t − xt

∣
∣2, taking expectations and

using the relations
〈
H(i), H (j)

〉

s
= δi,j .t and

[
H(i), H (j)

]

t
− 〈

H(i), H (j)
〉

t
is an Ft -

martingale together with the fact that b, σ, g are uniformly Lipschitz in (x, u) , one can
get

E
∣
∣xθ

t − xt

∣
∣2 ≤ CE

∫ t

0

∣
∣xθ

s − xs

∣
∣2 ds + CE

∫ t

0

∣
∣uθ

s − us

∣
∣2

≤ CE
∫ t

0

∣
∣xθ

s − xs

∣
∣2 ds + Cθ2.

Thus (11) follows immediately, by using Gronwall’s lemma and letting θ go to 0.

Let us now prove (12). Applying Itô’s formula to
∣
∣yθ

t − yt

∣
∣2 and taking expectation to

obtain

E
∣
∣yθ

t − yt

∣
∣2 + E

∫ T

t

∣
∣zθ

s − zs

∣
∣2 ds + E

∫ T

t

∥
∥Zθ

s − Zs

∥
∥2

l2(Rm)
ds = E

∣
∣ϕ
(
xθ
T

)− ϕ (xT )
∣
∣2

+2E
∫ T

t

(
yθ
s− − ys−

) [
f
(
s, xθ

s , yθ
s−, zθ

s , Z
θ
s , uθ

s

)− f (s, xs, ys−, zs, Zs, us)
]
ds.

From Young’s inequality, for each ε > 0, we have

E
∣
∣yθ

t − yt

∣
∣2 + E

∫ T

t

∣
∣zθ

s − zs

∣
∣2 ds + E

∫ T

t

∥
∥Zθ

s − Zs

∥
∥2

l2(Rm)
ds

≤ E
∣
∣ϕ
(
xθ
T

)− ϕ (xT )
∣
∣2 + 1

ε
E

∫ T

t

∣
∣yθ

s − ys

∣
∣2 ds

+εE

∫ T

t

∣
∣f
(
s, xθ

s , yθ
s−, zθ

s , Z
θ
s , uθ

s

)− f (s, xs, ys−, zs, Zs, us)
∣
∣2 ds.
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Then,

E
∣
∣yθ

t − yt

∣
∣2 + E

∫ T

t

∣
∣zθ

s − zs

∣
∣2 ds + E

∫ T

t

∥
∥Zθ

s − Zs

∥
∥2

l2(Rm)
ds

≤ E
∣
∣ϕ
(
xθ
T

)− ϕ (xT )
∣
∣2 + 1

ε
E

∫ T

t

∣
∣yθ

s − ys

∣
∣2 ds

+CεE

∫ T

t

∣
∣f
(
s, xθ

s , yθ
s , zθ

s , Z
θ
s , uθ

s

)− f
(
s, xs, ys, zs, Zs, u

θ
s

)∣
∣2 ds

+CεE

∫ T

t

∣
∣f
(
s, xs, ys, zs, Zs, u

θ
s

)− f (s, xs, ys, zs, Zs, us)
∣
∣2 ds.

Due the fact that ϕ and f are uniformly Lipschitz with respect to x, y, z, Z and u, one
can get

E
∣
∣yθ

t − yt

∣
∣2 + E

∫ T

t

∣
∣zθ

s − zs

∣
∣2 ds + E

∫ T

t

∥
∥Zθ

s − Zs

∥
∥2

l2(Rm)
ds

≤
(
1

ε
+Cε

)

E

∫ T

t

∣
∣yθ

s − ys

∣
∣2 ds

+CεE

∫ T

t

∣
∣zθ

s − zs

∣
∣2 ds + CεE

∫ T

t

∥
∥Zθ

s − Zs

∥
∥2

l2(Rm)
ds + αθ

t , (14)

where αθ
t is given by

αθ
t = E

∣
∣xθ

T − xT

∣
∣2 + CεE

∫ T

t

∣
∣xθ

s − xs

∣
∣2 ds + Cεθ2.

By invoking (11) and sending θ to 0, we have

lim
θ→0

αθ
t = 0. (15)

We now pick up ε = 1
2C , and replacing its value in Eq. 14 to obtain

E
∣
∣yθ

t − yt

∣
∣2 + 1

2
E

∫ T

t

∣
∣zθ

s − zs

∣
∣2 ds + 1

2
E

∫ T

t

∥
∥Zθ

s − Zs

∥
∥2

l2(Rm)
ds

≤
(

2C + 1

2

)

E

∫ T

t

∣
∣yθ

s − ys

∣
∣2 ds + αθ

t .

Consequently, we obtain the desired result (12), by using Gronwall’s lemma and letting

θ goes to 0.We now proceed to prove (13). Itô’s formula applied to
∣
∣�θ

t − �u
t

∣
∣2 yields

E
∣
∣�θ

t − �u
t

∣
∣2 ≤ CE

∫ t

0

∣
∣�θ

s − �u
s )
∣
∣2 ds + Cβθ

t . (16)

Here, βθ
t is given by the following equality

βθ
t = E

u

∫ t

0

∣
∣ξ
(
s, xθ

s , yθ
s , zθ

s , Z
θ
s , uθ

s

)− ξ (s, xs, ys, zs, Zs, us)
∣
∣2 ds.

Keeping in mind that ξ is continuous in (x, y, z, Z, u), it is not difficult to see that

lim
θ→0

βθ
t = 0.
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Hence, we obtain (13) by using Gronwall’s lemma and by sending θ to 0. Before we state
and prove the next lemma, let us introduce the following short hand notations,

ρ̃θ
t = θ−1 (ρθ

t − ρt

)− ρ1
t , for ρ = x, y, z, Z and �. (17)

Lemma 4.2 Assume that (A1) and (A3) are in force. Then, we have the following
convergence results

lim
θ→0

E

[

sup
0≤t≤T

∣
∣x̃θ

t

∣
∣2
]

= 0, (18)

lim
θ→0

E

[

sup
0≤t≤T

∣
∣yθ

t

∣
∣2 +

∫ T

0

(
∣
∣z̃θ

t

∣
∣2 +

∥
∥
∥Z̃

θ
t

∥
∥
∥
2

l2(Rm)

)

dt

]

= 0, (19)

E

∫ T

0

∣
∣
∣�̃

θ
t

∣
∣
∣
2
dt = 0 (20)

Proof First, we start by giving the proof of Eq. 18. By the notation (17) and the first-order
expansion, it is easy to check that x̃θ

t satisfies the following SDE

⎧
⎪⎪⎨

⎪⎪⎩

dx̃θ
t = (

bx
t x̃θ

t dt + αθ
t

)
dt + (

gx
t x̃θ

t dt + βθ
t

)
dWt

+
∞∑
i=1

(
σ

(i),x
t x̃θ

t + γ
(i),θ
t

)
dH

(i)
t ,

x̃θ
0 = 0,

(21)

where

bx
t = ∫ 1

0 bx

(
t, xt + λθ

(
x̃θ
t + x1

t

)
, uθ

t

)
dλ, for b = b, g, σ.

αθ
t =

∫ 1

0

[
bx

(
t, xt + λθ

(
x̃θ
t + x1

t

)
, ut + λθ (υt − ut )

)
− bx (t, xt , ut )

]
dλx1

t

+
∫ 1

0

[
bu

(
t, xt + λθ

(
x̃θ
t + x1

t

)
, ut + λθ (υt − ut )

)
− bu (t, xt , ut )

]
dλ (υt − ut ) ,

βθ
t =

∫ 1

0

[
gx

(
t, xt + λθ

(
x̃θ
t + x1

t

)
, ut + λθ (υt − ut )

)
− gx (t, xt , ut )

]
dλx1

t

+
∫ 1

0

[
gu

(
t, xt + λθ

(
x̃θ
t + x1

t

)
, ut + λθ (υt − ut )

)
− gu (t, xt , ut )

]
dλ (υt − ut ) ,

and

γ
(i),θ
t =

∫ 1

0

[
σ (i)

x

(
t, xt + λθ

(
x̃θ
t + x1

t

)
, ut + λθ (υt − ut )

)
− σ (i)

x (t, xt , ut )
]
dλx1

t

+
∫ 1

0

[
σ (i)

u

(
t, xt + λθ

(
x̃θ
t +x1

t

)
, ut + λθ (υt −ut )

)
−σ (i)

u (t, xt , ut )
]
dλ (υt −ut ).
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Since bx, bu, gx, gu and σx, σu are continuous in (x, u), it is not difficult to see that

lim
θ→0

E

(
∣
∣αθ

t

∣
∣2 + ∣

∣βθ
t

∣
∣2 +

∣
∣
∣γ

(i),θ
t

∣
∣
∣
2
)

= 0, (22)

Applying Itô’s formula to
(
x̃θ
t

)2
, we get

E
∣
∣x̃θ

t

∣
∣2 = 2E

∫ t

0
x̃θ
s

(
bx
s x̃θ

s + αθ
s

)
ds + E

∫ t

0

∣
∣
(
gx

s x̃θ
s + βθ

s

)∣
∣2 ds

+
∞∑

i=1

E

∫ t

0

∣
∣
∣σ

(i),x
s x̃θ

s + γ (i),θ
s

∣
∣
∣
2
ds.

Using the inequality 2ab ≤ a2 + b2, seeing that bx
s , gx

s and σx
s are bounded, to obtain

E
∣
∣x̃θ

t

∣
∣2 ≤ (1 + 2C)E

∫ t

0

∣
∣x̃θ

s

∣
∣2 ds + E

∫ t

0

(
∣
∣αθ

s

∣
∣2 + ∣

∣βθ
s

∣
∣2 +

∣
∣
∣γ

(i),θ
s

∣
∣
∣
2
)

ds.

Finally, by using Gronwall’s lemma and Eq. 22, we obtain (18).
We now turn out to prove (19). Again, in view of the notations (17), one can easily show

that
(
ỹθ
t , z̃θ

t , Z̃
θ
t

)
satisfies the following BSDE

⎧
⎨

⎩

dỹθ
t =

(
f x

t x̃θ
t + f

y
t ỹθ

t + f z
t z̃θ

t + f Z
t Z̃θ

t + χθ
t

)
dt + z̃θ

t dWt +
∞∑
i=1

Z̃θ
t dH

(i)
t ,

ỹθ
T = θ−1

(
ϕ
(
xθ
T

)− ϕ (xT )
)− ϕx (xT ) x1

T ,

where x̃θ
t is the solution to the SDE (21) and

f x
t = −∫ 1

0 fx

(
�θ

t (ut )
)
dλ, for x = x, y, z, Z,

χθ
t =

∫ 1

0

(
fx

(
�θ

s (ut )
)− fx (t, xt , yt , zt , Zt , ut )

)
dλ x1

t

+
∫ 1

0

(
fy

(
�θ

s (ut )
)− fy (t, xt , yt , zt , Zt , ut )

)
dλ y1

t

+
∫ 1

0

(
fz

(
�θ

s (ut )
)− fz (t, xt , yt , zt , Zt , ut )

)
dλ z1t

+
∫ 1

0

(
fZ

(
�θ

s (ut )
)− fZ (t, xt , yt , zt , Zt , ut )

)
dλ Z1

t

+
∫ 1

0

(
fu

(
�θ

s (ut )
)− fu (t, xt , yt , zt , Zt , ut )

)
dλ (υt − ut ) ,

and

�θ
t (u) =

(
t, xt + λθ

(
x̃θ
t + x1

t

)
, yt + λθ

(
ỹθ
t + y1

t

)
,

zt + λθ
(
z̃θ
t + z1t

)
, Zt + λθ

(
Z̃θ

t + Z1
t

)
, ut + λθ (υt − ut )

)
.
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Due the fact that fx, fy, fz and fZ are continuous, we have

lim
θ→0

E
∣
∣χθ

t

∣
∣2 = 0. (23)

Again, Itô’s formula applied to
∣
∣ỹθ

t

∣
∣2 leads to the following equality

E
∣
∣ỹθ

t

∣
∣2 + E

∫ T

t

∣
∣z̃θ

s

∣
∣2 ds + E

∫ T

t

∥
∥
∥Z̃

θ
s

∥
∥
∥
2

l2(Rm)

= E
∣
∣ỹθ

T

∣
∣2 + 2E

∫ T

t

ỹθ
s

(
f x

s x̃θ
s + f

y
s ỹθ

s + f z
s z̃θ

s + f Z
s Z̃θ

s + χθ
s

)
ds.

By using Young’s inequality, for each ε > 0, we obtain

E
∣
∣ỹθ

t

∣
∣2 + E

∫ T

t

∣
∣z̃θ

s

∣
∣2 ds + E

∫ T

t

∥
∥
∥Z̃

θ
s

∥
∥
∥
2

l2(Rm)
ds

≤ E
∣
∣ỹθ

T

∣
∣2 + 1

ε
E

∫ T

t

∣
∣ỹθ

s

∣
∣2 ds + εE

∫ T

t

∣
∣
∣

(
f x

s x̃θ
s + f

y
s ỹθ

s + f z
s z̃θ

s + f Z
s Z̃θ

s + χθ
s

)∣
∣
∣
2
ds

≤ E
∣
∣ỹθ

T

∣
∣2 + 1

ε
E

∫ T

t

∣
∣ỹθ

s

∣
∣2 ds + CεE

∫ T

t

∣
∣f x

s x̃θ
s

∣
∣2 ds + CεE

∫ T

t

∣
∣f

y
s ỹθ

s

∣
∣2 ds

+CεE

∫ T

t

∣
∣f z

s z̃θ
s

∣
∣2 ds + CεE

∫ T

t

∣
∣
∣f

Z
s Z̃θ

s

∣
∣
∣
2
ds + CεE

∫ T

t

∣
∣χθ

s

∣
∣2 ds.

It follows that, in view of the boundedness of f x
t , f

y
t , f z

t and f Z
t ,

E
∣
∣ỹθ

t

∣
∣2 + E

∫ T

t

∣
∣z̃θ

s

∣
∣2 ds + E

∫ T

t

∥
∥
∥Z̃

θ
s

∥
∥
∥
2

l2(Rm)
ds

≤
(
1

ε
+ Cε

)

E

∫ T

t

∣
∣ỹθ

s

∣
∣2 ds + CεE

∫ T

t

∣
∣z̃θ

s

∣
∣2 ds

+CεE

∫ T

t

∥
∥
∥Z̃

θ
s

∥
∥
∥
2

l2(Rm)
ds + E

∣
∣ỹθ

T

∣
∣2 + Cεηθ

t ,

where

ηθ
t = E

∫ T

t

∣
∣f x

s x̃θ
s

∣
∣2 ds + E

∫ T

t

∣
∣χθ

s

∣
∣2 ds.

Hence, in view of Eq. 18, the fact that ϕx , f x
s are continuous and bounded, we get

lim
θ→0

E
∣
∣ỹθ

T

∣
∣2 = 0. (24)

and

lim
θ→0

E

∫ T

t

∣
∣f x

s x̃θ
s

∣
∣2 ds = 0. (25)

Furthermore, From Eqs. 23 and 25, we deduce that

lim
θ→0

ηθ
t = 0. (26)

If we choose ε = 1
2C , it holds that,

E
∣
∣ỹθ

t

∣
∣2 + 1

2
E

∫ T

t

∣
∣z̃θ

s

∣
∣2 ds + 1

2
E

∫ T

t

∥
∥
∥Z̃

θ
s

∥
∥
∥
2

l2(Rm)
ds

≤
(

2C + 1

2

)

E

∫ T

t

∣
∣ỹθ

s

∣
∣2 ds + 1

2
ηθ

t .
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The estimates (19) follow from an application of Gronwall’s lemma together with Eqs. 23
and 26.

Now we proceed to prove (20). From Eq. 17, it is plain to check that �̃θ satisfies the
following equality,

d�̃θ =
[
�̃θ

t ξ
(
t, xθ

t , yθ
t , zθ

t , Z
θ
t , uθ

t

)+ χ̄ θ
t

]
dYt

+�t

{
ξx
t x̃θ

t + ξ
y
t ỹθ

t + ξz
t z̃θ

t + ξZ
t Z̃θ

t

}
dYt ,

where

ξx
t = ∫ 1

0 ξx

(
�θ

t (ut )
)
dλ, for x = x, y, z, Z,

and χ̄ θ
t is given by

χ̄ θ
t = �t

[∫ 1

0

(
ξx

(
�θ

s (ut )
)− ξx (t, xt , yt , zt , Zt , ut )

)
dλ x1

t

+
∫ 1

0

(
ξy

(
�θ

s (ut )
)− ξy (t, xt , yt , zt , Zt , ut )

)
dλ y1

t

+
∫ 1

0

(
ξz

(
�θ

s (ut )
)− ξz (t, xt , yt , zt , Zt , ut )

)
dλ z1t

+
∫ 1

0

(
ξZ

(
�θ

s (ut )
)− ξZ (t, xt , yt , zt , Zt , ut )

)
dλ Z1

t

+
∫ 1

0

(
ξu

(
�θ

s (ut )
)− ξu (t, xt , yt , zt , Zt , ut )

)
dλ (υt − ut )

]

+�1
t

[
ξ
(
t, xθ

t , yθ
t , zθ

t , Z
θ
t , uθ

t

)− ξ(t)
]
,

We deduce, taking into account the fact that ξx , ξy , ξz and ξZ are continuous,

limE
θ→0

∣
∣χ̄ θ

t

∣
∣2 = 0. (27)

Applying Itô’s formula to
∣
∣
∣�̃θ

t

∣
∣
∣
2
, taking expectation, and using the fact that ξ , ξx

t , ξ
y
t , ξ

z
t

and ξZ
t are bounded, to obtain

E

∣
∣
∣�̃

θ
t

∣
∣
∣
2 ≤ CE

∫ T

0

∣
∣
∣�̃

θ
t

∣
∣
∣
2
dt + CE

∫ T

0

∣
∣x̃θ

t

∣
∣2 dt

+CE

∫ T

0

∣
∣ỹθ

t

∣
∣2 dt + CE

∫ T

0

∣
∣z̃θ

t

∣
∣2 dt

+CE

∫ T

0

∥
∥
∥Z̃

θ
t

∥
∥
∥
2
dt + CE

∫ T

0

∣
∣χ̄ θ

t

∣
∣2 dt.

Keeping in mind the relations (18) and (27), we deduce that, using Gronwall’s inequality,

lim
θ→0

sup
0≤t≤T

E

∣
∣
∣�̃

θ
t

∣
∣
∣
2 = 0.
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3.2 Variational Inequality and Optimality Necessary Conditions

Since u is an optimal control, then, with the fact that θ−1
[
J
(
uθ

t

)− J (ut )
] ≥ 0, we have

the following lemma.

Lemma 4.3 Suppose that the assumptions (A1), (A2) and (A3) are satisfied. Then the
following variational inequality holds

0 ≤ E

[
�T Mx (xT ) x1

T + hy (y0) y1
0 + �1

T M(xT )
]

+E

∫ T

0

(
�1

t l(t) + �t

(
lx (t) x1

t + ly (t) y1
t + lz (t) z1t + lZ (t) Z1

t + lu (t) (υt − ut )
))

dt,

(28)

where lρ (t) = lρ (t, xt , yt , zt , Zt , ut ) for ρ = x, y, z, Z.

Proof From the definition of the cost functional and by using the first order development,
one can get

0 ≤ θ−1 [J
(
uθ

t

)− J (ut )
] = θ−1

E
[(

�θ
T − �T

)
M
(
xθ
T

)]

+θ−1
E

[

�T

∫ 1

0
Mx

(
xT + λ

(
xθ
T − xT

)) (
xθ
T − xT

)
dλ

]

+θ−1
E

[∫ 1

0
hy

(
y0 + λ

(
yθ
0 − y0

)) (
yθ
0 − y0

)
dλ

]

+θ−1
E

[∫ T

0
l
(
t, xθ

t , yθ
t , zθ

t , Z
θ
t , uθ

t

) (
�θ

t − �t

)
dt

]

+θ−1
E

[∫ T

0
�t

(∫ 1

0

(
lx
(
�θ

t (u)
) (

xθ
t − xt

)

+ly
(
�θ

t (u)
) (

yθ
t − yt

)+ lz
(
�θ

t (u)
) (

zθ
t − zt

)

+lZ
(
�θ

t (u)
) (

Zθ
t −Zt

)+lu
(
�θ

t (u)
) (

uθ
t −ut

))
dλ
)
dt
]
.

Finally by using Eqs. 18, 19, 20 and letting θ go to 0, we obtain (28).
In view of Eq. 8, the variational inequality (28) can be rewritten as

0 ≤ E
u
[
Mx (xT ) x1

T

]
+ E

u
[
hy (y0) y1

0

]
+ E

u [ϑT M(xT )]

+E
u

∫ T

0

(
ϑt l(t) +

(
lx (t) x1

t + ly (t) y1
t + lz (t) z1t + lZ (t) Z1

t + lu (t) (υt − ut )
))

dt,

(29)

The main result of this section can be stated us follows.

Theorem 4.4 (Partial information maximum principle) Suppose (A1), (A2), and (A3)

hold. Let (x, y, z, Z, u) be an optimal solution of the control problem A. There are
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4-typle (p, q, k, Q) and a pair (P,�) of Ft -adapted processes which satisfy (9) and (10)
respectively, such that the following maximum principle holds true,

E
u
[
(Hv (t, xt , yt , zt , Zt , ut , pt , qt , kt ,Qt ,�t ) , (υt −ut )) | FY

t

]
≥0, ∀υ ∈ U , a.E, a.s.

(30)

Proof By applying Itô’s formula to
(
pt , x

1
t

)
and

(
qt , y

1
t

)
and using the fact that q0 = hy(y0)

and pT = Mx (xT ) + ϕx (xT ) qT , we have

E
u
[
Mx (xT ) x1

T

]
+ E

u
[
ϕx (xT ) qT x1

T

]

= −E
u

∫ T

0
fx (t, xt , yt , zt , Zt , ut ) qtx

1
t dt

−E
u

∫ T

0
lx (t, xt , yt , zt , Zt , ut ) x1

t dt

−E
u

∫ T

0
ξx (t, xt , yt , zt , Zt , ut ) �tx

1
t dt (31)

+E
u

∫ T

0
bu (t, xt , ut ) (υt − ut ) ptdt

+E
u

∫ T

0
gu (t, xt , ut ) (υt − ut ) ktdt

+
∞∑

i=1

E
u

∫ T

0
σ (i)

u (t, xt , ut ) (υt − ut ) Q
(i)
t dt,

and

− E
u
[
ϕx (xT ) qT x1

T

]
+ E

u
[
hy(y0)y

1
0

]

= E
u

∫ T

0
fx (t, xt , yt , zt , Zt , ut ) qtx

1
t dt

+E
u

∫ T

0
fv (t, xt , yt , zt , Zt , ut ) (υt − ut ) qtdt

−E
u

∫ T

0

(
ly (t) y1

t + lz (t) z1t +
∞∑

i=1

l Z(i) (t) Z
(i)1
t

)
dt (32)

−E
u

∫ T

0
�t

(

ξy (t) y1
t + ξz (t) z1t +

∞∑

i=1

ξZ(i) (t) Z
(i)1
t

)

dt

On the other hand, Itô’s formula applied to (ϑt , Pt ), gives us

E
u (ϑT M (xT )) (33)

= −E
u

∫ T

0
ϑt l(t)dt + E

u

∫ T

0
�t

(
ξxx

1
t + ξyy

1
t + ξzz

1
t + ξZZ1

t + ξv (υt − ut )
)

dt.
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Consequently, From Eqs. 31, 32, and 33, we infer that

E
u
[
Mx (xT ) x1

T

]
+ E

u
[
hy(y0)y

1
0

]
+ E

u [ϑT M (xT )]

= E
u

∫ T

0
(bv (t, xt , ut ) pt (υt − ut ) + gv (t, xt , ut ) kt (υt − ut ) + lv (t) (υt − ut )

+ fv (t) (υt − ut ) qt + �tξv (υt − ut )) +
∞∑

i=1

σ (i)
u (t, xt , ut ) Q

(i)
t (υt − ut )

)
dt

−E
u

∫ T

0

(

ϑt l(t)+lx (t) x1
t + ly (t) y1

t +lz (t) z1t +
∞∑

i=1

lZ(i) (t) Z
(i)1
t + lv(t) (υt −ut )

)

dt,

thus

E
u
[
Mx (xT ) x1

T

]
+ E

u
[
hy(y0)y

1
0

]
+ E

u [ϑT M (xT )]

= E
u

∫ T

0
Hv (t, xt , yt , zt , Zt , ut , pt , qt , kt , Qt ) (υt − ut ) dt

−E
u

∫ T

0

(

lx (t) x1
t + ly (t) x1

y + lz (t) z1t +
∞∑

i=1

lZ(i) (t) Z
(i)1
t + lu (t) (υt − ut )

)

dt,

This together with the variational inequality (29) imply (30), which achieve the proof.

4 Partial Information Sufficient Conditions of Optimality

In this section, we will prove that the partial information maximum principle condition for
the Hamiltonian function is in fact sufficient under additional convexity assumptions. It
should be noted that we shall prove our result in two different cases. In the first case, we
are going to prove the sufficient condition without assuming the linearity of the terminal
condition for the backward part of the state equation. To this end, we restrict ourselves to
the one dimensional case n = m = 1 and we state now the main result of this section.

Theorem 5.5 Suppose (A1), (A2), and (A3) hold. Assume further that the functions ϕ, M
and H (t, ., ., ., ., pt , qt , kt , Qt , �t ) are convex, h is convex function and increasing. If the
following maximum condition holds

E
u
(
Hυ (t, xt , yt , zt , Zt , ut , pt , qt , kt ,Qt ,�t ) , (υt − ut ) | FY

t

)
≥ 0, (34)

∀υt ∈ U , a.e, a.s, then u is an optimal control in the sense that J (u) ≤ inf
υ∈U J (υ) .

Proof Let u be an arbitrary element of U (candidate to be optimal) and (xu, yu, zu, Zu)

is the corresponding trajectory. For any υ ∈ U and its corresponding trajectory (xυ,

yυ, zυ, Zυ), by the definition of the cost function (5), one can write

J (υ) − J (u) = E
[
�υ

T M
(
xυ
T

)− �u
T M

(
xu
T

)]+ E
[
h
(
yυ
0

)
h
(
yu
0

)− h
(
yu
0

)]

+E
∫ T

0

(
�υ

t l
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt

)− �u
t l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

))
dt.
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Since h and M are convex

E
[
h
(
yυ
0

)− h
(
yu
0

)] ≥ E
(
hy

(
yu
0

) (
yυ
0 − yu

0

))
,

and

E
(
�υ

T M
(
xυ
T

)− �u
T M

(
xu
T

)) ≥ (35)

E
[(

�υ
T − �u

T

)
M
(
xu
T

)]+ E
u
[
Mx

(
xu
T

) (
xυ
T − xu

T

)]
.

And

E

∫ T

0

(
�υ

t l
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt

)− �u
t l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

))
dt

= E

∫ T

0
�υ

t

(
l
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt

)− l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

))
dt (36)

+E

∫ T

0

(
�υ

t − �u
t

)
l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

)
dt.

Thus

J (υ) − J (u)

≥ E
u
[
Mx

(
xu
T

) (
xυ
T − xu

T

)]+ E
[
hy

(
yu
0

) (
yυ
0 − yu

0

)]

+E
u

∫ T

0

(
l
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt

)− l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

))
dt

+E

[
(
�υ

T − �u
T

)
(∫ T

0
l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

)
dt + M

(
xu
T

)
)]

.

Noting that

pT = Mx (xT ) + ϕ∗
x (xT ) qT ,

q0 = hy (y0) ,

then, we have

J (υ) − J (u) ≥ E
u
[
pu

T

(
xυ
T − xu

T

)]− E
u
[
qu
T ϕx (xT )

(
xυ
T − xu

T

)]+ E
[
qu
0

(
yυ
0 − yu

0

)]

+E
u

∫ T

0

(
l
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt

)− l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

))
dt

+E

[
(
�υ

T − �u
T

)
(∫ T

0
l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

)
dt + M

(
xu
T

)
)]

,

by using the fact that h is convex function and increasing, we can write

J (υ) − J (u) ≥ E
u
[
pu

T

(
xυ
T − xu

T

)]− E
u
[
qu
T

(
yυ
T − yu

T

)]+ E
[
qu
0

(
yυ
0 − yu

0

)]

+E
u

∫ T

0

(
l
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt

)− l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

))
dt

+E

[
(
�υ

T − �u
T

)
(∫ T

0
l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

)
dt + M

(
xu
T

)
)]

.
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On other hand, by applying Ito’s formula respectively to pu
t

(
xυ
t − xu

t

)
, qu

t

(
yυ
t − yu

t

)
and

P u
t

(
�υ

t − �u
t

)
, and by taking expectations to the previous inequality, we get

J (υ)−J (u) ≥ E
u

∫ T

0

(
H
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt , p

u
t , qu

t , ku
t , Qu

t , �
u
t

)

−H
(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

))
dt

−E
u

∫ T

0
Hx

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

) (
xv − xu

)
dt

−E
u

∫ T

0
Hy

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

) (
yv − yu

)
dt

−E
u

∫ T

0
Hz

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

) (
zv − zu

)
dt

−
+∞∑

i=0

E
u

∫ T

0
HZ(i)

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

)(
Z(i)v−Z(i)u

)
dt.

(37)

By using the fact H is convex in (x, y, z, Z, u), we get
(
H
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt , p

u
t , qu

t , ku
t ,Qu

t , �
u
t

)

−H
(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t ,Qu

t , �
u
t

))

≥ Hx

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

) (
xv
t − xu

t

)

+Hy

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t ,Qu

t , �
u
t

) (
yv
t − yu

t

)
(38)

+Hz

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t ,Qu

t , �
u
t

) (
zv
t − zu

t

)

+HZ

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t ,Qu

t , �
u
t

) (
Zv

t − Zu
t

)

+Hυ

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t ,Qu

t , �
u
t

)
(υt − ut ) .

Substituting (38) into (37), we have

J (υ) − J (u) ≥ E
u
∫ T

0 Hυ

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t ,Qu

t , �
u
t

)
(υt − ut ) dt,

and thus

J (υ)−J (u) ≥ E

∫ T

0
�u

t E

[
Hυ

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , k,Qu
t , �

u
t

)
(ut −υt ) | FY

t

]
dt,

in view of the condition (34) above and keeping in mind that �υ
t > 0, one can get J (u) −

J (υ) ≤ 0, which achieve the proof.

Before we treat the second result of this section, it is worth to pointing out that we can
prove a partial observed sufficient conditions of optimality without assuming neither that
x and y need to be in the dimension one, nor that the function ϕ needs to be negative and
decreasing.

Assume that ϕ (x) = Nx, where N is a nonzero constant matrix with order m×n. Then,
by using similar arguments developed above, we can easily state and prove the following
theorem which illustrate the second case.
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Theorem 5.6 Assume that (A1), (A2) and (A3) are in force. Assume that the functions
h (.) , M (.) and H (t, ., ., ., ., pt , qt , kt ,Qt ,�t ) are convex with ϕ (x) = Nx. If further the
maximum condition (34) holds true, then u is an optimal control in the sense that

J (u) ≤ inf
υ∈U J (υ) . (39)

Proof Let υ be an arbitrary element of U and (xυ, yυ, zυ, Zυ) is its corresponding trajec-
tory. By using the definition of cost functional (5), taking under consideration the convexity
property of h and M , a simple computation gives us

J (υ) − J (u) ≥ E
u
[
Mx

(
xu
T

) (
xυ
T − xu

T

)]+ E
[
hy

(
yu
0

) (
yv
0 − yu

0

)]

+E
u

∫ T

0

(
l
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt

)− l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

))
dt

+E

[
(
�υ

T − �u
T

)
(∫ T

0
l
(
t, xu

t , yu
t , zu

t , Zu
t , ut

)
dt + M

(
xu
T

)
)]

.

On the other hand, in view of ϕ (x) = Nx, we apply Ito’s formula to pu
t

(
xυ
t − xu

t

)
,

qu
t

(
yυ
t − yu

t

)
and P u

t

(
�υ

t − �u
t

)
, respectively, then by combining their results together with

the above inequality one can get

J (υ)−J (u) ≥ E
u

∫ T

0

(
H
(
t, xυ

t , yυ
t , zυ

t , Zυ
t , υt , p

u
t , qu

t , ku
t , Qu

t , �
u
t

)

−H
(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

))
dt

−E
u

∫ T

0
Hx

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

) (
xv − xu

)
dt

−E
u

∫ T

0
Hy

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

) (
yv − yu

)
dt

−E
u

∫ T

0
Hz

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

) (
zv − zu

)
dt

−
+∞∑

i=0

E
u

∫ T

0
HZ(i)

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t , Qu

t , �
u
t

)(
Z(i)v−Z(i)u

)
dt.

Since H is convex with respect to (x, y, z, Z, u) for almost all (t, w) ∈ [0, T ] × �,

J (u) − J (υ) ≤ −E
u

∫ T

0
Hυ

(
t, xu

t , yu
t , zu

t , Zu
t , ut , p

u
t , qu

t , ku
t ,Qu

t , �
u
t

)
(υt − ut ) dt, .

It turns out, using the condition (34) taking into account the fact that �υ
t > 0,

J (u) − J (υ) ≤ 0

This means that u is an optimal partially observed control process and (xu, yu, zu, Zu)

is an optimal 4-typle. The proof is complete.

5 Application

In this section, we consider a partial observed linear quadratic control problem as a par-
ticular case of our control problem A. We find an explicit expression of the corresponding
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optimal control by applying the necessary and sufficient conditions of optimality. Consider
the following control problem,

Minimize the expected quadratic cost function

J (u) := E
υ [M1 (xT , xT ) + M2 (y0, y0)]

+E
υ

∫ T

0
[Kt (xt , xt ) + Lt (yt , yt ) + �t (zt , zt ) (40)

+
∞∑

i=1

Gt

(
Z

(i)
t , Z

(i)
t

)
+Rt (ut , ut )] dt,

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = [(
A1

t , xt

)+ (
A2

t , ut

)]
dt + [(

A3
t , xt

)+ (
A4

t , ut

)]
dWt

+
∞∑

i=1

[(
A
5,(i)
t , xt

)
+
(
A
6,(i)
t , ut

)]
dH

(i)
t ,

dyt = − [(
B1

t , xt

) + (
B2

t , yt

)+ (
B3

t , zt

)+
∞∑

i=1

(
B
4,(i)
t , Z

(i)
t

)
+ (

B5
t , ut

)]
dt

+ztdWt +
∞∑

i=1

Z
(i)
t dH

(i)
t ,

x0 = 0, yT = ζ,

(41)

where the observation state is given by the following SDE,

dYt = �tdt + dW̃t , Y0 = 0. (42)

Define dP υ = �υdP and we denote by �υ the unique FY
t adapted solution of

d�υ
t = �υ

t (D (t) , dYt ) , �υ
0 = 1. (43)

Here, K (.) > 0, L (.) > 0, � (.) > 0, G (.) > 0, R (.) > 0, M1 ≥ 0, M2 ≥ 0, Ai (.),
Bj (.) and D (.) are bounded and deterministic, for i = 1, ..., 6, and j = 1, ..., 5.

To overcome this problem, we first write down the Hamiltonian function

H (t, x, y, z, Z, u, p, q, k, Q,�)

:=
(
pt ,

(
A1

t , xt

)
+
(
A2

t , ut

))
+
(
kt ,

(
A3

t , xt

)
+
(
A4

t , ut

))
+ �t�t

+
(

qt ,
(
B1

t , xt

)
+
(
B2

t , yt

)
+
(
B3

t , zt

)
+

∞∑

i=1

(
B
4,(i)
t , Z

(i)
t

)
+
(
B5

t , ut

)
)

+
∞∑

i=1

(
Q

(i)
t ,

(
A
5,(i)
t , xt

)
+
(
A
6,(i)
t , ut

))
+
[

Kt (xt , xt ) + Lt(yt , yt )

+�t (zt , zt ) +
∞∑

i=1

Gt

(
Z

(i)
t , Z

(i)
t

)
+ Rt (ut , ut )

]

, (44)
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and the adjoint equations associated to the system (41)–(43) are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−dpt = [(
p, A1

t

) + (
kt , A

3
t

)+ (
q, B1

t

)+
∞∑

i=1

(
Q

(i)
t , A

5,(i)
t

)

+ 2xtKt ] dt − ktdWt −
∞∑

i=1

Q
(i)
t dH

(i)
t ,

pT = 2M1xT ,

dqt = [(
qt , B

2
t

)+ 2Ltyt

]
dt + [(

qt , B
3
t

)+ 2�t zt

]
dWt

+
∞∑

i=1

[(
qt , B

4,(i)
t

)
+ 2GtZ

(i)
t

]
dH

(i)
t ,

q0 = 2M2y0.

(45)

and ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−dPt = (Kt (xt , xt ) + Lt (yt , yt ) + �t (zt , zt )

+
∞∑

i=1

Gt

(
Z

(i)
t , Z

(i)
t

)
+ Rt (ut , ut )

)

dt − �tdW̃t

PT = M1 (xT , xT ) .

(46)

According to Theorem (4.4), if û is a partial observed optimal control, then it satisfies

2ût = R−1
t

(
−A2

t E

[
p̂t | FY

t

]
− B5

t E

[
q̂t | FY

t

]
(47)

−A4
t E

[
k̂t | FY

t

]
−

∞∑

i=1

A
6,(i)
t E

[
Q̂

(i)
t | FY

t

]
)

.

• Conversely, for the sufficient part, let û ∈ U be a candidate to be optimal control and let(
x̂, ŷ, ẑ, Ẑ

)
be the solution to the FBSDE (41) corresponding to û and (p, k, Q, q) , (P,�)

are the solution to the corresponding solution to Eqs. 45 and 46. It is straight forward to check
that the functional H is convex in (x, y, z, Z, u). Thus, If û satisfies (47) and the partially
observed maximum principle condition (30) above. Then by applying Theorem (5.6), one
can easily check that û is an optimal control of our partially observed control problem.
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