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Abstract The existence of mild solution and the constrained local controllability of a
retarded boundary control system with nonlocal delay condition have been established. The
theory of extrapolation spaces is applied to derive the mild solution. Then, the constrained
local controllability is established using the generalized open mapping theorem. In the last
section, application of the result is shown through examples of control systems represented
by hyperbolic partial differential equations.
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1 Introduction

During last four decades, engineering mathematics has made a vast global impact on the
controllability of abstract semilinear control systems in infinite dimensional spaces, for
example, see articles [1–3] and references therein. The boundary control problem arises in
a number of physical, chemical, and biological phenomena, some examples can be seen in
[4–7]. For these reasons, study of abstract boundary control problems is one of the most
exciting areas in applied mathematics. Lasiecka [8] first established the semigroup approach
for abstract parabolic boundary problems and then developed theory for boundary control
problems jointly with Triggiani [9, 10]. Numerical treatment for the exact and approxi-
mate controllability of infinite dimensional control problems is explicated by Glowinski
et al. [11]. In 2006, Boulite et al. [12] have proved the existence of solution and the exact
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controllability of the following semilinear nonautonomous boundary control problem with
nonlocal initial condition:

where 0 ≤ t1 ≤ t2 ≤ ..... ≤ tp ≤ T , f : [0, T ] × X → ∂X and g : [0, T ]p ×
C([0, T ];X) → X.

Engel et al. [13] have developed semigroup approach for classical solutions to abstract
linear time invariant Cauchy problem ((BP)0,0). They have also given the maximal reach-
ability space for ((BP)0,0). Kumpf and Nickel [14] have presented the application of the
theory of “one-sided coupled” operator matrices, developed by Engel [15], through example
of one-dimensional heat equation with dynamic boundary conditions and boundary control.

Nonlocal conditions represent more practical aspect for the physical measurements as
compared to the classical initial conditions. The importance of nonlocal conditions was
introduced first time by Byszewski [16] and subsequently developed by many authors (few
recent references are [17–20]).

In this paper, we consider the following nonautonomous semilinear boundary control
system with nonlocal delay condition:

⎧
⎨

⎩

ẋ(t) = Amax(t)x(t), 0 ≤ t ≤ T

L(t)x(t) = B(t)u(t) + f (t, x(t), x(b(t)), u(t)), 0 ≤ t ≤ T

h(x) = φ on [−τ, 0]
(1)

where τ represents the delay factor, x(t) ∈ X is called the state of the system, and X is
the state space. The control variable u(t) ∈ U , where U is the control space. The control
operators B(t) : U → ∂X, for all t ∈ [0, T ], are bounded linear operators such that
B(·) ∈ L∞([0, T ];L (U ; ∂X)) and f : [0, T ] × X × X × U → ∂X is nonlinear map,
where ∂X is the boundary space. The nonlocal delay condition is given by h and φ. A few
expressions for h are given in the last section for application of the theory.

Throughout this paperX, ∂X, andU represent the Banach spaces with norms ||·||, ||·||∂X ,
and || · ||U , respectively. The set L (X;U) stands for the Banach space of bounded linear
operators from X into U . Other details and standing assumptions on the system operators
are given in the next section.

2 Existence of Mild Solution

Let Ct = C([−τ, t]; X), τ > 0, 0 ≤ t ≤ T < ∞ be a Banach space of all continuous
functions from [−τ, t] into X endowed with the norm ||φ||Ct = sup

−τ≤η≤t
||φ(η)||X. This

section explains the existence and uniqueness of mild solution of the following system:

⎧
⎨

⎩

ẋ(t) = Amax(t)x(t), 0 ≤ t ≤ T

L(t)x(t) = f (t, x(t), x(b(t))), 0 ≤ t ≤ T

h(x) = φ on [−τ, 0].
(2)

under the following assumptions:
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(A1) D is a dense linear subspace of X. Moreover, D is equipped with the norm | · | which
is finer (stronger) than || · ||X such that (D, | · |) is complete.

(A2) For all t ∈ [0, T ], Amax(t) : (D, | · |) → X and L(t) : (D, | · |) → ∂X are bounded
linear operators and L(t) is surjective.

(A3) The family of operators, A(t) := Amax(t)|kerL(t), t ∈ [0, T ], generates an exponen-
tially bounded evolution family (S(t, s))(s,t)∈�T , �T := {(a, b) : 0 ≤ a ≤ b ≤
T }.

(A4) h : C0 → C0 and there exists χ ∈ C0 such that h(χ) = φ.
(A5) The map b : [0, T ] → [−τ, T ] is nondecreasing and non-expansive such that it

satisfies the delay property, i.e., b(t) ≤ t for t ∈ [0, T ].
(A6) The nonlinear map f : [0, T ] × X × X → ∂X is uniformly continu-

ous in t and locally Lipschitz in X, i.e., for every t0 ∈ [0, T ] and con-
stant R ≥ 0, there is a constant N(R,t0) such that: ||f (t, x(t), x(b(t))) −
f (t, y(t), y(b(t)))|| ≤ N(R,t0) [||x(t) − y(t)|| + ||x(b(t)) − y(b(t))||] for all
(x(t), y(t)), (x(b(t)), y(b(t))) ∈ BR(X2; (χ(0), χ(0))), where

BR(X2; (χ(0), χ(0))) := {(x1(t), x2(t)) ∈ X2 :
2∑

i=1

||xi(t)−χ(0)||X ≤ R, t ∈ [−τ, t0]}

is a ball in X × X.

To prove the main abstract results, we take the setting of Griener [21] and others [12,
13] who have used the semigroup approach to study the well-posedness of systems when
operator Amax(t) is the perturbation of operator A(t) which is a generator of the evolution
family and the perturbation is due to the change in its domain.

Under assumptions (A1) − (A3), the proof of the following properties can be seen in
[21]. These properties play key role for the well-posedness of the system (2).

Lemma 2.1 [21] For each λ ∈ ρ(A(t)), the resolvent set of A(t), t ∈ [0, T ], the following
assertions hold:

(i) D = D(A(t)) ⊕ ker(λI − Amax(t)),
(ii) L(t)|ker(λI−Amax(t)) is an isomorphism from ker(λI −Amax(t)) onto ∂X and its inverse

Lλ,t := [L(t)|ker(λ−Amax(t))]−1 : ∂X → ker(λI − Amax(t)) is bounded,
(iii) Qλ(t) := Lλ,tL(t) is a projection in D onto ker(λI − Amax(t)) along D(A(t)).

From Lemma 2.1, ran(Qλ(t)) = ker(λI −Amax(t)) and ker(Qλ(t)) = ran(I −Qλ(t)) =
D(A(t)), and for each x(t) ∈ D(Amax(t)),

x(t) = (I − Qλ(t))x(t) + Qλ(t)x(t).

Therefore

ẋ(t) = Amax(t)x(t) = Amax(t)((I − Qλ(t))x(t) + Qλ(t)x(t))

= Amax(t)(I − Lλ,tL(t))x(t) + Amax(t)Lλ,tL(t)x(t)

= Amax(t)(x(t) − Lλ,tL(t)x(t)) + λLλ,tf (t, x(t), x(b(t)))

= A(t)(x(t) − Lλ,tL(t)x(t)) + λLλ,tf (t, x(t), x(b(t))).
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These observations lead us towards the following result, the detailed proof can be written
as the proof of Proposition 2.6 in [13].

Lemma 2.2 [13] Let assumptions (A1) − (A3) be satisfied and let x0 ∈ X, λ ∈ ρ(A(t)),
t ∈ [0, T ]. Then, system (2) is equivalent to the following system:

{
ẋ(t) = A(t)(x(t) − Lλ,tf (t, x(t), x(b(t)))) + λLλ,tf (t, x(t), x(b(t))),

h(x) = φ on [−τ, 0], (3)

i.e., x(·) is the solution of system (2) iff it is the solution of system (3).

In (3), (x(t) − Lλ,tf (t, x(t), x(b(t)))) ∈ D(A(t)), Lλ,tf (t, x(t), x(b(t))) ∈ ker(λI −
Amax(t)), and A(t)(x(t) − Lλ,tf (t, x(t), x(b(t)))) ∈ X. Using the theory of extrapolation
spaces [22], (3) can be written into standard Cauchy problem in a bigger state space X−1 as
follows:

{
ẋ(t) = A−1(t)x(t) + (λI − A−1(t))Lλ,tf (t, x(t), x(b(t))),

h(x) = φ on [−τ, 0], (4)

where A−1(t) : D(A−1(t)) = X → X−1 is the continuous extension of A(t). The bigger
state space X−1 is the extrapolated space of X which satisfies the following:

(1) X−1 is a Banach space containing X as a dense subspace.
(2) A−1(t) generates an extrapolated evolution family S−1(t, s) on X−1.

Applying the variation of parameters, the solution of (4) is given by

x(t) =
{

χ(t), t ∈ [−τ, 0],
S−1(t, 0)χ(0) + ∫ t

0S−1(t, s)(λI − A−1(t))Lλ,sf (s, x(s), x(b(s)))ds.
(5)

Since S(t, s) = S−1(t, s)|X , using limλ→+∞ λR(λ, A−1)x = x, we obtain

limλ→+∞
∫ t

0
S(t, s)λLλ,sf (s, x(s), x(b(s)))ds

=
∫ t

0
S−1(t, s)(λI − A−1(t))Lλ,sf (s, x(s), x(b(s)))ds.

Thus Eq. 5 can be written as follows:

x(t) =
{

χ(t), t ∈ [−τ, 0],
S(t, 0)χ(0) + limλ→+∞

∫ t

0S(t, s)λLλ,sf (s, x(s), x(b(s)))ds.
(6)

Definition 2.1 Let f ∈ L1([0, T ] × X × X). A function x ∈ C([−τ, T ]; X) is said to be a
mild solution of the system (3) if it satisfies Eq. 5.

Now, we prove the main theorem of this section for the existence of mild solution. The
theme of the proof is based on [17, 23].

Theorem 2.3 Let assumptions (A1)− (A6) be satisfied and ||λLλ,t || ≤ γ as λ → ∞, then
the boundary value problem (2) has a mild solution x(·) on [−τ, T ] for some 0 < T < ∞.
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Moreover, the mapping φ �→ x from C0 into CT is Lipschitz and induces the uniqueness of
the mild solution.

Proof We show that the system (2) has a mild solution on the interval [0, T ], where 0 <

T < ∞. Following the assumption (A4), let us define χ̄ ∈ CT by

χ̄(t) =
{

χ(t), t ∈ [−τ, 0]
χ(0), t ∈ [0, T ]. (7)

From (A3), let M ≥ 1 and ω ≥ 0 be such that ||S(t, s)||X ≤ Meω(t−s). Let R > 0 be fixed
such that supt∈[0,T ] ||(S(t, 0) − I )χ(0)||X ≤ R/2, and the following hold:

γMeωT T [N(R′,T )(2R + 2||χ̄ ||T ) + Nf ] ≤ R/2

and

γ T N(R′,T )MeωT < 1/2,

where Nf = sup{||f (t, χ(0), χ(b(0)))||∂X : t ∈ [0, T ]} and R′ = 2R + 2||χ̄ ||T . Define a
map F : CT → CT by

(Fx)(t) =
{

χ(t), when t ∈ [−τ, 0],
S(t, 0)χ(0) + limλ→∞

∫ t

0S(t, s)λLλ,sf (s, x(s), x(b(s)))ds, t ∈ [0, T ].
(8)

From assumption (A4), we know that there exists χ ∈ C0 such that

(Fχ)(t) = χ(t) on [−τ, 0].
Therefore, it is sufficient to show that F has a fixed point on [0, T ]. In the following, we
show that F maps BR(CT ; χ̄) into itself.

||(Fx)(t) − χ̄ (t)||X = ||S(t, 0)χ(0) + lim
λ→∞

∫ t

0
S(t, s)λLλ,sf (s, x(s), x(b(s)))ds − χ̄(t)||X

= ||S(t, 0)χ(0) − χ(0) + lim
λ→∞

∫ t

0
S(t, s)λLλ,sf (s, x(s), x(b(s)))ds||X

≤ ||(S(t, 0) − I )χ(0)|| + || lim
λ→∞

∫ t

0
S(t, s)λLλ,sf (s, x(s), x(b(s)))ds||X

≤ R/2 + γM

∫ t

0
||eω(t−s)f (s, x(s), x(b(s)))||∂Xds

≤ R/2 + γMeωT

∫ t

0
(||f (s, x(s), x(b(s))) − f (s, χ(0), χ(b(0)))

+f (s, χ(0), χ(b(0)))||∂X)ds

≤ R/2 + γMeωT [
∫ t

0
||f (s, x(s), x(b(s))) − f (s, χ(0), χ(b(0)))||∂Xds

+
∫ t

0
||f (s, χ(0), χ(b(0)))||∂Xds]

≤ R/2 + γMeωT [
∫ t

0
||f (s, x(s), x(b(s))) − f (s, χ(0), χ(b(0)))||∂Xds + T Nf ]

≤ R/2 + γMeωT T [N(R′,T )(2R + 2||χ̄ ||T ) + Nf ]
≤ R/2 + R/2 = R.
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Thus, Fx ∈ BR(CT ; χ̄) for t ∈ [0, T ] implying F maps the ball BR(CT ; χ̄) into itself. Fur-
ther, F satisfies local Lipschitz condition in this ball with constant N = N(R′,T ). Suppose
x, y ∈ BR(CT ; χ̄), then

||(Fx)(t) − (Fy)(t)||X = || lim
λ→∞

∫ t

0
S(t, s)λLλ,s(f (s, x(s), x(b(s))) − f (s, y(s), y(b(s))))ds||X

≤ γMeωT

∫ t

0
||f (s, x(s), x(b(s))) − f (s, y(s), y(b(s)))||∂Xds

≤ γMeωT

∫ t

0
N(R′,T )(||x(s) − y(s)||X + ||x(b(s)) − y(b(s))||X)ds

≤ γMeωT

∫ t

0
N(R′,T )(||x − y||T + ||x − y||T )ds

≤ 2γMeωT T N(R′,T )||x − y||T

Since 2γMeωT T N(R′,T ) < 1, by Banach contraction principle, F has a unique fixed point
in BR(CT ; χ̄) for t ∈ [0, T ]. This fixed point is the required mild solution of (2) on [0, T ].

From the above discussion, we conclude that a mild solution x(·) of (2) on the interval
[0, T ] can be extended to the interval [0, 2T ] by defining x(t) = y(t) on [T , 2T ], which is
as follows: if 0 < τ < T , then

y(t) = S(t, T )x(T ) + lim
λ→∞

∫ t

T

S(t, s)f (s, y(s), y(b(s)))ds,

and if 0 < T < τ , then T − τ < 0 and hence

y(t) =
⎧
⎨

⎩

η(t), when t ∈ [T − τ, 0],
S(t, 0)η(0) + limλ→∞

∫ t

0S(t, s)λLλ,sf (s, x(s), x(b(s)))ds, t ∈ [0, T ],
S(t, T )x(T ) + limλ→∞

∫ t

T
S(t, s)λLλ,sf (s, y(s), y(b(s)))ds, t ∈ [T , 2T ].

Here, η(t) is the restriction of χ(t) on the subinterval [T − τ, 0] and satisfies assumption
(A4). In this way, the interval of solution can be extended up to Tmax < ∞ and in such case
limt↑Tmax ||x(t)|| = ∞ for which the proof replicates the explanation of Theorem 6.1.4 in
[23].

Let x1(·), x2(·) ∈ CT be two mild solutions corresponding to the nonlocal delay func-
tions φ1, φ2 ∈ C0, respectively. From assumption (A4), we get χ1, χ2 ∈ C0 such that
h(χi) = φi for i = 1, 2. From the above discussion, we have

xi(t) =
{

χi(t), when t ∈ [−τ, 0],
S(t, 0)χi(0) + limλ→∞

∫ t

0S(t, s)λLλ,sf (s, xi(s), xi(b(s)))ds, t ∈ [0, T ]. (9)

Therefore, it is sufficient to prove that the mapping χ �→ x is Lipschitz which renders the
uniqueness of mild solution.

For t ∈ [−τ, 0], clearly, with the constant 1, the mapping is Lipschitz. Now, we consider
the case t ∈ [0, T ].
||x1(t) − x2(t)|| ≤ ||S(t, 0)(χ1(0) − χ2(0))||

+γMeωT

∫ t

0
||f (s, x1(s), x1(b(s))) − f (s, x2(s), x2(b(s)))||∂Xds

≤ MeωT ||χ1(0) − χ2(0)||
+γMeωT N(R,T )

∫ t

0
(||x1(s) − x2(s)|| + ||x1(b(s)) − x2(b(s))||)ds.

(10)
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Let t1 ∈ [0, t] be such that b(s) ≤ 0 for s ∈ [0, t1]. Then xi(b(s)) = χi(b(s)); i = 1, 2; and
hence from (10), we get

||x1(t) − x2(t)|| ≤ MeωT ||χ1(0) − χ2(0)||
+γMeωT N(R,T )

(∫ t

0
||x1(s) − x2(s)||ds

+
∫ t1

0
||χ1(b(s)) − χ2(b(s))||ds +

∫ t

t1

||x1(b(s)) − x2(b(s))||ds

)

≤ MeωT ||χ1 − χ2||0 + γMeωT N(R,T )

∫ t1

0
||χ1 − χ2||0ds

+2γMeωT N(R,T )

∫ t

0
||x1(s) − x2(s)||ds

≤ MeωT
(
1 + γ T N(R,T )

) ||χ1 − χ2||0
+2γMeωT T N(R,T )

∫ t

0
||x1(s) − x2(s)||ds

which by Gronwall’s inequality implies that

||x1(t) − x2(t)|| ≤ M
(
1 + γ T N(R,T )

)
e(ωT +2γMeωT T N(R,T ))||χ1 − χ2||0

which yields the Lipschitz continuity of the map χ �→ x(·) and the uniqueness of the mild
solution.

3 Controllability Result

In this section, we shall discuss the constrained controllability of semilinear boundary con-
trol system. We provide sufficient conditions for the constrained exact local controllability
on [0, T ] assuming that control functions take values in a closed convex cone with vertex at
zero. There are several research papers by Klamka [24, 25] on the constrained controllabil-
ity of abstract control systems with initial condition. Azzouzi et al. [26] have investigated
the constrained approximate controllability of boundary control systems for controls in a
convex cone. We have extended the work by Chukwu and Lenhart [27] and Klamka [24] to
boundary control systems with nonlocal delay condition.

Let U0 ⊂ U be a closed convex cone with nonempty interior and take the set of
admissible controls for the semilinear boundary control systems:

Uad = L∞([0, T ], U0) ⊂ V = L∞([0, T ], U).

Definition 3.1 The constrained attainable set at time T > 0, denoted by KT (U0), is defined
as:

KT (U0) = {x ∈ X : x = x(T , χ(0), u), u(t) ∈ U0 a. e. on [0, T ]},
where x(t, χ(0), u) is a solution of system (1).

The extrapolated semilinear boundary control system is

ẋ(t) = A−1(t)x(t) + (λI − A−1(t))Lλ,tB(t)u(t)

+(λI − A−1(t))Lλ,tf (t, x(t), x(b(t)), u(t))

with x(0) = χ(0). (11)
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Following the discussion in Section 2, the mild solution of (11) can be written as

x(t, χ(0), u) = S(t, 0)χ(0) + lim
λ→∞

∫ t

0
S(t, s)λLλ,sB(s)u(s)ds

+ lim
λ→∞

∫ t

0
S(t, s)λLλ,sf (s, x(s), x(b(s)), u(s))ds. (12)

Let us consider the associated linear boundary control system:

ẏ(t) = A−1(t)y(t) + (λI − A−1(t))Lλ,tB(t)v(t)

with initial condition y(0) = 0 (13)

which possesses the mild solution

y(t, 0, v) = y(t) = lim
λ→∞

∫ t

0
S(t, s)λLλ,sB(s)v(s)ds.

For λ ∈ ρ(A(t)), we define the following operators:

(B) Bλ : U → C([0, T ]; X) by

Bλu =
∫ ·

0
S(·, s)λLλ,sB(s)u(s)ds.

(F) Fλ : X × U = Z → C([0, T ];X) by

Fλ(x, u) =
∫ ·

0
S(·, s)λLλ,sf (s, x(s), x(b(s)), u(s))ds.

Here, Z = X × U is a product space which is a Banach space under the norm

||(x, u)||Z = ||x||X + ||u||U .

We impose the following hypotheses:

(F1) the nonlinear map f satisfies the local Lipschitz condition in X × X × U :

||f (t, x1(t), x1(b(t)), u1(t)) − f (t, x2(t), x2(b(t)), u2(t))||
≤ N(2R,t0)(||x1(t) − x2(t)|| + ||x1(b(t)) − x2(b(t))|| + ||u1(t) − u2(t)||),

(F2) the nonlinear map f is Frechet differentiable in the argument spaces X and U , and
satisfies f (t, x(t), x(b(t)), u(t))|u=0 = 0,

Dxf (t, x(t), x(b(t)), u(t))|u=0 = 0 and Duf (t, x(t), x(b(t)), u)|u=0 = 0,

(F3) Bλ and Fλ are continuously differentiable on U and their derivatives {DuBλ} and
{DuFλ} converge uniformly on U and Z, respectively, as λ → ∞.

Definition 3.2 The system (1) is said to be U0-exactly locally controllable on [0, T ] if the
attainable set KT (U0) contains a neighborhood of x(0) = χ(0) ∈ X in the space X.

Definition 3.3 The system (1) is said to be U0-exactly globally controllable on [0, T ] if
KT (U0) = X.

Definition 3.4 The corresponding linear system (13) is U0-exactly globally controllable on
[0, T ] if ran(Bλ(U0)(T )) = X.

Before stating the main result, let us recall the generalized open mapping theorem.
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Lemma 3.1 [28] Let X, Y be Banach spaces and F : Br(x0) ⊂ X → Y such that

||Fx − F x̄ − T (x − x̄)|| ≤ k||x − x̄|| on Br(x0) × Br(x0)

for some k > 0 and T ∈ L (X;Y ) with ran(T ) = Y . Then, Bρ(Fx0) ⊂ FBr(x0) for some
ρ > 0 provided that k is sufficiently small.

Now, we shall proceed to the main result.

Theorem 3.2 Let us suppose that (A1)−(A5) and (F1)−(F3) hold and the linear bound-
ary control system (13) is U0-exactly globally controllable on [0, T ]. Then, the semilinear
boundary control system (1) is U0-exactly locally controllable on [0, T ].
Proof Define the control to state operator G : Uad → X by G(u) = x(T , χ(0), u). Then,
from the integral equation (12), we have

G(u) = S(T , 0)χ(0) + lim
λ→∞Bλ(u)(T ) + lim

λ→∞Fλ(x, u)(T ). (14)

Using the assumption (F3) and differentiating (14), we get

DuG(u) = lim
λ→∞ Du(Bλ(u)(T )) + lim

λ→∞ Du(Fλ(x, u)(T )), (15)

where

Du(Bλ(u)(T )) =
∫ T

0
S(T , s)λLλ,sB(s)ds, and

Du(Fλ(x, u)(T ))

=
∫ T

0
S(T , s)λLλ,sDuf (s, x(s, χ(0), u(s)), x(b(s), χ(0), u(s)), u(s))ds

+
∫ T

0
S(T , s)λLλ,sDx(t)f (s, x(s, χ(0), u(s)), x(b(s), χ(0), u(s)), u(s))

Dux(s, χ(0), u(s))ds

+
∫ T

0
S(T , s)λLλ,sDx(b(t))f (s, x(s, χ(0), u(s)), x(b(s), χ(0), u(s)), u(s))

Dux(b(s), χ(0), u(s))ds.

Let t1 ∈ [0, T ] be such that b(s) ≤ 0 for s ∈ [0, t1]. Then,
Du(Fλ(x, u)(T ))

=
∫ T

0
S(T , s)λLλ,sDuf (s, x(s, χ(0), u(s)), x(b(s), χ(0), u(s)), u(s))ds

+
∫ t1

0
S(T , s)λLλ,sDxf (s, x(s, χ(0), u(s)), χ(b(s)), u(s))

Dux(s, χ(0), u(s))ds

+
∫ T

t1

S(T , s)λLλ,sDx(t)f (s, x(s, χ(0), u(s)), x(b(s), χ(0), u(s)), u(s))

Dux(s, χ(0), u(s))ds

+
∫ T

t1

S(T , s)λLλ,sDx(b(t))f (s, x(s, χ(0), u(s)), x(b(s), χ(0), u(s)), u(s))

Dux(b(s), χ(0), u(s))ds.
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Now, using assumption (F2) in Eq. 15, we get

DuG(u)|u=0v = lim
λ→∞

∫ T

0
S(T , s)λLλ,sB(s)v(s)ds = y(T , 0, v).

Since the linear system (13) is U0-exactly globally controllable, therefore DuG(u)|u=0,
mapping v �→ y(T , 0, v) is a surjective map with DuG(0)(Uad) = X. Further, let u1
and u2 ∈ Uad for which the corresponding trajectories are x1(t) = x(t, χ(0), u1) and
x2(t) = x(t, χ(0), u2), respectively. Then,

||x1(t) − x2(t)|| ≤ || lim
λ→∞

∫ t

0
S(T , s)λLλ,sB(s)(u1(s) − u2(s))ds||

+|| lim
λ→∞

∫ t

0
S(T , s)λLλ,s [f (s, x1(s), x1(b(s)), u1(s))

− f (s, x2(s), x2(b(s)), u2(s))] ds||
≤ γMeωT ||B(·)||∞

∫ t

0
||u1(s) − u2(s)||ds

+γMeωT N(2R,T )

∫ t

0
(||x1(s) − x2(s)||

+ ||x1(b(s)) − x2(b(s))|| + ||u1(s) − u2(s)||) ds

≤ γMeωT
(||B(·)||∞ + N(2R,T )

)
∫ t

0
||u1(s) − u2(s)||ds

+2γMeωT N(2R,T )

∫ t

0
||x1(s) − x2(s)||ds

≤ γMT eωT
(||B(·)||∞ + N(2R,T )

) ||u1 − u2||∞
+2γMeωT N(2R,T )

∫ t

0
||x1(s) − x2(s)||ds ∀ t ∈ [0, T ]

which by Gronwall’s inequality, implies that

||x1(t) − x2(t)|| ≤ γMT (||B(·)||∞ + N(2R,T ))e
(2γMeωT N(2R,T )+ωT )||u1 − u2||∞

for all t ∈ [0, T ]. Therefore,

||G(u1) − G(u2)|| ≤ ||x1(T ) − x2(T )||
≤ γMT (||B(·)||∞ + N(2R,T ))e

(2γMeωT N(2R,T )+ωT )||u1 − u2||∞
and

||DuG(0)(u1 − u2)|| = || lim
λ→∞

∫ T

0
S(T , s)λLλ,sB(s)(u1(s) − u2(s))ds||

≤ γMeωT ||B(·)||∞
∫ T

0
||(u1(s) − u2(s))||ds

≤ γMT eωT ||B(·)||∞||u1 − u2||∞.



Controllability of Boundary Control Systems 745

Thus,

||G(u1) − G(u2) − DuG(0)(u1 − u2)|| ≤ ||G(u1) − G(u2)|| + ||DuG(0)(u1 − u2)||
≤ γMT (||B(·)||∞ + N(2R,T ))e

(2γMeωT N(2R,T )+ωT )||u1 − u2||∞
+γMT eωT ||B(·)||∞||u1 − u2||∞

≤ γMT eωT
[
(||B(·)||∞ + N(2R,T ))e

(2γMeωT N(2R,T )) + ||B(·)||∞
]
||u1 − u2||∞.

By Lemma 3.1, the operator G transforms a neighborhood of zero in the space Uad onto
a neighborhood of G(0) = S(T , 0)χ(0) in the space X. Hence, by Definition 3.2, the
semilinear system (1) is U0-exactly locally controllable.

4 Application

Example 1 Let us consider the semilinear wave equation of a semi-infinite string (0 ≤ x <

∞) with boundary control action:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2y

∂t2
(t, x) = α(t, x)

∂2y

∂x2
(t, x) +

(

1 + ∂α

∂x
(t, x)

)
∂y

∂x
(t, x), x ≥ 0, t ∈ [0, T ]

∂y

∂t
(t, 0) = ξ(t, 0)u(t), t ∈ [0, T ]

α(t, 0)
∂y

∂x
(t, 0) + y(t, 0) = β(t, 0)u(t)

+
∫ ∞

0
μ(t) (y(t, x) − y(t − τ, x)) u2(t)dx

y(θ, x) =φ1(θ, x),
∂y

∂t
(θ, x) = φ2(θ, x), θ ∈ [−τ, 0], x ≥ 0,

(16)

where α, β, ξ, andμ are coefficient functions satisfying the following conditions:

(a) α ∈ C1([0, T ];W 1,∞[0, ∞)), 0 < α1 ≤ α(t, x) < ∞,
(b) β, ξ ∈ L∞([0, T ] × {0}) : 0 < ν1 ≤ β(t, 0) < ∞ and 0 < ν2 ≤ ξ(t, 0) < ∞,
(c) μ ∈ L∞([0, T ]), 0 < μ1 ≤ μ(t) ≤ μ2 < ∞.

The boundary control wave (16) can be reformulated as abstract boundary control problem
with nonlocal delay condition. In this connection, let us consider the following:

(i) The state space X = L1[0, ∞), ∂X = R = U and D(Amax(t)) = W 2,1[0, ∞).
(ii) The linear operator

Amax(t)ψ = α(t, ·) ∂2

∂x2
ψ +

(

1 + ∂

∂x
α(t, ·)

)
∂

∂x
ψ.

(iii) The boundary operator

L(t)ψ = α(t, 0)
∂ψ

∂x
(0) + ψ(0)

with domain
D(L(t)) = D(Amax(t))

and

ker(L(t)) = {ψ ∈ X : ∂ψ

∂x
(0) = 0 and ψ(0) = 0}.
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(iv) The control evaluation operator

E(t)ψ = ∂ψ

∂t
(t, 0), with ker(E(t)) = {ψ ∈ X : ∂ψ

∂t
(t, 0) = 0}.

(v) The control operators

B1(t)u(t) = ξ(t, 0)u(t), B2(t)u(t) = β(t, 0)u(t).

(vi) b(t) = t − τ for t ∈ [0, T ] satisfies assumption (A6).
(vii) The nonlinear map

F(t, ψ(t), ψ(b(t)), u(t)) = F(t, ψ(t, ·), ψ(b(t), ·), u(t))

=
∫ 1

0
μ(t) (ψ(t, x) − ψ(t − τ, x)) u2(t)dx.

The construction of operators to transform into the first order abstract Cauchy system pro-
ceeds further. Let us define a Banach space Z = W 1,1[0, ∞)⊗L1[0, ∞) equipped with the

norm

∥
∥
∥
∥

(
ψ1
ψ2

)∥
∥
∥
∥

Z

= ||ψ1||W 1,1[0,∞) + ||ψ2||L1[0,∞). Now,

(vi) the system operator

Amax(t)z(t) =
(

0 I

Amax(t) 0

)(
y(t)

ẏ(t)

)

=
(

ẏ(t)
∂
∂x

(
α(t, ·) ∂y

∂x
+ y(t, ·)

)

)

with domain

D = D(Amax(t)) = W 2,1[0, ∞) ⊗ W 1,1[0, ∞),

(vii) the boundary operator

L(t)z(t) =
(

0 E(t)

L(t) 0

)(
y(t)

ẏ(t)

)

=
(

ẏ(t, 0)
α(t, 0) ∂y

∂x
(t, 0) + y(t, 0)

)

with domain

D(L(t)) = D and ker(L(t)) = ker(L(t)) ⊗ ker(E(t)),

(viii) the boundary control operator

B(t)u(t) =
(

B1(t)

B2(t)

)

u(t) =
(

ξ(t, 0)
β(t, 0)

)

u(t),

(ix) the nonlinear map

f (t, ψ(t), ψ(b(t)), u(t)) =
(
0
1

)

F(t, ψ(t, ·), ψ(b(t), ·), u(t)),

(x) and the nonlocal delay condition is represented by

�(z) = φ, i.e.

(
y(θ, ·)
ẏ(θ, ·)

)

=
(

φ1(θ, ·)
φ2(θ, ·)

)

, θ ∈ [−τ, 0].



Controllability of Boundary Control Systems 747

We know that Amax(t)

(
ψ1
ψ2

)

=
(

ψ2
∂
∂x

(
α(t, x)

∂ψ1
∂x

+ ψ1

)

)

∈ Z. Then, to verify that D is

densely imbedded in Z of assumption (A1), we obtain the following inequality:

||ψ ||D = ||ψ1||W 2,1[0,∞) + ||ψ2||W 1,1[0,∞)

=
∫ ∞

0
(|ψ1(x)| + |ψ ′

1(x)| + |ψ ′′
1 (x)|)dx + ||ψ2||W 1,1[0,∞)

= ||ψ1||L1[0,∞) + ||ψ ′
1||L1[0,∞) + ||ψ2||W 1,1[0,∞) +

∫ ∞

0
|ψ ′′

1 (x)|dx

≤ ||ψ1||L1[0,∞) + ||ψ ′
1||L1[0,∞) + ||ψ2||W 1,1[0,∞)

+
∫ ∞

0

∣
∣
∣
∣
∣

1 + ∂α
∂x

(t, x)

α(t, x)
ψ ′
1(x)

∣
∣
∣
∣
∣
dx +

∫ ∞

0

∣
∣
∣
∣
∣
ψ ′′
1 (x) + 1 + ∂α

∂x
(t, x)

α(t, x)
ψ ′
1(x)

∣
∣
∣
∣
∣
dx

≤ ||ψ1||L1[0,∞) + ||ψ ′
1||L1[0,∞) + sup

t∈[0,T ]
1 + ||α′(t, ·)||∞

α1
||ψ ′

1||L1[0,∞)

+||ψ2||W 1,1[0,∞) + 1

α1

∫ ∞

0

∣
∣
∣
∣α(t, x)ψ ′′

1 (x) +
(

1 + ∂α

∂x
(t, x)

)

ψ ′
1(x)

∣
∣
∣
∣ dx

≤ ||ψ1||L1[0,∞) + max

{

1, sup
t∈[0,T ]

1 + ||α′(t, ·)||∞
α1

}

||ψ ′
1||L1[0,∞)

+||ψ2||L1[0,∞) + ||ψ2||W 1,1[0,∞) + 1

α1

∫ ∞

0
|Amax(t)ψ1(x)|dx

≤ max

{

1, sup
t∈[0,T ]

1 + ||α′(t, ·)||∞
α1

}
(||ψ1||W 1,1[0,∞) + ||ψ2||L1[0,∞)

)

+max

{

1,
1

α1

}
(||ψ2||W 1,1[0,∞) + ||Amax(t)ψ1||L1[0,∞)

)

≤ max

{

1,
1

α1
, sup
t∈[0,T ]

1 + ||α′(t, ·)||∞
α1

}

(||ψ ||Z + ||Amax(t)ψ ||Z) .

This implies that || · ||D is weaker than the graph norm of the system operator Amax(t).
Hence, the domain D equipped with the norm || · ||D is densely imbedded in the Banach
space Z. Let us write Amax(t) = A1(t) + A2(t) + A3, where

A1(t) =
(

0 0
A1(t) 0

)

, A2(t) =
(

0 0
A2(t) 0

)

, A3 =
(
0 I

0 0

)

and

A1(t)ψ = α(t, x)
∂2ψ

∂x2
, A2(t)ψ =

(

1 + ∂α

∂x
(t, x)

)
∂ψ

∂x
.

Let us consider the operator A1ψ = ∂2ψ

∂x2
with domain

D(A1) =
{

ψ ∈ X : ψ,
∂ψ

∂x
are absolutely continuous and

∂2ψ

∂x2
∈ X

}

∩ ker(L(t))

= D(A1(t)) ∩ ker(L(t)).
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Then, from the semigroup theory, A1 is the infinitesimal generator of a C0− semigroup on
X. Similarly, A2 : D(A2) ⊂ X → X with domain

D(A2) = {ψ ∈ X : ψ is absolutely continuous,
∂ψ

∂x
∈ X} ∩ ker(L(t))

is the infinitesimal generator of a C0−semigroup on X. From (a), we conclude that the
associated operators A1(t) and A2(t) are infinitesimal generators of C0−semigroups on
X for all t ∈ [0, T ]. Hence, the matrix operators A1(t) and A2(t) for all t ∈ [0, T ] are
infinitesimal generators of C0−semigroups on Z. Further, A3 is bounded linear operator,
therefore by Bounded Perturbation Theorem, it implies that A(t) = Amax(t)|kerL(t) gener-
ates a C0−semigroup on Z for every t ∈ [0, T ]. The null space ker(L(t)), t ∈ [0, T ] of
L(t) is defined as follows

kerL(t) =
{(

y

ẏ

)

∈ Z : ∂y

∂x
(t, 0) = 0 = y(t, 0) and

∂y

∂t
(t, 0) = 0 ∀ t ∈ [0, T ]

}

= ker(L(t)) ⊗ ker(E(t)).

Further discussion will employ the relative boundedness of two operators. We say that an
operator A2 is A1-bounded if there exist constants a > 0 and b > 0 such that

||A2y|| ≤ a||A1y|| + b||y|| ∀ y ∈ D(A1).

For ψ1 ∈ ker(λI − Amax(t)), we have
∥
∥
∥
∥L(t)

(
ψ1
ψ2

)∥
∥
∥
∥
R⊗R

=
∥
∥
∥
∥

(
ψ2(0)

α(t, 0) ∂ψ1
∂x

(0) + ψ1(0)

)∥
∥
∥
∥
R⊗R

= |ψ2(0)| +
∣
∣
∣
∣α(t, 0)

∂ψ1

∂x
(0) + ψ1(0)

∣
∣
∣
∣

=
∫ ∞

0

∣
∣
∣
∣

∂

∂x
(ψ2(x))

∣
∣
∣
∣ dx

+
∫ ∞

0

∣
∣
∣
∣

∂

∂x

(

α(t, x)
∂ψ1

∂x
(x) + ψ1(x)

)∣
∣
∣
∣ dx

= ||ψ ′
2||L1[0,∞) + ||Amax(t)ψ1||L1[0,∞)

≥ η||ψ2||L1[0,∞) + ||Amax(t)ψ1||L1[0,∞), η > 0

≥ min{η, 1}
∥
∥
∥
∥

(
ψ2

Amax(t)ψ1

)∥
∥
∥
∥

Z

= min{η, 1}
∥
∥
∥
∥λ

(
ψ1
ψ2

)∥
∥
∥
∥

Z

= min{η, 1}λ||ψ ||Z.

This implies that the conditions of Lemma 2.1 are satisfied. Therefore, the evolution family
S(t, s)(s,t)∈� associated to the boundary control wave Eq. (16) exists and is exponentially
stable ||S(t, s)|| ≤ Meωt . The nonlinear function F satisfies assumptions (F1) − (F2)
and correspondingly the matrix operator map f . The set of admissible controls is Uad =
{u ∈ L∞([0, T ];R) : u(t) ≥ 0}, i.e., U0 is the nonnegative real interval [0, ∞). The
U0−exact global controllability of the linear control system associated to the system (16) is
well explained in the pioneer work of Klamka [24] and Son [29]. Hence, from Theorem 3.2,
the semilinear wave Eq. (16) is U0−exactly locally controllable.
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Example 2 Consider the following boundary control system:

∂p

∂t
(t, x) + ∂

∂x
(α(t, x)p(t, x)) = −μ(t, x)p(t, x), x ≥ 0, t ∈ [0, T ], (17a)

α(t, 0)p(t, 0) = c(t)u(t) +
∫ ∞

0
β(t, x) (p(t, x)

+ p(t − τ, x)) u2(t)dx, (17b)
n∑

i=1

kip(ti , x) = p0(x), x ≥ 0, ti ∈ [−τ, 0], (17c)

where p(t, x) is the density of a population of size x at time t ; α is the growth rate depending
upon the size x and time t ; μ is the aging function; β is the birth function. The control
function u(t) represents the inflow of zero-size individuals from an external source.

The coefficients satisfy the following conditions:

(a) α ∈ C([0, T ]; W 1,∞[0, ∞)) : 0 < α1 ≤ α(t, x) ≤ α2 < ∞,
(b) β ∈ L∞([0, T ] × R

+) : 0 < β1 ≤ β(t, x) ≤ β2 < ∞,
(c) μ ∈ L∞([0, T ] × R

+): 0 < μ1 ≤ μ(t, x) ≤ μ2 < ∞.
(d) c ∈ L∞([0, T ];R) : c(t) > 0.

For −τ ≤ t1 < ... < tn ≤ 0, the Eq. (17c) represents the nonlocal delay condition and p0 is
the initial population of individual of size x.

The population model (17) resembles the form of abstract boundary control system if we
consider the following:

(i) The state space X = L1([0, ∞)) and D = D(Amax(t)) = W 1,1([0, ∞)), where the
operator Amax(t), t ∈ [0, T ], is defined as

Amax(t)ψ = −α(t, ·) ∂

∂x
ψ − ∂

∂x
α(t, ·)ψ − μ(t, ·)ψ.

(ii) The boundary ∂X = R and the boundary operator L(t), t ∈ [0, T ], is given by
L(t)ψ = α(t, 0)ψ(0).

(iii) The control space U = R and the control function u ∈ L∞([0, T ]; U) and the admis-
sible control set is Uad = {u ∈ L∞([0, T ];U) : u(t) ≥ 0}, i.e. U0 = R

+ = [0, ∞).
The boundary control operator B(t), t ∈ [0, T ], is defined as B(t)u(t) = c(t)u(t)

for all t ∈ [0, T ].
(iv) The delay function b(t) = t − τ , t ∈ [0, T ], which satisfies assumption (A6).
(v) The nonlinear map

f (t, ψ(t), ψ(b(t)), u(t)) =
∫ ∞

0
β(t, x) (ψ(t, x) + ψ(b(t), x)) u2(t)dx.

(vi) The nonlocal condition is h(p) = ∑n
i=1 kip(ti , ·) = p0 = φ.

The verification of assumptions (A1)− (A6) are well explained in the work of Boulite et al.
[12]. The nonlinear map f satisfies assumptions (F1)−(F2). The assumption (F3) follows
from [30]. Further, since c(t) > 0 and u(t) ∈ U0 for t ∈ [0, T ], therefore the polar cone
(B(t)U0)

o = {0}. The condition in Theorem 2.1 of Son [29] and Corollary 4.1 of Klamka
[24] are required for the U0−exact global controllability of the linear system corresponding
to (17) is satisfied. Hence, by the theorem on controllability of boundary control system,
the population model (17) is constrained controllable.
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