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Abstract In this paper, we present a general scheme to generate constructive solutions
to the Riemann–Hilbert problem via middle convolution and illustrate this approach for a
Fuchsian system with four singular points.
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1 Introduction

A Fuchsian system with a given number of poles and a given monodromy representation
does not always exist. There have been a number of studies, discussed below in more
details, to obtain necessary and sufficient conditions for such system to exist. In this paper,
we present a new approach to get explicit solutions of this problem via middle convolu-
tion. Middle convolution is related to the Euler transformation of solutions of the Fuchsian
systems.

The paper is organized as follows. We shall first review definitions of the Fuchsian
system and its monodromy representation, formulate the Riemann–Hilbert problem, and
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present some of the known methods of its constructive solutions (other methods and fur-
ther references can be found in, for example, a survey paper [14]). Then, we shall briefly
describe an algorithm of middle convolution following [7, 8] and, finally, we shall present
our new approach (the general scheme) to constructive solutions of the Riemann–Hilbert
problem via middle convolution with two illustrative examples.

1.1 Fuchsian Systems

Let us consider a (p × p) linear system of differential equations on the Riemann sphere C̄

dy

dz
= A(z)y, (1)

where A(z) is a rational function.

Definition 1.1 Singular points of system (1) are the poles of the coefficient matrix A(z). A
singular point a is called regular if the fundamental matrix solution of system (1) has at most
power growth in every sector (with the vertex in a) of an opening less then 2π . Otherwise,
the singularity a is called irregular.

Definition 1.2 If the coefficient matrix A(z) of system (1) has a first-order pole at a, then
the singularity a is called Fuchsian.

It is known [4] that the Fuchsian singularities are regular. A system with all Fuchsian
singularities is called a Fuchsian differential system. For a differential system

dy

dz
=

(
n∑

i=1

Ai

z − ai

)
y,

n∑
i=1

Ai = −An+1 (2)

the points a1, . . . , an, an+1 = ∞ are the Fuchsian singularities.

Definition 1.3 A Fuchsian singularity ai of system (2) is called non-resonant if the corres-
ponding matrix Ai has no eigenvalues which differ by a natural number. Otherwise, the
point ai is called a resonant singularity.

For system (2), one can define its monodromy representation. Consider a fundamental
matrix solution Y (z) of system (2) and its analytic continuation Ỹ (z) along a loop γ . Then,
the fundamental solutions are related by Y (z) = Ỹ (z)Gγ , where the matrix Gγ is non-
degenerate, does not dependent on z, and depends only on the homotopy class [γ ] of the
loop γ . The mapping γ → Gγ defines a representation of the fundamental group of the
Riemann sphere with removed singularities into the group of non-degenerate matrices, i.e.,

χ : π1(C̄\{a1, . . . , an, an+1}, z0) → GL(p,C). (3)

The generators of the fundamental group γ1, . . . , γn, γn+1 (simple loops encircling the
corresponding singular points {a1, . . . , an, an+1}) satisfy γ1 · . . . · γn = γ −1

n+1. Let Gi be a
matrix equal to χ([γi]). The matrices G1, . . . , Gn,Gn+1 are called monodromy matrices.
The set of monodromy matrices generate a matrix group with a single group relation G1 ·
. . . · Gn = G−1

n+1.
If one takes another fundamental matrix solution X(z) of system (2) different from Y (z),

then X(z) = Y (z)C, where C is a constant non-degenerate matrix. After an analytic con-
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tinuation of X(z) along a loop γ , one gets a new fundamental solution X̃(z) given by
X̃(z) = X(z)G̃γ . Then the monodromy matrices Gγ and G̃γ satisfy

G̃γ = C−1Gγ C.

Hence, the Fuchsian system (2) does not only define a unique monodromy representation
χ , but it defines a conjugacy class (by a constant matrix) of the monodromy representations.

The monodromy matrices corresponding to non-resonant singularities can be obtained
much simpler than that of the resonant singularities.

Lemma 1.1 [4, Lect. 6] If the point ai is a non-resonant Fuchsian singularity of system (2),
then Gi ∼ e2π iAi .

1.2 The Riemann–Hilbert Problem

The so-called Riemann–Hilbert problem was first mentioned by Riemann at the end of
1850s. In 1900, Hilbert included it in his famous list of mathematical problems under num-
ber 21. It is formulated as follows: show that there always exists a linear differential equation
of a Fuchsian type (or a Fuchsian system) with given poles and a given monodromy group
(see [1, 4, 5, 13] for the details).

If one compares dimensions of spaces of parameters (of monodromy matrices and coef-
ficients of a scalar equation), then it becomes clear that the problem should be stated only
for Fuchsian systems, and it has a negative solution for scalar Fuchsian equations in gen-
eral. However, in the case of Fuchsian systems, it does not always have a positive solution
[1, 4, 5]. Bolibruch constructed counterexample to the Riemann–Hilbert in 1989 [1]. There-
fore, results containing necessary or sufficient conditions of the existence of a Fuchsian
system with given poles and a given monodromy representation are of particular importance
nowadays.

Most of the known results are obtained by non-constructive methods. A review of such
results can be found in [14]. However, there also exist constructive approaches. There are
several methods to construct a solution to the Riemann–Hilbert problem (i. e., to construct
a Fuchsian differential system with given singular points and a given monodromy group).
They include the methods using matrix series and investigating their convergence and ana-
lytic continuation (Lappo–Danilevsky’s method [17–20], Krylov’s method [16], Erugin’s
method [9–12], and others) and the methods coming from the theory of isomonodromic
deformations (see, for instance, the papers by Boalch [3], Korotkin [15] and others). We
shall overview some of the methods in the next section.

1.3 Constructive Solutions

1.3.1 Lappo–Danilevsky’s Method

The Lappo–Danilevsky (Lappo–Danilevskij) method [17–20] allows one to express the
matrices A1, . . . , An of system (2) in the form of certain matrix series depending on
either exponents of monodromy W1, . . . , Wn defined below or the monodromy matrices
G1, . . . , Gn with the requirement that the matrices W1, . . . , Wn are close to zero matrices
or the monodromy matrices G1, . . . , Gn are close to the identity matrices (with respect to a
matrix norm).
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The exponents of monodromy of system (2) are defined as follows. In the neighborhood
of each singularity ai , the fundamental matrix solution of Eq. 2 can be written as

Y (z) = Ȳ (z)(z − ai)
Wi , (4)

where Ȳ (z) is a matrix holomorphic at ai , Ȳ (ai) �= 0 and Wi is a constant matrix. One can
find the following fact in [17, II] and [9, XII, §1]1.

Proposition 1.1 The matrices Wi and Ai corresponding to the Fuchsian singularity ai of
system (2) have the same eigenvalues.

The eigenvalues of Wi coincide with the so-called exponents of the Fuchsian system. If
the singularity ai is non-resonant, then the matrix Ȳ−1(z) is also holomorphic at ai .

Explicitly, the matrices A1, . . . , An of system (2) can be expressed in the form

Ai =
∞∑

ν=1

1,...,n∑
j1,...,jν

Ri(aj1 , . . . , ajν |b)Wj1 · . . . · Wjν , (5)

where Ri(aj1 , . . . , ajm |b) can be determined recursively. Here, the indices j1, . . . , jν take

values 1, . . . , n independently in the sum
1,...,n∑

j1,...,jν

and b is a complex number used to define

the fundamental matrix Y by Y (b) = I . The series converges when the norms of the
matrices ‖Wi‖ are close to zero.

The matrices Wi and the monodrony matrices Gi corresponding to both resonant and
non-resonant Fuchsian singularity ai are related by

Wi = 1

2π i
lnGi, i = √−1. (6)

It is possible to construct a solution to the Riemann–Hilbert problem in a class of Fuch-
sian systems with finite non-resonant singularities (one should choose a branch of lnGi in
such a way that the real parts of the eigenvalues of Wi are in the interval [0, 1)).

Note that Lappo–Danilevsky proved that the following formula holds for the coefficients
of the system:

Ai = 1

2π i

∞∑
ν=1

1,...,n∑
j1,...,jν

Qi(aj1 , . . . , ajν |b)(Gj1 − I ) · . . . · (Gjν − I ), (7)

where the coefficients Qi(aj1 , . . . , ajν |b) can be found recursively. The series converges
when every ‖Gi − I‖ is small.

1.3.2 The Gauss System

Lappo–Danilevsky also considered a particular case of a Fuchsian (2×2) system with three
singularities

dy

dz
=

(
A1

z − a1
+ A2

z − a2

)
y, A1 + A2 = −A3. (8)

System (8) is called the Gauss system. Lappo–Danilevsky fully solved the Riemann–
Hilbert problem in terms of the series (7) for arbitrary monodromy matrices (not only

1This fact can also be proved by using the Levelt basis, see [4, Lect. 6].
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for matrices lying in the neighborhood of the identity matrix). Later on, Krylov [16]
substantially improved this result and described the solutions in terms of the hypergeo-
metric series and studied their multivaluedness. Krylov gave all possible solutions for the
Riemann–Hilbert problem. It follows from his results that it is always possible to construct
a non-resonant Fuchsian system for irreducible monodromy matrices.

1.3.3 Erugin’s Method

Erugin extended Lappo–Danilevsky’s results for (2× 2) systems. He constructed a solution
to the Riemann–Hilbert problem in case of four singular points and (2 × 2) monodromy
matrices [9–12]. More precisely, Erugin solved the Riemann–Hilbert problem formulated as
follows. Assume that the (2×2) matrices W1,W2,W3 and the singularities a1, a2, a3, a4 =
∞ are given. Then find a (2 × 2) linear differential system

dy

dz
=

(
A1

z − a1
+ A2

z − a2
+ A3

z − a3

)
y, A1 + A2 + A3 = −A4, (9)

such that the fundamental matrix solution of the system Y (z) normalized by Y (b) = I is
given by Y (z) = Ȳi (z)(z−ai)

Wi in the neighborhood of each singularity ai . Here, Ȳi (z) is a
second-order matrix homomorphic in the neighborhood of ai . Furthermore, Erugin studied
properties of Ai as the function of Wi .

Due to the formulation of the problem in this way and formula (6), it is possible to find
a Fuchsian system (9) with non-resonant finite singularities. Indeed, the eigenvalues of the
matrix Wi depend on the choice of a branch of the logarithm in formula (6), so we can
choose eigenvalues of Wi such that their real parts belong to [0, 1). The eigenvalues of Ai

are equal to the eigenvalues of Wi by the Prop. 1.1. Then there is no pair of eigenvalues of
Ai with the integer difference.

Remark 1.1 In [9, XII,§3,(3.11)] it is shown that W4 = 1
2π iG4 with the main branch of the

logarithm, where G4 is the monodromy matrix at the infinity. Thus, the resulting Fuchsian
system (9) is non-resonant at infinity as well.

2 Middle Convolution

Dettweiler and Reiter’s algebraic analogue [7, 8] of Katz’ middle convolution is a certain
transformation of Fuchsian systems which preserves an index of rigidity. Middle convolu-
tion is related to the Euler transformation of the Fuchsian system. There have been numerous
studies on middle convolution in recent years, including applications to special functions,
extensions to irregular systems, and others. In this section, we shall explain main definitions
and state some of the results from [7, 8].

The idea of the algebraic construction is as follows. For a given parameter, one defines
monodromy or residue matrices of dimension (np × np) which are partitioned into blocks
and have only one row of blocks consisting of initial monodromy or residue matrices and
the parameter. By finding invariant subspaces and reducing the size of the matrices (if the
invariant subspaces are non-zero), one gets a new set of monodromy matrices (or a new
Fuchsian system with the same singularities but with new residue matrices). Note that the
size of the resulting matrices (or the system) depends on the choice of the parameter.
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2.1 The Multiplicative Case MCλ

Let us consider a tuple of matricesG = (G1, . . . , Gn),Gi ∈ GL(p,C), and defineG−1
n+1 =

G1 · . . . · Gn.

Definition 2.1 A convolution of the tuple G is a tuple Cλ(G) = (M1, . . . , Mn) given by

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 . . . 0
. . .

I

λ(G1 − I ) . . . λ(Gk−1 − I ) λGk Gk+1 − I . . . Gn − I

I

. . .

0 . . . 0 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ C
np×np, (10)

where k = 1, . . . , n and I is an (p × p) identity matrix.

There are invariant subspaces under each M1, . . . , Mn

Kk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

ker(Gk − I )
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

⊂ C
np, k = 1, . . . , n, (11)

L = ∩n
k=1 ker(Mk − I ) = ker(M1 · . . . · Mn − I ). (12)

Let
K = ⊕n

i=1Ki . (13)

Note that if λ �= 1, then

L =
〈⎛
⎜⎜⎝

G2 · . . . · Gnv

G3 · . . . · Gnv

· · ·
v

⎞
⎟⎟⎠ |v ∈ ker(λG1 · . . . · Gn − I )

〉
(14)

and K + L = K ⊕ L.

Definition 2.2 Fix an isomorphism betweenCnp/(K+L) andCm for somem. Then a tuple
of matrices MCλ(G) = (G̃1, . . . , G̃n), G̃i ∈ GL(m,C), is called a middle convolution of
the tuple G, where G̃k is induced by the action of Mk on Cm ∼= C

np/(K + L).

Note thatMCλ(G) depends on the choice of an isomorphism betweenCm andCnp/(K+
L). We will denote dim(MCλ(G)) = m.

Let us define the following conditions for any τ ∈ C\{0}:
(∗) ∩j �=i ker(Gj − I ) ∩ ker(τGi − I ) = 0, i = 1, . . . , n,

(∗∗) dim

⎡
⎣∑

j �=i

Im(Gj − I ) + Im(τGi − I )

⎤
⎦ = p, i = 1, . . . , n.



Constructive Solutions to the Riemann–Hilbert Problem and Middle... 61

Remark 2.1 The conditions (∗), (∗∗) are always fulfilled if p > 1 and the matrices
G1, . . . , Gn generate an irreducible subgroup of GL(p,C); or p = 1 and at least two
elements of G1, . . . , Gn, n ≥ 2, are not identity matrices [6, Remark 3.1].

Lemma 2.1 [7, 8] Middle convolution MCλ satisfies the following properties:
1. If λ �= 1, λ �= 0, then

dim(MCλ(G)) =
n∑

k=1

rk(Gk − I ) − p + rk(λG1 · . . . · Gn − I ). (15)

2. If λ1 �= 0, λ2 �= 0, λ = λ1 · λ2 and conditions (∗), (∗∗) hold, then

MCλ2(MCλ1(G)) ∼= MCλ(G). (16)

Moreover, MCλ(MCλ−1(G)) ∼= G.
3. If λ �= 0, conditions (∗), (∗∗) hold and G is irreducible, then MCλ(G) is irreducible.

2.2 The Additive Case mcμ

Suppose we have a tuple A of matrices A1, . . . , An,An+1, where Ai ∈ C
p×p and An+1 =

−(A1 + . . . + An).
Define

Bk =

⎛
⎜⎜⎜⎜⎜⎜⎝

O . . . O O O . . . O
... . . .

...
...

... . . .
...

A1 . . . Ak−1 Ak + μI Ak+1 . . . An

... . . .
...

...
... . . .

...

O . . . O O O . . . O

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ C
np×np, (17)

where O denotes a zero (p × p) matrix. And there are invariant subspaces under each
B1, . . . , Bn

lk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
...

ker(Ak)
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

⊂ C
np, k = 1, . . . , n, (18)

l = ∩n
k=1 ker(Bk) = ker(B1 + . . . + Bn). (19)

Let

l̃ = ⊕n
i=1lk. (20)

Note that if μ �= 0, then

l =
〈⎛
⎜⎝

v
...

v

⎞
⎟⎠ |v ∈ ker(A1 + . . . + An + μI)

〉

and l̃ + l = l̃ ⊕ l.
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Definition 2.3 A tuple of matrices cμ(A) = (B1, . . . , Bn) is called a convolution of the
tuple A.

Definition 2.4 Fix an isomorphism between Cnp/(l̃ + l) and Cm for some m. Then a tuple
of matrices

mcμ(A) = (Ã1, . . . , Ãn), Ãi ∈ C
m×m

is called a middle convolution, where Ãi is induced by the action ofBi onCm ∼= C
np/(l̃+l).

2.3 A Connection Between MCλ and mcμ

The following statement is given in [7].

Lemma 2.2 Let G = (G1, . . . , Gn), Gi ∈ GL(p,C) and conditions (∗), (∗∗) hold.
Assume that MCλ(G) = (G̃1, . . . , G̃n), λ �= 1 , λ �= 0. Then
(1) under the action of MCλ, every Jordan block J (α, l) appearing in the Jordan decom-
position of Gi transforms to the Jordan block J (αλ, l′) of the Jordan decomposition of G̃i ,
where

l′ :=
⎧⎨
⎩

l, α �= 1, λ−1,

l − 1, α = 1,
l + 1, α = λ−1.

All other Jordan blocks which appear in the Jordan decomposition of G̃i are the blocks
of the form J (1, 1).

(2) Under the action ofMCλ, every Jordan block J (α, l) appearing in the Jordan decom-
position of G−1

n+1 transforms to the Jordan block J (αλ, l′) of the Jordan decomposition of

G̃−1
n+1, where

l′ :=
⎧⎨
⎩

l, α �= 1, λ−1,

l + 1, α = 1,
l − 1, α = λ−1.

All other Jordan blocks which appear in the Jordan decomposition of G̃−1
n+1 are the blocks

of the form J (λ, 1).

The following theorem characterizes a connection between the additive and multiplica-
tive cases of middle convolution. We will use the following notations: DA is a Fuchsian
system of differential equations with fixed singularities and with residue matrices given by
the tuple A, i.e.,

dy

dz
=

(
n∑

i=1

Ai

z − ai

)
y, A = (A1, . . . , An),

and Mon(DA) is a tuple of monodromy matrices of the system DA.
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Theorem 2.1 [7] Let A = (A1, . . . , An), Ai ∈ C
p×p , Mon(DA) = (G1, . . . , Gn),

μ ∈ C\Z, λ = e2π iμ. Moreover, assume that the following conditions hold:
1. condition (*)
2. condition (**)
3. rk(Ai) = rk(Gi − I )

4. rk(A1 + . . . + An + μI) = rk(λG1 · . . . · Gn − I ) (or, equivalently, rk(μI − An+1) =
rk(λG−1

n+1 − I ))
Then Mon(Dmcμ−1(A)) = MCλ(Mon(DA)) (the fundamental matrix solutions defining
monodromy matrices should be chosen in a special way).

Remark 2.2 It follows from Rem. 2.1, that conditions (1) and (2) of the Theorem 2.1 is true
when p > 1 and G1, . . . , Gn generate an irreducible subgroup of GL(p,C).

Remark 2.3 Theorem 2.1 also states that dimmcμ−1(A) = dimMCλ(Mon(DA)).

The following diagram illustrates Theorem 2.1:

Mon(DA) = (G1, . . . , Gn)
MCλ−−−→ (G̃1, . . . , G̃n) = Mon(D

Ã
)

χ

�⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐� RH χ

�⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐� RH

A = (A1, . . . , An)
mcμ−1−−−→ (Ã1, . . . , Ãn) = Ã

3 Main Results

3.1 A General Scheme to Generate Constructive Solutions

If one has some explicit examples of solutions to the Riemann–Hilbert problem, then it is
possible to extend the set of these constructive solutions by applying MC to monodromy
matrices and mc to the residue matrices (provided that conditions of Theorem 2.1 are
fulfilled). In addition, one can also obtain some sufficient results about the constructive
solutions to the Riemann–Hilbert problem.

Suppose that we are given a tuple of matrices G and we need to construct a Fuchsian
differential system DA (with fixed singularities a1, . . . , an) such that Mon(DA) = G, i.e.,
we need to obtain a constructive solution to the Riemann–Hilbert problem. In some cases,
it is possible to reduce the problem to the known solutions by using the additive and mul-
tiplicative cases of middle convolution. We can use the following idea. We can build a new
tuple of matrices G̃ = MCλ(G) for a given set G and for some proper parameter λ such
that the Riemann–Hilbert problem has a constructive solution for the new set G̃. In this way,
we can find a tuple of matrices Ã defining the Fuchsian system with given monodromy
matrices G̃. Then if conditions of Theorem 2.1 are satisfied for G̃ and Ã, then by choosing
MCλ−1 , the Fuchsian system defined by mc−μ+1(Ã) has monodromy MCλ−1(MCλ(G)).
The tuples of matrices MCλ−1(MCλ(G)) and G are equal up to a conjugation by a constant
non-degenerate matrix by Lemma 2.1. This conjugation corresponds to the choice of the
fundamental solution defining monodromy matrices. Therefore, mc−μ+1(Ã) is the required
solution to our problem.
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We can illustrate this idea by the following diagram, where the question mark means
that we want to find a Fuchsian system for a given tuple of monodromy matrices (and
singularities), i.e., want to solve the Riemann–Hilbert problem constructively:

Mon(DA) = (G1, . . . , Gn)
MCλ−−−→ (G̃1, . . . , G̃n) = Mon(D

Ã
)

MC
λ−1←−−−−

χ

�⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐� RH χ

�⏐⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐� RH

mcμ−1−−−→
?

mc−μ+1←−−−− (Ã1, . . . , Ãn) = Ã.

In other words,

Mon(DA) = Mon(D
mc−μ+1(Ã)

) = MCλ−1(Mon(D
Ã
)) = MCλ−1(G̃) =

= MCλ−1(MCλ(G)) = (CG1C
−1, . . . , CGnC

−1), C ∈ GL(p,C).

3.2 Extension of a class of Monodromy Data for which the Riemann–Hilbert
Problem Has a Constructive Solution Via Erugin’s Method

In this section, we will prove a theorem that allows us to reduce the solution of the Riemann-
Hilbert problem to Erugin’s solution.

Theorem 3.1 Let a1, a2, a3, a4 = ∞ be four singular points and assume that the matrices
G1,G2,G3,G4, Gk ∈ GL(p,C), p > 2, with G1 · . . . · G4 = I , satisfy the following
conditions:

1. The tuple G = (G1,G2, G3) is irreducible.
2. There exists λ ∈ C\{0, 1}, such that by formula (15)

dimMCλ(G) = 2.

Then for a given tuple G of monodromy matrices, there exists a constructive solution to
the Riemann–Hilbert problem.

Remark 3.1 To construct solutions to the Riemann–Hilbert problem with our scheme, it is
important to use method that allows to construct non-resonant Fuchsian system, such as
Erugin’s method.

Proof We note that condition dimMCλ(G) = 2 means that the matrices should be such that
the dimension of the invariant subspaces K + L is equal to 4p − 2.

To prove the theorem, we will use the general scheme of the constructive solution to the
Riemann–Hilbert problem discussed above. Let MCλ(G) = G̃ = (G̃1, G̃2, G̃3). Then the
tuple of matrices G̃ can be realized as the tuple of monodromy matrices of some Fuchsian
system with non-resonant singular points (by Erugin’s method, see Section 1.3.3)

dy

dz
=

(
Ã1

z − a1
+ Ã2

z − a2
+ Ã3

z − a3

)
y. (21)
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It remains to prove that the tuple of monodromy matrices G̃ and the corresponding
differential system (21) satisfy conditions of Theorem 2.1. Then Mon(mc−μ+1(DÃ

)) =
MCλ−1(G̃) (for μ = 1

2π i log λ) will be true.

We have dimG̃ = dimMCλ(G) = 2 > 1, so to prove conditions 1 and 2 of The-
orem 2.1, we should prove that the group generated by G̃1, G̃2, G̃3 is an irreducible
subgroup of GL(2,C) (see Remark 2.2). It is irreducible subgroup due to case 3) in
Lemma 2.1.

Let us prove condition 3: rk(Ãi) = rk(G̃i − I ), i = 1, 2, 3. System (21) is non-resonant
in finite singular points, thus Lemma 1.1 can be used. We have chosen the eigenvalues of
the matrix Wi (for Erugin’s method) such that their real parts belong to the interval [0, 1).
Then the eigenvalues of the matrix Ãi are also such that their real parts belong to the interval
[0, 1) by Prop. 1.1. Then Jordan forms of Ãi and G̃i are agreed (they have the same number
of Jordan blocks of equal sizes) because of formula G̃i ∼ e2π iÃi in Lemma 1.1. Also, the
Jordan form of Ãi has a Jordan block J (0, l) if and only if the Jordan form of G̃i has a
block J (1, l). Thus, condition 3 also holds true.

To check condition 4, i.e., rk(μI + Ã4) = rk(λ−1G̃−1
4 − I ), we will use that ∞ is

a non-resonant singularity of system (21) (see Remark 1.1). Then again Jordan forms of
Ã4 and G̃4 are agreed and the Jordan form of Ã4 has a Jordan block J (0, l) if and only
if the Jordan form of G̃−1

4 has a block J (1, l) because of the formula G̃i ∼ e2π iÃi in
Lemma 1.1.

Remark 3.2 We can use Krylov’s method instead of Erugin’s method to construct system
with three Fuchsian singular points. So Theorem 3.1 is true for three singular points and
three monodromy matrices.

3.3 The First Illustrative Example

At first, we illustrate Theorem 3.1 with the following simple example. Assume that we are
given three matrices

G1 =
⎛
⎝ i 1 1

0 1 0
0 0 1

⎞
⎠ , G2 =

⎛
⎝ 1 0 0

−2i 2i 0
2i −i −2i

⎞
⎠ , G3 = (G1G2)

−1,

and we need to construct a Fuchsian system with singular points a1, a2, a3 = ∞ realizing
the given monodromy matrices G1,G2, G3.

The tuple (G1, G2) is irreducible. We apply MCi and get

G̃1 =
(
1 2
0 −1

)
, G̃2 =

( −2 0
1 2

)
.

We could get residue matrices according to Erugin’s or Krylov’s method but we will use
here the well-known facts from analytic differential equations theory.

The next lemma comes from linear algebra.
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Lemma 3.1 [16] Every pair of (2 × 2)-matrices Ãi , Ãh can be transformed (conjugating
by a constant non-degenerate matrix C) to one of the four types

CÃiC
−1 =

(
χ

(1)
i 0
1 χ

(2)
i

)
, CÃhC

−1 =
(

χ
(1)
h ∇
0 χ

(2)
h

)
; (I )

CÃiC
−1 =

(
χ

(1)
i 0
1 χ

(2)
i

)
, CÃhC

−1 =
(

χ
(1)
h 0
0 χ

(2)
h

)
; (II )

CÃiC
−1 =

(
χ

(1)
i 0
0 χ

(2)
i

)
, CÃhC

−1 =
(

χ
(1)
h 0
0 χ

(2)
h

)
; (III )

CÃiC
−1 =

(
χ

(1)
i 0
1 χ

(2)
i

)
, CÃhC

−1 =
(

χ
(1)
h 0
∇ χ

(2)
h

)
; (IV )

where i �= h, i, h ∈ {1, 2}, ∇ ∈ C, ∇ �= 0, ∇ + (χ
(1)
1 − χ

(2)
1 )(χ

(1)
2 − χ

(2)
2 ) �= 0.

Monodromy matrices G̃1, G̃2, G̃3 generate an irreducible subgroup. Then the corre-
sponding Fuchsian system has to be irreducible as well. So we are looking for residue
matrices of the type (I ).

The formula

χ
(k)
i = 1

2π i
Log(η(k)

i ), i = √−1, (22)

follows from Proposition 1.1, where η
(1)
i , η

(2)
i are the eigenvalues of the monodromy matrix

G̃i , χ
(1)
i , χ

(2)
i are the eigenvalues of the residue matrix Ãi . Brunches of logarithm in Eq. 22

should be chosen in such a way that eigenvalues satisfy the following relation

χ
(1)
1 + χ

(2)
1 + χ

(1)
2 + χ

(2)
2 + χ

(1)
3 + χ

(2)
3 = 0,

since Ã1 + Ã2 + Ã3 = 0.
The value ∇ can be expressed in terms of the eigenvalues {χ(k)

i }:
∇ = (χ

(1)
1 + χ

(1)
2 )(χ

(2)
1 + χ

(2)
2 ) − χ

(1)
3 χ

(2)
3 .

Indeed

CÃ3C
−1 = −C(Ã1 + Ã2)C

−1 = −
(

χ
(1)
1 + χ

(1)
2 ∇

1 χ
(2)
1 + χ

(2)
2

)
,

det Ã3 = χ
(1)
3 χ

(2)
3 = (χ

(1)
1 + χ

(1)
2 )(χ

(2)
1 + χ

(2)
2 ) − ∇.

So we have (here we take C = I )

Ã1 =
( − 1

2 0
1 0

)
, Ã2 =

( 1
2 + 1

2π iLog(2)
1
9

0 1
2π iLog(2)

)
,

Ã3 = −Ã1 − Ã2 =
( − 1

2π iLog(2) − 1
9

−1 − 1
2π iLog(2)

)
.

The system
dy

dz
= Ã1

z − a1
+ Ã2

z − a2
, a1 �= a2,

has only non-resonant singular points and it is irreducible. Thus, it has monodromy
G̃1, G̃2, G̃3 which follows from the analogous reasoning.
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It is evident that this solution of the Riemann–Hilbert problem is not unique.
Next, we apply mc 3

4
according to the main idea. The resulting system for G1, G2,G3 is

dy

dz
= A1

z − a1
+ A2

z − a2
,

A1 =
⎛
⎝ 1

4
1
2 + log(2)

2π i
1
9

0 0 0
0 0 0

⎞
⎠ , A2 =

⎛
⎝ 0 0 0

− 1
2

5
4 + log(2)

2π i
1
9

1 0 3
4 + log(2)

2π i

⎞
⎠ .

3.4 The Second Illustrative Example

In the second example of the constructive solution to the Riemann–Hilbert problem, we use
middle convolution and Erugin’s method [9, 11] (see also [10, 12, 13]). In this example, we
use some of the results from [2] in which Erugin’s method for four (2 × 2) matrices in a
special form is studied.

Let us fix four singular points a1, a2, a3, a4 = ∞. Define G = (G1,G2, G3), where the
matrices G1, . . . , G4, G4 = (G1G2G3)

−1 are given as follows:

G1 =
⎛
⎝ a −2π iτ 2π iτ

0 1 0
0 0 1

⎞
⎠ , G2 =

⎛
⎝ 1 0 0

−2π iκ a 0
0 0 1

⎞
⎠ ,

G3 =
⎛
⎝ 1 0 0

0 1 0
−2π iκ 0 a

⎞
⎠ , τ, κ ∈ (0, 1), a ∈ C\{0, 1}.

(23)

We cannot apply the Lappo–Danilevsky method for the matrices G1, . . . , G4 since the
norms ‖Gi − I‖ are not small when |a| is big. Notice that the matrices G1, . . . , G4 sat-
isfy conditions of Theorem 3.1. Indeed, the matrices G1, G2,G3 generate an irreducible
subgroup2 and, as shown below,

dimMCa−1G = 2.

Hence, by the Erugin method (see [9, 11] and Section 1.3.3), one can find a constructive
solution to the Riemann–Hilbert problem for these matrices.

Let us apply the multiplicative version of middle convolution MCλ with the parameter
λ = a−1 to the tuple G. At first we find the matrices M1, M2, M3 according to for-
mula (10). For each matrix G1,G2, G3, one has that dim ker(Gi − I ) = 2 and, moreover,
dim ker(M1M2M3−I ) = 1. Thus, in the result of the application of the algorithm of middle
convolution, we get a tuple of (2 × 2) matrices

G̃1 =
(

1 0
−2π iκ 1

)
, G̃2 =

(
1 −2π iτ
0 1

)
, G̃3 =

(
1 2π iτ
0 1

)
. (24)

Next, we use Erugin’s method for tuple (24) following [2]. We first define the matrices
Wi using formula (6) choosing a branch of the logarithm to avoid the resonances. We have

W1 =
(

0 0
−κ 0

)
, W2 =

(
0 −τ

0 0

)
, W3 =

(
0 τ

0 0

)
. (25)

2One can verify it by direct calculations, i.e., there is no matrix C, such that all matrices CGiC
−1 have the

same (2 × 1) or (1 × 2) zero block under the leading diagonal when a /∈ {0, 1}, κ �= 0, τ �= 0.
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Furthermore, from G̃4 = (G̃1G̃2G̃3)
−1, we get

G̃4 =
(

1 0
2π iκ 1

)
, W4 =

(
0 0
κ 0

)
. (26)

Let us apply Erugin’s construction to the set W1,W2, W3,W4. We remark that in [2], the
authors study a more general case. In the result, we get the system

dy

dz
=

(
3∑

i=1

Ãi

z − ai

)
y, Ãi =

⎛
⎝ −

√
−σi1σi2

τκ
σi2−τ

σi1−κ

√
−σi1σi2

τκ

⎞
⎠ , (27)

where the values σi1, σi2 are the sums of the power series in t = a3−a1
a3−a2

, |t | < 1 (see [2] for
details and calculations), in particular,

σik = tr(ÃiWk), (28)

where

W̃k = Ãk + tr(ÃiÃk) +
∞∑

ν=2

1,2,3∑
j1,...,jν

P ∗
k (aj1 , . . . , ajν |b)tr(Ãj1 · . . . · Ãjν )

and

P ∗
k (aj1 , . . . , ajν |b) = 1

2π i
Pk(aj1 , . . . , ajν |b),

Pk(aj1 |b) =
{
2π i, k = j1,

0, k �= j1,

Pk(aj1 , . . . , ajν |b) = (2π i)ν

ν! , j1 = . . . = jν = k,

Pk(aj1 , . . . , ajν |b) =
∫ b

ak

(
Pk(aj1 , . . . , ajν−1 |b)

b − ajν

− Pk(aj2 , . . . , ajν |b)

b − aj1

)
db.

We also have

Ã2
j = 0, Ãj Ãk = ρjkI − ÃkÃj , Ãj ÃkÃj = Ãj ρjk,

where ρjk = tr(Ãj Ãk). Note that ρjk can be expressed as certain power series in t [2].
To get a Fuchsian system with the monodromy matrices G1, . . . , G4, we use mc−μ+1

with the parameter μ = 1
2π i ln a−1 for system (27). In the result, we get a (3 × 3) system

dy

dz
=

(
3∑

i=1

Ai

z − ai

)
y, (29)

A1 =
⎛
⎜⎝ −μ + 1

√
−σ11σ12

τκ
σ21
σ11

−
√

−σ21σ22
τκ

√
−σ11σ12

τκ
σ31
σ11

−
√

−σ31σ32
τκ

0 0 0
0 0 0

⎞
⎟⎠ ,

A2 =
⎛
⎜⎝

0 0 0√
−σ21σ22

τκ
σ11
σ21

−
√

−σ11σ12
τκ

−μ + 1
√

−σ21σ22
τκ

σ31
σ21

−
√

−σ31σ32
τκ

0 0 0

⎞
⎟⎠ ,

A3 =
⎛
⎜⎝

0 0 0
0 0 0√

−σ31σ32
τκ

σ11
σ31

−
√

−σ11σ12
τκ

√
−σ31σ32

τκ
σ21
σ31

−
√

−σ21σ22
τκ

−μ + 1

⎞
⎟⎠ .

(30)

System (29) solves the Riemann–Hilbert problem for monodromy matrices (23).
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It is easy to see that the constructed system (29) has non-resonant finite singularities.
Note that the general case in [2] with matrices

Ãi =
( −ηiθi η2i−θ2i ηiθi

)
, (η1θ2−η2θ1)

2+(η1θ3−η3θ1)
2+(η2θ3−η3θ2)

2 = 0, ηi, θi ∈ C

can be treated in a similar way.

4 Discussion

In this paper, we showed that it is possible to extend conditions of constructive solutions of
the Riemann–Hilbert problem via middle convolution. We illustrated this idea on Erugin’s
method and the results in [2] for the Fuchsian system of order 2 with four singularities.

Essentially, theorems similar to Theorem 3.1 can be obtained for other methods of con-
structive solutions to the Riemann–Hilbert problem (see [14] for the overview and further
references) by using the general scheme proposed in Section 3.1 (for any number of singu-
larities of the Fuchsian system). This considerably extends the class of monodromy data for
which for which the Riemann–Hilbert problem has a (constructive) solution.

There are certain analogues of middle convolution for linear systems with irregular sin-
gularities. Therefore, the method used in this paper can be extended to such systems and
generalized Riemann–Hilbert problem (if the statement similar to Theorem 2.1 can be
proved for linear systems with irregular singularities and their monodromy data).
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8. Dettweiler M, Reiter S. Painlevé equations and the middle convolution. Adv Geom. 2007;7:317–30.
9. Erugin NP. The Riemann problem. Minsk: Nauka i Technika; 1982. (in Russian).

10. Erugin NP. The Riemann problem. I. Differencial’nye Uravnenija. 1975;11:771–81. (in Russian).
11. Erugin NP. The Riemann problem. II. Differencial’nye Uravnenija. 1976;12:779–99. (in Russian).
12. Erugin NP. The Riemann problem. III. The case n = 2 and m = 4. Differencial’nye Uravnenija.

1977;13:238–54. (in Russian).



70 Y. Bibilo and G. Filipuk

13. Erugin NP. The Riemann problem. Diff Equat. 1989;25:907–11.
14. Gontsov R. R., Poberezhnyi VA. Various versions of the Riemann-Hilbert problem for linear differential

equations. Russ Math Surv. 2008;63(4):603–39.
15. Korotkin D. Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices.

Math Ann. 2004;329:335–64.
16. Krylov BL. Explicit solution of Riemann problem for Gauss system. Tr Kazan Av Inst. 1956;31:203–

445. (in Russian).
17. Lappo–Danilevsky JA. Application of matrix functions to the theory of linear systems of ordinary

differential equations. Moscow: GITTL; 1957. (in Russian).
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