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Abstract In this paper, we consider a coupled system of two Korteweg-de Vries equations
on a bounded domain. We establish the null controllability of this system from the left
Dirichlet boundary conditions. Combining the analysis of a linearized system and a fixed
point argument, this controllability result is reduced to prove the null controllability of a
linearized system with two distributed controls.
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1 Introduction

In this paper, we consider the following coupled system of two Korteweg-de Vries (KdV)
equations{

ut + uux + uxxx + a3vxxx + a1vvx + a2(uv)x = 0,
b1vt + rvx + vvx + b2a3uxxx + vxxx + b2a2uux + b2a1(uv)x = 0,

(1.1)

where 0 < x < L (L > 0) and 0 < t < T (T > 0) with boundary conditions{
u(0, t) = h1(t), u(L, t) = ux(L, t) = 0 in (0, T ),

v(0, t) = h2(t), v(L, t) = vx(L, t) = 0 in (0, T )
(1.2)

and initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x) in (0, L). (1.3)
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In Eqs. 1.1–1.3, a1, a2, a3, b1, b2, r are real constants with b1, b2 positive and a23b2 < 1.
u = u(x, t), v = v(x, t) are real valued functions and h1, h2 are two control functions.

System (1.1) was derived by Gear and Grimshaw [1] as a model to describe the strong
interaction of two long internal gravity waves in a stratified fluid, where the two waves are
assumed to correspond to different modes of the linearized equations of motion. It has the
structure of a pair of KdV equations with both linear and nonlinear coupling terms. This
system has been studied by many authors from various aspects of physics and mathematics
([2–12]).

The KdV equation

ut + ux + uxxx + uux = 0

was first derived by Korteweg-de and Vries [13] in 1895 (or by Boussinesq [14] in 1876) as
a model for the propagation of water waves along a channel. The equation furnishes also a
very useful approximation model in nonlinear studies whenever one wishes to include and
balance a weak nonlinearity and weak dispersive effects. In particular, the equation is now
commonly accepted as a mathematical model for the unidirectional propagation of small
amplitude long waves in nonlinear dispersive systems.

The controllability of the KdV equation
{

ut + ux + uxxx + uux = 0, x ∈ (0, L), t > 0,
u(0, t) = h3(t), u(L, t) = h4(t), ux(L, t) = h5(t), t > 0

(1.4)

has been intensively studied (see [15] and the references therein). If only the left control
input h3 is in action, the system (1.4) behaves like a parabolic system and is only null
controllable. However, if the system is allowed to control from the right end of the spacial
domain, then the system behaves like a hyperbolic system and is exactly controllable.

For system (1.1), to our knowledge, the only known controllability results are due to [7,
10]. In [10], the authors established the exact controllability of Eq. 1.1 with the boundary
conditions {

u(0, t) = 0, u(1, t) = h6(t), ux(1, t) = h8(t) in (0, T ),

v(0, t) = 0, v(1, t) = h7(t), vx(1, t) = h9(t) in (0, T ).
(1.5)

More precisely, they proved that for sufficient small u0, v0, u1, v1 ∈ L2(0, L), there exist
four control functions h6, h7 ∈ H 1(0, T ) and h8, h9 ∈ L2(0, T ), such that the solution
(u, v) ∈ C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H 1(0, L))2) of system (1.1), (1.3), and (1.5)
verifies u(·, T ) = u1, v(·, T ) = v1. Later, Cerpa and Pazoto [7] improved this result by
using only two control functions h8 and h9 for L > 0, T > 0 satisfying

1 >
max{b1, b2}

min

{
b2(1 − ε̂2),

(
1 − a23b2

ε̂2

)}
(

rL2

3b1π2
+ L3

3T π2

)
,

where

ε̂ =

√√√√−(1 − b2) +
√

(1 − b2)2 + 4a23b2

2b2
.

Compared with the controllability results of Eq. 1.4 and motivated by [16, 18], it is natural
to consider the null controllability of system (1.1)–(1.3).
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The main result in this paper reads as follows:

Theorem 1.1 Let L > 0 and T > 0. Then, there exists a constant δ > 0 such that for any
initial data (u0, v0) ∈ (L2(0, L))2 verifying ‖(u0, v0)‖(L2(0,L))2 ≤ δ, there exist two control

functions h1, h2 ∈ H 1/2−ε(0, T ) for any ε > 0, such that the solution

(u, v) ∈ C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H 1(0, L))2)

of system (1.1)–(1.3) verifies

u(·, T ) = v(·, T ) = 0 in (0, L).

Remark 1.1 In [18], the authors considered the null controllability of Eq. 1.4 for h4 =
h5 = 0. To obtain a control which is more regular than L2(0, T ), they extended the spatial
domain into (−L,L) and proved an internal controllability result for the linear system. In
this paper, we use the same method to prove Theorem 1.1.

The rest of this paper is organized as follows. In Section 2, we consider the null control-
lability of a linearized system on (−L, L)with two distributed controls. Section 3 is devoted
to proof of Theorem 1.1 by a fixed point argument.

2 Internal Controllability of a Linearized System on (−L, L)

In this paper, we use the same extension domain as in [18]. Let us introduce a linear exten-
sion operator �, which maps functions on [0, L] to functions on [−L, L] which support
in [−L/2, L], and which is continuous from L2(0, L) to L2(−L,L) and from H 1(0, L) to
H 1(−L,L). We define

ũ0 = �(u0) and ṽ0 = �(v0).

In this section, we consider the following linearized system.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũt + ũxxx + a3ṽxxx + (M1ũ)x + (N1ṽ)x = χωf1 in (−L,L) × (0, T ),

b1ṽt + b2a3ũxxx + ṽxxx + (M2ũ)x + (N2ṽ)x = χωf2 in (−L,L) × (0, T ),

ũ(−L, t) = ũ(L, t) = ũx(L, t) = 0 in (0, T ),

ṽ(−L, t) = ṽ(L, t) = ṽx(L, t) = 0 in (0, T ),

ũ(x, 0) = ũ0(x), ṽ(x, 0) = ṽ0(x) in (−L,L),

(2.1)

where ω = (l1, l2) with −L < l1 < l2 < 0 and f1 = f1(x, t), f2 = f2(x, t) are two control
functions.

Remark 2.1 In order to prove Theorem 1.1, we study linearized system (2.1) for ω =
(l1, l2) ⊂ (−L, 0). In fact, all results in this section can be extended to the case where ω is
any open set of (−L,L) without any difficulty.

2.1 Well-Posedness

In this subsection, we study the existence and the regularity of the solution to system (2.1).
The methods in this subsection are motivated by [18].

First, let us introduce a functional space which will be used in the sequel:

X = C([0, T ];L2(−L,L)) ∩ L2(0, T ; H 1(−L,L)).
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The space X is equipped with its natural norm.

Proposition 2.1 Let (̃u0, ṽ0) ∈ (L2(−L, L))2, (f1, f2) ∈ L2(0, T ; (L2(ω))2) and
Mi, Ni ∈ X (i = 1, 2). There exists unique solution (̃u, ṽ) of Eq. 2.1 such that

(̃u, ṽ) ∈ C([0, T ]; (L2(−L,L))2) ∩ L2(0, T ; (H 1(−L,L))2)

and the following estimate holds

‖(̃u, ṽ)‖L∞(0,T ;(L2(−L,L))2)
⋂

L2(0,T ;(H 1(−L,L))2)

≤ C(‖(̃u0, ṽ0)‖(L2(−L,L))2 + ‖(f1, f2)‖L2(0,T ;(L2(ω))2)), (2.2)

where C = C(‖M1‖X, ‖M2‖X, ‖N1‖X, ‖N2‖X).

Proof Let (L2(−L, L))2 endowed with the inner product

〈(u, v), (ϕ, ψ)〉 = b2

b1

∫ L

−L

uϕdx +
∫ L

−L

vψdx,

and consider the operator

A : D(A) ⊂ (L2(−L, L))2 → (L2(−L,L))2,

where

D(A) = {(u, v) ∈ (H 3(−L,L))2 : u(−L)

= v(−L) = u(L) = v(L) = ux(L) = vx(L) = 0}
and

A(u, v) =
( −uxxx − a3vxxx

− 1
b1

vxxx − b2a3
b1

uxxx

)
, ∀ (u, v) ∈ D(A).

The calculations in [10] (r = 0) proved that the operator A and its adjoint A∗ are dissi-
pative in (L2(−L,L))2. Hence, A generates a strong continuous semigroup of contractions
on (L2(−L, L))2 which will be denoted by {S(t)}t≥0.

To simplify notation, we define

Bθ = C([0, θ]; (L2(−L,L))2) ∩ L2(0, θ; (H 1(−L, L))2)

endowed with its natural norm, where θ > 0 will be determined later.
Write system (2.1) in its integral form

(̃u, ṽ)(t) = S(t)(̃u0, ṽ0) +
∫ t

0
S(t − s)(−(M1ũ)x

−(N1ṽ)x + χωf1, −(M2ũ)x − (N2ṽ)x + χωf2)ds.

Define a map on � on Bθ by

�(̃u, ṽ)(t) = S(t)(̃u0, ṽ0) +
∫ t

0
S(t − s)(−(M1ũ)x

−(N1ṽ)x + χωf1,−(M2ũ)x − (N2ṽ)x + χωf2)ds

for (̃u, ṽ) ∈ Bθ .
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Simple computation shows that

‖�(̃u, ṽ)‖Bθ ≤ C
(
‖(̃u0, ṽ0)‖(L2(−L,L))2 + ‖(f1, f2)‖L2(0,θ;(L2(ω))2)

)

+C1

2∑
i=1

(‖Mi‖L2(0,θ;H 1(−L,L)) + ‖Ni‖L2(0,θ;H 1(−L,L))

) ‖(̃u, ṽ)‖Bθ ,

(2.3)

‖�(u1, v1) − �(u2, v2)‖Bθ ≤ C1

2∑
i=1

(‖Mi‖L2(0,θ;H 1(−L,L))

+ ‖Ni‖L2(0,θ;H 1(−L,L))

) ‖(u1, v1) − (u2, v2)‖Bθ

for any (u1, v1), (u2, v2) and (̃u, ṽ) ∈ Bθ .
We can choose θ > 0 small enough such that

C1

2∑
i=1

(‖Mi‖L2(0,θ;H 1(−L,L)) + ‖Ni‖L2(0,θ;H 1(−L,L))

) ≤ 1

2
. (2.4)

Then, it follows immediately that

�(̃u, ṽ) ∈ Bθ and ‖�(u1, v1) − �(u2, v2)‖Bθ ≤ 1

2
‖(u1, v1) − (u2, v2)‖Bθ

for any (u1, v1), (u2, v2), (̃u, ṽ) ∈ Bθ . Thus, � is a contraction mapping of Bθ . Its fixed
point (̃u, ṽ) = �(̃u, ṽ) is the unique solution of system (2.1) in Bθ . Moreover, combining
Eqs. 2.3 and 2.4, it is shown that

‖(̃u, ṽ)‖Bθ ≤ C
(‖(̃u0, ṽ0)‖(L2(−L,L))2 + ‖(f1, f2)‖L2(0,θ;(L2(ω))2)

)
.

Note that θ depends only on Mi, Ni (i = 1, 2), by standard extension argument, one may
extend θ to T . Moreover, we have Eq. 2.2.

This proves Proposition 2.1.

In the next section, we will need a regularity estimate for Eq. 2.1.

Proposition 2.2 Let (̃u0, ṽ0) ∈ (H 1(−L,L))2, (f1, f2) ∈ L2(0, T ; (L2(ω))2) and
Mi,Ni ∈ X (i = 1, 2). Then, the solution (̃u, ṽ) of Eq. 2.1 belongs to

C([0, T ]; (H 1(−L,L))2) ∩ L2(0, T ; (H 2(−L,L))2),

and moreover, it satisfies the following estimate:

‖(̃u, ṽ)‖L∞(0,T ;(H 1(−L,L))2)
⋂

L2(0,T ;(H 2(−L,L))2)

≤ C
(‖(̃u0, ṽ0)‖(H 1(−L,L))2 + ‖(f1, f2)‖L2(0,T ;(L2(ω))2)

)
, (2.5)

where C = C(‖M1‖X, ‖M2‖X, ‖N1‖X, ‖N2‖X).

Proof First, we prove an additional regularity result for the following system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũt + ũxxx + a3ṽxxx = g1 in (−L, L) × (0, T ),

b1ṽt + b2a3ũxxx + ṽxxx = g2 in (−L, L) × (0, T ),

ũ(−L, t) = ũ(L, t) = ũx(L, t) = 0 in (0, T ),

ṽ(−L, t) = ṽ(L, t) = ṽx(L, t) = 0 in (0, T ),

ũ(x, 0) = ũ0(x), ṽ(x, 0) = ṽ0(x) in (−L, L).

(2.6)
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Case 1: (̃u0, ṽ0) ∈ (L2(−L,L))2 and (g1, g2) ∈ L2(0, T ; (H−1(−L,L))2).

Multiplying the first equation in Eq. 2.6 by b2ũ and the second equation in Eq. 2.6 by ṽ,
adding the two obtained equations and integrating by parts in (−L,L) × (0, t) that

1

2

∫ L

−L

(
b2ũ

2 + b1ṽ
2
)

(x, τ )|τ=t
τ=0dx + 1

2

∫ t

0
(b2ũ

2
x + ṽ2x + 2b2a3ũx ṽx)(−L, τ)dτ

=
∫ t

0

∫ L

−L

(b2g1ũ + g2ṽ)dxdτ

≤ δ1

∫ t

0

∫ L

−L

(̃u2x + ṽ2x)dxdτ

+ C(δ1)

∫ t

0
(‖g1‖2H−1(−L,L)

+ ‖g2‖2H−1(−L,L)
)dτ

for any δ1 > 0.
The rest of the proof follows the proof of Theorem 2.2 in [10]. Same as in [10], choosing

ε > 0 such that
√

a23b2 < ε < 1, we obtain that

b2ũ
2
x + ṽ2x + 2a3b2ũx ṽx > b2(1 − ε2)̃u2x + (1 − a23b2

ε2
)̃v2x. (2.7)

This implies

∫ L

−L

(̃u2 + ṽ2)(x, t)dx ≤ C

∫ L

−L

(̃u20 + ṽ20)dx + δ

∫ t

0

∫ L

−L

(̃u2x + ṽ2x)dxdτ

+C(δ)

∫ t

0
(‖g1‖2H−1(−L,L)

+ ‖g2‖2H−1(−L,L)
)dτ (2.8)

for any δ > 0. Multiplying the first equation in multiplying the first equation in Eq. 2.6
by b2(x + L)̃u and the second equation in Eq. 2.6 by (x + L)̃v, adding the two obtained
equations and integrating by parts in (−L, L) × (0, t) that

1
2

∫ L

−L
(x + L)

(
b2ũ

2 + b1ṽ
2)(x, τ )

∣∣τ=t

τ=0 dx + 3
2

∫ t

0

∫ L

−L
(b2ũ

2
x + ṽ2x + 2b2a3ũx ṽx)dxdτ

= ∫ t

0

∫ L

−L
(b2(x + L)g1ũ + (x + L)g2ṽ)dxdτ

≤ δ2
∫ t

0

∫ L

−L
(̃u2x + ṽ2x)dxdτ + C(δ2)

∫ t

0 (‖g1‖2H−1(−L,L)
+ ‖g2‖2H−1(−L,L)

)dτ

for any δ2 > 0. Taking (2.7) into consideration again and choosing δ2 small enough, we can
deduce that

∫ t

0

∫ L

−L
(̃u2 + ṽ2)dxdτ + ∫ t

0

∫ L

−L
(̃u2x + ṽ2x)dxdτ

≤ C
( ∫ L

−L
(̃u20 + ṽ20)dx + ∫ t

0 (‖g1‖2H−1(−L,L)
+ ‖g2‖2H−1(−L,L)

)dτ
)
. (2.9)

Combining (2.8)–(2.9) and choosing suitable δ, it follows that

|(̃u, ṽ)‖L∞(0,T ;(L2(−L,L))2)
⋂

L2(0,T ;(H 1(−L,L))2)

≤ C
(‖(̃u0, ṽ0)‖(L2(−L,L))2 + ‖(g1, g2)‖L2(0,T ;(H−1(−L,L))2)

)
.

Case 2: (̃u0, ṽ0) ∈ D(A) and (g1, g2) ∈ L2(0, T ; (H 2
0 (−L,L))2)
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Let us apply the operator P = ∂3x to system (2.6). Considering the conditions on the
traces of g1, g2 on the boundaries −L and L, (P ũ, P ṽ) solves the following system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(P ũ)t + (P ũ)xxx + a3(P ṽ)xxx = Pg1 in (−L,L) × (0, T ),

b1(P ṽ)t + b2a3(P ũ)xxx + (P ṽ)xxx = Pg2 in (−L,L) × (0, T ),

(P ũ)(−L, t) = (P ũ)(L, t) = (P ũ)x(L, t) = 0 in (0, T ),

(P ṽ)(−L, t) = (P ṽ)(L, t) = (P ṽ)x(L, t) = 0 in (0, T ),

(P ũ)(x, 0) = (P ũ0)(x), (P ṽ)(x, 0) = (P ṽ0)(x) in (−L,L).

By the similar method as in case 1, it is not difficult to obtain that

‖(P ũ, P ṽ)‖L∞(0,T ;(L2(−L,L))2)
⋂

L2(0,T ;(H 1(−L,L))2)

≤ C
(‖(P ũ0, P ṽ0)‖(L2(−L,L))2 +‖(Pg1, Pg2)‖L2(0,T ;(H−1(−L,L))2)

)
.

This implies

‖(̃u, ṽ)‖L∞(0,T ;(H 3(−L,L))2)
⋂

L2(0,T ;(H 4(−L,L))2)

≤ C
(‖(̃u0, ṽ0)‖(H 3(−L,L))2 + ‖(g1, g2)‖L2(0,T ;(H 2(−L,L))2)

)
,

where we use the Poincaré’s inequalities: ∀ u ∈ H 4(−L,L) such that u(−L) = u(L) =
u′(L) = 0, one has

‖u‖H 3(−L,L) ≤ C‖Pu‖L2(−L,L) and ‖u‖H 4(−L,L) ≤ C‖Pu‖H 1(−L,L).

By interpolation arguments, we can deduce that

‖(̃u, ṽ)‖L∞(0,T ;(H 1(−L,L))2)
⋂

L2(0,T ;(H 2(−L,L))2)

≤ C
(‖(̃u0, ṽ0)‖(H 1(−L,L))2 + ‖(g1, g2)‖L2(0,T ;(L2(−L,L))2)

)
. (2.10)

Then, let

g1 = χωf1 − (M1ũ)x − (N1ṽ)x, g2 = χωf2 − (M2ũ)x − (N2ṽ)x .

It is easy to obtain that

‖g1‖L2(0,T ;L2(−L,L)) ≤ C
(
‖f1‖L2(0,T ;L2(ω)) + ‖M1ũx‖L2(0,T ;L2(−L,L))

+‖M1xũ‖L2(0,T ;L2(−L,L))

+‖N1ṽx‖L2(0,T ;L2(−L,L)) + ‖N1x ṽ‖L2(0,T ;L2(−L,L))

)
.

Direct computation shows that

‖M1ũx‖L2(0,T ;L2(−L,L)) ≤‖M1‖L∞(0,T ;L2(−L,L))‖ũx‖L2(0,T ;L∞(−L,L))

≤‖M1‖L∞(0,T ;L2(−L,L))‖ũ‖L2(0,T ;H 7/4(−L,L))

≤ε‖M1‖X‖ũ‖L2(0,T ;H 2(−L,L))+C(ε)‖M1‖X‖ũ‖L2(0,T ;H 1(−L,L))

and

‖M1xũ‖L2(0,T ;L2(−L,L)) ≤‖M1‖L2(0,T ;H 1(−L,L))‖ũ‖L∞(0,T ;L∞(−L,L))

≤‖M1‖L2(0,T ;H 1(−L,L))‖ũ‖L∞(0,T ;H 3/4(−L,L))

≤ε‖M1‖X‖ũ‖L∞(0,T ;H 1(−L,L))+C(ε)‖M1‖X‖ũ‖L∞(0,T ;L2(−L,L))

for any ε > 0. Similarly, we can estimate ‖N1ṽx‖L2(0,T ;L2(−L,L)) and
‖N1x ṽ‖L2(0,T ;L2(−L,L)).
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Thus, for any ε > 0, we have

‖g1‖L2(0,T ;L2(−L,L)) ≤ C‖f1‖L2(0,T ;L2(ω))

+ ε(‖M1‖X + ‖N1‖X)‖(̃u, ṽ)‖L∞(0,T ;(H 1(−L,L))2)
⋂

L2(0,T ;(H 2(−L,L))2)

+ C(ε)(‖M1‖X + ‖N1‖X)‖(̃u, ṽ)‖L∞(0,T ;(L2(−L,L))2)
⋂

L2(0,T ;(H 1(−L,L))2).

(2.11)

By the same methods, we have

‖g2‖L2(0,T ;L2(−L,L)) ≤ C‖f2‖L2(0,T ;L2(ω))

+ ε(‖M2‖X + ‖N2‖X)‖(̃u, ṽ)‖L∞(0,T ;(H 1(−L,L))2)
⋂

L2(0,T ;(H 2(−L,L))2)

+ C(ε)(‖M2‖X + ‖N2‖X)‖(̃u, ṽ)‖L∞(0,T ;(L2(−L,L))2)
⋂

L2(0,T ;(H 1(−L,L))2).

(2.12)

Gathering together Eqs. 2.2 and 2.10–2.12 and choosing ε sufficient small, we can obtain
estimate 2.5.

2.2 Internal Controllability

In this part, we study the null controllability of system (2.1).
First, we review an estimate for the following system:⎧⎨

⎩
yt + ayxxx = f in (−L, L) × (0, T ),

y(−L, t) = y(L, t) = yx(−L, t) = 0 in (0, T ),

y(x, T ) = yT (x) in (−L, L),

(2.13)

where a > 0 is a constant.
Pick any function ψ ∈ C3([−L,L]) such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ > 0 in [−L, L];
|ψ ′| > 0, ψ ′′ < 0 and ψ ′ψ ′′′ < 0 in [−L, L]\ω;
ψ ′(−L) < 0 and ψ ′(L) > 0;
min

x∈[l1,l2]
ψ(x) = ψ(l3) < max

x∈[l1,l2]
ψ(x) = ψ(l1) = ψ(l2),

max
x∈[−L,L] ψ(x) = ψ(−L) = ψ(L) and ψ(−L) < 4

3ψ(l3) for some l3 ∈ (l1, l2).

The existence of such ψ can be found in [16].
To simplify notations, let Q = (−L,L) × (0, T ) and Qω = ω × (0, T ). Set

ϕ(x, t) = ψ(−x)

t (T − t)
and ỹ = e−sϕy.

Following the methods developed in [16] with minor changes, we have

Proposition 2.3 There exists some positive constant s0 such that for all s ≥ s0 and all
yT ∈ L2(−L, L), the solution y of Eq. 2.13 fulfills∫

Q

(
(sϕ)5ỹ2 + (sϕ)3ỹ2

x + sϕỹ2
xx

)
dxdt

≤ C
( ∫

Q
f 2e−2sϕdxdt + ∫

Qω

(
(sϕ)5ỹ2 + (sϕ)3ỹ2

x + sϕỹ2
xx

)
dxdt

)
.

Next, we are in a position to prove the main result in this subsection.

Theorem 2.1 Let (̃u0, ṽ0) ∈ (L2(−L,L))2 and Mi,Ni ∈ X (i = 1, 2). Then, there exists
(f1, f2) ∈ L2(0, T ; (L2(ω))2) such that the solution (̃u, ṽ) of Eq. 2.1 satisfies

ũ(·, T ) = ṽ(·, T ) = 0 in (−L, L).
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Moreover, there exists constant C = C(‖M1‖X, ‖M2‖X, ‖N1‖X, ‖N2‖X) such that

‖(f1, f2)‖L2(0,T ;(L2(ω)))2 ≤ C‖(̃u0, ṽ0)‖(L2(−L,L)2). (2.14)

Proof Define

μ =
√( 1

b1

)2 + 4b2a23
b1

and λ±
1 = 1

b1
− 1 ± μ, λ±

2 = 1

2

( 1

b1
+ 1 ± μ

)
.

Our assumption a23b2 < 1 guarantees that λ±
2 > 0. Using the change of variable in [17], i.e.,

ũ = 2a3u + 2a3v and ṽ = λ+
1 u + λ−

1 v,

we can transform linear system (2.1) into the following system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut + λ+
2 uxxx + (M1u)x + (N1v)x = χωf1 in (−L, L) × (0, T ),

vt + λ−
2 vxxx + (M2u)x + (N2v)x = χωf2 in (−L, L) × (0, T ),

u(−L, t) = u(L, t) = ux(L, t) = 0 in (0, T ),

v(−L, t) = v(L, t) = vx(L, t) = 0 in (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) in (−L, L),

(2.15)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1 = − λ−
1

4a3
(2a3M1 + λ+

1 N1) + 1
2μb1

(2a3M2 + λ+
1 N2),

N1 = − λ−
1

4a3
(2a3M1 + λ−

1 N1) + 1
2μb1

(2a3M2 + λ−
1 N2),

M2 = λ+
1

4a3
(2a3M1 + λ+

1 N1) − 1
2μb1

(2a3M2 + λ+
1 N2),

N2 = λ+
1

4a3
(2a3M1 + λ−

1 N1) − 1
2μb1

(2a3M2 + λ−
1 N2),

f1 = − λ−
1

4a3
f1 + 1

2μb1
f2, f2 = λ+

1
4a3

f1 − 1
2μb1

f2,

u0 = − λ−
1

4a3
ũ0 + 1

2μ ṽ0, v0 = λ+
1

4a3
ũ0 − 1

2μ ṽ0.

(2.16)

Next, we consider the adjoint system associated to Eq. 2.15:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηt + λ+
2 ηxxx + M1ηx + M2wx = 0 in (−L,L) × (0, T ),

wt + λ−
2 wxxx + N1ηx + N2wx = 0 in (−L,L) × (0, T ),

η(−L, t) = η(L, t) = ηx(−L, t) = 0 in (0, T ),

w(−L, t) = w(L, t) = wx(−L, t) = 0 in (0, T ),

η(x, T ) = ηT (x), w(x, T ) = wT (x) in (−L,L).

(2.17)

The following part is close to [16, 18]; therefore, we just sketch it.
Claim that for any (ηT ,wT ) ∈ (L2(−L, L))2 and Mi, Ni ∈ X (i = 1, 2), the solution

(η,w) of Eq. 2.15 satisfies

‖(η(·, 0), w(·, 0))‖(L2(0,L))2 ≤ C‖(η,w)‖L2(0,T ;(L2(ω))2), (2.18)

where C = C(‖M1‖X, ‖M2‖X, ‖N1‖X, ‖N2‖X).
Indeed, let

η̃ = e−sϕη, w̃ = e−sϕw.

Then, it follows that

ηx = esϕη̃x + sϕxe
sϕη̃ and wx = esϕw̃x + sϕxe

sϕw̃.
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Applying Proposition 2.3 to the first two equations in Eq. 2.17 , we have the following
estimate ∫

Q

(
(sϕ)5(̃η2 + w̃2) + (sϕ)3(̃η2x + w̃2

x) + sϕ(̃η2xx + w̃2
xx)

)
dxdt

≤ C
∫
Q

(
|M1ηx + M2wx |2e−2sϕ + |N1ηx + N2wx |2 e−2sϕ

)
dxdt

+C
∫
Qω

(
(sϕ)5(̃η2 + w̃2) + (sϕ)3(̃η2x + w̃2

x) + sϕ(̃η2xx + w̃2
xx)

)
dxdt.

It is clear that∫
Q

(
|M1ηx + M2wx |2e−2sϕ + |N1ηx + N2wx |2e−2sϕ

)
dxdt

≤ C
∫
Q

(
|M1η̃x |2 + |M2w̃x |2 + |N1η̃x |2 + |N2w̃x |2
+ s2ϕ2(|M1η̃|2 + |M2w̃|2 + |N1η̃|2 + |N2w̃|2)

)
dxdt

≤ C(‖M1‖X, ‖M2‖X, ‖N1‖X, ‖N2‖X)
∫
Q

(
|̃ηxx |2 + |w̃xx |2 + s2ϕ2(|̃ηx |2 + |̃ηx |2)

)
dxdt.

For s ≥ s1 with s1 = s1(‖M1‖X, ‖M2‖X, ‖N1‖X, ‖N2‖X) large enough, we infer that∫
Q

(
(sϕ)5(η2 + w2) + (sϕ)3(η2x + w2

x) + sϕ(η2xx + w2
xx)

)
e−2sϕdxdt

≤ C
∫
Qω

(
(sϕ)5(η2 + w2) + (sϕ)3(η2x + w2

x) + sϕ(η2xx + w2
xx)

)
e−2sϕdxdt.

(2.19)

We introduce the functions

ϕ̂ = 1

t (T − t)
max

x∈[−L,L] ψ(x) = ψ(L)

t (T − t)
and ϕ̌ = 1

t (T − t)
min

x∈[−L,L] ψ(x) = ψ(l3)

t (T − t)
.

(2.20)
From Eqs. 2.19 and 2.20, we have∫

Q

(
(sϕ̌)5(η2 + w2) + (sϕ̌)3(η2x + w2

x) + sϕ̌(η2xx + w2
xx)

)
e−2sϕ̂dxdt

≤ C
∫
Qω

(
(sϕ̌)5(η2 + w2) + (sϕ̌)3(η2x + w2

x) + sϕ̌(η2xx + w2
xx)

)
e−2sϕ̌dxdt.

(2.21)

Using interpolation in the Sobolev spaces and Young’s inequality, it holds that∫
Qω

(
(sϕ̌)5(η2 + w2) + (sϕ̌)3(η2x + w2

x) + sϕ̌(η2xx + w2
xx)

)
e−2sϕ̂dxdt

≤ Cs10
∫ T

0 es(6ϕ̂−8ϕ̌)ϕ̌31‖(η(·, t), w(·, t))‖2
(L2(ω))2

dt

+ εs−2
∫ T

0 e−2sϕ̂ ϕ̌−9‖(η(·, t), w(·, t))‖2
(H 8/3(ω))2

dt

(2.22)

for any ε > 0. Some complicated estimates yield∫ T

0 e−2sϕ̂ ϕ̌−9‖(η(·, t), w(·, t))‖2
(H 8/3(ω))2

dt

≤ Cs2
∫
Q

(
(sϕ̌)5(η2 + w2) + (sϕ̌)3(η2x + w2

x) + sϕ̌(η2xx + w2
xx)

)
e−2sϕ̂dxdt.

(2.23)
Taking (2.21)–(2.23) into consideration and choosing suitable ε, we conclude that∫

Q

(
(sϕ̌)5(η2 + w2) + (sϕ̌)3(η2x + w2

x) + sϕ̌(η2xx + w2
xx)

)
e−2sϕ̂dxdt

≤ Cs10
∫ T

0 es(6ϕ̂−8ϕ̌)ϕ̌31‖(η(·, t), w(·, t))‖2
(L2(ω))2

dt
(2.24)

for s ≥ max{s0, s1}.
Proceeding as in the proof of Proposition 2.3, we can find a constant C =

C(‖M1‖X, ‖M2‖X, ‖N1‖X, ‖N2‖X) such that

‖(η,w)‖2
L∞(0,T ;(L2(0,L))2)

⋂
L2(0,T ;(H 1(0,L))2)

≤ C‖(ηT ,wT )‖2
(L2(0,L))2

. (2.25)
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Replacing (η(·, t), w(·, t)) by (η(·, 0), w(·, 0)) and (ηT ,wT ) by (η(·, τ ), w(·, τ )) for
T/3 < τ < 2T/3 in Eq. 2.25, and integrating over τ ∈ (T /3, 2T/3), we obtain that

‖(η(·, 0), w(·, 0))‖2
(L2(0,L))2

≤ C

∫ 2T/3

T/3
‖(η(·, τ ), w(·, τ )))‖2

(L2(−L,L))2
.

Combining (2.24), we derive the observability estimate (2.18).
From Eq. 2.18 and the classical dual arguments, we establish the null controllability of

Eq. 2.15. Combining (2.16), the proof of Theorem 2.1 is complete.

3 Proof of Theorem 1.1

Now, we can prove the main result in this paper.
For ξ, ζ ∈ X, let

M1 = 1

2
ξ + a2ζ, N1 = a1

2
ζ, M2 = b2a2

2
ξ + b2a1ζ, N2 = r + 1

2
ζ (3.1)

and

(u, v) = (̃u, ṽ)|[0,L]×(0,T ), (3.2)

where (̃u, ṽ) is the solution of Eq. 2.15 with M1, M2, N1, N2 defined as in Eq. 3.1 and
(f1, f2) chosen as in Theorem 2.1. According to Theorem 2.1, it is clear that

ũ(·, T ) = ṽ(·, T ) = 0 in (−L, L).

Then, (u, v) solves the following system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxx + a3vxxx +
(
( 12ξ + a2ζ )u

)
x

+ (
a1
2 ζv

)
x

= 0 in (0, L) × (0, T ),

b1vt + b2a3uxxx + vxxx +
(
(
b2a2
2 ξ+b2a1ζ )u

)
x
+

(
(r + 1

2ζ )v
)

x
=0 in (0, L) × (0, T ),

u(0, t) = h1(t), u(L, t) = ux(L, t) = 0 in (0, T ),

v(0, t) = h2(t), v(L, t) = vx(L, t) = 0 in (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) in (0, L)

for

h1 = ũ|x=0 and h2 = ṽ|x=0.

We clearly have that u(·, T ) = v(·, T ) = 0 and

‖(f1, f2)‖L2(0,T ;(L2(ω)))2 ≤ C∗‖(u0, v0)‖(L2(−L,L))2 , (3.3)

where C∗ = C∗(‖ξ‖X, ‖ζ‖X).
In the sequel, we suppose that (u0, v0) ∈ (H 1(0, L))2 and that ‖(u0, v0)‖(H 1(0,L))2 is

sufficiently small.
In fact, for any α ∈ (0, T ), assuming that h1 = h2 = 0 in (0, α), by the

Banach fixed point theorem, system (1.1)–(1.3) admits a unique solution (u, v) ∈
C([0, α]; (L2(0, L))2) ∩ L2(0, α; (H 1(0, L))2), and if ‖(u0, v0)‖(L2(0,L))2 is sufficiently
small, we have

‖(u, v)‖L∞(0,α;(L2(0,L))2)
⋂

L2(0,α;(H 1(0,L))2) ≤ ε

for any ε > 0. In particular, we can find a constant α0 ∈ (0, α) such that
(u(·, α0), v(·, α0)) ∈ (H 1(0, L))2 and that ‖(u(·, α0), v(·, α0))‖(H 1(0,L))2 is sufficiently
small. Then, we consider system (1.1)–(1.3) in (0, L) × (α0, T ).
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According to Proposition 2.2, (2.14) and interpolation arguments, we get that h1, h2 ∈
H(1/2)−ε(0, T ) for any ε > 0, and

‖(h1, h2)‖(H(1/2)−ε(0,T ))2 ≤ C‖(u0, v0)‖(H 1(0,L))2 ,

for some C = C(ξ, ζ ).
Next, we introduce the space

E = C([0, T ]; (L2(0, L))2) ∩ L2(0, T ; (H 1(0, L))2) ∩ H 1(0, T ; (H−2(0, L))2)

endowed with its natural norm.We consider inL2(0, T ; (L2(0, L))2) the following compact
subset:

B = {(ξ, ζ ) ∈ E | ‖(ξ, ζ )‖E ≤ 1}.
Let us define

�((ξ, ζ )) := {(u, v) = (̃u, ṽ)|[0,L]×(0,T ) | ∃(f1, f2) ∈ L2(0, T ; (L2(ω))2) such that
(f1, f2) satisfies (3.3) and (̃u, ṽ) solves (2.1) with Mi,Ni defined in Eq. (3.1) and ũ(·, T ) =
ũ(·, T ) = 0}.

We shall use the following Banach space version of Kakutani’s fixed point theorem (see
[19]).

Theorem 3.1 Let F be a locally convex space, let B ⊂ Z and let � : B → 2B be a
set-valued mapping. Assume that:

• B is a nonempty, compact, convex set.
• �(z) is a nonempty, closed, convex set of F for every z ∈ B.
• � is upper semicontinuous, i.e., for every closed subset A of F , �−1(A) = {z ∈

B; �(z) ∩ A �= ∅} is closed.
Then, � possesses a fixed point in the set B, i.e., there exists z ∈ B such that z ∈ �(z).

Let us check that Theorem 3.1 can be applied to F = L2(0, T ; (L2(0, L))2).
It follows from Eqs. 2.5, 2.14, and 3.2 that � maps B into 2B for ‖(u0, v0)‖(H 1(0,L))2

sufficiently small. The convexity of B and �((ξ, ζ )) for all (ξ, ζ ) ∈ B is clear. By Aubin-
Lions’ lemma,B is compact in F . Applying Theorem 2.1, we see that�((ξ, ζ )) is nonempty
for all (ξ, ζ ) ∈ B. The fact that �((ξ, ζ )) is closed in F for every (ξ, ζ ) ∈ B and that � is
upper semicontinuous can be obtained following the methods developed in [16] with minor
changes.

Consequently, Theorem 3.1 applied and this implies that there exists (u, v) ∈ �(u, v),
that is to say, we have found two controls h1, h2 ∈ H(1/2)−ε(0, T ) for all ε > 0, such that
the solution of Eqs. 1.1–1.3 satisfies u(·, T ) = v(·, T ) = 0 in (0, L).

The proof of Theorem 1.1 is finished.
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