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1 Introduction

A sub-Riemannian structure on a manifold M is given by a smoothly varying distribution
D on M and a smoothly varying positively definite metric g on the distribution. The triple
(M, D, g) is called a sub-Riemannian manifold, which has been applied in control theory,
quantum physics, C-R geometry, and the other areas [1–4, 9, 15, 19]. Some efforts have
been made to generalize sub-Riemannian manifold. One of them leads to the following
question: what kind of geometrical features the mentioned triple will have if we change
the positively definite metric to an indefinite nondegenerate metric? It is natural to start
with the Lorentzian metric of index 1. In this case, the triple: manifold, distribution, and
Lorentzian metric on the distribution is called a sub-Lorentzian manifold by analogy with
a Lorentzian manifold. For the details concerning the sub-Lorentzian geometry, the reader
is referred to [11]. To our knowledge, there are only a few works devoted to this subject
(see [10–14, 16, 18]). In [10], Chang, Markina, and Vasiliev have systematically studied
the geodesics in an anti-de Sitter space with a sub-Lorentzian metric and a sub-Riemannian
metric, respectively. In [13], Grochowski computed reachable sets starting from a point in
the Heisenberg sub-Lorentzian manifold on R

3. It was shown in [18] that the Heisenberg
groupH with a Lorentzian metric on R3 possesses the uniqueness of Hamiltonian geodesics
of time-like or space-like type.

The Engel group was first named by Cartan [8] in 1901. It is a prolongation of a three-
dimensional contact manifold and is a Goursat manifold. In [5–7], A. Ardentov and Yu. L.
Sachkov computed minimizers on the sub-Riemannian Engel group. In the present article,
we study the Engel group furnished with a sub-Lorentzian metric. This is an interesting
example of sub-Lorentzian manifolds because the Engel group is the simplest manifold with
nontrivial abnormal extremal trajectories, and the vector distribution of the Engel group is
not 2− generating, its growth vector is (2, 3, 4). We first study some properties of horizon-
tal curves in the Engel group. Second, we use the Hamiltonian formalism and Pontryagin
maximum principle to write the equations for geodesics. Furthermore, we give a complete
description of the Hamiltonian geodesics in the Engel group.

Apart from the introduction, this paper contains three sections. Section 2 contains
some preliminaries as well as definitions of sub-Lorentzian manifolds, the Engel group. In
Section 3, we study some properties of horizontal curves in the Engel group. In Section 4,
we prove that the time-like normal geodesics are locally maximal in the Engel group, and
explicitly calculate the non-space-like Hamiltonian geodesics.

2 Preliminaries

A sub-Lorentzian manifold is a triple (M, D, g), where M is a smooth n-dimensional mani-
fold, D is a smooth distribution on M, and g is a smoothly varying Lorentzian metric on D.
For each point p ∈ M, a vector v ∈ Dp is said to be horizontal. An absolutely continuous
curve γ (t) is said to be horizontal if its derivative γ ′(t) exists almost everywhere and lies in
Dγ(t).

A vector v ∈ Dp is said to be time-like if g(v, v) < 0; space-like if g(v, v) > 0 or v = 0;
null (light-like) if g(v, v) = 0 and v �= 0; and non-space-like if g(v, v) ≤ 0. A curve γ (t) is
said to be time-like if its tangent vector γ̇ (t) is time-like a.e.; space-like if γ̇ (t) is space-like
a.e.; null if γ̇ (t) is null a.e.; non-space-like if γ̇ (t) is non-space-like a.e.

By a time orientation of (M, D, g), we mean a continuous time-like vector field on M.
From now on, we assume that (M,D, g) is time-oriented. If X is a time orientation on (M, D,



Geodesics in the Engel Group with a Sub-Lorentzian Metric 467

g), then a non-space-like vector v ∈ Dp is said to be future directed if g(v, X(p)) < 0, and
past directed if g(v, X(p)) > 0. Throughout this paper, “f.d.” stands for “future directed,”
“t.” for “time-like,” and “nspc.” for “non-space-like.”

Let v, w ∈ D be two non-space-like vectors, we have the following reverse Schwartz
inequality (see page 144 in [17]):

|g(v, w)| ≥ ‖v‖ · ‖w‖,

where ‖v‖ = √|g(v, v)|. The equality holds if and only if v and w are linearly dependent.
We introduce the space Hγ(t) of horizontal nspc. curves:

Hγ(t) = {γ : [0, 1] → M| γ (t) is absolutely continuous , g(γ̇ (t), γ̇ (t)) ≤ 0,

γ̇ (t) ∈ Dγ(t) for almost all t ∈ [0, 1]}. (2.1)

The sub-Lorentzian length of a horizontal nspc. curve γ (t) is defined as follows:

l(γ ) =
∫ 1

0
‖γ ′(t)‖dt,

where ‖γ ′(t)‖ = √|g(γ ′(t), γ ′(t))|. We use the length to define the sub-Lorentzian
distance dU (q1, q2) with respect to a set U ⊂ M between two points q1, q2 ∈ U :

dU (q1, q2) =
{
sup{l(γ ), γ ∈ HU(q1, q2)} if HU(q1, q2) �= ∅
0 if HU(q1, q2) = ∅,

where HU(q1, q2) is the set of all nspc.f.d curves contained in U and joining q1 and q2.
A nspc. curve is said to be a maximizer if it realizes the distance between its endpoints.

We also use the name U -geodesic for a curve in U whose each suitably short sub-arc is a
U -maximizer.

A distribution D ⊂ T M is called bracket generating if any local frame {Xi}1≤i≤r for
D, together with all of its iterated Lie brackets [Xi,Xj ], [Xi, [Xj ,Xk]], · · · span the tan-
gent bundle T M . Bracket generating distributions are sometimes also called completely
nonholonomic distributions, or distributions satisfying Hörmander’s condition.

Theorem 2.1 (Chow) Fix a point q ∈ M . If the distributionD ⊂ T M is bracket generating,
then the set of points that can be connected to q by a horizontal curve is the component of
M containing q.

By Chow’s Theorem, we know that if D is bracket generating and M is connected, then
any two points of M can be joined by a horizontal curve.

Now, we describe the Engel group E. We consider the Engel group E with coordinates
q = (x1, x2, y, z) ∈ R

4. The group law is denoted by � and defined as follows:

(x1, x2, y, z) � (x′
1, x

′
2, y

′, z′)

=
(

x1 + x′
1, x2 + x′

2, y + y′ + x1x
′
2 − x′

1x2

2
, z + z′ + x2x

′
2

2
(x2 + x′

2) + x1y
′ + x1x

′
2

2
(x1 + x′

1)

)
.

A vector field X is said to be left invariant if it satisfies dLqX(e) = X(q), where Lq

denotes the left translation p → Lq(p) = q � p and e is the identity of E. This definition
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implies that any left invariant vector field on E is a linear combination of the following
vector fields:

X1 = ∂

∂x1
− x2

2

∂

∂y
; X2 = ∂

∂x2
+ x1

2

∂

∂y
+ x2

1 + x2
2

2

∂

∂z
;

X3 = ∂

∂y
+ x1

∂

∂z
; X4 = ∂

∂z
. (2.2)

The distribution D = span{X1, X2} of E satisfies the bracket generating condition,
since X3 = [X1, X2], X4 = [X1, X3]. The Engel group is a nilpotent Lie group, since
[X1, X4] = [X2, X3] = [X2, X4] = 0. We define a smooth Lorentzian metric g̃ on E such
that g̃(Xi,Xj ) = (−1)δ1i δij , i, j = 1, · · · , 4, where δij is the Kronecker symbol. It is not
difficult to compute the coefficients of g̃ under the local coordinates (x1, x2, y, z) ∈ R

4.
The coefficients can be expressed as

(g̃ij ) =

⎛
⎜⎜⎜⎜⎜⎝

−1 + x22
4 + x21x22

4 − x1x2
4 + x1x

3
2

4
x2
2 + x2x

2
1

2 − x1x2
2

− x1x2
4 + x1x

3
2

4 1 + x21
4 + x42

4 − x1
2 + x1x

2
2

2 − x22
2

x2
2 + x2x

2
1

2 − x1
2 + x1x

2
2

2 1 + x2
1 −x1

− x1x2
2 − x22

2 −x1 1

⎞
⎟⎟⎟⎟⎟⎠

(2.3)

When we restrict g̃ to D, we can get a smooth sub-Lorentzian metric g = g̃D , which
satisfies

g(X1, X1) = −1, g(X2, X2) = 1, g(X1, X2) = 0. (2.4)

On the other hand, any sub-Lorentzian metric onD can be extended to a (usually not unique)
Lorentzian metric on E. In this paper, we assume that X1 is the time orientation.

3 Horizontal Curves

Chow’s theorem states that any two points can be connected by a horizontal curve, but
we have no information about the character of horizontal curves. In this section, we will
investigate some properties of horizontal curves.

An absolutely continuous curve γ (s) : [0, 1] → E is said to be horizontal if the tangent
vector γ̇ (s) can be expressed linearly by the horizontal directions X1, X2; hence, we have
the following lemma.

Lemma 3.1 A curve γ (s) = (x1(s), x2(s), y(s), z(s)) is horizontal with respect to the
distribution D, if and only if

x2ẋ1

2
− x1ẋ2

2
+ ẏ = 0,

−x2
1 + x2

2

2
ẋ2 + ż = 0. (3.1)

Proof The distribution D is the annihilator of the one-forms:

ω1 = x2

2
dx1 − x1

2
dx2 + dy, ω2 = −x2

1 + x2
2

2
dx2 + dz

so γ (s) is horizontal if and only if (3.1) holds.



Geodesics in the Engel Group with a Sub-Lorentzian Metric 469

By the same method, we can easily calculate the left invariant coordinates u1(s) and
u2(s) of the horizontal curve γ (s):

u1 = ẋ1, u2 = ẋ2. (3.2)

The square of the velocity vector for the horizontal curve is as follows:

g(γ̇ , γ̇ ) = −u21 + u22 = −ẋ2
1 + ẋ2

2 . (3.3)

So whether a horizontal curve is time-like (or nspc.) is determined by the sign of −ẋ2
1 + ẋ2

2 .
Next, we present a left invariant property of horizontal curves in a Lie group with sub-

Lorentzian metric. That is to say, the causal character (time-like, space-like, light-like, or
non-space-like) of horizontal curves will not change under left translations. Hence, it is also
true for the Engel group.

Let us consider a left invariant sub-Lorentzian structure on a Lie group G: D =
span(X1, X2, · · · , Xk) ⊂ T G, g(Xi,Xj ) = (−1)δ1i δij , with a time orientation X1. The
vector fields Xi are assumed to be left invariant, i.e.,

Lx∗Xi(q) = Xi(x · q), x, q ∈ G, i = 1, · · · , k.

Proposition 3.2 Left translations preserve the causal character of horizontal curves of
a left invariant sub-Lorentzian structure on a Lie group G, and the property of future-
directness is also preserved.

Proof Let c(t) be a causal horizontal curve, and

ċ(t) =
k∑

i=1

ui(t)Xi(c(t)).

Then, the left translation γ (t) = x � c(t) has the same causal character, since

γ̇ (t) = Lx∗ċ(t) = Lx∗

(
k∑

i=1

ui(t)Xi(c(t))

)
=

k∑
i=1

ui(t)Lx∗(Xi(c(t)))

=
k∑

i=1

ui(t)Xi(x � c(t)) =
k∑

i=1

ui(t)Xi(γ (t)).

Therefore,

g(ċ(t), ċ(t)) =
k∑

i=1

(−1)δi1u2i = g(γ̇ (t), γ̇ (t)),

g(ċ(t), X1) = −u1 = g(γ̇ (t), X1).

By Chow’s Theorem, we know that any two points on the Engel group can be connected
by a horizontal curve. But we do not know its causal character. Next, we will present some
particular examples to show its complexity.

Example 1 Let ẋ2 = 0. Then, x2 = x0
2 is constant. The horizontal condition (3.1) becomes

x2

2
ẋ1 + ẏ = 0, (3.4)

ż = 0. (3.5)
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Then, therefore, the square of the velocity vector

− u21 + u22 = −ẋ2
1 ≤ 0. (3.6)

It follows that, the curves satisfying (3.4) and (3.5) are all non-space-like curves. Further-
more, we obtain,

y(s) = −1

2
x0
2x1(s) + 1

2
x0
2x

0
1 + y0, z(s) = z0. (3.7)

Therefore, all nonconstant horizontal curves c(s) =
(

x1(s), x
0
2 ,− x1(s)x

0
2

2 + x01x02
2 + y0, z0

)

are time-like. These curves are straight lines. If ẋ1 = 0, c(s) degenerate into some points,
so there are no null curves in this family.

Example 2 Let ẋ2 �= 0. We choose x2 as a parameter, then the horizontal condition (3.1)
becomes

x2

2
ẋ1 − x1

2
+ ẏ = 0, (3.8)

−x2
1 + x2

2

2
+ ż = 0. (3.9)

And the square of the velocity vector

− u21 + u22 = −ẋ2
1 + 1. (3.10)

We consider three different cases.

(a) If ẋ1 = 0, then x1 = x0
1 is constant, (3.8) and (3.9) become

−x0
1

2
+ ẏ = 0, (3.11)

−
(
x0
1

)2 + x2
2

2
+ ż = 0. (3.12)

In this case, |ċ(s)|2 = 1, so the curves satisfying (3.11) and (3.12) are all space-like.
Furthermore, we obtain,

y(s) = x0
1

2
x2 + y0, z(s) = 1

6
x3
2 +

(
x0
1

)2
2

x2 + z0. (3.13)

Therefore, all nonconstant horizontal curves c(s)=
(
x0
1,x2,

x01
2 x2+y0, 16x

3
2 +

(
x01

)2
2 x2+z0

)

are space-like. There are no null or time-like horizontal curves in this family.
(b) If ẏ = 0, Eqs. 3.8 and 3.9 become

x2ẋ1 − x1 = 0, (3.14)

−x2
1 + x2

2

2
+ ż = 0. (3.15)

From Eq. 3.14, we get
1

x2
= ẋ1

x1
,
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integrating with respect to x2, we calculate x1 = ιx2, where ι = x01
x02
, i.e., x1 = x01

x02
x2,

substituting x1 in Eq. 3.15, we obtain

z = 1

6

(
1 + ι2

)
x3
2 + z0. (3.16)

Therefore, all nonconstant horizontal curves

c(s) =
(

ιx2, x2, y
0,

1

6

(
1 + ι2

)
x3
2 + z0

)
(3.17)

are time-like when |ι| > 1. If |ι| < 1 (= 1), they are space-like (null).
(c) If ż = 0, the horizontal condition becomes:

x2

2
ẋ1 − x1

2
+ ẏ = 0, (3.18)

−x2
1 + x2

2

2
= 0. (3.19)

So x1 = x2 = 0, y = y0. The curves degenerate into some points. There are no causal
(time-like, space-like, null) horizontal curves in this family.

Thus, any two points P1
(
x0
1 , x

0
2 , y

0, z0
)
, Q1

(
x1, x

0
2 , y

1, z0
)
can be connected by a time-

like horizontal curve if y1 = − x1x
0
2

2 + x01x02
2 + y0. Especially, any two points

(
x0
1 , 0, y

0, z0
)
,(

x1, 0, y0, z0
)
can be connected by a time-like horizontal straight line.

Any two points P1
(
x0
1 , x

0
2 , y

0, z0
)
, Q2

(
x0
1 , x2, y

1, z1
)
can be connected by a space-like

horizontal curve if y1 = x01
2 x2 + y0, z1 = 1

6x
3
2 +

(
x01

)2
2 x2 + z0.

Any two points P1
(
x0
1 , x

0
2 , y

0, z0
)
, Q3

(
x1, x2, y

0, z1
)
can be connected by a time-like

(space-like, null) horizontal curve if x1 = ιx2, z1 = 1
6

(
1 + ι2

)
x3
2 + z0, and | ι |=

∣∣∣∣ x
0
1

x02

∣∣∣∣ >

1(< 1, = 1).

4 Sub-Lorentzian Geodesics

In the Lorentzian geometry, there are no curves of minimal length because two arbitrary
points can be connected by a piecewise light-like curve whose length is always 0. For exam-
ple, let R2 be the two-dimensional Minkowski space, p̂ = (x̂, ŷ) is any one point in this
space. We want to find a light-like curve going from the origin to p̂. First, we choose a curve

γ1(t) : (x(t), y(t)) = (t, t) which connects the origin and the point
(

x̂+ŷ
2 ,

x̂+ŷ
2

)
; then, we

choose the second curve γ2(t) : (x(t), y(t)) = (t, −t + x̂ + ŷ) which joins
(

x̂+ŷ
2 ,

x̂+ŷ
2

)
and

p̂. It is easy to check that the curve γ (t) consisting of γ1 and γ2 is a light-like curve. It goes
from the origin to the point p̂, and the length is 0. However, there do exist time-like curves
with maximal length which are time-like geodesics [17]. For this reason, we will study the
optimality of time-like geodesics and compute the longest curve among all horizontal time-
like ones on the sub-Lorentzian Engel group. The computation will be given by extremizing
the action integral S = 1

2

∫ (−u21 + u22

)
dt under constraint (3.1). By Proposition 3.2, hori-

zontal time-like curves are left invariant, so we can assume that the initial point is origin, i.e.,
x1(0) = x2(0) = y(0) = z(0) = 0, and time-like initial velocity is −u21(0) + u22(0) = −1.
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Let ξ = (ξ1, ξ2, ξ3, ξ4) be the vector of costate variables, so the Hamiltonian function of
Pontryagin’s maximum principle is

H(ξ0, ξ, q, u) = ξ0
−u21 + u22

2
+ ξ1u1 + ξ2u2 + ξ3

x1u2 − x2u1

2
+ ξ4

x2
1 + x2

2

2
u2. (4.1)

where ξ0 is a constant which equals to 0 or −1. Also, we get the Hamiltonian system:

ẋ1 = Hξ1 = u1, ẋ2=Hξ2 = u2, ẏ =Hξ3 = x1u2 − x2u1

2
, ż = Hξ4 = x2

1 + x2
2

2
u2,

ξ̇1 = −Hx1 = −ξ3u2

2
− ξ4x1u2, ξ̇2 = −Hx2 = ξ3u1

2
− ξ4x2u2, ξ̇3 = ξ̇4 = 0, (4.2)

and the maximum condition:

H(ξ0, ξ(t), q(t), u(t)) = max
ũ∈R2

H(ξ0, ξ(t), q̃(t), ũ), ξ0 ≤ 0, (4.3)

where u(t) is the optimal control, and (ξ0, ξ(t)) �= 0.

4.1 Abnormal Extremal Trajectories

We shall investigate the abnormal case ξ0 = 0. From the maximum condition (4.3), we
obtain

Hu1 = ξ1 − ξ3x2

2
= 0, (4.4)

Hu2 = ξ2 + ξ3x1

2
+ ξ4(x

2
1 + x2

2 )

2
= 0. (4.5)

Differentiating Eqs. 4.4 and 4.5, we obtain

0 = ξ̇1 − ξ3ẋ2

2
= ξ̇1 − ξ3u2

2
= −u2(ξ3 + ξ4x1), (4.6)

0 = ξ̇2 + ξ3ẋ1

2
+ ξ4(x1ẋ1 + x2ẋ2) = u1(ξ3 + ξ4x1). (4.7)

For a time-like curve, we assume that −u21 + u22 = −1, so ξ3 + ξ4x1 = 0. If ξ4 = 0,
then, ξ3 = 0, and therefore, ξ = 0. It is a contradiction with the nontriviality of the costate
variables; hence, ξ4 �= 0. In this case, x1 = −ξ3

ξ4
is a constant, and u1 = 0, u2 = ±i, so

there is no time-like abnormal extremal in the Engel group E.
For a space-like curve, we assume that −u21 +u22 = 1, by using the same method, we get

that u1 = 0, u2 = ±1, so the space-like abnormal extremal trajectories are given by the
following expression:

γ (s) =
(
0, ±s, 0, ± s3

6

)
. (4.8)

For a null curve, suppose that −u21 + u22 = 0, we can easily get that u1 = 0, u2 = 0, so
the null abnormal extremal trajectories are trivial curves.
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4.2 Normal Geodesics

4.2.1 Normal Hamiltonian System

Now, we look at the normal case ξ0 = −1. It follows from the maximum condition (4.3)
that Hu1 = Hu2 = 0. Hence,

u1 = −
(

ξ1 − x2ξ3

2

)
, u2 = ξ2 + ξ3x1

2
+ ξ4(x

2
1 + x2

2 )

2
. (4.9)

Let ζi = (ξ,Xi), i = 1, 2, be the Hamiltonian corresponding to the basis vector fields
X1, X2 in the cotangent space T ∗

q E. They are linear on the fibers of the cotangent space
T ∗E, and

ζ1 = ξ1 − x2

2
ξ3, ζ2 = ξ2 + x1

2
ξ3 + x2

1 + x2
2

2
ξ4. (4.10)

So u1 = −ζ1 and u2 = ζ2.
The Hamiltonian system in the normal case becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = ∂H
∂ξ1

= −(ξ1 − x2
2 ξ3) = −ζ1,

ẋ2 = ∂H
∂ξ2

=
(

ξ2 + x1
2 ξ3 + x21+x22

2 ξ4

)
= ζ2,

ẏ = ∂H
∂ξ3

= ζ1
x2
2 + ζ2

x1
2 = 1

2 (x1ζ2 + x2ζ1),

ż = ∂H
∂ξ4

= x21+x22
2 ζ2,

ξ̇1 = − ∂H
∂x1

= −ζ2

(
ξ3
2 + x1ξ4

)
,

ξ̇2 = − ∂H
∂x2

= − 1
2ξ3ζ1 − x2ξ4ζ2,

ξ̇3 = − ∂H
∂y

= 0,

ξ̇4 = − ∂H
∂z

= 0.

(4.11)

Definition 4.1 A normal geodesic in the sub-Lorentzian manifold (E,D, g) is a curve γ :
[a, b] → E that admits a lift 	 : [a, b] → T ∗M , which is a solution of the Hamiltonian
equations (4.11). In this case, we say that 	 is a normal lift of γ .

Associate with the expression of H , a sub-Lorentzian geodesic is time-like if H < 0;
space-like if H > 0; light-like if H = 0.

Remark 4.1 In fact, abnormal extremal trajectories (4.8) are also normal geodesics, since we
can choose the costate variables as ξ̃ = (0, ±1, 0, 0); it is easy to check that 	(t) = (γ, ξ̃ )

satisfies Hamiltonian equation (4.11). This example also confirms that normal geodesics
and abnormal trajectories are sometimes not mutually exclusive.

Lemma 4.2 The causal character of normal sub-Lorentzian geodesics does not depend on
time.

Proof The Hamiltonian H is an integral of the Hamiltonian system, i.e., Ḣ (s) = 0; this
implies that the causality character does not change for all t ∈ [0, ∞).

Remark 4.3 If γ (t) is a nspc. normal geodesic on the Engel group, then the orientation will
not change along the curve. In fact, if γ (t) is time-like, and it is future directed at t = 0,
then, we have −u21(t)+u22(t) = −1, u1(0) > 0. We only need to show that u1(t) will not be
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equal to 0 along the curve γ (t). Actually, if there is a t1 > 0, such that u1(t1) = 0, then we
have u22(t1) = −1; it is impossible. So, u1(t) will not change the sign (since u1(t) = −ζ1(t)

is continuous), and γ (t) is future directed along the curve. It is also true for the other cases.

Differentiating ζi ,

ζ̇1 = ξ̇1 − ξ3

2
ẋ2 = −ζ2(ξ3 + x1ξ4), (4.12)

ζ̇2 = ξ̇2 + 1

2
ẋ1ξ3 + (x1ẋ1 + x2ẋ2)ξ4 = −ζ1(ξ3 + x1ξ4). (4.13)

Let
β(s) = −(ξ3 + x1ξ4), β̇ = ξ4ζ1, (4.14)

then, we have
ζ̇1 = βζ2, ζ̇2 = βζ1, β̇ = ξ4ζ1. (4.15)

4.2.2 Maximality of Short Arcs of Geodesics

Definition 4.2 Let ϕ be a smooth function onM, andU an open subset inM. The horizontal
gradient ∇H ϕ of ϕ is a smooth horizontal vector field on U such that for each p ∈ U and
v ∈ H , ∂vϕ(p) = g(∇H ϕ(p), v).

Locally, we can write

∇H ϕ = −(∂X1ϕ)X1 +
r∑

i=2

(∂Xi
ϕ)Xi.

Now, we give a proof that the time-like normal geodesics are locally maximizing curves
on the Engel group.

Proposition 4.4 If γ is a t.f.d. (t.p.d.) normal geodesic on the Engel group, then every
sufficiently short sub-arc of γ is a maximizer.

Proof Assume that γ : (a, b) → E is parameterized by arc-length, γ̇ (t) =
u01(t)X1(γ (t)) + u02(t)X2(γ (t)), X1 is the time orientation, and 	̃(t) = (γ (t), λ(t)) is the
normal lift of γ . So, we have H(γ (t), λ(t)) = − 1

2 , t ∈ (a, b). For any c ∈ (a, b), ε > 0,
let Jc = (c − ε, c + ε) ⊂ (a, b) be a neighborhood of c. We will prove that γ |Jc is max-
imal for any c ∈ (a, b) and small ε > 0. Since the sub-Lorentzian metric is left invariant,
so we can assume that γ (c) = 0, λ(c) = λ0. Consider an three-dimensional hypersurface
S passing through the origin 0, and satisfying λ0(T0(S)) = 0. Let λ̄ be a smooth one-form
on an open neighborhood � of 0, such that λ̄(0) = λ0, and ∀p ∈ S ∩ �, λ̄(p)(TpS) = 0,
H(p, λ̄(p)) = − 1

2 . Let 	p = (γp, λp) be the solution of 	̇(t) = �H(	(t)), 	(c) =
(p, λ̄(p)). Then, clearly 	0 = 	̃. Since γ̇ (0) �∈ T0S, by the Implicit Function Theorem,
there exits a diffeomorphism:

ν : (c − ε, c + ε) × W → U ⊂ E,

(t, p) → γp(t),

where W is a neighborhood of 0 in S, U ⊂ � is a neighborhood of 0 in E. Define a smooth
function V : U → R as follows:

V (x) = t, if x = γp(t),
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we will show that ‖∇H V ‖ = 1. For this purpose, let Y1 be the vector field on U given by

Y1(x) = γ̇p(t) = u1(p, t)X1(γp(t)) + u2(p, t)X2(γp(t)), if x = γp(t),

where u1(p, t), u2(p, t) are smooth functions on W × (c − ε, c + ε), and u1(0, t) =
u01(t), u2(0, t) = u02(t). Since H(p, λ̄(p)) = − 1

2 , by the construction of 	p(t), we have
H(γp(t), λp(t)) = − 1

2 , and −u21 + u22 = −1. It is easy to check that Y1 = u1X1 +
u2X2, Y2 = u2X1 + u1X2 is also an orthonormal basis of D, so ∂Y1V = 1, ∂Y2V = 0.

Therefore, ∇H V = −Y1, ‖∇H V ‖ = √|g(−Y1,−Y1)| =
√

| − u21 + u22| = 1. Choose

t1, t2 in the domain of γ . If γ (t) is a t.f.d. geodesic, then |u01| > |u02|, and u01 > 0.
Since u1(0, t) = u01, and u1(p, t) is a smooth function, so there exists a neighborhood
W1 × (c − ε1, c + ε1) ⊂ W × (c − ε, c + ε) such that u1(p, t) > 0. Thus, ∇H V = −Y1
is past directed. On the other hand, since −u21 + u22 = −1, we have |u1| > |u2|. Let
η : [0, α] → U be a t.f.d. curve with η(0) = γ (t1), η(α) = γ (t2), and η̇ = v1X1 + v2X2,

then |v1| > |v2|, v1 > 0, so g(η̇,∇H V ) = u1v1 − u2v2 > 0, and

L(γ |[t1,t2]) = t2 − t1 = V (γ (t2)) − V (γ (t1)) =
∫ α

0

dV (η(s))

ds
ds

=
∫ α

0
g(η̇,∇H V )ds ≥

∫ α

0
‖η̇(s)‖ds = L(η|[0,α]).

By the reverse Schwartz inequality, L(γ ) = L(η) holds if and only if η can be reparameter-
ized as a trajectory of −∇H V . If γ (t) is a t.p.d. geodesic, then |u01| > |u02|, and u01 < 0. By
the same method, we choose a neighborhood W2 × (c − ε2, c + ε2) ⊂ W × (c − ε, c + ε)

such that u1(p, t) < 0. Thus, ∇H V = −Y1 is future directed. Let ρ : [0, α] → U be a t.p.d.
curve with ρ(0) = γ (t1), ρ(α) = γ (t2), and ρ̇ = μ1X1+μ2X2, then |μ1| > |μ2|, μ1 < 0,
so g(ρ̇, ∇H V ) = u1μ1 − u2μ2 > 0, and

L(γ |[t1,t2]) = t2 − t1 = V (γ (t2)) − V (γ (t1)) =
∫ α

0

dV (η(s))

ds
ds

=
∫ α

0
g(ρ̇, ∇H V )ds ≥

∫ α

0
‖ρ̇(s)‖ds = L(ρ|[0,α]).

By the reverse Schwartz inequality, L(γ ) = L(ρ) holds if and only if ρ can be reparameter-
ized as a trajectory of −∇H V . In conclusion, the t.f.d (t.p.d.) normal geodesics are locally
maximizers. This ends the proof.

4.2.3 Light-Like Geodesics

Next, we compute the expressions of light-like geodesics and time-like geodesics on the
Engel group. Firstly, we study the case of light-like sub-Lorentzian geodesics.

By the definition, we have H = 1
2

(−ζ 2
1 + ζ 2

2

) = 0, thus ζ2 = ±ζ1. If ζ2 = ζ1, then
light-like trajectories satisfy the ODE:

γ̇ = −ζ1(X1 − X2),

i.e., they are reparameterizations of the one-parametric subgroup of the field X1 − X2. We
assume γ̇ = X1 − X2, so

ẋ1 = 1, ẋ2 = −1, ẏ = −1

2
(x1 + x2), ż = −1

2

(
x2
1 + x2

2

)
,
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thus,

x1 = t, x2 = −t, y = 0, z = −1

3
t3.

If h2 = −h1, similarly, we obtain

x1 = t, x2 = t, y = 0, z = 1

3
t3.

In conclusion, we get the following theorem:

Theorem 4.5 Light-like horizontal geodesics starting from the origin are reparameteriza-
tions of the curves:

x1 = t, x2 = ±t, y = 0, z = ±1

3
t3,

i.e., they are reparameterizations of the one-parameter subgroups corresponding to the
vector fields X1 ± X2.

4.2.4 Time-Like Geodesics

Secondly, we study time-like sub-Lorentzian geodesics on the Engel group.
We consider the case of ξ4 = 0 at first. This case is also of interest since it reproduces the

earlier known results for the Heisenberg group [18]. In this case, β = −(ξ3 + x1ξ4) = −ξ3
is a constant. Equations 4.15 become

ζ̇1 = −ξ3ζ2, ζ̇2 = −ξ3ζ1, (4.16)

where ξ3 is a constant. There are two separate cases:

Case 1 If ξ3 = 0, we have ζ1 and ζ2 are constants, i.e., ζ1(s) = ζ1(0) = ξ1(0) and
ζ2(s) = ζ2(0) = ξ2(0). According to Eq. 4.11, ξ1 and ξ2 are constants. On the other hand,
by integrating ẋ1 = −ζ1 and ẋ2 = ζ2, we get

x1(s) = −ξ1s and x2(s) = ξ2s. (4.17)

Since ẏ = 1
2 (x1ζ2 + x2ζ1) = 0, then y(s) = 0. Also

ż = x2
1 + x2

2

2
ζ2 = ξ21 + ξ22

2
ξ2s

2,

so

z(s) = ξ21 + ξ22

6
ξ2s

3 = x2
1 (s)x2(s) + x3

2 (s)

6
.

Theorem 4.6 In the case of ξ3 = ξ4 = 0, there is a unique time-like horizontal geodesic
joining the origin to a point (x1, x2, y, z), if and only if y = 0, z is the following function of
x1, x2:

z = x2
1x2 + x3

2

6
. (4.18)

The expression of the geodesic is

x1(s) = −ξ1s, x2(s) = ξ2s, y(s) = 0, z(s) = ξ21 + ξ22

6
ξ2s

3, (4.19)

where ξ1, ξ2 are constants. The arc-length is given by

l =
√

x2
1 − x2

2 . (4.20)
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Its projection to the (x1, x2) plane is a straight line.

Case 2 If ξ3 �= 0, from Eq. 4.16, we have

ζ1(s) = ξ01 cosh(ξ3s) − ξ02 sinh(ξ3s), (4.21)

ζ2(s) = −ξ01 sinh(ξ3s) + ξ02 cosh(ξ3s), (4.22)

where ξ01 = ξ1(0), ξ02 = ξ2(0). So,

x1 = −
∫ s

0
ζ1(t)dt = −ξ01

ξ3
sinh(ξ3s) + ξ02

ξ3
(cosh(ξ3s) − 1) , (4.23)

x2 =
∫ t

0
ζ2(t)dt = −ξ01

ξ3
(cosh(ξ3s) − 1) + ξ02

ξ3
sinh(ξ3s). (4.24)

Substituting them into the expression of ẏ, ż in Eq. 4.11, and integrating, we get

Theorem 4.7 In the case of ξ3 �= 0, ξ4 = 0, the time-like horizontal geodesics starting from
the origin are given by the following:

x1(s) = −A1 sinh(ξ3s) + A2 (cosh(ξ3s) − 1) , (4.25)

x2(s) = −A1 (cosh(ξ3s) − 1) + A2 sinh(ξ3s), (4.26)

y(s) = 1

2

(
A2
2 − A2

1

)
(ξ3s − sinh(ξ3s)) , (4.27)

z(s) = A2

(
A2
1 + A2

2

)
cosh2(ξ3s) sinh(ξ3s) − 2

3
A3
2 sinh

3(ξ3s) − 1

3
A1

(
A2
1 + 3A2

2

)
cosh3(ξ3s)

+1

2
A1

(
A2
1 + 3A2

2

)
cosh

2
(ξ3s) − 1

2
A2

(
3A2

1 + A2
2

)
sinh(ξ3s) cosh(ξ3s) − 1

2
A2

(
3A2

1 + A2
2

)
s

−1

6
A1

(
A2
1 + 3A2

2

)
. (4.28)

where ξ01 = ξ1(0), ξ02 = ξ2(0) is the initial value, ξ3, A1 = ξ01
ξ3
, A2 = ξ02

ξ3
are constants.

Projections of geodesics to the plane (x1, x2) are hyperbolas, for ξ(0) =
(√

2, 1, 1, 0
)
,

ξ(0) =
(√

5
2 , 1

2 , 1, 0
)
and ξ(0) =

(√
5
2 , 1

2 ,−1, 0
)

, they are shown in Fig. 1.

From this theorem, we obtain a description of the reachable set by geodesics ξ3 �= 0, ξ4 =
0 starting from the origin.
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Fig. 1 Projections of geodesics to the plane (x1, x2) when ξ3 �= 0, ξ4 = 0
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Corollary 4.8 In the case of ξ3 �= 0, ξ4 = 0, let (x1, x2, y, z) be a point on a time-like
geodesic, then we have

−1 <
4y

−x2
1 + x2

2

< 1.

Proof By Eqs. 4.25 and 4.26, we get

− x2
1 + x2

2 = 4
(
A2
2 − A2

1

)
sinh2

(
ξ3

2

)
, (4.29)

substituting Eq. 4.29 into Eq. 4.27, we obtain the following equation:

y =
(−x2

1 + x2
2

)
(ξ3 − sinh(ξ3))

8 sinh2
(

ξ3
2

) , (4.30)

if we set τ = ξ3
2 , then

y =
(−x2

1 + x2
2

)
4

(
τ

sinh2(τ )
− coth(τ )

)
, (4.31)

or
4y(−x2
1 + x2

2

) = τ

sinh2(τ )
− coth(τ ). (4.32)

It is easy to check that the right-hand side of Eq. 4.32 is a decreasing function in (−∞,

+∞), and its range is (−1, 1). That is to say, the points on the time-like geodesics should
satisfy

−1 <
4y

−x2
1 + x2

2

< 1.

This ends the proof.

Next, we consider the case ξ4 �= 0. Recall that

ζ̇1 = βζ2, ζ̇2 = βζ1, where β(s) = −(ξ3 + x1ξ4), β̇ = ξ4ζ1. (4.33)

Combining the expressions for β̇ and ζ̇2 to get

ξ4ζ̇2 = βξ4ζ1 = ββ̇. (4.34)

Integrating both sides, we have

ξ4ζ2 = β2

2
+ C1, where C1 = ξ4ζ2(0) − β2(0)

2
= ξ4ξ

0
2 − ξ23

2
. (4.35)

This yields

x1(s) = −β(s) + ξ3

ξ4
, (4.36)

and

ζ2(s) = 1

ξ4

(
β2(s)

2
+ C1

)
. (4.37)

Since ẋ2 = ζ2, we deduce

x2(s) =
∫ s

0
ζ2(t)dt = 1

ξ4

∫ s

0

(
β2(t)

2
+ C1

)
dt. (4.38)
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To compute y(s) in term of β(s), we note that

ẏ = 1

2
(x1ζ2 + x2ζ1) = 1

2
(x1ẋ2 − x2ẋ1), (4.39)

then integration by parts yields

y(s) = 1

2

∫ s

0
(x1ẋ2 − x2ẋ1)dt =

∫ s

0
x1ζ2dt − 1

2
x1x2

= − 1

ξ24

∫ s

0
(β(t) + ξ3)

(
β2(t)

2
+ C1

)
dt − 1

2
x1x2. (4.40)

Finally, since ż = x21+x22
2 ζ2,

z(s) =
∫ s

0

x2
1 + x2

2

2
ζ2dt = 1

2

∫ s

0
x2
1ζ2dt + 1

6
x3
2

= 1

2ξ34

∫ s

0
(β(t) + ξ3)

2

(
β2(t)

2
+ C1

)
dt + 1

6
x3
2 . (4.41)

Once we find β, we can find the geodesic (x1(s), x2(s), y(s), z(s)) explicitly.
Since β̇(s) = ξ4ζ1, β̇(0) = ξ4ζ1(0) = ξ4ξ

0
1 , we have

β̈(s) = ξ4ζ̇1 = ξ4β(s)ζ2 = β(s)(ξ4ζ2) = β(s)

(
β2(s)

2
+ C1

)
. (4.42)

Multiplying both sides by 2β̇(s) and integrating, we have

β̇2(s) = β4(s)

4
+ C1β

2(s) + C2 =
(

β2(s)

2
+ C1

)2

+ C2 − C2
1 , (4.43)

where C2 is a constant, and

C2 = β̇2(0) − β4(0)

4
− C1β

2(0) = (ξ01 )2ξ24 + ξ43

4
− ξ02 ξ23 ξ4. (4.44)

Then,

C2 − C2
1 = (ξ01 )2ξ24 + ξ43

4
− ξ02 ξ23 ξ4 −

(
ξ02 ξ4 − ξ23

2

)2

= ξ24 ((ξ01 )2 − (ξ02 )2) = ξ24 , (4.45)

since (ξ01 )2 − (ξ02 )2 = 1.
Assume β̇(s) > 0, we have

dβ(s)

ds
=
√(

β2(s)

2
+ C1

)2

+ ξ24 . (4.46)

Hence,

ds = dβ√(
β2(s)
2 + C1

)2 + ξ24

. (4.47)

Let ρ2 = C1 + ξ4i, ρ̄2 = C1 − ξ4i and u = β√
2
, integrating (4.47) from 0 to s, we obtain

s =
∫ β(s)√

2

β(0)√
2

√
2du√

(u2 + ρ2)(u2 + ρ̄2)
. (4.48)
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Set

k2 = − (ρ − ρ̄)2

4ρρ̄
=

√
C2
1 + ξ24 − C1

2
√

C2
1 + ξ24

,

g = 1

2
√

ρρ̄
= 1

2
(
C2
1 + ξ24

) 1
4

.

Since ∫ ∞

y

dt√
(t2 + ρ2)(t2 + ρ̄)

= g · cn−1 (cos ϕ, k) = gF(ϕ, k), (4.49)

where cn−1 (y, k) is a Jacobi’s Inverse Elliptic Functions, and

ϕ = cos−1

(
y2 − ρρ̄

y2 + ρρ̄

)
, F (ϕ, k) =

∫ ϕ

0

dt√
1 − k2sin2 t

.

Hence,

∫ β(s)√
2

β(0)√
2

√
2du√

(u2 + ρ2)(u2 + ρ̄2)
=
∫ ∞

β(0)√
2

√
2du√

(u2 + ρ2)(u2 + ρ̄2)
−
∫ ∞

β(s)√
2

√
2du√

(u2 + ρ2)(u2 + ρ̄2)
.

According to Eq. 4.49, we have
∫ ∞

β(0)√
2

√
2du√

(u2 + ρ2)(u2 + ρ̄2)
= √

2gF(ϕ1, k) = constant, (4.50)

where

ϕ1 = cos−1

⎛
⎜⎝ξ23 − 2

√
C1 + ξ24

ξ23 + 2
√

C1 + ξ24

⎞
⎟⎠ .

Since ∫ ∞
β(s)√

2

√
2du√

(u2 + ρ2)(u2 + ρ̄2)
= √

2g · cn−1

(
β2(s) − 2ρρ̄

β2(s) + 2ρρ̄

)
. (4.51)

Hence,

cn−1

(
β2(s) − 2ρρ̄

β2(s) + 2ρρ̄

)
= F(ϕ1, k) − s√

2g
, (4.52)

let F = F(ϕ1, k), we obtain

β2(s) =
2ρρ̄

(
1 + cn

(
F − s√

2g
, k
))

(
1 − cn

(
F − s√

2g
, k
)) = 2ρρ̄ (1 + cn (2s̃, k))

(1 − cn (2s̃, k))
, (4.53)

where 2s̃ = F − s√
2g
.

Since
1 − cn (2s)

1 + cn (2s)
= tn2 (s)dn2 (s), (4.54)



Geodesics in the Engel Group with a Sub-Lorentzian Metric 481

1.0 0.8 0.6 0.4 0.2
x1

0.30

0.25

0.20

0.15

0.10

0.05

x2

1.0 0.8 0.6 0.4 0.2
x1

0.3

0.2

0.1

x2

1.0 0.8 0.6 0.4 0.2
x1

0.05

0.10

0.15

x2

Fig. 2 Projections of geodesics to the plane (x1, x2) when ξ3 �= 0, ξ4 �= 0

hence,

β(s) =
√
2ρρ̄

tn (s̃, k)dn (s̃, k)
= √

2ρρ̄cs (s̃, k)nd (s̃, k). (4.55)

For the case of β̇(s) < 0, we can calculate by the same method, and get the same result.
But the expression of the parameter s̃ in Eqs. 4.53 and 4.55 should be changed to

1

2

(
F + s√

2g

)
.

Thus, the sign of β̇(s) will not affect the expression of the geodesics.
Therefore, integrating Eqs. 4.36, 4.38, 4.40, and 4.41, we get a complete description of

the Hamiltonian time-like geodesics in the Engel group.

Theorem 4.9 In the case of ξ4 �= 0, time-like geodesics starting from the origin are given
by the following:

x1(s) = − 1

ξ4
(β(s) + ξ3), (4.56)

x2(s) = 1

2ξ4
(B2(s) + 2C1), (4.57)

y(s) = − 1

2ξ24
(B3(s) + 2C1B1(s) + ξ3B2(s) + 2C1ξ3s) − 1

2
x1(s)x2(s), (4.58)

z(s) = 1

4ξ34
(B4(s) + 2C1B2(s) + 2ξ3B3(s) + 4C1ξ3B1(s) + ξ23B2(s) + 2C1ξ

2
3 ) + 1

6
x3
2 (s),

(4.59)

where C1 = ξ4ξ
0
2 − ξ23

2 , Bi(s) = ∫ s

0 βi(t)dt, i = 1, . . . , 4, and the expressions of Bi(s) are
presented in Appendix.

Projections of geodesics to the plane (x1, x2) with ξ(0) = (1, 0, 1, 1), ξ(0) =(√
5
2 , 1/2, 2, 1

)
and ξ(0) =

(√
5
2 , 1/2, 1, 1

)
are shown in Fig. 2.
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Appendix

Denoting

ψ1(s) = ln (k′2 + cs2 (s, k)), ψ2(s) = dn (2s, k)sn (2s, k)

(1 − cn (2s, k))2
,

ψ3(s) = E(2s, k) − E(2s, k)cn (2s, k)

1 − cn (2s, k)
, F (ϕ, k) =

∫ ϕ

0

dt√
1 − k2sin2 t

,

k2 =
√

C2
1 + ξ24 − C1

2
√

C2
1 + ξ24

, g = 1

2
(
C2
1 + ξ24

) 1
4

, ϕ1 = cos−1

⎛
⎜⎝ξ23 − 2

√
C1 + ξ24

ξ23 + 2
√

C1 + ξ24

⎞
⎟⎠

we get the expressions of Bi(s) as following:

B1(s) =
∫ s

0
β(t)dt = gψ1(s̃) + D1,

B2(s) =
∫ s

0
β2(t)dt =

√
2

g
[−3s̃ + (1 − cn (2s̃, k))ψ2(s̃) + ψ3(s̃)] + D2,

B3(s) =
∫ s

0
β3(t)dt = 1

2g2k′2
[
k′2cs2 (s̃, k) + k′2(2k2 − 1)ψ1(s̃) − (2k4 − k6 − k2)eψ1(s̃)

]
+ D3,

B4(s) =
∫ s

0
β4(t)dt =

√
2

3g3

[
−3

2
s̃ + (3 − 4k2)ψ2(s̃) + 4k′2(1 + k2)s̃ − 2k′2E(2s̃, k)

]
+ D4,

where s̃ = 1
2

(
F ± s√

2g

)
, F = F(ϕ1, k), D1,D2, D3, D4 are constants, and

D1 = −gψ1

(
F

2

)
,

D2 =
√
2

g

[
3F

2
− (1 − cn (F, k))ψ2

(
F

2

)
− ψ3

(
F

2

)]
,

D3 = 1

2g2k′2

[
−k′2cs2

(
F

2
, k

)
− k′2(2k2 − 1)ψ1

(
F

2

)
+ (2k4 − k6 − k2)e

ψ1

(
F
2

)]
,

D4 =
√
2

3g3

[
3F

4
− (3 − 4k2)ψ2

(
F

2

)
− 2k′2(1 + k2)F + 2k′2E(F, k)

]
.
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