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Abstract The paper is concerned with a two-player nonzero-sum differential game in the
case when players are informed about the current position. We consider the game in control
with guide strategies first proposed by Krasovskii and Subbotin. The construction of uni-
versal strategies is given both for the case of continuous and discontinuous value functions.
The existence of a discontinuous value function is established. The continuous value func-
tion does not exist in the general case. In addition, we show the example of smooth value
function not being a solution of the system of the Hamilton–Jacobi equation.
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1 Introduction

The purpose of this paper is to study the Nash equilibria for a two-player deterministic
differential game in the case when the players are informed about the present position. We
construct the pair of strategies providing the Nash equilibrium at any initial position from
the given compact set. It is natural to say that such pair of strategies is a universal Nash
equilibrium for a given compact set. Note that the notion of universality generalizes the
concept of strong time consistency (subgame perfectness).

There are two approaches in the literature dealing with this problem (see [8] and the
references therein). The first approach is close to the so-called Folk Theorem for repeated
games and is based on the punishment strategy technique. This technique makes it possible
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to establish the existence of Nash equilibrium at the given initial position in the framework
of feedback strategies [14, 15] and in the framework of Friedman strategies [21]. The set
of Nash equilibria at the given initial position is characterized in [12, 14]. The infinitesimal
version of this characterization is derived in [2, 4]. In addition, each Nash equilibrium payoff
at the given position corresponds to the pair of continuous functions; these functions are
stable with respect to auxiliary zero-sum differential games, and their values at the initial
position are kept along some trajectory [3]. Note that in this case, the Nash equilibrium
strategies are not universal.

The key idea of the second approach is to find a Nash equilibrium payoff as a solu-
tion of the system of the Hamilton–Jacobi equations [5, 11, 13]. In this case, the universal
Nash equilibrium can be constructed. However, the existence theorem for the system of
the Hamilton–Jacobi equations is established only for some cases of the games in one
dimension [6, 7, 9, 10].

In this paper, we consider the Nash equilibrium for deterministic differential games in
control with guide strategies. These strategies was first proposed by Krasovskii and Sub-
botin for zero-sum differential games [17]. In the framework of this formalization, the player
forms his control stepwise. It is assumed that the player measures the state of the system
only in the times of control correction. At the time of control correction, the player esti-
mates the state of the system using the information about the state of the system at the
previous time instants of control correction. Having this estimate and the information about
the real state of the system, he assigns the control which is used up to the next control cor-
rection. Roughly speaking, the player using control with guide strategies needs instruments
to measure the current position and a computer to store the information about the state of
the system at the previous time of control correction, and to evaluate the state of the system
at the current time of control correction, whereas the player using feedback strategies needs
only measuring instruments.

The choice of control with guide strategies is motivated by the following arguments.
Even for zero-sum differential game, a universal feedback solution does not exist (feedback
strategies solving the game at any position from the given compact) [19]. The universal
solution of zero-sum differential games can be found in the class of feedback strategies
depending on the precision parameter [16] or in the class of control with guide strategies
[17]. However, for nonzero-sum differential games, an existing design of Nash equilibria
in the class feedback strategies depending on the precision parameter does not provide the
universality.

The paper is organized as follows. In Section 2, we set up the problem and introduce
the control with guide strategies. In Section 3, we construct the Nash equilibrium in the
control with guide strategies for the case of a continuous value function. This function is to
satisfy some viability conditions. Further in Section 3, the properties of a continuous value
function are considered. We give the infinitesimal form of viability conditions. After, we
compare the value functions satisfying viability conditions and the solutions of the system
of the Hamilton–Jacobi equations. The example showing that the continuous value function
does not exist in the general case completes Section 3. In Section 4, we generalize the
construction of Section 3 for the case of an upper semicontinuous value multifunction. In
Section 5, we prove the existence of a value multifunction.
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2 Problem Statement

Let us consider a two-player differential game with the dynamics

ẋ = f (t, x, u)+ g(t, x, v), t ∈ [0, T ], x ∈ R
n, u ∈ P, v ∈ Q. (1)

Here, u and v are controls of player I and player II, respectively. Payoffs are terminal. Player
I wants to maximize σ1(x(T )), whereas player II wants to maximize σ2(x(T )). We assume
that sets P and Q are compacts, and functions f , g, σ1, and σ2 are continuous. In addition,
suppose that functions f and g are Lipschitz continuous with respect to the phase variable
and satisfy the sublinear growth condition with respect to x.

Denote
U := {u : [0, T ] → P measurable},
V := {v : [0, T ] → Q measurable}.

If u ∈ U , v ∈ V , then denote by x(·, t0, x0, u, v) the solution of the initial value problem
ẋ(t) = f (t, x(t), u(t))+ g(t, x(t), v(t)), x(t0) = x0.

We assume that the players use control with guide strategies (CGS). In this case, the
control depends not only on a current position but also on a vector w. The vector w is called
a guide. The dimension of the guide can differ from n.

The control with guide strategy of player I U is a triple of functions
(
u,ψ1, χ1

)
such

that for some natural m, the function u maps [0, T ] ×R
n ×R

m to P , the function ψ1 maps
[0, T ] × [0, T ] ×R

n × R
m to Rm, and χ1 is a function of [0, T ] ×R

n with values in Rm.
The meaning of the functions u, ψ1, and χ1 is the following. Let w1 be a m-dimensional

vector. Further, it denotes the state of the first player’s guide. Player I computes the value of
the variablew1 using the rules which are given by the strategyU . The function u

(
t∗, x∗, w1

)

is a function forming the control of player I. It depends on the current position (t∗, x∗) and
the current state of guide w1. The function ψ1

(
t+, t∗, x∗, w1

)
determines the value of the

guide at time t+ under the condition that at time t∗, the phase vector is equal to x∗, and the
state of guide is equal to w1. The function χ1(t0, x0) determines the initial state of guide.

Player I forms his control stepwise. Let (t0, x0) be an initial position, and let� = {tk}rk=0
be a partition of the interval [t0, T ]. Suppose that player II chooses his control v[·] arbitrar-
ily. He can also use his own CGS and form the control v[·] stepwise. Denote the solution
x[·] of Eq. (1) with the initial condition x[t0] = x0 such that the control of player I is
equal to u

(
tk, xk, w

1
k

)
on [tk, tk+1[ by x1[·, t0, x0, U,�, v[·]]. Here, the state of the sys-

tem at time tk is xk , the state of the first player’s guide is w1
k ; it is computed by the rule

w1
k = ψ1

(
tk, tk−1, xk−1, w

1
k−1

)
for k = 1, r , w1

0 = χ1(t0, x0).

Note that the player needs only the finite number of sampling points (tk, xk) to produce
the piecewise constant control on whole interval [t0, T ]. Certainly, he should use a computer
to obtain the values wi

k .
The control with guide strategy of player II is defined analogously. It is a triple V =(

v,ψ2, χ2
)
. Here, v = v

(
t∗, x∗, w2

)
, ψ2 = ψ2

(
t+, t∗, x∗, w2

)
, χ2 = χ2(t0, x0));

(t∗, x∗) is a current position, where w2 denotes the guide of player II, and (t0, x0) is
an initial position. The motion generated by a strategy V , a partition � of the interval
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[t0, T ], and a measurable control of player II u[·] is also constructed stepwise. Denote it by
x2[·, t∗, x∗, V ,�, u[·]].

We assume that the Nash equilibrium is achieved when the players get the same par-
tition. Let � = {tk}mk=0 be a partition of the interval [t0, T ]. Denote the solution x[·] of
Eq. (1) with the initial condition x[t0] = x0 such that the control of player I is equal
to u

(
tk, xk,w

1
k

)
on [tk, tk+1[, and the control of player II is equal to v

(
tk, xk, w

2
k

)
on

[tk, tk+1[ by x(c)[·, t∗, x∗, U, V,�]. Here, xk denoting the state of the system at time tk; wi
k

is the state of the i-th player’s guide at time tk . Recall that wi
k+1 = ψi

(
tk+1, tk, xk,w

1
k

)
,

wi
0 = χi(t0, x0), i = 1, 2.

Definition 2.1 Let G ⊂ [0, T ] × R
n. A pair of control with guide strategies (U∗, V ∗) is

said to be a control with guide Nash equilibrium on G iff for all (t0, x0) ∈ G the following
inequalities hold:

lim
δ↓0 sup

{
σ1

(
x2[T , t0, x0, V ∗,�, u[·]]

)
: d(�) ≤ δ, u[·] ∈ U

}

≤ lim
δ↓0 inf

{
σ1

(
x(c)[T , t0, x0, U∗, V ∗, �]

)
: d(�) ≤ δ

}
,

lim
δ↓0 sup

{
σ2

(
x1[T , t0, x0, U∗, �, v[·]]

)
: d(�) ≤ δ, v[·] ∈ V

}

≤ lim
δ↓0 inf

{
σ2

(
x(c)[T , t0, x0, U∗, V ∗, �]

)
: d(�) ≤ δ

}
.

Note that if G is a reachable set from (t∗, x∗), then the control with guide Nash
equilibrium on G is a subgame perfect Nash equilibrium.

Definition 2.2 A function (c1, c2) : [0, T ] × R
n → R

2 is called a value function if for
any compact set G ⊂ [0, T ] ×R

n, there exists a control with guide Nash equilibrium on G
(U∗, V ∗) such that for all (t0, x0) ∈ G

ci(t0, x0) = lim
δ↓0 inf{σ2(x

(c)[T , t0, x0, U∗, V ∗,�]) : d(�) ≤ δ}.

Note that for the zero-sum game, the value function is defined in each position indepen-
dently, and also it can be defined as in Definition 2.2 [20].

3 Continuous Value Function

3.1 Construction of the Nash Equilibrium Strategies

Let (t∗, x∗) ∈ [0, T ] × R
n, u∗ ∈ P , v∗ ∈ Q.

Define

Sol1(t∗, x∗; v∗) := cl{x(·, t∗, x∗, u, v∗) : u ∈ U},
Sol2(t∗, x∗;u∗) := cl{x(·, t∗, x∗, u∗, v) : v ∈ V},
Sol(t∗, x∗) := cl{x(·, t∗, x∗, u, v) : u ∈ U , v ∈ V}.

Here, cl denotes the closure in the space of continuous vector function on [0, T ]. Note that
the sets Sol1(t∗, x∗; v∗), Sol2(t∗, x∗; u∗), and Sol(t∗, x∗) are compact.
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Theorem 3.1 Let a continuous function (c1, c2) : [0, T ] × R
n → R

2 satisfy the following
conditions:

(F1) ci(T , x) = σi(x), i = 1,2;
(F2) For every (t∗, x∗) ∈ [0, T ]×R

n, u ∈ P , there exists a motion y2(·) ∈ Sol2(t∗, x∗;u)
such that c1(t, y2(t)) ≤ c1(t∗, x∗) for t ∈ [t∗, T ];

(F3) For every (t∗, x∗) ∈ [0, T ]×R
n , v ∈ Q, there exists a motion y1(·) ∈ Sol1(t∗, x∗; v)

such that c2(t, y1(t)) ≤ c2(t∗, x∗) for t ∈ [t∗, T ];
(F4) For every (t∗, x∗) ∈ [0, T ] ×R

n, there exists a motion y(c)(·) ∈ Sol(t∗, x∗) such that
ci(t, y

(c)(t)) = ci (t∗, x∗) for t ∈ [t∗, T ], i = 1, 2.

Then, (c1, c2) is a value function.

The proof of Theorem 3.1 is constructive, and it is based on the Krasovskii–Subbotin
extremal shift rule.

Let G ⊂ [0, T ] × R
n be a compact. Denote by E the reachable set from G:

E := {x(t, t∗, x∗, u, v) : (t∗, x∗) ∈ G, t ∈ [t∗, T ], u ∈ U , v ∈ V}. (2)

Put
K := max{‖f (t, x, u)+ g(t, x, v)‖ : t ∈ [0, T ], x ∈ E, u ∈ P, v ∈ Q}, (3)

Let L be a Lipschitz constant of the function f + g on [0, T ] × E × P × Q, i.e., for all
t ∈ [0, T ], x ′, x ′′ ∈ E,u ∈ P, v ∈ Q

‖f (t, x ′, u)+ g(t, x ′, v)− f (t, x ′′, u)− g(t, x ′′, v)‖ ≤ L‖x ′ − x ′′‖.
Also, put

ϕ∗(δ) := sup{‖f (t ′, x, u)+ g(t ′, x, u)− f (t ′′, x, u)− g(t ′′, x, u)‖ :
t ′, t ′′ ∈ [0, T ], |t ′ − t ′′| ≤ δ, x ∈ E, u ∈ P, v ∈ Q}.

Note that ϕ∗(δ) → 0, as δ → 0.
Let us introduce the auxiliary controlled system

ṡ = h(t, s, ω1, ω2), s ∈ R
n, ωi ∈ 	i. (4)

Below, we consider two cases.

(i) 	1 = P , 	2 = Q, h = f + g;
(ii) 	1 = P ×Q, 	2 = ∅, h = f + g.

Note that in both cases, system (4) satisfies the Isaacs condition.
Put β := 2L, R := max{‖s ′ − s ′′‖ : s ′, s ′′ ∈ E}, ϕ(δ) = 4ϕ∗(δ)R + 4K2δ.
The following lemma was proved by Krasovskii and Subbotins (see [17]).

Lemma 3.1 Let s01 , s
0
2 ∈ R

n, t∗ ∈ [0, T ], ω∗
1 ∈ 	1, ω

∗
2 ∈ 	2 satisfy the following

conditions:

max
ω1∈	1

min
ω2∈	2

〈
s02 − s01 , h

(
t∗, s01 , ω1, ω2

)〉
= min

ω2∈	2

〈
s02 − s01 , h

(
t∗, s01 , ω

∗
1, ω2

)〉
,

min
ω2∈	2

max
ω1∈	1

〈
s02 − s01 , h

(
t∗, s01 , ω1, ω2

)〉
= max

ω1∈	1

〈
s02 − s01 , h

(
t∗, s01 , ω1, ω

∗
2

)〉
.

If s1(·) is a solution of the initial value problem
ṡ1 = h(t, s1, ω

∗
1, ω2(t)), s1(t∗) = s01 ,
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and s2(·) is a solution of the initial value problem
ṡ2 = h(t, s2, ω1(t),ω

∗
2), s2(t∗) = s02 ,

for some measurable controls ω1(·) and ω2(·), then for all t+ ∈ [t∗, T ] the following
estimate holds:

‖s2(t+)− s1(t+)‖2 ≤ ‖s02 − s01‖2(1+ β(t+ − t∗))+ ϕ(t+ − t∗) · (t+ − t∗).

We assume that the i-th player’s guide wi is a quadruple
(
di, τ i , wi,(a), wi,(c)

)
. The

variable di ∈ R describes an accumulated error, τ i ∈ [0, T ] is a previous time of the control
correction, wi,(a) ∈ R

n is a punishment part of the guide, and wi,(c) ∈ R
n is a consistent

part of the guide. The whole dimension of the guide is 2n+ 2.
For any (t∗, x∗) ∈ [0, T ] × R

n, u ∈ P , v ∈ Q, choose and fix a motion y2(·; t∗, x∗, u)
satisfying condition (F2), a motion y1(·; t∗, x∗, v) satisfying condition (F3), and a motion
y(c)(·; t∗, x∗) satisfying condition (F4).

Now, let us define the strategies U∗ and V ∗. Below, we prove that the pair of strategies
(U∗, V ∗) is a control with guide Nash equilibrium on G.

First, put χ1(t0, x0) = χ2(t0, x0) := (0, t0, x0, x0).
Let (t, x) be a position, and wi = (

di, τ i , wi,(a), wi,(c)
)
be a state of the i-th player’s

guide. Put

zi :=
{
wi,(c), ‖wi,(c) − x‖2 ≤ di

(
1+ β

(
t − τ i

)) + ϕ
(
t − τ i

) (
t − τ i

)
,

wi,(a), otherwise.
(5)

Let us consider two cases.

i = 1. Choose a control u∗ by the rule
max
u∈P

〈z1 − x, f (t, x, u)〉 = 〈z1 − x, f (t, x, u∗)〉. (6)

Further, let v∗ satisfy the following condition:
min
v∈Q〈z

1 − x, g(t, x, v)〉 = 〈z1 − x, g(t, x, v∗)〉. (7)

Define u
(
t, x,w1

) := u∗. For t+ > t , put ψ1
(
t+, t, x,w1

)
be equal to w1+ =(

d1+, τ1+, w
1,(a)
+ , w

1,(c)
+

)
, where

d1+ := ‖z1−x‖2, τ1+ := t, w
1,(a)
+ := y1

(
t+; t, z1, v∗

)
, w

1,(c)
+ := y(c)

(
t+; t, z1

)
.

i = 2. Let a control v∗ be such that
max
v∈Q

〈z2 − x, g(t, x, v)〉 = 〈z2 − x, g(t, x, v∗)〉. (8)

Choose u∗ satisfying the condition
min
u∈P 〈z

2 − x, f (t, x, u)〉 = 〈z2 − x, f (t, x, u∗)〉. (9)

Set v(t, x,w) := v∗. For t+ > t , put ψ2
(
t+, t, x,w2

)
be equal to w2+ =(

d2+, τ2+, w
2,(a)
+ , w

2,(c)
+

)
, where

d2+ := ‖z2 − x‖2, τ2+ := t, w
2,(a)
+ := y2(t+; t, z2, u∗), w

2,(c)
+ := y(c)(t+; t, z2).

Note that
cj

(
t+, wi,(c)

+
)
= cj (t, z

i) for all i, j = 1, 2, (10)
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c1

(
t+, w2,(a)

+
)
≤ c1

(
t, z2

)
, c2

(
t+, w1,(a)

+
)
≤ c2

(
t, z1

)
. (11)

Below, let x+ denote the state of the system at time t+.

Lemma 3.2 Suppose that z1 = z2 = z. If players I and II use respectively the controls u∗
and v∗ on the interval [t, t+], then w1,(c)

+ = w
2,(c)
+ and

‖x+ −w
i,(c)
+ ‖2 ≤ di+(1+ β(t+ − τ+))+ ϕ(t+ − τ+)(t+ − τ+).

Proof The controls u∗ and v∗ satisfy the condition

max
u∈P,v∈Q〈z − x, f (t, x, u)+ g(t, x, v)〉 = 〈z − x, f (t, x, u∗)+ g(t, x, v∗)〉.

We apply Lemma 3.1 with 	1 = P ×Q, 	2 = ∅, h = f + g. If x(·) = x(·, t, x, u∗, v∗),
y(c)(·) = y(c)(·; t, z), then

‖x(t+)− y(c)(t+)‖2 ≤ ‖x − z‖2(1+ β(t+ − t))+ ϕ(t+ − t) · (t+ − t).

The definition of the strategies U∗ and V ∗ yields that wi,(c)
+ = y(c) (t+) for i = 1, 2. By

construction of the functions ψi , i = 1, 2 we have that t = τ i+, and di+ = ‖x − z‖2. This
completes the proof of the Lemma.

Lemma 3.3 If player I uses the control u∗ on the interval [t, t+], then
‖x+ − w

1,(a)
+ ‖2 ≤ di+(1+ β(t+ − τ+))+ ϕ(t+ − τ+)(t+ − τ+), i = 1, 2.

Proof We apply Lemma 3.1 with 	1 = P , 	2 = Q and h = f + g. The choice of u∗ (see
Eq. (6)) and v∗ (see Eq. (7)) yields that the inequality

‖x(t+)− y1(t+)‖2 ≤ ‖x − z1‖2(1+ β(t+ − t))+ ϕ(t+ − t) · (t+ − t)

holds with x(·) = x(·, t, x, u∗, v) and y1(·) = y1
(·, t, z1, v∗). Since w

1,(a)
+ = y1(t+),

τ1+ = t , and d1+ = ‖x − z1‖2, the conclusion of the Lemma follows.

We need the following estimate. Let � = {tk}rk=0 be a partition of the interval [t0, T ],
and let {γk}rk=0 be a collection of numbers such that

γk+1 ≤ γk(1+ β(tk+1 − tk))+ ϕ(tk+1 − tk) · (tk+1 − tk). (12)

Then,
γk ≤ [γ0 + (1+ (tk − t0))ϕ(d(�))] expβ(tk − t0). (13)

Proof of Theorem 3.1 First, let us show that for all (t0, x0) ∈ G, the following equality is
valid:

cj (t0, x0) = lim
δ↓0 inf

{
σj (x

(c)[T , t0, x0, U∗, V ∗, �]), d(�) ≤ δ
}
, j = 1, 2. (14)

Let � = {tk}rk=1 be a partition of the interval [t0, T ]. Denote the state of the system at

time tk by xk , the state of the i-th player’s guide by wi
k =

(
dik, τk,w

(a),i
k , w

i,(c)
k

)
. Also, let

zik be chosen by rule (5) at time tk . We have that τ0 = t0, τk+1 = tk for k ≥ 0. Moreover,

z10 = w
1,(c)
0 = w

1,(c)
0 = z20.
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Hence using lemma 3.2 inductively, we get that

z1k = w
1,(c)
k = z2k = w

2,(c)
k , dik+1 = ‖xk − zik‖2. (15)

and

‖xk+1 − zik+1‖2 ≤ ‖xk − zik‖2(1+ β(tk+1 − tk))+ ϕ(tk+1 − tk)(tk+1 − tk)

for all k = 0,N .
It follows from Eq. (13) that

‖xr − zir‖2 ≤ [‖x0 − zi0‖2 + (1+ (tr − t0))ϕ(d(�))]expβ(tr − t0).

Since zi0 = x0, we obtain that

‖xr − zir‖ ≤ κ(δ) :=
[
(1+ (tr − t0))ϕ(δ) expβ(tr − t0)

]1/2
, (16)

where δ = d(�). Note that κ(δ) → 0, δ → 0.
Let φj (Y ) be a modulus of continuity of the function σj on the set E

φj(γ ) := sup{|σj (x ′)− σj (x
′′)| : x ′, x ′′ ∈ E, ‖x ′ − x ′′‖ ≤ γ }.

We have that
‖σj (xr)− σj (z

i
r )‖ ≤ φj (κ(δ)). (17)

Since zik = w
i,(c)
k , it follows from Eq. (10) that cj

(
tk+1, w

i,(c)
k+1 ) = cj (tk, z

i
k

)
=

cj

(
tk, w

i,(c)
k

)
. Therefore, using condition (F1), we get

‖σj (x[T , t0, x0, U∗, V ∗, �])− cj (t0, x0)‖ ≤ φj (κ(δ))

with δ = d(�). Passing to the limit, we obtain equality (14).
Now, let us show that for all (t0, x0) ∈ G

c2(t0, x0) ≥ lim
δ↓0 sup{σ2(x

1[T , t0, x0, U∗, �, v[·]), d(�) ≤ δ, v[·] ∈ V}. (18)

Let � = {tk}rk=1 be a partition of the interval [t0, T ], and let v[·] be a control of player
II. Denote the state of the system at time tk by xk , the state of the first player’s guide by

w1
k =

(
d1k , τk, w

(a),1
k , w

1,(c)
k

)
. Also, let z1k be chosen by rule (5) at time tk .

We claim that inequality (12) is valid with γk = ‖z1k −xk‖2. Note that τ1k+1 = tk , d1k+1 =
‖z1k − xk‖2. If z1k+1 = w

1,(c)
k+1 , then inequality (12) holds by construction. If z1

k+1 = w
1,(c)
k+1 ,

then by using Lemma 3.3, we obtain that inequality (12) is fulfilled also.
Therefore, we have inequality (13) with γ0 = 0 and γk = ‖z1k − xk‖2. Hence,

‖z1r − xr‖ ≤ κ(d(�)).

Consequently, inequality (17) is fulfilled for i = 1, j = 2.
It follows from Eqs. (5), (10), and (11) that

c2

(
tk+1, z

1
k+1

)
≤ c2

(
tk, z

1
k

)
. (19)

Condition (F1) and the equality z10 = x0 yield the inequality

σ2

(
z1r

)
= c2

(
T , z1r

)
≤ c2(t0, x0).

From this and Eq. (19), we conclude that

σ2(x
1[T , t0, x0, U∗,�, v[·]]) ≤ c2(t0, x0)+ φ2(κ(δ)),
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with δ = d(�). Passing to the limit, we get inequality (18).
Analogously, one can prove the inequality

c1(t0, x0) ≥ lim
δ↓0 sup

{
σ1

(
x2[T , t0, x0, V ∗,�, u[·]

)
, d(�) ≤ δ, u[·] ∈ U

}
. (20)

Combining equality (14) and inequalities (18) and (20), we conclude that the strategies U∗
and V ∗ form the control with guide Nash equilibrium onG. Moreover, the Nash equilibrium
payoff of player i at the position (t0, x0) is ci (t0, x0). Hence, (c1, c2) is a value function.

3.2 Infinitesimal Form of Conditions (F1)–(F4)

Define

H1(t, x, s) := max
u∈P

min
v∈Q〈s, f (t, x, u)+ g(t, x, v)〉,

H2(t, x, s) := max
v∈Q

min
u∈P 〈s, f (t, x, u)+ g(t, x, v)〉.

Proposition 3.1 Conditions (F2) and (F3) are equivalent to the the following one: the
function ci is a viscosity supersolution of the following equation:

∂ci

∂t
+Hi(t, x,∇ci ) = 0. (21)

This proposition directly follows from [20, Theorem 6.4].
Further, define a modulus derivative at the position (t, x) in the direction w ∈ R

n by the
rule

dabs(c1, c2)(t, x;w)

:= lim inf
δ↓0,w′→w

|c1(t + δ, x + δw′)− c1(t, x)| + |c2(t + δ, x + δw′)− c2(t, x)|
δ

.

Proposition 3.2 Condition (F4) is valid if and only if for every (t, x) ∈ [0, T ] × R
n

inf
w∈F(t,x)

dabs(c1, c2)(t, x;w) = 0.

Proof Condition (F4) means that the graph of the function (c1, c2) is viable under the
differential inclusion

⎛

⎝
ẋ

J̇1
J̇2

⎞

⎠ = co

⎧
⎨

⎩

⎛

⎝
f (t, x, u)+ g(t, x, v)

0
0

⎞

⎠ : u ∈ P, v ∈ Q

⎫
⎬

⎭
.

One can rewrite this condition in the infinitesimal form [1, Theorem 11.1.3]: for J1 =
c1(t, x), J2 = c2(t, x) and some w ∈ co{f (t, x, u) + g(t, x, v) : u ∈ P, v ∈ Q}, the
inclusion ⎛

⎝
w

0
0

⎞

⎠ ∈ Dgr(c1, c2)(t, (x, J1, J2)) (22)

holds. Here, D denotes the contingent derivative. It is defined in the following way. Let
G ⊂ [0, T ] × R

m, G[t] denote a section of G by t :

G[t] := {w ∈ R
m : (t, x) ∈ G},
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and let the symbol d denote the Euclidian distance between a point and a set. Following [1],
set

DG(t, y) :=
{
h ∈ R

m : lim inf
δ→0

d(y + δh;G[t + δ])
δ

= 0

}
.

Let Ji = ci (t, x). We have that (w, Y1, Y2) ∈ Dgr(c1, c2)(t, (x, J1, J2)) if and only if
there exist sequences {wk}∞k=1 and {δk}∞k=1 such that w = limk→∞ wk , and

Yi = lim
k→∞

ci (t + δk, x + δkwk)− ci(t, x)

δk
.

Therefore, condition (22) is equivalent to the condition dabs(c1, c2)(t, x;w) = 0 for some
w ∈ co{f (t, x, u)+ g(t, x, v) : u ∈ P, v ∈ Q}.

3.3 System of the Hamilton–Jacobi Equations

It is well known that the solutions of the system of the Hamilton–Jacobi equations provide
Nash equilibria [5]. Let us show that Theorem 3.1 generalizes the method based on the
system of the Hamilton–Jacobi equations.

For any s ∈ R
n, let û(t, x, s1) satisfy the condition

〈s, f (t, x, û(t, x, s))〉 = max{〈s, f (t, x, u)〉 : u ∈ P },
and let v̂(t, x, s) satisfy the condition

〈s, g(t, x, v̂(t, x, s))〉 = max{〈s, g(t, x, u)〉 : u ∈ P }.
Set

Hi (t, x, s1, s2) := 〈si, f (t, x, û(t, x, s1))+ g(t, x, v̂(t, x, s2))〉.
Consider the system of the Hamilton–Jacobi equations:

{
∂ϕi
∂t

+Hi (t, x,∇ϕ1,∇ϕ2) = 0,
ϕi(T , x) = σi(x).

i = 1, 2 (23)

Proposition 3.3 If the function (ϕ1, ϕ2) is a classical solution of system (23), then it
satisfies condition (F1)–(F4).

Proof Condition (F1) is obvious.
Since (ϕ1, ϕ2) is the solution of system (23), we have that

0 = ∂ϕ1(t, x)

∂t
+max

u∈P
〈∇ϕ1(t, x), f (t, x, u)〉

+ 〈∇ϕ1(t, x), g(t, x, v̂(t, x,∇ϕ1(t, x)))〉
≥ ∂ϕ1(t, x)

∂t
+max

u∈P 〈∇ϕ1(t, x), f (t, x, u)〉
+min

v∈Q〈∇ϕ1(t, x), g(t, x, v)〉

= ∂ϕ1(t, x)

∂t
+H1(t, x,∇ϕ1(t, x)).

The subdifferential of the smooth function ϕ1 is equal to D−ϕ1(t, x) =
{(∂ϕ1(t, x)/∂t,∇ϕ1(t, x))}. Therefore, ϕ1 is a viscosity supersolution of Eq. (21) for i = 1
[20, Definition (U4)]. This is equivalent to condition (F2).
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Condition (F3) is proved in the same way.

dabs(ϕ1, ϕ2)(t, x;w)

=
∣
∣∣
∣
∂ϕ1(t, x)

∂t
+ 〈∇ϕ1(t, x),w〉

∣
∣∣
∣ +

∣
∣∣
∣
∂ϕ2(t, x)

∂t
+ 〈∇ϕ2(t, x),w〉

∣
∣∣
∣ .

Substitutingw = f (t, x, û(t, x,∇ϕ1(t, x)))+g(t, x, v̂(t, x,∇ϕ2(t, x))) gives condition
(F4).

Generally, there exists a smooth function (c1, c2) satisfying conditions (F1)–(F4) not
being a solution of the system of the Hamilton–Jacobi equations.

Example 3.1 Consider the system
{
ẋ1 = −v

ẋ2 = 2u+ v
(24)

Here, t ∈ [0, 1], u, v ∈ [−1, 1]. The purpose of the i-th player is to maximize xi(1).
The function (c∗1, c

∗
2) with c∗1(t, x1, x2) = x1 + (1 − t), c∗2(t, x1, x2) = x2 + (1 − t)

satisfies conditions (F1)–(F4), but it is not a solution of the system of the Hamilton–Jacobi
equations (23). Moreover, c∗i (t, x) > ϕi(t, x) for some solutions of system (23) (ϕ1, ϕ2).

Proof First, let us write down the system of the Hamilton–Jacobi equations for the case
under consideration. Denote ∂ϕ1/∂xj by pj , ∂ϕ2/∂xj by qj .

The variables û and v̂ satisfy the conditions

max
u∈[−1,1]

p2u = p2û, max
v∈[−1,1]

(−q1 + q2)v = (−q1 + q2)v̂.

Hence, the system of the Hamilton–Jacobi equations (23) takes the form
{

∂ϕ1
∂t

− p1v̂ + p2(2û+ v̂) = 0,
∂ϕ2
∂t

− q1v̂ + q2(2û+ v̂) = 0.
(25)

The boundary conditions are ϕ1(1, x1, x2) = x1 and ϕ2(1, x1, x2) = x2.
The function (c∗1, c∗2) satisfies conditions (F1)–(F4). Indeed, condition (F1) holds obvi-

ously. Condition (F2) is valid with v = 1, and analogously, condition (F3) is valid with
u = −1. Moreover, both players can keep the values of the functions if they use the controls
v = −1, u = 1. This means that condition (F4) holds also.

On the other hand, the pair of functions
(
c∗1, c∗2

)
does not satisfy the system of the

Hamilton–Jacobi equations. Indeed,

∂c∗1/∂x1 = p1 = 1, ∂c∗1/∂x2 = p2 = 0, ∂c∗2/∂x1 = q1 = 0,

∂c∗2/∂x2 = q2 = 1, ∂c∗1/∂t = ∂c∗2/∂t = −1.

Therefore, v̂ = 1. Substitution into the first equation of (25) leads to the contradiction.
Further, consider the functions ϕ1(t, x1, x2) = x1 − (1 − t), ϕα

2 (t, x1, x2) = x2 + (1+
2α)(1− t). Here, α is a parameter from [−1, 1]. Note that if v̂ = 1 and û = α, then

(
ϕ1, ϕ

α
2

)

is a classical solution of system (25).
We have that for α ∈ [−1, 0)

c∗1(t, x1, x2) > ϕ1(t, x1, x2), c∗1(t, x1, x2) > ϕα
1 (t, x1, x2).
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3.4 Problem of Continuous Value Function Existence

The continuous function (c1, c2) satisfying conditions (F1)–(F4) does not exist in the
general case.

Example 3.2 Let the dynamics of the system be given by

ẋ = u, t ∈ [0, 1], x ∈ R, u ∈ [−1, 1].
The purpose of the first player is to maximize |x(1)|. The second player is fictitious, and
his purpose is to maximize x(1). In this case, there is no continuous function satisfying
conditions (F1)–(F4).

Proof Let a function (c1, c2) : [0, 1] × R → R
2 be a value function. Since the payoff of

player I does not depend on the control of player II, we have that c1(t, x) = |x|+(1− t) and
the Nash equilibrium strategy of the player I U∗ = (u,ψ1, χ1) should satisfy the conditions
u

(
t, x,w1

) ∈ {−1, 1} and

u
(
t, x,w1

)
=

{
1, x > 0,
−1, x < 0.

Therefore, c2(t, x) = x + (1 − t) for x > 0 and c2(t, x) = x − (1 − t) for x < 0. Note
that the value of the function c2 at the positions (t, 0) is determined only by the condition
c2(t, 0) ∈ {(1− t),−(1− t)}. Thus, there is a nonuniqueness of the value functions.

The example shows that we need to modify Theorem 3.1 for the case of discontinuous
value functions. A natural way is to consider value multifunctions.

4 Value Multifunctions

A multifunction S : [0, T ] × R
n ⇒ R

2 is called a value multifunction if any of its selector
is a value function in the sense of Definition 2.2.

Theorem 4.1 Assume that there exists an upper semicontinuous multifunction
S : [0, T ] ×R

n ⇒ R
2 with nonempty images satisfying the following conditions:

(S1) S(T , x) = {(σ1(x), σ2(x))}, x ∈ R
n;

(S2) For all (t, x) ∈ [0, T ] ×R
n, (J1, J2) ∈ S(t, x), u ∈ P and t+ ∈ [t, T ], there exists a

motion y2(·) ∈ Sol2(t, x;u) and a pair (
J ′
1, J

′
2

) ∈ S
(
t+, y2(t+)

)
such that J1 ≥ J ′

1;
(S3) For all (t, x) ∈ [0, T ] ×R

n, (J1, J2) ∈ S(t, x), v ∈ Q and t+ ∈ [t, T ], there exists a
motion y1(·) ∈ Sol1(t, x;u) and a pair (

J ′′
1 , J

′′
2

) ∈ S
(
t+, y1(t+)

)
such that J2 ≥ J ′′

2 ;
(S4) For all (t, x) ∈ [0, T ] ×R

n, (J1, J2) ∈ S(t, x) and t+ ∈ [t, T ], there exists a motion
y(c)(·) ∈ Sol(t∗, x∗) such that (J1, J2) ∈ S

(
t+, y(c)(t+)

)
.

Then S is a value multifunction, i.e., for any selector (Ĵ1, Ĵ2) of the multifunction S and a
compact setG ⊂ [0, T ]×R

n, there exists a control with guide Nash equilibrium onG such
that the corresponding Nash equilibrium payoff at (t0, x0) ∈ G is (Ĵ1(t0, x0), Ĵ2(t0, x0)) ∈
S(t0, x0).

Remark 4.1 LetU∗, V ∗ be a Nash equilibrium constructed for the compactG ⊂ [0, T ]×R
n

and the selector (Ĵ1, Ĵ2). The value of (Ĵ1, Ĵ2) may vary along the Nash trajectory xc∗[·],
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that is, a limit of step-by-step motions generated by U∗ and V ∗. However, it follows from
Theorem 4.1 that for any intermediate time instant θ , there exists a Nash equilibrium such
that the corresponding payoff at (θ, xc∗[θ ]) is equal to the value of (Ĵ1, Ĵ2) at the initial
position.

Analogously, if x1∗[·] is a limit of step-by-by step motions generated by strategy of player
I U∗ and a control of player II v[·], then for any intermediate time instant θ , there exists a
Nash equilibrium such that the corresponding payoff at (θ, x1∗[θ ]) of the player II does not
exceed the value of the function Ĵ2 at the initial position.

Remark 4.2 Below, we prove the existence of multifunction satisfying conditions (S1)–(S4)
(see Theorem 5.2). Since properties (S1)–(S4) are preserved under pointwise union and
closure, there exists the maximal by inclusionmultivaluedmap Smax satisfying conditions of
Theorem 4.1. Choose that the value of the selector (J ∗

1 (t, x), J
∗
2 (t, x)) be equal to a Pareto

optimal for the set Smax(t, x). The equilibrium corresponding to this selector is an optimal
Nash equilibrium achieved in control with guide strategies.

Proof of Theorem 4.1 To prove the theorem, we modify the construction proposed in the
Section 3. We add the expected payoff to the guide. The selector (Ĵ1, Ĵ2) is used only
at the initial position. The starting value of the expected payoff at (t0, x0) is equal to
(Ĵ1(t0, x0), Ĵ2(t0, x0)). In the times of control correction tk , the expected payoff is recom-
puted in such way that if both players use Nash equilibrium strategies, then the expected
payoff at tk is equal to the value of the selector at the initial position and belongs to S

(
tk, z

i
k

)
,

where zik is a point close to the state of the system at time tk .
Thus, the guide consists of the following components: d ∈ R is an accumulated error,

τ ∈ R is a previous time of correction, w(a) is a punishment part of the guide, w(c) is a
consistent part of the guide, and Y1 ∈ R and Y2 ∈ R are expected payoffs of the players.

Let (t, x) ∈ [0, T ] × R
n be a position, t+ > t , (J1, J2) ∈ S(t, x), u ∈ P ,

v ∈ Q. Let motions y2(·) and y1(·) satisfy conditions (S2) and (S3), respectively. Denote
b2(t+, t, x, J1, J2, u) := y2(t+), b1(t+, t, x, J1, J2, v) := y1(t+). Also, if y(c)(·) satisfies
condition (S4), then put bc(t+, t, x, J1, J2) := y(c)(t+).

First, let us define the functions

χ1(t, x) = χ2(t, x) :=
(
d0, τ0, w

(c)
0 , w

(a)
0 , Y1,0, Y2,0

)

by the following rule: d0 := 0, τ0 := t , w(c)
0 = w

(a)
0 := x, Y1,0 := Ĵ1(t0, x0), Y2,0 :=

Ĵ2(t0, x0).
Now, we shall define controls and transitional functions of the guides. Assume that

at time t , the state of the system is x, and the state of the i-th player’s guide is wi =(
di, τ i , w(a),i , w(c),i , Y i

1 , Y
i
2

)
. Define zi by rule (5). Now, let us consider the case of the first

player. Put

(
Y 1
1,+, Y

1
2,+

)
:=

{ (
Y i
1, Y

i
2

)
, z1 = w(c),1

(
Y ′′
1 , Y

′′
2

)
, z1 = w(a),1.

Here,
(
Y ′′
1 , Y

′′
2

)
is an element of S(t,w(a),1) such that Y ′′

2 = min{J2 : (J1, J2) ∈
S(t,w(a),1)}. Choose u∗ by rule (6) and v∗ by Eq. (7). As above, put u(t, x,w) := u∗ and

also set ψ1
(
t+, t, x,w1

) :=
(
d1+, τ1+, w

(a),1
+ , w

(c),1
+ , Y 1

1,+, Y
1
2,+

)
where
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d1+ = ‖z1 − x‖2, τ1+ = t, w
(a),1
+ = b1

(
t+, t, z1, Y 1

1,+, Y
1
2,+, v∗

)
,

w
(c),1
+ = bc

(
t+, t, z1, Y 1

1,+, Y 1
2,+

)
.

The case of the second player is considered in the same way. Put
(
Y 2
1,+, Y

2
2,+

)
:=

{ (
Y i
1 , Y

i
2

)
, z2 = w(c),2

(
Y ′
1, Y

′
2

)
, z2 = w(a),2.

Here,
(
Y ′
1, Y

′
2

)
is an element of S

(
t+, w(a),2

)
such that Y ′

1 =
min

{
J1 : (J1, J2) ∈ S(t, w(a),2)

}
. Let v∗ satisfy condition (8). Also, let u∗ sat-

isfy condition (9). Put v(t, x,w) := v∗. Further, set ψ2
(
t+, t, x,w2

) :=(
d2+, τ2+, w

(a),1
+ , w

(c),2
+ , Y 2

1,+, Y 2
2,+

)
where

d2+ = ‖z2 − x‖2, τ+ = t, w
(a),2
+ = b2

(
t+, t, z2, Y 2

1,+, Y 2
2,+, v∗

)
,

w
(c),2
+ = bc

(
t+, t, z2, Y 2

1,+, Y
2
2,+

)
.

Let us prove that the following equality holds at any position (t0, x0) ∈ G:

Ĵi = lim
δ↓0

inf{σi(x(c)[T , t0, x0, U∗, V ∗, �]), d(�) ≤ δ}, i = 1, 2. (26)

Let � = {tk}rk=0 be a partition of [t0, T ], d(�) ≤ δ, xc[·] := xc[·, t∗, x∗, U∗, V ∗, �].
Extend the partition � by adding the element tr+1 = tr = T . Denote xk := xc[tk]. Let us
denote the state of the i-th player’s guide at time tk by wi

k =
(
dik,w

(a),i
k , w

(c),i
k , Y i

1,k, Y
i
2,k

)
.

Let zik be a position chosen by rule (5) for the i-th player at time tk .

It follows from Lemma 3.2 that the point zik is equal tow
(c),i
k . In addition,w(c),1

k = w
(c),2
k ,

and the following inequality is valid:

‖xk − w
(c),i
k ‖ ≤ ‖xk−1 − zik−1‖2(1+ β(tk − τk−1))+ ϕ(tk − τk−1)(tk − τk−1).

Applying this inequality sequentially and using the equality zi0 = x0, we get estimate
(16) for i = 1, 2. Further, estimate (17) holds for i = 1, 2, j = 1, 2. The choice

of zik yields that (Y i
1,k, Y

i
2,k) = (Y i

1,k−1, Y
i
2,k−1), and

(
Y i
1,k, Y

i
2,k

)
∈ S

(
tk−1, z

1
k−1

)
for

k = 1, r + 1. Also, the construction of the function χi leads to the equality
(
Y i
1,0, Y

i
2,0

)
=

(Ĵ1(t0, x0), Ĵ2(t0, x0)). Hence, (Ĵ1(t0, x0), Ĵ2(t0, x0)) ∈ S
(
tr , z

i
r

) = {(
σ1(z

i
r ), σ2(z

i
r )

)}
.

By Eq. (17), we conclude that equality (26) holds.
Now, let us prove that for any position (t0, x0) ∈ G, the following inequality is fulfilled:

Ĵ2(t0, x0) ≥ lim
δ↓0 sup

{
σ2

(
x1[T , t0, x0, U∗,�, v[·]]

)
, d(�) ≤ δ, v[·] ∈ V

}
. (27)

As above, let � = {tk}rk=0 be a partition of the interval [t0, T ], d(�) ≤ δ, x1[·] =
x1[·, t0, x0, U∗, �, v[·]]. We add the element tr+1 = tr = T to the partition �. Denote
xk := x1[tk]. Let us denote the state of the first player’s guide at time tk by w1

k =(
d1k , w

(a),1
k , w

(c),1
k , Y 1

1,k, Y
1
2,k

)
. Further, let z1k be a point chosen by rule (5) for the first

player at time tk .
The choice of z1k (see Eq. (5)) and Lemma 3.3 yield the inequality

‖xk − z1k‖2 ≤ ‖xk−1 − z1k−1‖2(1+ β(tk − tk−1))+ ϕ(tk − tk−1)(tk − tk−1).
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Applying this inequality sequentially and using the equality z10 = x0, we get estimate
(16) for i = 1. Therefore, inequality (17) is fulfilled for i = 1, j = 2. In addi-

tion, Y 1
2,k ≥ Y 2

2,k−1. Indeed, if z1k = w
(c),1
k , then

(
Y 1
1,k, Y

1
2,k

)
=

(
Y 1
1,k−1, Y

1
2,k−1

)
. If

z1k = w
(a),1
k , we have that an element (Y 1

1,k, Y
1
2,k) is chosen so that Y 1

2,k is the minimum of
{
J2 : (J1, J2) ∈ S

(
tk−1, z

1
k−1

)}
.

By the construction, we have
(
Y 1
1,k, Y

1
1,k

)
∈ S

(
tk−1, z

1
k−1

)
. Hence, using condition (S1),

we obtain that
Ĵ2(t0, x0) ≥ Y 1

2,r+1 = σ2

(
z1r

)
. (28)

Since inequality (17) is valid for i = 1, j = 2, estimate (28) yields inequality (27).
Analogously, for any position (t0, x0) ∈ G, we have the inequality

Ĵ1(t0, x0) ≥ lim
δ↓0 sup

{
σ1

(
x2[T , t0, x0, V ∗,�, u[·]]

)
, d(�) ≤ δ, u[·] ∈ U

}
. (29)

Equality (26) and inequalities (27) and (29) mean that the pair of strategies U∗ and V ∗
is a Nash equilibrium on G. Moreover, the Nash equilibrium payoff at the initial position
(t0, x0) ∈ G is equal to (Ĵ1(t0, x0), Ĵ2(t0, x0)).

5 Existence of Value Multifunction

5.1 Discrete Time Game

In order to prove the existence of a multifunction satisfying conditions (S1)–(S4), we intro-
duce the auxiliary discrete time dynamical game. Let N be a natural number, and let δN :=
T /N be a time step. We discretize [0, T ] by means of the uniform grid �N := {

tNk

}N
k=0

with tNk = kδN .
Consider the discrete time control system

ξN
(
tNk+1

)
= ξN(tk) + δN

[
f

(
tNk , ξN

(
tNk

)
, u

(
tNk

))
+ g

(
tNk , ξN

(
tNk

)
, v

(
tNk

))]
,

k = 0,N − 1, u
(
tNk

)
∈ P, v

(
tNk

)
∈ Q. (30)

Denote

UN := {u : [0, T ] → P : u(t) = uNk ∈ P for t ∈ [tNk , tNk+1[},
VN := {v : [0, T ] → Q : v(t) = vNk ∈ Q for t ∈ [tNk , tNk+1[}.

For t∗ ∈ �N , ξ∗ ∈ R
n, u ∈ UN , and v ∈ VN , let ξN(·, t∗, ξ∗, u, v) : �N ∩ [t∗, T ] → R

n

be a solution of initial value problem (30), ξN(t∗) = ξ∗.
First, we shall estimate ‖ξN(t+, t∗, ξ∗, u, v)− x(t+, t∗, x∗, u, v)‖.
Let G ⊂ [0, T ] × R

n be a compact of initial positions. Let E′ ⊂ R
n be a compact such

that x(t, t∗, x∗, u, v) ∈ E′, and ξN(t, t∗, x∗, u, v) ∈ E′ for all natural N , (t∗, x∗) ∈ G,
t, t∗ ∈ �N , u ∈ UN , v ∈ VN . Set

K ′ := max{‖f (t, x, u)+ g(t, x, v)‖ : t ∈ [0, T ], x ∈ E′, u ∈ P, v ∈ Q}.
Denote by L′ the Lipschitz constant of the function f + g on [0, T ] ×E′ × P ×Q: for all
t ∈ [0, T ], x ′, x ′′ ∈ E′, u ∈ P , v ∈ Q

‖f (t, x ′, u)+ g(t, x ′, v)− f (t, x ′′, u)− g(t, x ′′, v)‖ ≤ L′‖x ′ − x ′′‖.
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Further, set

ϕ′(δ) : = sup{‖f (t ′, x ′, u)− f (t ′′, x ′′, u)‖ + ‖g(t ′, x ′, v)− g(t ′′, x ′′, v)‖ :
t ′, t ′′ ∈ [0, T ], x ′, x ′′ ∈ E′, |t ′ − t ′| ≤ δ,

‖x ′ − x ′′‖ ≤ K ′δ, u ∈ P, v ∈ Q}.

Lemma 5.1 If t∗, t+ ∈ �N , t+ ≥ t∗, (t∗, x∗), (t∗, ξ∗) ∈ G, u ∈ UN , and v ∈ VN , then,

‖x(t+, t∗, x∗, u, v)− ξN(t+, t∗, ξ∗, u, v)‖
≤ ‖x∗ − ξ∗‖ exp(2L′(t+ − t∗))+ ϕ′(δN) exp(L′(t+ − t∗)). (31)

Proof Let m and r be natural numbers such that t∗ = tNm , t+ = tNr . Denote x(·) :=
x(·, t∗, x∗, u, v), xk := x

(
tNk , t∗, x∗, u, v

)
, ξk := ξN

(
tNk , t∗, ξ∗, u, v

)
. We have that

xk+1 = xk +
∫ tN

k+1

tNk

[f (t, x(t), uk)+ g(t, x(t), vk)]dt

= xk + δN
[
f (tNk , xk, uk)+ g(tNk xk, vk)

]

+
∫ tNk+1

tNk

[f (t, x(t), uk)+ g(t, x(t), vk)− f (tNk , xk, uk)− g(tNk , xk, vk)]dt.

Here, uk and vk denote the values of u and v on [tNk , tNk+1[, respectively.
Further,

‖x(t)− xk‖ ≤ K ′(t − tk), t ∈ [tk, tk+1].
Therefore, the following inequality is fulfilled:
∫ tk+1

tk

[
f (t, x(t), uk)+ g(t, x(t), vk)− f

(
tNk , xk, uk

)
− g

(
tNk , xk, vk

)]
dt ≤ δNϕ(δN).

Hence,

‖xk+1 − xk − δN
[
f

(
tNk , xk, uk

)
+ g

(
tNk , xk, vk

)]
‖ ≤ δNϕ(δN ). (32)

Further, we have

xk + δN
[
f

(
tNk , xk, uk

)
+ g

(
tNk , xk, vk

)]
− ξk+1

= xk − ξk + δN
[
f

(
tNk , xk, uk

)
+ g

(
tNk , xk, vk

)
− f

(
tNk , ξk, uk

)
− g

(
tNk , ξk, vk

)]
.

Consequently,

‖xk + δN
[
f

(
tNk , xk, uk

)
+ g

(
tNk , xk, vk

)]
− ξk+1‖ ≤ ‖xk − ξk‖ + δN2L′‖xk − ξk‖.

This inequality and estimate (32) yield that

‖xk+1 − ξk+1‖ ≤ ‖xk − ξk‖ + δN2L‖xk − ξk‖ + δNϕ(δN ).

Applying the last inequality sequentially, we get inequality (31).

Now, let us prove the existence of a function satisfying discrete time analogs of
conditions (S1)–(S4).

Theorem 5.1 For any natural N , there exists an upper semicontinuous multifunction ZN :
�N × R

n ⇒ R
2 satisfying the following properties:
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1. ZN(T , ξ) = {(σ1(ξ ), σ2(ξ ))};
2. For all (t∗, ξ∗) ∈ �N ×R

n, u ∈ P , (Y1, Y2) ∈ ZN(t∗, ξ∗) and t+ ∈ �N , t+ > t∗, there
exists a control v ∈ VN and a pair (Y ′

1, Y
′
2) ∈ ZN(t+, ξN(t+, t∗, ξ∗, u, v)) such that

Y1 ≥ Y ′
1;

3. For all (t∗, ξ∗) ∈ �N ×R
n, v ∈ Q, (Y1, Y2) ∈ ZN(t∗, ξ∗) and t+ ∈ �N , t+ > t∗, there

exists a control u ∈ VN and a pair (Y ′′
1 , Y

′′
2 ) ∈ ZN(t+, ξN(t+, t∗, ξ∗, u, v)) such that

Y2 ≥ Y ′′
2 ;

4. For all (t∗, ξ∗) ∈ �N × R
n, (Y1, Y2) ∈ ZN(t∗, ξ∗) and t+ ∈ �N , t+ > t∗, there exist

controls u ∈ UN and v ∈ VN such that (Y1, Y2) ∈ ZN(t+, ξN(t+, t∗, ξ∗, u, v)).

Proof In the proof, we fix the numberN and omit the superindex N . Denote

fk(z, u) := δf (tk, z, u), gk(z, v) := δg(tk, z, v).

The proof is by inverse induction on k. For k = N , put Z(tN , z) := {σ1(z), σ2(z)}.
Now, let k ∈ 0,N − 1. Assume that the values Z(tk+1, z), . . . , Z(tN , z) are constructed

for all z ∈ R
n. In addition, suppose that the functions Z(tk+1, ·), . . . , Z(tN , ·) are upper

semicontinuous. Define

ςi
k+1(z) := min{Yi : (Y1, Y2) ∈ Z(tk+1, z)}, i = 1, 2.

It follows from the upper semicontinuity of the multifunction Z(tk+1, ·) that the functions
ς1
k+1 and ς

2
k+1 are lower semicontinuity.

Set
Wk(z) :=

⋃

u∈P,v∈Q
Z(tk+1, ξ(tk+1, tk, z, u, v)),

�1k(z) := max
u∈P min

v∈Q ς1
k+1(ξ(tk+1, tk, z, u, v)), (33)

�2k(z) := max
v∈Q

min
u∈P ς2

k+1(ξ(tk+1, tk, z, u, v)). (34)

The multifunction Wk is upper semicontinuous. Indeed, let zl → z∗, and let(
Y l
1, Y

l
2

) ∈ Wk(z
l) be such that

(
Y l
1, Y

l
2

) → (
Y ∗
1 , Y

∗
2

)
. We have that

(
Y l
1, Y

l
2

) ∈
Z(tk+1, ξ(tk+1, tk, z

l, ul, vl)) for some ul ∈ P , vl ∈ Q. We can assume without loss of
generality that (ul, vl) → (u∗, v∗). By the continuity of the functions fk and gk , we get
that ξ

(
tk+1, tk, z

l, ul, vl
) = zl + fk

(
zl, ul

) + gk
(
zl, vl

) → ξ (tk+1, tk, z
∗, u∗, v∗), as

l → ∞. The upper semicontinuity of the multifunction Z(tk+1, ·) yields that
(
Y ∗
1 , Y

∗
2

) ∈
Z(tk+1, ξ(tk+1, tk, z

∗, u∗, v∗)) ⊂ Wk(z
∗).

Now, let us show that the functions �ik are lower semicontinuous. We give the
proof only for the case i = 1. For a fixed u ∈ P , consider the function z �→
minv∈Q ς1

k+1(ξ(tk+1, tk, z, u, v)). We shall prove that this function is lower semicontinuous,
i.e., for any z∗, the following inequality holds:

lim inf
z→z∗

min
v∈Q ς1

k+1(ξ(tk+1, tk, z, u, v)) ≥ min
v∈Q ς1

k+1

(
ξ

(
tk+1, tk, z

∗, u, v
))
. (35)

Let {zl}∞l=1 be a minimizing sequence:

lim inf
z→z∗

min
v∈Q ς1

k+1 (ξ (tk+1, tk, z, u, v)) = lim
l→∞min

v∈Q ς1
k+1

(
ξ

(
tk+1, tk, z

l, u, v
))

.

Let vl ∈ Q satisfy the condition

ςk+1
1

(
ξ

(
tk+1, tk, z

l, u, vl
))

= min
v∈Q ς1

k+1

(
ξ

(
tk+1, tk, z

l, u, v
))

.
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Hence, we have

lim inf
z→z∗

min
v∈Q ς1

k+1 (ξ (tk+1, tk, z, u, v)) = lim
l→∞ ς1

k+1

(
ξ

(
tk+1, tk, z

l, u, vl
))

. (36)

We can assume without loss of generality that the sequence
{
vl

}
converges to a control

v∗ ∈ Q. From continuity of the function ξ(tk+1, tk, ·, u, ·) and lower semicontinuity of the
function ς1

k+1, we obtain that

lim
l→∞ ς1

k+1

(
ξ

(
tk+1, tk, z

l, u, vl
))

≥ ς1
k+1

(
ξ

(
tk+1, tk, z

∗, u, v∗
))

≥ min
v∈Q ς1

k+1(ξ(tk+1, tk, z
∗, u, v)).

This inequality and equality (36) lead inequality (35).
Since the functions z �→ minv∈Q ςk+1

1 (ξ(tk+1, tk, z, u, v)) are lower semicontinuous for
each u ∈ P , the function

�k1(z) = max
u∈P

min
v∈Q ςk+1

1 (ξ(tk+1, tk, z, u, v))

is lower semicontinuous.
Put

Z(tk, z) :=
{
(Y1, Y2) ∈ Wk(z) : Yi ≥ �ik(z), i = 1, 2

}
. (37)

First, we shall prove that it is nonempty. Let z ∈ R
n. Let u∗ maximize the right-hand

side of Eq. (33), and let v∗ maximize the right-hand side of Eq. (34). Choose (Y1, Y2) ∈
Z(tk+1, ξ(tk+1, tk, z, u∗, v∗)). We have that (Y1, Y2) ∈ Wk(z). Further,

�ik(z) ≤ ςi
k+1(ξ(tk+1, tk, z, u∗, v∗)) ≤ Yi.

Therefore, (Y1, Y2) ∈ Z(tk, z).
The upper semicontinuity of the function Z(tk, ·) follows from Eq. (37), the upper

semicontinuity of the multifunctionWk , and the lower semicontinuity of the function �ik(z).
Now, let us show that the function Z satisfies conditions 1–4 of the theorem.
Note that conditions 1 and 4 are fulfilled by the construction. Prove conditions 2 and

3. Let (t∗, ξ∗) ∈ �N × R
n, t+ ∈ �N , t+ > t , u∗ ∈ P , (Y1, Y2) ∈ Z(t∗, ξ∗). It suffices

to consider the case t = tk , t+ = tk+1. By construction of the function Z, we have that
Y1 ≥ �1k(ξ∗). From the definition of the function �1k (see Eq. (33)), it follows that

Y1 ≥ max
u∈P min

v∈Q ς1
k+1(ξ(tk+1, tk, ξ∗, u, v)) ≥ min

v∈Q ς1
k+1(ξ(tk+1, tk, ξ∗, u∗, v)).

Let v∗ ∈ Q be a control of player II such that

min
v∈Q ς1

k+1(ξ(tk+1, tk, ξ∗, u∗, v)) = ς1
k+1(ξ(tk+1, tk, ξ∗, u∗, v∗)).

From the definition of the function ς1
k+1, we get that there exists a pair

(
Y ′
1, Y

′
2

) ∈
Z(tk+1, ξ(tk+1, tk, ξ∗, u∗, v∗)) such that Y ′

1 = ς1
k+1(ξ(tk+1, tk, ξ∗, u∗, v∗)). Consequently,

Y1 ≥ Y ′
1. Hence, condition 2 holds. Condition 3 is proved analogously.

5.2 Continuous Time Dynamics

Theorem 5.2 There exists an upper semicontinuous multifunction S : [0, T ] × R
n ⇒ R

2

with nonempty images satisfying conditions (S1)–(S4).

The proof of Theorem 5.2 is given in the end of the section.
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First, for each N , define the multifunction SN : [0, T ]×R
n ⇒ R

2 by the following rule:

SN(t, x) :=
⎧
⎨

⎩

ZN(tNk , x), t ∈ (tk−1, tk), k = 1,N − 1
ZN(tk, x) ∪ ZN(tk+1, x), t = tk, k = 0,N − 1
ZN(tNN , x), t = T

(38)

The functions SN have the closed graph.
Denote

B(ν) := {x : ‖x‖ ≤ ν}.
For � : [0, T ] ×R

n ⇒ R
2 set

Grν� := {(t, x, Y1, Y2) : ‖x‖ ≤ ν, (Y1, Y2) ∈ �(t, x)}.
The sets GrνSN are compacts. Indeed,

Mi,ν := max{|σi(x(T , t∗, x∗, u, v))| : t∗ ∈ [0, T ], ‖x∗‖ ≤ ν, u ∈ U , v ∈ V} < ∞.

We have that GrνSN ⊂ [0, T ] × B(ν)× [−M1,ν ,M1,ν] × [−M2,ν ,M2,ν].
Consider the Hausdorff distance between compact sets A,B ⊂ [0, T ] × R

n × R
2

h(A,B) := max

{
max

(t,x,Y1,Y2)∈A
d((t, x, Y1, Y2), B), max

(t,x,Y1,Y2)∈B
d((t, x, Y1, Y2),A)

}
.

Here, d((t, x, Y1, Y2),A) is the distance from the point (t, x, Y1, Y2) to the set A

generated by the norm

‖(t, x, Y1, Y2)‖ = |t | + ‖x‖ + |Y1| + |Y2|.
Since for any ν the set [0, T ] ×B(ν+ 1)× [−M1,ν ,M1,ν] × [−M2,ν ,M2,ν] is compact,

using [18, Theorem 4.18], we get that one can extract a convergent subsequence from the
sequence {Grν+1S

N }∞
N=1.

Using the diagonal process, we construct the subsequence {Nj } such that for any ν, there
exists the limit

lim
j→∞Grν+1S

Nj = Rν.

One can choose the subsequence {Nj } satisfying the property:
h(Grν+1S

Nj , Rν) ≤ 2−j for j ≥ ν.

Denote S̃j := SNj .

Lemma 5.2 Let (Y1,l , Y2,l ) ∈ S̃jl (tl, xl), ‖xl‖ ≤ ν + 1, (tl , xl) → (t∗, x∗), (Y1,l, Y1,l ) →
(Y ∗

1 , Y
∗
2 ), as l → ∞. Then (t∗, x∗, Y ∗

1 , Y
∗
2 ) ∈ Rν .

Proof Consider the set Rν ∪ {(t∗, x∗, Y ∗
1 , Y

∗
2 )}. This set is closed. We claim that

h(Grν+1S̃jl , Rν ∪ {(t∗, x∗, Y ∗
1 , Y

∗
2 )}) → 0, l → ∞. (39)

Indeed, d((t, x, Y1, Y2), Rν ∪ {(t∗, x∗, Y ∗
1 , Y

∗
2 )}) ≤ d((t, x, Y1, Y2), Rν) for all

(t, x, Y1, Y2) ≤ Grν+1S̃jl . Hence,

max
(t,x,Y1,Y2)∈Grν+1S̃jl

d((t, x, Y1, Y2), Rν ∪ {(t∗, x∗, Y ∗
1 , Y

∗
2 )}) → 0, as l → ∞. (40)

Further, the following convergence is valid:

max
(t,x,Y1,Y2)∈Rν∪{(t∗,x∗,Y ∗

1 ,Y
∗
2 )}

{d((t, x, Y1, Y2),Grν+1S̃jl )} → 0, as l → ∞.

This and Eq. (40) yield Eq. (39).
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Formula (39) means that

Rν ∪ {(t∗, x∗, Y ∗
1 , Y

∗
2 )} = lim

l→∞Grν+1S̃jl = Rν.

This completes the proof.

Lemma 5.3 For r > ν, the following equality holds:

Rr ∩
(
[0, T ] × B(ν)× R

2
)
= Rν ∩

(
[0, T ] × B(ν)×R

2
)
.

Proof Let (t, x, Y1, Y2) ∈ Rr , ‖x‖ ≤ ν, and j ≥ r . There exists a quadruple
(θj , yj , ζ1,j , ζ2,j ) ∈ Grr+1S̃j such that

|t − θj | + ‖x − yj‖+ |Y1 − ζ1,j | + |Y2 − ζ2,j | = d
(
(t, x, Y1, Y2) ,Grr+1S̃j

) ≤ 2−j . (41)

Therefore, ‖x−yj‖ ≤ d((t, x, Y1, Y2),Grr+1S̃j ) ≤ 2−j . We have that ‖yj‖ ≤ ‖x‖+2−j ≤
ν+1. Therefore, (θj , yj , ζ1,j , ζ2,j ) ∈ Grν+1S̃j . It follows from formula (41) and Lemma 5.2
that (t, x, Y1, Y2) ∈ Rν . Since the quadrable (t, x, Y1, Y2) satisfies the condition ‖x‖ ≤ ν,
we conclude that

Rr ∩ ([t0, T ] × B(ν)× R
2) ⊂ Rν ∩ ([t0, T ] × B(ν)× R

2).

The opposite inclusion is proved in the same way.

Define the multifunction S̄ : [0, T ] ×R
n ⇒ R

2 by the following rule: for ‖x‖ ≤ ν

S̄(t, x) := {(Y1, Y2) : (t, x, Y1, Y2) ∈ Rν}.
Note that this definition is correct by virtue of Lemma 5.3. We have that Grν S̄ = Rν ∩
([t0, T ] × B(ν)×R

2).

Proof of theorem 5.2 We shall show that the function S̄ has nonempty images and satisfies
conditions (S1)–(S4).

First, we shall prove that the sets S̄(t, x) are nonempty. Let ν satisfy the condition ‖x‖ <

ν, and let (Y1,j , Y2,j ) ∈ S̃j (t, x). Since S̃j (t, x) ⊂ [−M1,ν ,M1,ν] × [−M2,ν ,M2,ν], there
exists a subsequence {(Y1,jl , Y2,jl )}∞l=1 converging to a pair

(
Y ∗
1 , Y

∗
2

)
. By Lemma 5.2, we

obtain that
(
Y ∗
1 , Y

∗
2

) ∈ S̄(t, x).
Now, let us prove that the multifunction S̄ satisfies conditions (S1)–(S4).
We begin with condition (S1). Let x∗ ∈ R

n. Choose ν such that the following conditions
hold:

1. x(t, T , x∗, u, v) ∈ B(ν) for all t ∈ [0, T ], u ∈ U , v ∈ V ;
2. All z such that x∗ = ξN(T , t, z, u, v) for some natural N , t ∈ �N , u ∈ UN , v ∈ VN

belong to B(ν).

Let Kν be defined by Eq. (3) for E = B(ν + 1).
Let N be a natural number, t∗ ∈ �N , and ξ∗ ∈ B(ν). By conditions 1 and 4 of Theorem

5.1, we have that if (Y1, Y2) ∈ ZN(t∗, ξ∗), then there exists u ∈ UN , and v ∈ VN such that

Yi = σi

(
ξN(T , t∗, ξ∗, u, v)

)
, i = 1, 2. (42)

We have the estimate

‖ξ∗ − ξN(T , t∗, ξ∗, u, v)‖ ≤ Kν(T − t∗). (43)
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Let (J1, J2) ∈ S̄(T , x). This means that there exists a sequence
{(
tj , xj , Y1,j , Y2,j

)}∞
j=1

such that (Y1,j , Y2,j ) ∈ S̃j
(
tj , xj

) = SNj
(
tj , xj

)
, and tj → T , xj → x, Yi,j → Ji as

j → ∞. Let θj ∈ �Nj be such that
(
Y1,j , Y2,j

) ∈ ZNj
(
θj , xj

)
and tj ∈ (θj − δN , θj ].

Combining these Eqs. (42) and (43), we conclude that for any j , there exists x ′j ∈ B(ν)

such that ‖xj − x ′j‖ ≤ Kν(T − tj ) and Yi,j = σi

(
x ′j

)
, i = 1, 2. We have that x ′j → x, as

j → ∞. By the continuity of the functions σi , we obtain that

Ji = lim
l→∞Yi,j = lim

j→∞σi

(
x ′j

)
= σi(x).

Now, we shall prove the fulfillment of condition (S2). Let (t∗, x∗) ∈ [0, T ] × R
n,

(J1, J2) ∈ S̄(t∗, x∗), u ∈ P , t+ ∈ [t∗, T ]. We shall show that there exists y2(·) ∈
Sol2(t∗, x∗, u) such that J ′

1 ≤ J1 for some
(
J ′
1, J

′
2

) ∈ S̄
(
t+, y2(t+)

)
.

There exists a sequence
{(
tj , xj , Y1,j , Y2,j

)}∞
j=1 such that

(
Y1,j , Y2,j

) ∈ S̃j
(
tj , xj

) =
SNj

(
tj , xj

)
, and tj → t∗, xj → x∗, Yi,j → Ji , as j → ∞. Let θj be an element of �Nj

such that
(
Y1,j , Y2,j

) ∈ ZNj
(
θj , xj

)
and tj ∈ (θj − δN, θj ]. Further, let τj be the least

element of �Nj such that t+ ≤ τj .
By condition 2 of Theorem 5.1 for each j , there exists a control vj ∈ VNj ,

and a pair
(
Y ′
1,j , Y

′
2,j

)
such that

(
Y ′
1,j , Y

′
2,j

)
∈ ZNj

(
τj , ξ

Nj
(
τj , θj , xj , u, vj

)) ⊂
S̃j

(
τj , ξ

Nj
(
τj , θj , xj , u, vj

))
and Y ′

1,j ≤ Y1,j . By Lemma 5.1, we have that

‖x (
τj , θj , xj , u, vj

) − ξNj
(
τj , θj , xj , u, vj

) ‖ ≤ ϕ′ (δNj

)
exp(LT ).

Wemay extract a subsequence {jl}∞l=1 such that
{
x

(·, θjl , xjl , u, vjl
)}∞

l=1 converges to some
motion y2(·), and {(Y ′

1,jl
, Y ′

2,jl
)} converges to some pair

(
J ′
1, J

′
2

)
. We have that y2(·) ∈

Sol2(t∗, x∗, u). Lemma 5.2 gives the inclusion
(
J ′
1, J

′
2

) ∈ S
(
t+, y2 (t+)

)
. We also have

J ′
1 ≤ J1.

This completes the proof of condition (S2).
Conditions (S3) and (S4) are proved analogously.
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10. Cardaliaguet P, Plaskacz S. Existence and uniqueness of a Nash equilibrium feedback for a simple
nonzero-sum differential game. Int J Game Theory 2003;32:33–71.

11. Case JH. Towards a theory of many players differential games. SIAM J Control 1969;7:179–97.
12. Chistyakov SV. On noncooperative differential games. Dokl Akad Nauk SSSR 1981;259:1052–5 (in

Russian).
13. Friedman A. Differential games. New York: Wiley; 1971.
14. Kleimenov AF. Non zero-sum differential games. Ekaterinburg: Nauka; 1993. (in Russian).
15. Kononenko AF. On equilibrium positional strategies in nonantagonistic differential games. Dokl Akad

Nauk SSSR 1976;231:285–8. (in Russian).
16. Krasovskii AN, Krasovskii NN. Control under lack of information. Basel: Birkhäuser; 1995.
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