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STABILITY AND BIFURCATION ANALYSIS
ON A RING OF FIVE NEURONS
WITH DISCRETE DELAYS

CHANGJIN XU, XIANHUA TANG, and MAOXIN LIAO

ABSTRACT. In this paper, a five-neuron model with discrete delays
is considered, where the time delays are regarded as parameters. Its
dynamics is studied in terms of local analysis and Hopf bifurcation
analysis. By analyzing the associated characteristic transcendental
equation, it is found that Hopf bifurcation occurs when these delays
pass through a sequence of critical value. Some explicit formulae for
determining the stability and the direction of the Hopf bifurcation
periodic solutions bifurcating from Hopf bifurcations are obtained by
using the normal form theory and center manifold theory. Finally, nu-
merical simulations supporting the theoretical analysis are presented.

1. INTRODUCTION

In recent years, the dynamics properties (including stable, unstable, os-
cillatory and chaotic behavior) of neural networks with delays have become
a subject of intense research activity of mathematical fields because of the
successful application of neural networks to many fields such as intelligent
control, optimization solvers, associative memories (or pattern recognition)
etc., and many excellent and interesting results have been obtained (see [1,
3, 8, 11]). It is well known that the dynamic behaviors such as periodic
phenomenon, bifurcation and chaos are of great interest and periodic phe-
nomenon has become an important aspect of neural information processing.
There are a large number of results about the existence of periodic solutions
of neural networks (see [1, 2, 4, 6, 18, 21, 23, 25]) which help in understand-
ing the system’s dynamics and are important complements to experimental
and numerical investigations using analog circuits and digital computers. It
is known that the delayed bidirectional associative memory neural network
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is described by the following system:

T (t) = —pawi(t) + chifi(yj(t — 7))+ 1L, i=1,2,,n,
=1

Gi(t) = =iy () + > dijgi(ai(t —vij)) +J;, §=1,2,--,m,
=1

where ¢j;,d;;(4 = 1,2,--- ,n;j = 1,2,--- ,m) are the connection weights
through neurons in two layers: the I-layer and J-layer; u; and v; describe
the stability of internal neuron processes on the I-layer and J-layer, respec-
tively. On the I-layer, the neurons whose states are denoted by x;(t) receive
the inputs I; and the inputs outputted by those neurons in the J-layer via
activation functions f;, while on the J-layer, the neurons whose associated
states are denoted by y;(t) receive the inputs J; and the inputs outputted
by those neurons in the I-layer via activation functions g; (see [5]). Because
neural networks are complex and large-scale nonlinear dynamical systems
and the dynamics of the delayed neural networks are even more rich and
more complicated [8], most of them deal with the simple delayed neural net-
works models with two, three or fourth neurons (see [2, 4, 6, 9, 12, 16, 18,
23, 25, 26]). It is expected that we can gain some light for our understand-
ing about the large networks by discussing the dynamics of two, three or
four neurons networks (see [2, 4, 6, 9, 12, 16, 18, 23, 25, 26]). But there are
inevitably some complicated problems if the simplified networks are carried
over to large-scale networks, for example, the characteristic equation and
the bifurcating periodic solutions are very complicated. So it is necessary to
investigate the large-scale neural networks themselves. In order to obtain a
deep and clear understanding of dynamics of the model, some researchers
have focused on the studies on Hopf bifurcation of the above neural net-
works and showed the system exhibits very interesting and rich dynamics.
For example, on the above model, Song et al. [20] studied existence and
local Hopf bifurcations of a simplified case with three neurons and multiple
delays. Huang et al. [10] investigated linear stability and Hopf bifurcation
of a two-neuron network with four delays. Cao and Xiao [2] considered sta-
bility and Hopf bifurcation of a simplified BAM neural network with two
delays. Zou et al. [18] investigated linear stability and Hopf bifurcation in a
three-unit neural network with two delays. For more related work on Hopf
bifurcation of the delayed bidirectional associative memory neural network,
one can see [6, 16, 21, 23, 25] and the references cited therein.
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Recently, Haijun Hu and Lihong Huang [12] studied the following differ-
ential equations with delay:

@1(t) = —rz1(t) + g1(z1 (1) + fr(@a(t — 72)) + fr(@2(t — 72)),
i2(t) = —r2w2(t) + g2(22(t)) + fa(z1(t — 1)) + falws(t — 7)), @)
i3(t) = —raw3(t) + gs(z3(t)) + fa(@2(t — 72)) + fa(wa(t — 72)),
P4 (t) = —raza(t) + ga(@a(t)) + fa(zs(t — 7)) + fa(z1(t — 1)),

where & = dx/dt, z;(t) represents the state of the ¢-th neuron at time ¢, r; >
0 is the internal decay rate, f; is the connection function between neurons,
g; represents the nonlinear feedback function, 7; > 0 is the connection time
delay, © = 1,2,3,4. They obtained the condition of the existence of Hopf
bifurcation, a formula for determining direction of the Hopf bifurcation and
stability of bifurcating periodic solutions.

Motivated by the paper [12] and considering that when the number of
neurons is large, the simplified model can reflect the really large neural
networks more closely, in this paper, we consider a five dimensional de-
layed bidirectional associative memory neural network and assume that the
information processing between the first neuron and the fifth neuron is in-
stantaneous (i.e., there is no delay of the signals transmission between the
first neuron and the fifth neuron). Then we have the following system:

+ fi(zs(t)) + fi(z2(t — 72)),

+ fa(z1(t — 7)) + fa(@s(t — 11)),

)+ fa(za(t — 7)), (3)
) + fa(xs(t —11)),

) + fs(x1

)

@1(t) = —r1w1(t) + g1(21(2))

(t) = —rawa(t) + ga(z2(t)) (

#3(t) = —raw3(t) + gs(w3(t)) + fa(wa(t — 72)
(t) = —raxa(t) + ga(za(t)) + fa(ws(t — 1)
(t) = —rsa5(t) + gs5(x5(t)) + f5(wa(t — 72)

fs(aa(t))-

In order to establish the main results for model (3), it is necessary to make
the following assumptions:

(Hl) fiagi S 03’ fl(o) = gl(o) =0 (Z = 1?2737475)a
(H2) T+ To="T.

The purpose of this paper is to discuss stability and properties of Hopf
bifurcation of model (3). We would like to mention that there are few papers
related to the high dimensional neural networks system with multiple delays.
To the best of our knowledge, it is the first time to deal with the dynamical
properties of five dimensional neural networks, especially the properties of
Hopf bifurcation.

This paper is organized as follows. In Sec. 2, stability of the equilibrium
and existence of Hopf bifurcation at the equilibrium are studied. In Sec. 3,
direction of Hopf bifurcation and stability and periodic of bifurcating peri-
odic solutions on the center manifold are determined. In Sec. 4, numerical
simulations are carried out to illustrate validity of the main results. Some
main conclusions are drawn in Sec. 5.
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2. STABILITY OF THE EQUILIBRIUM AND LOCAL HOPF BIFURCATIONS

By the hypothesis (H1), it is easy to see that (3) has a unique equilibrium
24(0,0,0,0,0). Under the hypotheses (H1) and (H2), the linearized equation
of (3) at 2,(0,0,0,0,0) takes the form:

L1(t) = —max (¢ )+f1( )5 (t) + f1(0)a(t — 72),

Ta(t) = —maowa(t) + fz( Jra(t — 1) + fz(o)iUB(t —T1),

1’3(t) = —mgxg(t) + f(}(O)SUQ(t — Tz) + f3(0)$4(t — 7'2)7 (4)
4 (t) = —maza(t) + f4(0)a3(t —m) + f4(0)$5(t —T1),

#5(t) = —msws(t) + f5(0)2a(t — 72) + f5(0)a1 (t),

where m; = r; — g;(O), (i =1,2,3,4,5). Then the associated characteristic
equation of (4) is

KA+mlu+mwu+nm3mnﬂm
(A +m3) £1(0) £5(0

)
A+ my)( ) (0)f5(0)
(A + ma) (A + ms) f5(0) f3(0)
( ) 1(0)£5(0)

+ A+ mg
+ (A +m
_|_

(
(
(A +ms3
(
(

— ~— ~— ~— ~—

+ (A + m1) £5(0) £5(0) £2(0) £5.(0)
+ (A +ms5) £1(0) £2(0) £(0) £4(0)
+ (A +m3) £1(0) £(0) £4(0) £5(0)
—2/1(0)£5(0) f5(0) £4(0) f5(0))e =" = 0. (5)

Let A = iwg, T = 79, and substituting this into (5), for the sake of simplicity,
denote wy and 7y by w, T, respectively. Separating the real and imaginary
parts, we have

(
(

(a1 + b1) coswT + (¢1 — dy) sinwT = ey, (6)

(c1 +d1) coswt + (a1 — by) sinwt = eq, (7)

where
= prw* — psw? + ps,
by = m1 £5(0) £5(0) £1(0) f5(0) + ms £1(0) £3,(0) £5(0) £4(0)
+m3 f1(0)£5(0)£4(0)£5(0) — 2£1(0) £(0) £(0) £1(0) £5(0),
c1 = | £5(0) £5(0) £4(0) £5(0) + £1(0) £2(0) £(0) £4(0)
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+ 0 £0)£1(0)£5(0)] w,

di = w® — pow® + paw,

e1 = [mimams — (my + mao + ms)w?] f3(0)f4(0)
+ [mamams — (ma +ma +ms)w?] £1(0)£5(0)
+ [m1m4m5 —(m1+mq + ms)WQ] fz/(o)f/(o)
+ [m3m4m5 — (m3 +my + m5)w2] fi(O)fl(O)

ey = [mlmQ +myms + mams)w — w*| f3(0) £4(0)
+ [m1m2 +mims + mams)w — w3] fzi(o)f/ (0)
+ [mama +mams + mams)w — w°) f; (O)f/ (0)
+ [mama + mams +mams)w — w°] £1(0) £5(0)

p1 = my + mg +m3 + my + ms,
D2 = miMmg + Mmims + Mam3z + M1My + MaMy
+ mamy + mims + mams + mams + mylms,
P3 = mimems + m1maimy + M1mzmy + MaMmgmy + M1mamms
+ mimsms + mamgms + mimgms + MaMmgms + m3myms,
P4 = M1M2M3M4 + M1M2M3M5 + M1 M2MgMs + M1M3M4Ms5
+ mamamyms,
D5 = M1Mma2m3zmny4ims.
Thus, we get

61(@1 — bl) — 62(01 — dl)

= 8

cOS wT o g , (8)
61(01 —+ dl) — 62(&1 + bl)

i = . 9
sin wt e g 9)

According to sin® wr + cos? wr = 1, we obtain
[e1(ar —by) —ea(cr — dy))* + [er(cr + di) — ealar + by)]?
=[ai =i —ci +d7)* (10)
which leads to
Lw'® + lpw™ 4 130" + 1w 4 lsw' + lgw™ 4 17w? + lgw®

+ lgw7 + l10w6 + lllw5 + 112w4113w3 + 114&]2 + 115(&) + ll6 = 0, (11)
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where

h= egQa

lo = 2e11€12p1 — 2611622 — 2p2ess,

ls = —2piene,

ly = e3,p7 + €31 + dpaeaienn + €55(p3 + 2pa) + 2e11€02(p1p2 + Pp3)
+ 2ne3, — 2pieanean — 2p1p3ess,

Is = —2npreaiean + 2p1(e1ae21 + e11€22) + 2e11€02(p3 + p1p2),

ls = —2pTeiieir — 2p1psely — 2pachy + 2ea1€22(p3 + 2pa) + 2papachy
— 2e11€02(p1pa + Paps + Ds) — 2n(2ez1€92 + pacsy) + pie,
+ dp1pseaiens + (P34 2p1ps)edq + 2nel, + 2b1p1ed,,

I7 = 2p1n®(e1zea1 + ea1€02) + 2n*(€12€21 + €11€22P1) + 2p3n’erzens
+ €1y + e11622(ps + P1pa + paps) + (p1p2 + ps)(e12€21 + e11€22)
— 2bierzers,

ls = pied; + 4pipserers + €1o(p3 + 2p1ps) + nesy + €3, (ph + 2ps)
+ 4dei1eaa(p1p2 + p3) + 2(e12e21 + e11€22)(p1pa + p2ps + ps)
+ e11€02(pspa — Paps) + 2n(ehy + pachy + 2paearess + pies
+ 4p1pseanean + €55 (P5 + 2p1ps) — 2p1pses; — 2ea1€22(p3 + 2p1ps)
— 2p3pse3y — 2n (221620 + Papls) — 2b1(p3eds + 2pre2less,

lg = —2n’prerrear — 2n2[p1611€21 + pa(e1zea1 + e11€22) + paeriens)
— 2by (e12€21 + €11€02) — 2€11€12 — P2eis — €11€21(P3 + P1p2)
— (ps + paps + p1pa)(e12e21 + e11€22) + (P2ps + p3pa)eriean
+ 2b1paerieas,

lio = —2p1psel; — 2ex1e12(p3 + 2p1ps) — 2pspsels — 2e21€00k
— 2papael) — 2ea1€00p] + 2b1(2e11€21p1 + psely) + 2papserienn
— 2e11€22(p1pa + p2ps + ps) — 2(e12e21 + e11€22)(P3ps — Paps)
— 2n%(p2e3; + 2e11€20p4) + nely + €15 (D5 + 2p1p5) + €3503
+ €31 (p5 + 2p1ps) + 4pspseaiean + bies, + 2n(paeis + 2paeriens)
— pser1e1z — pi(erzear + er1ea) + 2b1(pses, + pre3),

li1 = 2n’pseriear + 2n*[pseriear + ps(er2ean + e11e22) + 2binerrens
+ 2by[e11€21 + pa(erzea1 + e11€22) + paerrens + €3 + 2p2eriens
+ paerreaz] — 2b1neigesn + €121 (ps + p2ps + p1pa) — 2b1(e12e21
+ e11e22)(p2ps + Papa) + er1e22paps — 2b1[e12e21 + pa(eizean



STABILITY AND BIFURCATION ON A RING OF FIVE NEURONS 243

+ €11€22) + paerres],
lio = (p5 + 2p1ps)ed; + derie1apsps + paei, + biely + e3n
— 2by(pred; + 2pserre1n — psely + er1e22(p1pa + paps + ps) + pies
+ (e12€21 + €11€22)(P3ps — Paps) + papseries + 2paeq; — 2n’erzen
— 2p3pses; — 2ea1e00ps — 2biea1€20 — 2n(pael; + 2paerienn)
xp3(e12ea1 + €11€22) + pserres + prerieas — 2b1(p3es; + 2pseaiens),
lis = —2n°pseriear — 2bin(eizear + e11€22) — 2bipaeriear — paed
— 2b1pa(erzear + er1ea2 + 2paerier + 2n(pseriear + pseizean
+ pserreas + 2b1(e12e21 + e11€22) — Paps — P3p4
+ 2e11e22(paps + P3pa) Xpaps(e12e21 + €r11€22)
+ 2bi1[p2e11ea1 + palerzean + errenn)],
liy = —2e11e21p3 — 2e11e12b; + 2b1(p3ed; + 2e11e19ps) + nPed;
— e11e21(papa — p2ps) — paps(e1zezr + erresr) +P§€§1 + b%€§1
+ 2npael; + 2bipses;,
lis = 2nbieqiear + 2pabieriear + paety + 2npseriear — 2binerien
— 2papsernear — 2bipaeriean,

2 2 2 2 2
lie = pzeqy + biey; — 2bipseqy,

where

’

n = £1(0)£2(0)£5(0) £1(0) + £1(0)£5(0) £1(0) £5(0)

+ £2(0) £3(0) £1(0) £5(0),
e1r = mimams f5(0) £1(0) + mamams f,(0) £5(0)

+ mamams f(0) £5(0) + mgmams £, (0) £(0)

— maf1(0)£5(0)'(0) £3(0)£5(0) (0) — ma f1(0) £5(0) £4(0) £5(0),
e1a = (m1 + ma +ms) f3(0) £1(0) + (ma + ma + ma) £4(0) f5(0)

+ (my +ma +ms) f(0) £3(0) + (ms + ma + ms) £1(0) f(0),
es1 = (Mmimg + myms + m2m5)fé(0)f;(0)

+ (mima + mymg + mams) f1(0) £5(0)

+ (myma + myms + mams) f5(0) f3(0)

+ (mama + mams + mams) f,(0) £2(0)

— £1(0)£3(0) £(0) £3(0) — £1(0) £5(0) £4(0) £5(0),
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ea2 = —f3(0)f4(0) = £4(0)f5(0) 4 f2(0)f3(0) — f1(0)f5(0).
Suppose that Eq. (11) has positive roots. Without loss of generality, we as-
sume that it has sixteen positive roots, denoted by wy, (k=1,2,3,--- ,16).
By (8), we have

@ _ 1 ei1(ar —b1) —ea(cr — di) o 12
T o arccos e o +2jm|, (12)
where £k =1,2,3,--- ;16 and j = 0,1,2,---. Then +iwy is a pair of purely

imaginary roots of Eq. (5) with 7 = T,Ej ), Obviously, the sequence {T,ij )}j:og

is increasing, and
() _

lim 7
j—+oo

=400, k=1,23-,16.

Then we can define

_ (0 _ _
To = Tgo = 1<mk§116{7k }7 Wo = Wko- (13)

Note that when 7 = 0, (5) becomes
N4 p A+ g X + @A+ gsA + g =0, (14)
where
0 = p2 — f5(0)£1(0) = £4(0) £5(0) — £5(0)£5(0) — £1(0)£5(0),
G2 = p3 — (M +ma + m3) f5(0) £1(0) = (m1 + ma + ms) £,(0) £5(0)
— (m1 +ma + ms) £5(0) £35(0) — (ma + ma + ms) £1(0) £,(0),
43 = pa — (mamg +myms + mams) f4(0) £4(0)
0)/5(0)
0)3(0)
— (mgmy + mgms + mams) f1(0) f5(0)
+ £1(0)£2(0) £3(0) £(0) + £1(0) £5(0) £,(0) £5(0)
+ £5(0)£5(0) £1(0) f5(0) + £1(0) £5(0) f5(0) £,.(0)
+ £1(0) £(0) £4(0) £5.(0),
A

q4s = Ps — m1m2m5f3( O) m1m2m3f4(0 fs( )

— (m1m2 + mims + mgmg) 4

— (mimg +mims + m4m5)f2

)
i
(
(

—~
—~

)f )

—m1m4m5f2( )f3(0) m3m4m5f1( ) 2(0)

+ 14 f1(0) f5(0) £3(0) £5(0) — maf1(0) f5(0) f5(0) £5(0)

+ 11 f5(0) £5(0) £3(0) £5(0) + ms f1(0) £5(0) £3(0) £4(0)
(0) £5(0)

+1m3.£1(0) f2(0) £4(0) £5(0) — 2, (0) £2(0) £5(0) £4(0) f5(0).
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A set of necessary and sufficient conditions for all roots of (14) to have a
negative real part is given by the well-known Routh-Hurwitz criteria in the
following form:

p1>0, pig1—q2>0, pi(q1g2 —p1gs) — @5 +p1ga >0, g4 >0. (15)

In order to obtain the main results in this paper, it is necessary to make
the following.

Assumption 1. (H3) If (15) holds. Namely, (5) has sixteen roots with
negative real parts when 7 = 0, (4) is stable near the equilibrium.

(H4) Re (;ﬁ) . £0.

Let A(7) = a(7) + iw(7) be the root of Eq. (5) near 7 = T,gj) satisfying

T=

«a (T]Ej)) =0, w (T]Ej)> = wy. Taking the derivative of A with respect to 7
in (5), it is easy to obtain:

d\T)\"' P
( dr > Q-
where

P =5\ +4p1 A3 + 3paA? + 2p3 ) + pa)e”
- [3>\2 + 2(my + ma2 + ms)A + (mima + myms + m2m5)] f3(0) £4(0)

; (16)

>3

-3 |:/\2 + 2(m1 + mo + m3)>\ + (m1m2 + mims + moms

-3 [)\2 +2(m1 + ma + ms)\ + (mimyg + mims + myms

)
-3 [)\2 + 2(m3 +my + m5)/\ + (m3m4 + mams + mams

+ £1(0) £5(0) £3(0) £(0) + F1(0) f2(0) £1(0) f5(0)]e ™7,
Q = -2\ oA+ pad3 + p3A? 4 pad + ps)

F A (A +m1) £5(0) f5(0) £4(0) f5(0)
+ (A + ms) £1(0) £2(0) £5(0) £1(0)
+ (A + m3) f1(0)£2(0) £1(0) £5(0) — 2£1(0) £5(0) £(0) £1(0) £5(0) | -

Then we obtain
dA(r)\ 7!
dr

A = 5w§ — 3P2w§ + p4) coswoTo — (2p3wo — 4p1w8’) sin wy o

_ Aitidy

T
=12 17
T=To Cl +iCQ )\7 ( )

where
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—30.)8 +mimeo + mims + m2m5] f3 0 f4 0
—SwS + mimeo + mims + mgmg] f4 0

—3w§ + mimyg + mims +mams| f1(0 f2 0

[ (0)

[ (0)f5

[ £1(0)
[—30)(2) + mgmy + mams + myms fl (O)f2 0

+ £1(0)£2(0) £3(0) £(0) + £1(0) £5(0)£1(0) £5(0)

+ [0 /40 £:0)0) + £1(0)£5(0)£3(0)3(0)

+ FO) 50 £4(0)£(0)] coseomn,

Ay = 5w§ - 3p2w§ + p4) sinwoTy

Cy =

Cy =

— (2p3wo — 4p1wd) cos woTo
— 2(my + ma + ms)wo f5(0) f4(
— 2(m1 4 ma 4 mz)wo f4(0) f5(0
— 2(my + Mg + ms)wo f(0) f(
(

— [£2(0) £5(0) £1(0) £5(0) + f1(0) £5(0) £(0) £4(0)
+ [£10)/2(0)£:0)£(0)] sinworo,

(prwh — Pswi 4 ps)wo sin womy — (W — Pawp + Pawo)wo cos woTo

+wo sinwigro [mi £5(0)3(0)£2(0)£3(0) + s £1(0) £5(0) £3(0) £5(0)
3 f1(0) f5(0) £5(0)3(0) = 2£1(0) £2(0) £5(0) £5(0) /5 (0)]

— [ £1(0)£3(0) £3(0) £5(0) + £(0) £5(0) £5(0) £5(0)

+ F1(0)£3(0)£1(0)£5(0) | wf coseeor,

(wg — Pawpy + paco)wo sinwoTo — (1 — Paw + Ps)wo COSwoTo
+w%mmm{ﬂ<w&>ﬁ<wﬁm+¢ﬁmﬁmn&mﬁm>

+ 11000 £3(0)£5(0)13(0)] + wo coswioro [mi £3(0)3(0)£1(0)£3(0)
+wﬁUfU Uh@+mhﬂb0hmﬂ®

+ =2£(0)£5(0)£3(0) £1(0) £5(0)]

Thus we have

_ AC+ AsCy
T=T0 o C12 + C22

dA
Re (dT)

(18)
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In order to investigate the distribution of roots of the transcendental
equation (5), the following lemma that is stated in [19] is useful.

Lemma 1 (See [19]). For the transcendental equation

P()\, 67)\7—1, . ,67)‘7"”) —\" _’_pgo))\nfl 4. +p51021A _’_p1(10)

+ {pgl)/\”fl o pl A +p511)} e

[P A ) | e =,
as (T1,T2,73, - ,Tm) vary, the sum of orders of the zeros of
P(\, e ... e7ATm) in the open right half plane can change, and only
a zero appears on or crosses the imaginary axis.

From Lemma 1, it is easy to obtain the following results:

Theorem 2. If (H1) — (H4) hold, then
(I) For system (3), its zero solution is asymptotically stable for T € [0, 70);
(II) system (3) undergoes a Hopf bifurcation at the origin when T = 7o,
i.e, system (3) has a branch of periodic solutions bifurcating from the zero
solution near T = 1.

3. DIRECTION AND STABILITY OF THE HOPF BIFURCATION

In the previous section, we obtained conditions for Hopf bifurcation to
occur when 7 = 7¢. In this section, we shall derive the explicit formulae
determining the direction, stability, and period of these periodic solutions
bifurcating from the equilibrium z,(0,0,0,0,0) at these critical value of 7,
by using techniques from normal form and center manifold theory [10].
Throughout this section, we always assume that system (5) undergoes Hopf
bifurcation at the equilibrium z.(0,0,0,0,0) for 7 = 79, and then +iw, are
the corresponding purely imaginary roots of the characteristic equation at
the equilibrium z,(0,0,0,0,0). Linear part of system (3) at z.(0,0,0,0,0)
is given by

#1(t) = —mazi(t) + fi(o)lfs(t) + fi(o)flz(t —T2)),

2(t) = —maw1(t) + f3(0)z1(t — 71) + fo(0)23(t — 7)),

3(t) = —maa1(t) + f3(0)xa(t = 72) + f3(0)za(t = 72)), (19)
4 (t) = —maz1(t) + f4(0)z3(t —71) + f4(0)25(t — 7)),

#5(t) = —mazs(t) + f5(0)za(t — 72) + f5(0)71(2))

and non-linear part is given by

f(:uvut) -
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2O 42() 1 8O 3(1) + SOt — 1) 1 L Ot — )

203 (1) + 2523 () + L5003t — ) + L@t - )

2003 (1) + 2520l () + L3003t — 72) + Lgad(t - )

2003 (1) + 252 (6) + L3%a3(t — ) + L@ad(t - )
: Lo () + Lgat)

) LO g2 + flﬂ ©23(t) + h.o.t
P03t = m) + 2Ot = m) + hot
| B2 - )+ fpPalt - n) +hot |- (20
L2t — ) + L£.@Q03(t — 1) + hoot.
f;';o)xi(t 72) + Q03— 1) heout.

Denote
C*—73,0] = {¢|¢:[-75,0] = R®, each component of ¢ has
k-order continuous derivative} .

For convenience, denote C[—75,0] by C°[—73,0].

For ¢(0) = (¢1(0), p2(0),93(0), 0a(0), ¢5(0))" € C ([-75,0], R®), define
a family of operators

Lup = Bp(0) + Bip(=11 — p) + Ba(—75) (21)
and
G, ) = (kyi, ko, k3, ky, ks) T, (22)
where
-mp 0 0 0 f£(0
0 —ma 0 0 0
B = 0 0 —-m3 0 0 ,
0 0 0 0 —MmMy
f5(0) 0 0 0 —ms
0 0 0 0 0
f2(0) 0 f,000 0 0
B, = 0 0 0 0 0 ,
0 0 f40) 0 £ 0)
0 0 0 0 0
0 f,(00 0 0 0
0 0 0 0 0
By = | 0 f3(0) 0 f5(0) 0]7
0 0 0 0 0
0 0 0 fi(0) 0
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b= 2000 8000 L0 SOy
00y O o) 40 1o,
b= 2000 2000 B0 A0
L0y 2O o).
b = 955%5(0) +8000) 5Oy 5Oy
Oy B0y ool
b= 000y 4 0Oy SOy SOy
Oy IO ol
b= 00+ 5000y 4 L0y L0
Oy B O ol

and L, is a one-parameter family of bounded linear operators in
C([-75,0],R%) — R5. By the Riesz representation theorem, there ex-
ists a matric whose components are bounded variation functions (6, i)

in [—75,0] = R®, such that

0
Lup= [ dn(0,pn)e(0). (23)
In fact, choosing
B, 0=0,
n(0,p) =< Bio(@+ 1 +p), 0€[-1—p0), (24)

— B0 +73), O€l[-m,—m —n),

where §(6) is Dirac function, then (23) is satisfied. For (1, 2, ©3, 04, ©5) €
(Ol[ T27 ]7 5)7 deﬁne

M, —15 <60 <0,
Awp=1 % (25)
/ dn(s,mp(s),  0=0
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and
0, —715 <6<0, (26)
SD =
fi ), 0 =0.
Then (3) is equivalent to the abstract differential equation
tiy = A(p)ue + R(p)ue, (27)
where u = (u1,ug, us, ug, us)?, us(0) = u(t +0),0 € [-713,0].
For v € C([—75,0], (R®)*), define
d
- ), s€ (0,73),
ds
(28)

Ap(s) = 0
[ artwouco. s=o
For ¢ € C([—75,0], R) and v € C([0,75], (R®)*), define the bilinear form

0 0
w0 =T000) - [ [ wTe-omood o)
-7 =0
where n(0) = 7(0,0). We have the following result on the relation between
the operators A = A(0) and A*.
Lemma 3. A= A(0) and A* are adjoint operators.

Proof. Let ¢ € CY([-75,0],R®) and v € C([0,75],(R®)*. It follows
from (29) and the definitions of A = A(0) and A* that

((5), A0)9(6))
0 0
= GOAO00) - [ [ - a0 a0

Il
<
—~

o
=

0 o 0
[ anerow [ [ it o) a0o

0

0
= ) [ @)oo~ [ (e - )inO)o©),

*
—T5

O 7 dpE-0)
! / /5_0 an(6)6(E)d

i
-/ 072* J0)m@)o0) - [ OT; / : [—‘“‘_’(jg 2 ayoroterac
0 [

_ A« P(0)6(0) / A€ — 0)dn(0)$(€)de

—75 JE=0
= (A%(s),0(0))-
This shows that A = A(0) and A* are adjoint operators and the proof is
complete. O
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By the discussions in Sec. 2, we know that +iwg are eigenvalues of A(0), and
they are also eigenvalues of A* corresponding to iwy and —iwq, respectively.
We have the following result.

Lemma 4. The vector
q(0) = (1,a1,az, a3, as) T e™?, 0 e [-75,0],
is the eigenvector of A(0) corresponding to the eigenvalue iwy, and
q*(s) = D(1,a}, a3, a3, a})e™"*, s €10,735],

is the eigenvector of A* corresponding to the eigenvalue —iwy, moreover,
(g*(s),q(0)) = 1, where

D= (30)

1
C?

where

4
C= 1+ d@ai +auf,(0)73e" +ajri f,(0)e 7 (1+y)
=1

+ a3 f3(0)e" (@ +ag) + ajri f(0)e™0 T (a2 + aa)
+ajrs f5(0)e™ 0™ g,

Proof. Let q(6) be the eigenvector of A(0) corresponding to the eigenvalue
iwo and ¢*(s) be the eigenvector of A* corresponding to the eigenvalue —iwy,
namely, A(0)q(0) = iwpq(#) and A*q(s) = —iwoq*(s). From the definitions
of A(0) and A*, we have A(0)q(0) = dq(0)/d0 and A*q(s) = —dq*(s)/ds.
Thus, ¢(0) = ¢(0)e™°? and ¢*(s) = q(0)e’°*. In addition,

—-m1 0 0 0 fl(0)
0 0 —-me 0 0 0
dn(0)q(0) = 0 0 -mg 0 0 q(0)
] 0 0 0 0 —my
fi0) 0 0 0 —ms
O 0 0 0 0
f2(0) 0 f,(0) 0 0
+ 0 0 0 0 0 [|q-m
0 0 f4(0) 0 fy(0)
O 0 0 0 0
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+
o OO OO
~
o o~ o~

That is

—my + asfi(0) + ay f1(0)e~™02
—maay + f5(0)e™" 0T 4 ay f(0)e™ "0

—myaz + f1(0)aze™ 07 4 ay fy(0)e =0T

(

/( . * ! . *

—maaz + f5(0)are 02 + a3 f;(0)e"w0T2
(
4

fé(()) — msaq + a3f5/(0)67i‘*’072*

Therefore, we can easily obtain

(ms + iwg) f5(0)e

O OO OO

—iworl 4+ £,(0 )f3( )e

iwo
iale
iQQWO
’iang
ia4w0

—iwo (71 +75)

a; = / |
1 (g + iwo) (ms 4 iw) — f3(0) f5(0)e=w0(Ti+73)
ag = (ma + iwp) f5(0)e ™01 + f,(0) f(0)e o (ri+72)
(m2 + Z'“)0)(77743 + io.)o) — f2( )fg( ) —iwo (T 473) ?
~ (ms +iwg)as — £5(0)
a3 - 7 ] * B
f5(0)6_“"’07—2
as = idwg+mq — alfi (O)B—iworz*.
On the other hand,
—m 000 fi(0)
0 0 —ma 0 0 0
[wcomn=] 0 0 w00 |e
-1 0 0 0 0 —my
f50) 0 0 0 —msg
0 0 0 0 0
f2(0) 0 f(0) 0 0
+ 0 0 0 0 0 q*(_Tl
0 0 f40) 0 fy(0)
0 0 0 0 0

(31)

(32)
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0 f,(0) 0 0 0
0 0 0 0 0
+ 0 f50) 0 f30) 0 |¢"(—73)
0 0 0 0 0
0 0 0 f(0) 0
= A"¢"(0) = —iwpq™(0) (33)
Namely,
ity +my — fy(O) 0 af — fi(0)aj 0
—F1(0) 07+ (—itwo + ma)a — fi(0)azeinTs 0
(—icwo + mg)ag — F1(0)eo™ a3 | = 0|
—f1(0)e™0T a3 + (—iwg + ma)al — f5(0)e™0™ af 0
—£5(0) + (—iwo + ms)aj 0

Therefore, we can easily obtain

e (ot ma)(<iwy +ms) — £1(0)f5(0)

! (—iwo + ms) fo(0)eoTs ’
- (—iwo +ma)aj — f1(0)e07

: Fa(0)etrs ’

. (—iwo +m3)aj
@7 )

q\V)e 1

. _ )

ay = — .
wWwo + M5

O

In the sequel, we shall verify that (¢*(s),¢(f)) = 1. In fact, from (29),
we have

<q*(8)7 q(9)> = D(la ai]'ja aga d§7 0/74)(13 ap,as,as, a/4)T

0 0
—/ D(l,a},aé,dg,d4)e_i“°(5_9)dn(0)(l,al,ag,ag,a4)Te’“”5d§
—75 JE=0

=D

4 0
1+ Zaia_’{ — / (1,a3, a3, cz_g,d4)96i“°0d77(0)(17a17a27a37a4)T1
i=1

o
T2

4
_ - - - - B B
D{1—|— E aat + (1,af,a%,a%,dy) | -1 By — e “"Oleg}
i=1

X (1a ai,az,as, a4)T}
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1+Zaza +anfy(O)r5e 0 afrf £(0)e 0 (1 + ay)
=1

+aymi f(0)e 0 (a1 + ag) + a7 £,(0)e” 7 (a + aa)

+ @7 fo(0)e 03 Clg] =1

Next, we use the same notations as those in Hassard, Kazarinoff and
Wan [10], and we first compute the coordinates to describe the center man-
ifold Cy at ;= 0. Let x; be the solution of Eq. (3) when p = 0.

Define

2(t) = (¢, z1), Wt 0) = z(0) — 2Re{z(t)q(6)} (35)
on the center manifold Cy, and we have
W(t,0) = W(z(t),z(t),0), (36)
where
P z2
W(Z(t),g(t), 9) = I/V(Z7 2) = WQOE + Wi12Z + WO2§ + - (37)

and z and Z are local coordinates for center manifold Cj in the direction
of ¢* and ¢*. Noting that W is also real if x; is real, we consider only real
solutions. For solutions x; € Cy of (3),

) = (7(s), ) = (a° (), AQO)u, + R(O)wy)
<q*<s>,A<o> ) + (@ (), R(0)ay)
= (A (s), 2) + ¢ (O)R(0)

/_ /EO (€ — 0)dn(6) A(O) R(0), (€)de
= {iwoq" (), z2) + ¢ (0) £(0, 24(6)

E dwoz(t) + ¢ (0) fol(t), Z(1)). (38)
That is
2(t) = iwoz + g(z, 2), (39)
where
22 z2
9(z,2) =920 +91125+9025+"' . (40)

Hence, we have

9(z,2) = q(0)fo(z 2) = f(0,2:)
= D(1,a},a5, a3, a;)

X

(fl(ovxt)v fQ(O"rt)’ f3(07 xt)’ f4(0’xt)7 f5(07xt))T’ (41)
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where
0.0 = 9002 0 + 80 0 Oz
f{;E )afgt(—TQ) + fi;(o)xgt(o) + f{':'))go) 23,(0) + h.o.t.,
a0, = 2030 + 20030+ 203,
DOy 2O
200 ) nos,
(0.0 = 80030+ 8030 5Oz
+ f:;;EO) x5 (—72) + f§’2(0) 231 (—72)
REAUE Y
0,20 = 8043 0) 4 2Ot ) L 10z
Oy L0
fi; )x5( 1)+ ho.t.,
300,20 = 2002, 0+ 20030+ E 0.z )
00 0y L1002
fs

(0) x3,(—7) + h.o.t.

AT

Noticing that
24(0) = (14(0), 22¢(0), w34(0), 4:(0), 25:(0))T = W (t,0) + 2q(0) + 2¢
and
q(a) = (]‘7 ap,as,as, CL4)Teiw09’

we have

21,(0) = z+z+W§§)(0) +wl )(0)22+W(§;)(0)? NE

2 =2
220(0) = a1z + @1z + WQ%)(O) +wD0)2z + Wé?(())% +oen
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2 52
230(0) = azz + 2% + Wig (0) 5 + Wi (0)2 + Wiy (0) 5
2 2
210(0) = a3z + % + Wiy (0) 5 + Wi (0)22 + Wiy (0) 5
52

25¢(0) = asz + a4z + WQ(S)(O)? + Wl(f)( 0)2z + W(5)( )% + e

5132,5(*7'2) = alefi“"’”z —+ C_LleinT2Z —+ Wég)(f’rg)%

[\v]

WP (mm)2z + W) (-m) T
9\
T4t (—To) = aze 920z 4 Gze™ 0™z 4 W20 (— 72)5

z

[\v]

W (=) 22+ Wi (=) o

2

x14(—1) = e WOTI 5 J eiWoT1Z 4 WQ%)(—’H)%

|

‘t\u
[\

+ WP ()22 + W (—m) = + -

—
w
— N

(E3t(—7'1) — a2e—zw1mz + @261w07—12+ W20

(—m)5

[\v)

z

+ WO (—m)2z+ W (-7 m)g
(5) 2 (5) _

T5e(—71) = age” 0T 2 4 age™ 0Tz + Wy (—7 )5 + W (—7)2z

=2
z
+ W (—7)

?4_..._

From (40) and (41), we have

7"(0)fo(z, 2)
= D [f1(0,¢) + af f2(0, z,) + a5 f3(0, z;)
a5 f4(0,z¢) + ajs f5(0, x¢))

+
= 2 D{ [0 O + 5 ©ade 0 4 1} (0)a]]
+

ET g;’(())a%ij;(O e~ 2iwoT2 +f ( )ageszwo‘rZ}

9(2,2) =

)

05 (0)a3 + £ (0)e 20 4 £ (0)age 0]

—mﬂd@ﬁ+ﬂ@anW+f<w—mM]
( )

+ay gg 0)ai+fg(0 + f ( )age’%‘“”?] }22
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+ D{ [97(0) + £ (0)ade 2™ 1 1 (0)asas + g5 (0)aran
+ay :92 0)ara; + f (0 )+f;(0)a2a2}
+ a3 g5 (Omar + 5 (0)arar + f5 (0)asas

)
+ @ [g5 (O)asas + £5(0) + 5 (0 )agag} Lz,
+50{ g0 + f{ Omae®™ + 1] 0)a + g5 )]
+a; :g;' 0)as + fo (0)eX°™ + £, (0)a 262“0“}

( )

+ @3 [gg(())df + f3 (0)@%6 1w T2 + f ( ) 2 2zw07—2}
( )
© )

(
(

+a; g5 (0)asas + f (0)azaz + f3 (0)asas
(

+C_L§ _g d%e 1w T1 +f ( ) 2 2zwgn]

1"

+a; g5 (0)a + /5 (0) + f5 (0)age?om] |22,

¥ 3D 91 0) [W () + 2w ()] + 0/ (0)

"

+ 170 WY (—raDareo™ + 2w D (—r)are o]
+ 17 O)adare™ 0 4 £ (0) W (0)as + 277 (0)ad]
+ 11" (0)adas + g5 (0) [ Wi (0)a + 21 (0)an

+a; g5 (0) (Wi a1 + 2w (0)ar ) + g5 (0)ada

+ £, (0) (W20 (—r)e o™ + 2w (—rp e
3 O 4 £ (0) (WY (~m)aze™om

+ 2P (=) WO“)}MS [970) (Wi )

+ 2w (0)a ) 0)a3as + f5 (0) (Wz(g)(—Tz)@leiwz
2 (~m)a, ) £ 1 O)ada o
+ f3 (W20 —Ty)aze™ 0™ + 2W1(1)( 7'2)‘136_MOT2>

"

+ fi (0)adage™" ™| + a3 [g] (0) (Wi (0)as + 2w (0)as )

+ g5 (0)a3as + £1 (0) (Wi (~r1)aze™o™
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+ ZWS)(fﬁ)age*i“’“Tl)
xfi (O)adase™ 0™ + £}/ (0) (Wi (~ru)aseio™
+ 2WD (a0 ) + £ (0)afase 0" |
+aj |95 (0) (W5 (0)as + 2w (0)as) + g5 (0)adas
+ 15 0) (W) 0) + 2w 0))

+ fg,)//(O) + f;(O) (W2(§) (_Tz)ageionz

+2W P (—rp)age ™0 4 £ (O)agage*iwm)} }22 ...

and we obtain

g0 = DY [91(0) + F{ ©)aze 2™ 4 1} (0)a3]
+ @} (g5 (0)aF + 5 (0)e ™2™ + fy (0)aZe20m ]
a3 [ 0)a + 15 (0)e 20 4 1 (0)aFe 7]
+ a3 g7 (0)ad + £7 (0)age ™0™ + [ (0)age 27|
v ai [gg (0)a3 + £ (0) + ff O)aze 207 .

g1 = D{ [9,(0) + £ (©)ate ™ + f; (0)asis + g, (O)mra |
+ai [g5 (O)arar + f5 (0) + f3 (0)azs]
+3 [g5 (O)aras + f5 (0)aras + f3 (0)asas]
+ a3 :gl (0)azas + f; (0)asaz + fZ(O)amd
+ |95 (0asas + f5 (0) + £ (0)asas | |,

go2 = D{ g1 (0) + f1 (0)arae® ™ + f, (0)a3 + g, (O)aﬂ

+a 9; (0)a2 + f, (0)e¥ o™ 4 £ (0)a2 szon}

—

e2iwoT2 Jrf ( )a2 QM,TQ}
+ a3 :gl(o)ag + f1 (0)aZe2iwom 1 £ (0)a2 2won}
+a; 95 (0)aF + 5 (0) + 15 (0) 2%wq}
)

go1 = D{g/ (0) W5 (0) + 2W1P(0)] + /" (0

+as 92 (0)‘11 + f3 0

)
)ai
)@
)
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O 4 ]
£ (0)a2a e~ 0™ + f1(0) [WQ(S)(O)(—M + 2W1(f) (0)a4]
11" (O)ada + g 0) [ Wi (0)an + 20D (0)a
[9/ ) (Wi @ +2w1P (0)ar ) + g5 (0)adan
f2 (0) (Wz(o)( Ty )e o +2W1(1)( Tl)e*“#m)
3 O 4 £ (0) (WY (—m)aze™om

+ 20} (~m)as -W‘m)]m; 910 (W5 (0)as

+ 20 P 0)ar ) + g5 (0)a3az + £ (0) (WS (~ro)are™
+ 2VV11 (- 72) MOT?) + f3 ( Jaiage’ o
0 (8 e i)

1"

+ J5 (0)a3age™ 0™ ] + a3 [, (0) (W) (0)as + 2} (0)as)

+ 97 (0)a3as + £ (0) (Wi (—r)aze™™ + 20D (= r)aze ™)

1"

x [ (0)agaze™ 0™ 4 f/(0) (Wi (—m)ase™o™

+ 2P (—rasem 0 ) 4 £ (O)adase 0

171

+aj |95 (0) (Wé§><0>a4 +2W P (0)as) + g5 (0)adas

+ 2VV1(;1 (—T9)age” oz —|—f5 ( Yazaze™ ’“’OT"‘)} }

For unknown
$000), Wi (0), Wig) (=), Wi (—
2(3)(0) 2(3)( ), Wi (0), Wiy
Wio (0), Wag) (—72), Wi (0), Wi} (—72),
Wi (0), Wi (0), Wi (=), Wi (=1

in go1, we still need to compute them.
From (27) and (28), we have

[ AW - 2Re{g"(0)fa(0)}, 75 <0<,
woo— { Lot

AW — 2Relg () FalO)) + F,  B=0,
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def

= AW+ H(z2z,0), (42)
where
22 z2
H(Z,Z,@):Hgo(e)?+H11(9)Z§+H02(9)5+--~ . (43)
Comparing the coefficients, we obtain
(A — 2iwg)Wag = —Ha(0), (44)
AW11(0) = —Hq1(6). (45)

And we know that for 6 € [—75,0)
Comparing the coefficients of (43) with (46) gives that

Hy(0) = —g20q(0) — g02q(0), (47)
Hy1(0) = —g119(0) — 114(0). (48)
From (44), (47) and the definition of A, we get
Wao(0) = 2iwoWao(0) + g204(0) + go2a(6). (49)
Noting that ¢(#) = ¢(0)e™°?, we have
WZO(G) _ @qa))eiwoe + Zgﬂq(())e*iwoe + Elezmoe’ (50)
wo 3&)0

where Ej is a constant vector. Similarly, from (45), (48) and the definition
of A, we have

Wi1(0) = g11q(0) + g11G(0), (51)
7 X g )

Wi (0) = — T (0)ei0? 1 YL g()e=iwot 4 B, (52)
wo wo

where Fs is a constant vector.
In what follows, we shall seek appropriate Ey, Fs in (50), (52), respec-
tively. It follows from the definition of A and (47), (48) that

0
/ dﬁ(e)Wzo(e) = in()WQO (0) - HQ()(O) (53)

-1
and

0
/ dn(0)W11(60) = —Hy (0), (54)

—1
where n(0) = n(0,0).
From (48), we have
HQO(O) = _920(](0) - 9626(0) + (Hlu H27 H37 H47 H5)T7 (55)

where

" "

Hi = g,(0)+ fi (0)ate =0 4 f(0)a?,
Hy = g5(0)a? + f; (0)e™20™ 4 f(0)age ™20,
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H; = g (O)al +f3 (0) 2 —2iwoTs +f ( ) 2 —2'Lw0'r2
H, = g4 (O)a3 + f4 (O)CL —2iwoT1 + f ( ) 2 —21W07'1’
H5 = g;’(o)ai+fé/(0)+f5( )age 27,0.)07'2.

From (49), we have

Hll(O) = —911(](0) - gIl(O)Q(O) + (P17 P2) P37 P47 P5)T7

where
Pi = g (0)+ f, (0)afe 0™ 4 £ (0)asas + go (O)aran,
P g5 (0)aras + f (0) + f5 (0)azds,
Py ;/(O)alal + f5 (0)aray + f5 (0)asas,
Py g4 (0)asas + f; (0)asas + fy (0)asda,
Ps = g5(0)asas + f5 (0) + f5 (0)asas.

From (44), (45) and the definition of A, we have
{ BWQO(O) + 31W20(—’7'f) + BQ(_TQ*) = 2iwgWoo — HQO(O),
BW11(0) + BiWii(—71) + Ba(—75) = —H11(0).
Noting that

0
(iwol - /_ ) eiwoodn(0)> q(0) =0,

0
(iwof/ eiwoedn(9)> G(0) = (Hy, Ho, H3, Hy, Hs)"

*
—T5

and substituting (54) and (59) into (57), we have

0
<2iw01 —/ eQi“"’(’dn(G)) Ey = (Hy, Hy, Hs, Hy, H5)" .

-7
Thus the equality given in Fig. 1 follows.

Hence,

An
Ay

5) _ Ags
Ay

2) _ Biz
A

3 _ D13
A

1) _ Au

1

where the determinants A; and A;; are given in Figs. 2-4.
Similarly, substituting (55) and (60) into (58), we have

0
(/ dn(6)> EQZ(P17P27P37P47P5>T'

_ox
T2
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Hence,
W _ Do ) Bor ) Doy Au ()
E2 - A27E2 - A27E2 - Ag’ E2 - Ag, E2
where
—mi fi(0) 0 0 fi(0)
f2(0) jm2 f2(0) /O 0
Ay = det 0  f3(0) —ms f3(0 0
,0 0 —f4(0) —/m4 _f4(0)
f5(0) 0 0 f5(00 —ms
~P fi(0) 0 0 f1(0)
—P2 —/mg f2(0) /0 0
Ay = det| =Py f3(0) —m3z  f3(0) 0
=Py 0 —f4(0) —my —£4(0)
b 0 0 f5(0)  —ms
—,m1 —P1 0 0 fl(O)
LO) <P £0) 00
AQQ = det 0 —P3 —ms f3(0) 0

Agy = det 0 f;000 =P £3(0) 0

—mi fi(0) 0 P fi(0)
f2(0) —Tmy2 f2(0) - 0
A24 = det 0 f3 (O) —ms —P3 0
00 —f(0) P —fi(0)
fS(O) 0 0 —P5 —ms
—ma fi(o) 0 0 -P

Agy; = det 0 f5(0) —ms f3(0)  —Ps
O 0 *f4(0) —TMNyg 7P4
(

f50) 0 0 f3(0) —P;
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From (50), (52), (61), (64), we can calculate go; and derive the following
values:

1 02]2 21
a(0) = 20 <920911 —2|g1 > - |93|) + %,
P Re{c1(0)}
2 Re{\ (1)}’
B2 = 2Re(c1(0)),
T, — ~Im{c1(0)} + paTm{\’ (o)}

wo
These formulas give a description of the Hopf bifurcation periodic solutions
of (3) at 7 = 79, on the center manifold. From the discussion above, we
have the following result.

Theorem 5. For system (3), if (H1) — (H4) hold, the periodic solution
is supercritical (subcritical) if po > 0 (2 < 0); The bifurcating periodic
solutions are orbitally asymptotically stable with asymptotical phase (unsta-
ble) if B2 < 0 (B2 > 0). The periodic of the bifurcating periodic solutions
increase (decrease) if To > 0 (T < 0).

4. NUMERICAL EXAMPLES

In this section, we present some numerical results of system (3) to verify
the analytical predictions obtained in the previous section. From Sec. 3,
we can determine the direction of a Hopf bifurcation and the stability of
the bifurcation periodic solutions. Consider the following special case of
system (3):

Z1(t) = — 0.6z1(t) — 0.6 tanh(z1(¢)) + 0.3 tanh(zs(t))
+ 0.5 tanh(x2(t — 72)),
Z2(t) = — L.722(t) + 0.5 tanh(xo(¢)) — 1.4 tanh(x1 (t — 71))
— 1.3tanh(z5(t — 1)),
z3(t) = — 0.8x3(t) — 0.5 tanh(xz3(¢)) + 0.6 tanh(zo(t — 72)) (65)
+ 0.4 tanh(z4(t — 72)),
Z4(t) = — 1.8z4(t) + 0.8 tanh(z4(t)) — 0.8 tanh(xs(t — 71))
— 0.8tanh(zs(t — 1)),
Z5(t) = — 1.5x5(t) + 0.7 tanh(z5(t)) — 0.7 tanh(z4(t — 72))
+ 0.6 tanh(x1 ().

By some complicated computation by means of Matlab 7.0, we get wy =
0.8541, 70 ~ 6.2, X (19) ~ 1.2437 — 3.4122i. Noting that tanh’ (0) = 0, we
can easily obtain gop = gg2 = 0,911 =~ —4.2832 + 4.2139:. Thus we can cal-
culate the following values: ¢1(0) & —2.9542 — 22.2355i, ug ~ 0.5642, By =~
—4.4636,T, ~ 22.1327. We obtain that the conditions indicated in The-
orem 2 are satisfied. Furthermore, it follows that pus > 0 and By < O.
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Choose 7y = 3,79 = 2.5, then 7 = 7, + 72 = 5.5 < 79 = 6.2. Thus, the
equilibrium z,(0,0,0,0,0) is stable when 7 < 77 which is illustrated by
the computer simulations (see Figs. 5-7). When 7 passes through the
critical value 79 ~ 6.2, the equilibrium x,(0,0,0,0,0) loses its stability
and a Hopf bifurcation occurs, i.e., a family of periodic solutions bifur-
cations from the equilibrium z,(0,0,0,0,0). Choose 71 = 4,75 = 3.5, then
T=74+7 =75< 7 ~ 6.2. Since us > 0 and B2 < 0, the direction of
the Hopf bifurcation is 7 > 79, and these bifurcating periodic solutions from
24(0,0,0,0,0) at 79 are stable, which are depicted in Figs. 8-10.

5. CONCLUSIONS

In this paper, we have investigated local stability of the equilibrium
2,(0,0,0,0,0) and local Hopf bifurcation in a ring of five-neuron model
with discrete delays. we have showed that if the conditions (H1), (H2), (H3)
and (H4) hold, the equilibrium z,(0, 0, 0,0, 0) of system (3) is asymptotically
stable for all 7 € [0, 79) and unstable for 7 > 7. We have also showed that, if
the condition (H1), (H2), (H3) and (H4) hold, as the delay 7 increases, the
equilibrium loses its stability and a sequence of Hopf bifurcations occurs
at 2.(0,0,0,0,0), i.e., a family of periodic orbits bifurcates from the the
positive equilibrium z,(0,0,0,0,0). At last, direction of Hopf bifurcation
and stability of the bifurcating periodic orbits are discussed by applying the
normal form theory and the center manifold theorem.

Acknowledgements. This work is supported by National Natural Science
Foundation of China (No0.11261010), Soft Science and Technology Program
of Guizhou Province (No.2011LKC2030), Natural Science and Technology
Foundation of Guizhou Province (J[2012]2100), Governor Foundation of
Guizhou Province ([2012]53) and Doctoral Foundation of Guizhou Univer-
sity of Finance and Economics (2010). The authors are grateful to the
anonymous reviewer for his/her valuable comments which have led to an
improvement of presentation of this paper.

REFERENCES

1. J. Cao, L. Wang, Periodic oscillatory solution of bidirectional associative
memory networks with delays. Phys. Rev. E 61 (2000), No. 2, 1825—
1828.

2. J. Cao and M. Xiao, Stability and Hopf bifurcation in a simplified BAM
neural network with two time delays. IFEFE Trans. Neural Netw. 18
(2007), No. 2, 416-430.

3. J. Cao and D. Zhou, Stability analysis of delayed cellular neural net-
works. Neural Netw. 11 (1998), No. 9, 1601-1605.



STABILITY AND BIFURCATION ON A RING OF FIVE NEURONS

Fig.1
a1
0.08
0.068
0.0
L e r l r
J ‘ “HHJINH |“”|I |l\ i r|.r‘;IlunllﬂJ".ﬂf‘u'\l’l"t"w!'M.;wwmnm
200 300 40{] 500 600 700 800
Fig.3
0.15
a1
0.05 l l
5 H H‘ ||“H| ””\ ||r|JIIII (T ——
- J
-0.1
—0.15
_az
o 100 200 300 400 500 600 700 800
t
Fig.5
a1
0.08
0.06
= 0.4
= o.02 ‘]l
Wllh -
—0.02
0.0
o 100 200 300 400 500 600 700 800

269

Fig.2

w0

015

: U Hh U ‘HWL“||l“h“||||h”'Whn"\“%”Jklrfuwwmmm

0 100 200

300 400 500 600 700 800
1

Q o4

:

u!
MH |H||‘ '|\||‘u"u'm|,“u"u"ﬂn.umwwwwwmm
I

i

e

}

0 100 200

300 400 500 600 700 800

Fig. 5. Dynamic behavior of system (65): times series of z;(i = 1,2, 3,4, 5).
A Matlab simulation of the asymptotically stable origin to system (65) with
71 =3,72=25and 71 + 7o =7 = 5.5 < 79 = 6.2. The initial value is (0.1,

0.1, 0.

1,0.1,0.1).

4. S. A. Compell, S. Ruan and J. Wei, Qualitative analysis of a neural

network model with multiple time delays.

(1999), No. 8, 1585-1595.
5. K. Gopalsamy and X. He, Delay-independent stability in bi-directional

associative memory networks.

No. 6, 998-1002.

Internat. J. Bifur. Chaos 9

IEEE Trans. Neural Netw. 5 (1994),



270

0.15 0.15

01

CHANGJIN XU, XIANHUA TANG, and MAOXIN LIAO

25 -0,

-008 -0.06 0.4 002 0 002 004 005 008 O -0p8 -006 0.4 -002 0 002 0.04 006 008 01
X, =

1 1

Fig. 8 Fig. 9

0.2
-025 02 -0.15 -01 005 0 Q05 01 015 02 -02  -015 01 005 L] 0.05 01 015

*ylth xlth

Fig. 6. Dynamic behavior of system (65): projection on x; —xo;x1 —24; X2 —
xr3;x3 — x4 plane. A Matlab simulation of the asymptotically stable origin
to system (65) with 71 = 3,75 =2.5and 74 + 72 =7 = 5.5 < 79 = 6.2. The
initial value is (0.1, 0.1, 0.1, 0.1, 0.1).

6.

7.

10.

11.

S. Guo and L. Huang, Hopf bifurcating periodic orbits in a ring of
neurons with delays. Phys. D 183 (2003), No. 1-2, 19-44.

S. Guo and L. Huang, Linear stability and Hopf bifurcation in a two-
neuron network with three delays. Internat. J. Bifur. Chaos 14 (2004),
No. 8, 2799-2810.

S. Guo and L. Huang, Periodic oscillation for a class of neural networks
networks with variable coefficients. Nonlinear Anal.: Real World Appl.
6 (2005), No. 3, 545-561.

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differ-
ential Equations. Applied Mathematics Science, Springer-Verlag, New
York 99 (1993).

B. Hassard, D. Kazarino and Y. Wan, Theory and applications of Hopf
bifurcation. Cambridge Univ. Press, Cambridge (1981).

J. Hopfield, Neurons with graded response have collective computional
properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA
81 (1984), No. 10, 3088-3092.



STABILITY AND BIFURCATION ON A RING OF FIVE NEURONS 271

Fig. 10 Fig 11

0z

0.1+

01

02
04 T

02

0.1

200
-

-0.1

-0.2.
02 T~

pG)

Fig. 7. Dynamic behavior of system (65): projection on 1 — z9 — x3;21 —
To — T4, T1 — T3 — Tg; Ty — T3 — T4 Space, respectively. A Matlab simulation
of the asymptotically stable origin to system (65) with 7 = 3,72 = 2.5 and
71+ 7 =7 = 5.5 < 19 &~ 6.2. The initial value is (0.1, 0.1, 0.1, 0.1, 0.1).

12. H. Hu and L. Huang, Stability and Hopf bifurcation analysis on a ring
of four neurons with delays. Appl. Math. Comput. 213 (2009), No. 2,
587-599.

13. C. Huang, L. Hong, J. Feng, M. Nai and Y. He, Hopf bifurcation analysis
for a two-neuron network with four delays. Chaos Solitons Fractals 34
(2007), No. 3, 795-812.

14. X. Liao and G. Chen, Local stability, Hopf and resonant codimension-
two bifurcation in a Harmonic oscillator with two time delays. Internat.
J. Bifur. Chaos 11 (2001), No. 8, 2105-2121.

15. X. Liao, K. Wong and Z. Wu, Bifurcation analysis on a two-neuron
system with distributed delays. Phys. D 149 (2001), No. 1-2, 123-141.

16. X. Liu and X. Liao, Necessary and sufficient conditions for Hopf bifur-
cation in three-neuron equation with a delay. Chaos Solitons Fractals,
40 (2009), No. 1, 481-490.



272

e 2 2 o
= B 8 8 B8 =2

0.

5

e o o o
B 8 8B B 2

-0.02

-0.04

-0.08

" I
1

m‘

HH

‘ |\
1

i

\|‘|||||||'|m|u\| |‘|||‘||‘I||‘|\”|HIII ||II\JII"‘I W i ||I

CHANGJIN XU, XIANHUA TANG, and MAOXIN LIAO

rrrrrr

\‘1

[H

FFFFF

\‘n

\I

i
n

\‘M
‘ H
il \‘4

| I
i

|
\ | \“

FFFFF

|||||

] 100 200 300 400 500 600 700 B
|

rrrrr

| !‘

Il
\

m

|
I

|
H \

I

a p—
@

......

f||
H I

U
| i

i
i

il

Il
e

H
U\ i
i i

‘H
il

|

Il
i

100 200 300 400 500 600 700 800
1

Fig. 8. Dynamic behavior of system (65): times series of z;(i = 1,2, 3,4,5).
A Matlab simulation of a periodic solution to system (65) with 74 = 4,75 =
3.5 and 71 + 71 =7 = 7.5 > 79 & 6.2. The initial value is (0.1, 0.1, 0.1, 0.1,

0.1).

17. L. Olien and J. Bélair, Bifurcations, stability and monotonicity proper-
ties of a delayed neural network model. Phys. D 102 (1997), No. 3-4,
349-363.

18. S. Ruan and R. Fillfil, Dynamics of a two-neuron system with discrete
and distributed delays. Phys. D 191 (2004), No. 3-4, 323-342.



%0

STABILITY AND BIFURCATION ON A RING OF FIVE NEURONS 273

X

° H \”‘N”l’ui'l' s

] 100 200 300 400 500 600 700 80D o2 015 04 -0.05 [} 0.05 01 015
| Xt
'l

Fig. 9. Dynamic behavior of system (65): projection on &1 —x2; 1 —x4; T2 —

€3
to

;r3 — x4 plane, respectively. A Matlab simulation of a periodic solution
system (65) with 1y =4, =35and 14 + o =7 =75 > 79 = 6.2. The

initial value is (0.1, 0.1, 0.1, 0.1, 0.1).

19.

20.

21.

22.

23.

S. Ruan and J. Wei, On the zero of some transcendential functions with
applications to stability of delay differential equations with two delays.
Dynam. Contin. Discrete Impuls. Syst. Ser. A 10 (2003), No. 6, 863—
874.

Y. Song, M. Han and J. Wei, Stability and Hopf bifurcation analysis on
a simplified BAM neurnal network with delays. Phys. D 200 (2005),
No. 3-4, 185-204.

J. Wei, S. Ruan, Stability and bifurcation in a neural network model
with two delays. Phys. D 130 (1999), No. 3-4, 255-272.

J. Wu, Introduction to neural dynamics and signal transmission delay.
Walter de Cruyter, Berlin (2001).

W. Yu and J. Cao, Stability and Hopf bifurcation analysis on a four neu-
ron BAM neural network with time delays. Phys. Lett. A 351 (2006),
No. 1-2, 64-78.



274

0.z

0.1~

(1)
&

-0.1.

-02
04

0z

0.1+

01

02
02 T

Fig.

CHANGJIN XU, XIANHUA TANG, and MAOXIN LIAO

LER

Q1+

0
-

0.1

0.2
04

02

01+

014

-02
02 T~

10. Dynamic behavior of system (65): projection on xy — xo — x3; 21 —

To — T4;T1 — T3 — X4; Lo — T3 — T4 Space, respectively. A Matlab simulation

of a
T:

24.

25.

26.

periodic solution to system (65) with 71 = 4,72 = 3.5 and 71 + 75 =
7.5 > 19 & 6.2. The initial value is (0.1, 0.1, 0.1, 0.1, 0.1).

B. Zheng, Y. Zhang and C. Zhang, Global existence of periodic solutions
on a simplified BAM neural network model with delays. Chaos Solitons
and Fractals 37 (2008), No. 5, 1397-1408.

H. Zhu and L. Huang, Stability and bifurcation in a tree-neuron network
model with discrete and distributed delays. Comput. Math. Appl. 188
(2007), No. 2, 1742-1756.

S. Zou, L. Huang and Y. Chen, Linear stability and Hopf bifurcation
in a three-unit neural network with two delays. Neurocomputing 70
(2006), No. 1-3, 219-228.

(Received July 28 2010, received in revised form May 18 2012)

Authors’ addresses:



STABILITY AND BIFURCATION ON A RING OF FIVE NEURONS

Changjin Xu

Guizhou Key Laboratory of Economics System Simulation,
Guizhou University of Finance and Economics, Guiyang,
Guizhou 550004, China

E-mail: xcj403@126.com

Xianhua Tang

School of Mathematical Science and Computing Technology,
Central South University, Changsha,

Hunan 410083, China

E-mail: tangxh@mail.csu.edu.cn

Maoxin Liao

School of Mathematics and Physics,
Nanhua University,

Hengyang, 421001, China

E-mail: maoxinliao@163.com

275



	STABILITY AND BIFURCATION ANALYSIS ON A RING OF FIVE NEURONS WITH DISCRETE DELAYS
	Abstract
	Introduction
	Stability of the equilibrium and local Hopf bifurcations
	Direction and stability of the Hopf bifurcation
	Numerical examples
	Conclusions
	References




