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MIN-MAX AND MIN-MIN STACKELBERG STRATEGIES

WITH CLOSED-LOOP INFORMATION STRUCTURE

M. JUNGERS, E. TRELAT, and H. ABOU-KANDIL

Abstract. This paper deals with the min-max and min-min Stack-
elberg strategies in the case of a closed-loop information structure.
Two-player differential one-single stage games are considered with
one leader and one follower. We first derive necessary conditions for
the existence of the follower to characterize the best response set of
the follower and to recast it, under weak assumptions, to an equiva-
lent and more convenient form for expressing the constraints of the
leader’s optimization problem. Under a standard strict Legendre con-
dition, we then derive optimality necessary conditions for the leader
of both min-max and min-min Stackelberg strategies in the general
case of nonlinear criteria for finite time horizon games. This leads
to an expression of the optimal controls along the associated trajec-
tory. Then, using focal point theory, the necessary conditions are also
shown to be sufficient and lead to cheap control. The set of initial
states allowing the existence of an optimal trajectory is emphasized.
The linear-quadratic case is detailed to illustrate these results.

1. Introduction

A Stackelberg game, named after Heinrich von Stackelberg in recognition
of his pioneering work on static games [56], designates a two-player nonco-
operative decision making problem formalized as a hierarchical combination
of two optimization problems. The lower level decision maker, called the fol-
lower, selects a strategy optimizing his/her own objective function, depend-
ing on the strategy of the upper level decision maker, called the leader. The
leader may decide his/her strategy, optimizing his/her objective function,
relative to the decisions of both players by knowing the rational reaction
of the follower. Such a problem may be viewed as a particular bilevel opti-
mization problem [26,55,58]. When the rational reaction set of the follower
is not reduced to a singleton, the situation is more complex and several
formulations exist and have been introduced by Leitmann [36] (see also [4])
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and called weak and strong Stackelberg strategies by Breton et al. [17] or
pessimistic and optimistic ones in [26, 27]. The term strong reflects the
fact that the leader and the follower are seeking to minimize the criterion
of the leader. Such a strategy leads to several motivating properties. In
particular, it is stable to perturbations and could thus be called a Stack-
elberg equilibrium and in addition the resulting criterion of the leader will
be equal or better than the one obtained via a Nash solution. The term
weak is applied to Stackelberg strategies for which the latter two proper-
ties do not hold anymore. Nonetheless they are interesting and adapted
to model performance guarantees (or for instance, robustness in control
theory), without assuming additionally that the follower, after having min-
imized his/her own criterion, tries to maximize the criterion of the leader
as proposed in [36]. The strong and weak Stackelberg strategies will be re-
ferred to respectively as the min-min and min-max ones in the whole paper.
The class of strong-weak Stackelberg strategies, introduced in [3] generalizes
and gathers together strong and weak ones. Their computational aspects
in static games have been studied in [38,39].

Game theory being a generic multi-objective optimization framework, the
field of applications of Stackelberg strategies is large and includes, for exam-
ple, economy [9], social behaviors, marketing [31], advertising in licensing
contracts [18], network communications [14, 34], military intelligence [45].
The Stackelberg strategy for differential games was introduced in [21,47,48].
We consider here two-player nonzero sum differential games with one leader
and one follower.

The information structure [12] in the game is the set of all available
information for the players to make their decisions. The methods used
to tackle such a Stackelberg optimization problem depend on the specific
information structure.

When open-loop information structure is considered, no measurement of
the state of the system is available and the players are committed to follow
a predetermined strategy based on their knowledge of the initial state, the
system’s model and the cost functional to be minimized. Necessary con-
ditions for obtaining a Stackelberg strategy with an open-loop information
structure are well known [1, 29, 33, 42, 47–50, 57] and are derived from the
standard Pontryagin minimum principle [35]. The obtained controls in this
case are only functions of time.

The Stackelberg strategy is known to be inconsistent in time [25,28], and
dynamic programming cannot help to derive the optimal controls. Note
however that the concept of feedback Stackelberg control, not considered in
the present paper, is defined as the limit of controls obtained by dynamic
programming on infinitesimally small time subintervals (see [10, 12, 32, 40,
43,44]), that is in a multistage framework of repeated games. This concept
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differs from the concept of closed-loop control under consideration in this
paper.

For the closed-loop information structure case (or, more precisely, the
memoryless closed-loop information structure), each player has access to
current state measurements and thus can adapt his strategy to the evolution
of the system. For the closed-loop information structure case, determining
the Stackelberg strategy for differential games is much harder than the other
information structures and has been an open problem for a long time. The
main difficulty comes from the presence, in the expression of the rational
reaction set of the follower, of the partial derivative of the leader’s control
with respect to the measurement of the state. Several attempts have been
proposed in the literature to overcome this difficulty [12]. Among such
techniques, two main approaches could be distinguished.

The first method is dedicated to min-min Stackelberg strategies with a
team-optimal approach introduced in [11, 13]. At the first step, the leader
and the follower are aiming at optimizing the leader criterion as a team.
Under some weak assumptions for linear-quadratic games [52], the optimal
value of the leader criterion is attained for a parametrized family of controls
for the leader and the follower. At the second step, the parameters of both
controls are chosen such that the control of the follower lies in the rational
reaction set in response to the control of the leader [51]. This could be
interpreted as a threat formulated by the leader towards the follower [52],
that is the leader punishes the follower, if he/she does not comply with the
leader’s policy, like (grim-) trigger for repeated games [8, 30].

The second approach consists in defining the whole rational reaction set
of the follower for a given control of the leader. The resulting optimal control
problem turns out to be nonclassical, not solvable a priori with the usual
Pontryagin minimum principle. To solve this kind of nonclassical problem,
a variational method is proposed in [46], assuming that this is a normal
optimization problem (the possible occurence of an abnormal case is not
mentioned). Moreover, in [41] it is emphasized that this technique does
not lead to a solution for all initial states, and the difficulty is bypassed by
assuming that the initial state of the system is uniformly distributed over
the unit sphere and replacing the optimization criterion with its mean value
over the initial state.

In this paper, we investigate both min-max and min-min Stackelberg
strategies with closed-loop information structure. The best response set of
the follower is characterized. This allows a convenient reformulation of the
constraints of the leader’s optimization problem under an assumption that
is weaker than considering the best response set reduced to a singleton.
Nevertheless it is shown that under a standard strict Legendre condition,
it is possible to solve both min-max and min-min Stackelberg strategies.
Note that min-max and min-min Stackelberg strategies coincide whenever
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the best response set is reduced to a singleton, and this happens in the
important linear-quadratic case. The optimality necessary conditions for
the leader are obtained, for both min-max and min-min Stackelberg strate-
gies, along the associated trajectory, in the same spirit as in [46] for min-min
Stackelberg strategy and by considering all cases. In addition, sufficient con-
ditions of the optimization problem for linear-quadratic differential games
are established using focal times theory. Based on these necessary and/or
sufficient conditions, we then characterize all initial states from which there
emanates an optimal trajectory. Also, an extension is proposed to associate
with every initial state an optimal trajectory by introducing the Jacobian
of the leader’s control in his own criterion. Note that in [46], although the
final result (for linear-quadratic games only) is correct, some of the argu-
ments thereof used to derive the necessary conditions are either erroneous
or missing.

The outline of the paper is as follows. In Sec. 2, the min-max and min-min
Stackelberg strategies are mathematically formulated. Section 3 gathers the
necessary conditions of existence for a strategy for the follower (Sec. 3.1) and
for the leader (Sec. 3.2) for min-max and min-min Stackelberg strategies. A
degeneration property of the Stackelberg strategy is emphasized in Sec. 3.3.
These necessary conditions are detailed in the case of linear-quadratic two-
player differential games in Sec. 3.4. The sufficient conditions are provided
for the linear-quadratic case in Sec. 4. All these results lead to the two
main results of this paper Theorem 3.1 and Theorem 4.1, which ensure the
existence of optimal trajectories. Concluding remarks make up Sec. 5. The
main proofs are gathered in Appendix A.

2. Preliminaries: Stackelberg strategy

A two-player differential game with finite horizon comprises

• a set of two players K = {1, 2}, where Player 1 is called the leader and
Player 2 the follower;

• a game duration T = [0, tf ], with tf > 0;
• a state space X = R

n which contains all the states x(t) at time t ∈ T ;
• open sets U ⊂ L∞(T ×X ,Rm1) and V ⊂ L∞(T ×X ,Rm2) representing

the action sets (or control sets) respectively of the leader and the
follower (they will be specified below);

• a mapping f : T × X × U × V → X of class C1 defining the evolution
law of the state as

ẋ(t) = f
(
t, x(t), u|t , v|t

)
, x(0) = x0, (2.1)

where u|t and v|t are the values at time t of the controls of both players
u ∈ U and v ∈ V;
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• utility functions or criteria Ji : U ×V → R of Player i ∈ K, defined as

Ji(u, v) = gi(x(tf )) +

tf∫

0

Li

(
t, x(t), u|t , v|t

)
dt. (2.2)

The functions L1 and L2 are C1 with respect to x, u and v are con-
tinuous with respect to time t;

• the information structure of Player i ∈ K, which will be discussed
below.

The leader (Player 1), who chooses the control u, aims at minimizing the
criterion J1 and the follower (Player 2), who chooses the control v, aims at
minimizing the criterion J2. We assume that the game is a single stage one,
that is the choice of the controls should be done before the game begins at
t = 0. It is assumed in this paper that there exists an information bias in
the game which induces a hierarchy between the two players. We therefore
have a Stackelberg differential game. The follower will rationally react to
an observed control u of the leader. The leader is aware of this rational
behavior and will use this bias of information to choose his/her control and
to minimize his/her own criterion.

Definition 2.1. The rational reaction set or best response set of the
follower is defined by

T : u ∈ U �−→ Tu ⊂ V (2.3)

where Tu = {v | v minimizes J2(u, v̄), v̄ ∈ V}.
Definition 2.2. A min-min Stackelberg strategy (u∗∗, v∗∗) is defined by

the minimization problem
{
v∗∗ ∈ Tu∗∗,
u∗∗ minimizes min

v∈Tu
J1(u, v).

(2.4)

The min-min Stackelberg strategy is stable to a deviation of the controls
and allows the leader to reach a criterion value at least as small as that
associated with a Nash equilibrium [36]. This definition, considered in [46] is
suitable in team optimization problem [11], that is games where the follower
selects in his/her rational reaction set the control which minimizes the utility
function of the leader. As mentioned in [36], the follower could nonetheless
be interested not only in minimizing his/her own cost (in response to the
leader’s control) but also in maximizing that of the leader. We thus consider
the min-max Stackelberg strategy.

Definition 2.3. A min-max Stackelberg strategy (u∗, v∗) is defined by
the minimization problem

{
v∗ ∈ Tu∗,
u∗ minimizes maxv∈Tu J1(u, v).

(2.5)
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A min-max Stackelberg strategy can be interpreted as the minimization
of the leader’s criterion whenever the worst choice of the follower’s control
among the rational reaction set occurs. It can be viewed as a robust or
risk-averse property with respect to the choice of the follower, which could
be crucial in automatic control for robust control such as H2/H∞-control
(see [37,59]).

Remark 2.1. These two definitions coincide whenever T is a single-valued
mapping. Considering that T is a single-valued mapping is a widespread
assumption in the literature simplifying the arguments. Here we do not
assume that and we make a weaker assumption (Assumption 1 in Sec. 3.2)
that is related to the criterion J1 and the set T . Assumption 1 will be
discussed in Sec. 3.2. Note moreover that, in the linear-quadratic case
(investigated in Sec. 3.4 and more specifically in Sec. 4), T is a single-
valued mapping and hence both definitions min-min and min-max coincide
in that case.

The structure of the controls has to be formalized to make precise the
induced optimization problems:

• Whenever the controls are only functions of time t, that is u|t = u(t)
and v|t = v(t), the game has an open-loop information structure.
Necessary conditions for obtaining an open-loop Stackelberg solu-
tion, derived from the usual Pontryagin Minimum Principle, are well
known [1,47–50].

• The case where the controls are functions of time t and of the current
value of the state x(t), u|t = u(t, x(t)) and v|t = v(t, x(t)), is called
closed-loop Stackelberg strategy. This is the case we consider in the
present paper. The controls are thus designed along the trajectory
x(t) associated with the Stackelberg solution.

• Considering u|t = u(t, x) and v|t = v(t, x), defined for every x ∈ R
n,

and not only along the trajectory x(t) corresponds to the concept of
feedback Stackelberg solution, in the spirit of the dynamic program-
ming approach [10, 47, 48], even though dynamic programming does
not apply rigorously to such a Stackelberg strategy, due to time in-
consistency [25].

As was said above, in this paper we consider closed-loop Stackelberg
strategies. Note that, in the linear-quadratic case (see Sec. 3.4), the values
of the closed-loop Stackelberg controls and feedback Stackelberg controls
coincide along the associated trajectory.

Within the framework of a closed-loop information structure, the evolu-
tion law of the game state given by (2.1) is written as

ẋ(t) = f (t, x(t), u(t, x(t)), v(t, x(t))) , x(0) = x0. (2.6)
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Moreover, the sets U and V can be specified such that, for every couple
(u, v) ∈ U × V, the associated trajectory x(·), solution of (2.6), is well
defined on T . Throughout the paper, for the sake of clarity, we use the

notation ux =
∂u

∂x
to denote the Jacobian of u(t, x) with respect to the

second variable x. We thus have

U =
{
u(·, ·) ∈ L∞(T ×X ,Rm1), such that

∂u

∂x
(t, x(t)) = ux(t, x(t)) ex-

ists and u(t, x(t)) as ux(t, x(t)) are continuous in x(t) and piece-

wise continuous in t
}
,

V =
{
v(·, ·) ∈ L∞(T × X ,Rm2), such v(t, x(t)) is continuous in x(t)

and piecewise continuous in t
}
.

The main difficulty in a closed-loop Stackelberg strategy is the presence

of the partial derivative
∂u∗

∂x
in the necessary conditions for the follower.

Different alternatives, surveyed for example in [12], have been proposed in
the literature to overcome the difficulty raised by the presence of the par-

tial derivative
∂u∗

∂x
in the necessary conditions for the follower. The first

approach consists in finding an equivalent team problem leading to a global
minimization of the leader’s cost and obtaining a particular representation
of the leader’s control [11]. The second approach consists in determining the
follower’s rational reaction set and the necessary conditions for the leader
optimizing a dynamical problem over an infinite dimensional strategy space
subject to dynamical constraints (evolution of the state vector and follower’s
rational reaction set). In [46], this problem is handled using a variational
method, which however does not lead to all solutions. In this paper, based
on the Pontryagin minimum principle, we derive necessary conditions for
a min-max and min-min Stackelberg strategies, in the sense discussed for-
merly. Our study permits to compute the values of the controls u∗(t, x(t))
and v∗(t, x(t)) along the optimal trajectories. We do not provide an expres-
sion of the Stackelberg controls u∗(t, x) and v∗(t, x) for every x, except in
the linear-quadratic case (see Sec. 3.4) where our main result can be made
more precise and more explicit. Finally, using the theory of focal points,
we provide sufficient conditions for local optimality (which are global in the
linear-quadratic case).

3. Necessary conditions for min-max and min-min Stackelberg
strategies

Due to the hierarchy between the two players, necessary conditions are
first established for the follower, and then for the leader.
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3.1. For the follower. The best response set or rational reaction set T
of the follower defined by Definition 2.1 does not depend on the choice of
min-max or min-min Stackelberg strategy. The best response set of the
follower Tu∗ involved in the definition of Stackelberg strategy (2.4) or (2.5)
(implies that, for a fixed control u∗, the control v∗ of the follower solves the
following optimization problem.

Problem 3.1.
min
v∈V

J2(u
∗, v),

subject to

ẋ(t) = f
(
t, x(t), u∗(t, x(t)), v(t, x(t))

)
, x(0) = x0. (3.1)

Necessary conditions for the existence of an optimal solution of Prob-
lem 3.1 for the follower are derived in the next proposition, proved in Ap-
pendix.

Proposition 3.1. Consider a closed-loop min-max Stackelberg pair of
controls (u∗, v∗) (or respectively min-min Stackelberg pair of controls
(u∗∗, v∗∗)) for system (3.1), associated with the trajectory x(·), then there
exists an absolutely continuous mapping p2 : [0, tf ] → R

n, being a non trivial
line vector, such that

0 =
∂H2

∂v

(
t, x(t), u∗(t, x(t)), v(t, x(t))

)

= p2(t)
∂f

∂v

(
t, x(t), u∗(t, x(t)), v(t, x(t))

)

+
∂L2

∂v

(
t, x(t), u∗(t, x(t)), v(t, x(t))

)
, (3.2)

ṗ2(t) = −dH2

dx

(
t, x(t), u∗(t, x(t)), v(t, x(t)), p2(t)

)

= −p2(t)
∂f

∂x

(
t, x(t), u∗(t, x(t)), v(t, x(t))

)

− ∂L2

∂x

(
t, x(t), u∗(t, x(t)), v(t, x(t))

)

− p2(t)
∂f

∂u

(
t, x(t), u∗(t, x(t)), v(t, x(t))

)∂u∗

∂x
(t, x(t))

− ∂L2

∂u

(
t, x(t), u∗(t, x(t)), v(t, x(t))

)∂u∗

∂x
(t, x(t)), (3.3)

p2(tf ) =
∂g2(x(tf ))

∂x
, (3.4)

where H2 denotes the Hamiltonian of the follower,

H2(t, x, u, v, p2) = p2f(t, x, u, v) + L2(t, x, u, v).

All solutions v of Eqs. (3.2)–(3.4) are gathered in the set valued mapping
T ′ : U → V.
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Remark 3.1. Note that condition (3.3) may seem akin to open-loop con-

trol since it does not involve terms in
∂v

∂x
. This dependency comes from

condition (3.2) that implies that the open-loop and closed-loop control for
the follower coincide.

The set valued mapping T ′, which is defined by Eqs. (3.2)–(3.4) and
satisfies Tu ⊆ T ′u, will be used in the next subsection to derive necessary
conditions for the leader, under a weak assumption on T , T ′ and the criterion
J1, as explained next.

3.2. For the leader. From the leader’s point of view, unlike the follower’s
one, the optimization problems related to min-max and min-min Stackelberg
strategies differ. We first consider the min-max Stackelberg strategy and
we make the following assumption, needed to derive Proposition 3.2.

Assumption 1.

J1(u, v
′) ≤ J1(u, v) ∀v′ ∈ T ′u, v ∈ Tu, u ∈ U∗

nb, (3.5)

where U∗
nb denotes a neighborhood of u∗ in U .

Proposition 3.2. Consider a pair of controls (u∗, v∗) associated with a
min-max Stackelberg solution. The control u∗ is defined by Eq. (2.5), i.e.,

u∗ ∈ argmin
u∈U

max
v∈Tu

J1(u, v). (3.6)

Under Assumption 1, we have

u∗ ∈ argmin
u∈U

max
v∈T ′u

J1(u, v). (3.7)

This proposition is proved in the Appendix.
In the same way, let us now consider the min-min Stackelberg strategy

and make the following assumption necessary to derive Proposition 3.3.

Assumption 2.

J1(u, v
′) ≥ J1(u, v) ∀v′ ∈ T ′u, v ∈ Tu, u ∈ U∗∗

nb , (3.8)

where U∗∗
nb denotes a neighborhood of u∗∗ in U .

Proposition 3.3. Consider a pair of controls (u∗∗, v∗∗) associated with
a min-min Stackelberg solution. The control u∗∗ is defined by Eq. (2.4), i.e.,

u∗∗ ∈ argmin
u∈U

min
v∈Tu

J1(u, v). (3.9)

Under Assumption 2, we have

u∗∗ ∈ argmin
u∈U

min
v∈T ′u

J1(u, v). (3.10)
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Remark 3.2. Assumptions 1 and 2 devoted respectively to min-max and
min-min Stackelberg strategies, are weaker than assuming that T is reduced
to a singleton and differ only by their sign. It preserves the diversity between
these both frameworks. Note thus that Assumption 2 has been already
assumed in [46] to solve the min-min Stackelberg strategy.

Remark 3.3. Note that, under standard assumptions such as the convex-
ity of J2 [35, Chap. 5], or the fact that the set T

′u∗ be reduced to a singleton
(as in the linear-quadratic case, see Sec. 3.4), or the fact that Tu = T ′u
(as assumed in [10, 46] for example), the necessary conditions for the fol-
lower are also sufficient (see [35, Chap. 5]) and Assumptions 1 and 2 are
fulfilled. In the linear-quadratic case in particular, Assumptions 1 and 2 are
automatically satisfied.

Propositions 3.2 and 3.3 stress out that in the constraints of the leader
optimization problem for min-max and min-min Stackelberg strategies, the
set Tu could be replaced by the set T ′u, without loss of generality. Assume
that Eq. (3.2) is solvable, but admits several (local) solutions. Then, assume

that f and L2 are C2 with respect to the variable v, that is
∂H2

∂v
is C1 with

respect to v. If the strict Legendre condition holds at every (local) solution,

i.e.,
∂2H2

∂v2
is positive definite, then it follows from the implicit-function

theorem that, locally, every solution v can be written as

v(t, x) = S(t, x(t), p2(t), u∗(t, x(t))) ∈ T ′u∗, (3.11)

with S continuous with respect to t and C1 with respect to x and p2. These
solutions being isolated, the set of all these (local) solutions is discrete.
Then, our main results apply for min-max (respectively, for min-min) Stack-
elberg strategies by selecting among the discrete set of solutions (3.11) the
one maximizing (respectively minimizing) the criterion J1 of the leader. We
stress again that, in the linear-quadratic case (see Sec. 3.4), there exists a
unique global solution. This allows to obtain the same solution for both
min-max and min-min Stackelberg strategies.

The leader, with his top hierarchical position with respect to the follower,
can impose the control of the follower. The leader knows the reaction of the
follower, i.e., he knows the function S. Then the leader seeks to minimize
his own criterion where v is replaced by the function S. Using the notation
L̃1(t, x, p2, u) = L1(t, x, u,S(t, x, p2, u)) and

J̃1(u) =

tf∫

0

L̃1(t, x(t), p2(t), u(t, x(t)))dt+ g1(x(tf )), (3.12)

the following problem is considered:

min
u∈U

J̃1(u) (3.13)
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under the following two dynamical constraints:

ẋ(t) = f
(
t, x(t), u(t, x(t)), S

(
t, x(t), p2(t), u(t, x(t))

))
,

= F1

(
t, x(t), p2(t), u(t, x(t))

)
, (3.14)

ṗ2(t) = −p2(t)
∂f

∂x

(
t, x(t), u(t, x(t)), S

(
t, x(t), p2(t), u(t, x(t))

))

− ∂L2

∂x

(
t, x(t), u(t, x(t)), S

(
t, x(t), p2(t), u(t, x(t))

))

− p2
∂f

∂u

(
t, x(t), u(t, x(t)), S

(
t, x(t), p2(t), u(t, x(t))

))∂u
∂x

(t, x(t))

− ∂L2

∂u

(
t, x(t), u(t, x(t)), S

(
t, x(t), p2(t), u(t, x(t))

))∂u
∂x

(t, x(t))

= F21

(
t, x(t), p2(t), u(t, x(t))

)

+ F22

(
t, x(t), p2(t), u(t, x(t))

)∂u
∂x

(t, x(t)), (3.15)

and

x(0) = x0, p2(tf ) =
∂g2
∂x

(x(tf )).

Denote

L̃2(t, x, p2, u) = L2(t, x, u,S(t, x, p2, u)),

F21(t, x, p2, u) = −p2
∂F1

∂x
(t, x, p2, u)−

∂L̃2

∂x
(t, x, p2, u),

F22(t, x, p2, u) = −p2
∂F1

∂u
(t, x, p2, u)−

∂L̃2

∂u
(t, x, p2, u).

Due to the nonclassical term ux, the usual Pontryagin minimum principle
(see [35]) cannot be applied. However, it is possible to adapt its proof and
derive a version of the Pontryagin minimum principle adapted to the sys-
tem (3.14)–(3.15) (see the Appendix). The following proposition is proved
in the Appendix.

Proposition 3.4. If the trajectory x(·) associated with the pair (u∗, v∗)
of closed-loop Stackelberg controls is a solution of the Stackelberg problem,
then there exist absolutely continuous mappings λ1, λ2 : [0, tf ] → R

n, called
costate vectors (written as line vectors by convention), and a scalar λ0 ≥ 0,
such that

0 = λ2(t)

(
∂F22

∂u

(
t, x(t), p2(t), u(t, x(t))

)
ux

+
∂F21

∂u

(
t, x(t), p2(t), u(t, x(t))

)
)T
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+ λ1(t)
∂F1

∂u

(
t, x(t), p2(t), u(t, x(t))

)

+ λ◦
∂L̃1

∂u

(
t, x(t), p2(t), u(t, x(t))

)
, (3.16)

0 = λT2 (t)F22

(
t, x(t), p2(t), u(t, x(t))

)

= λT2 (t)

(

p2(t)
∂F1

∂u

(
t, x(t), p2(t), u(t, x(t))

)

+
∂L̃2

∂u

(
t, x(t), p2(t), u(t, x(t))

)
)

, (3.17)

λ̇1(t) = −λ2(t)
(
∂F21

∂x

(
t, x(t), p2(t), u(t, x(t))

)

+
∂F22

∂x

(
t, x(t), p2(t), u(t, x(t))

)
ux

)T

− λ1(t)
∂F1

∂x

(
t, x(t), p2(t), u(t, x(t))

)

− λ◦
∂L̃1

∂x

(
t, x(t), p2(t), u(t, x(t))

)
, (3.18)

λ̇2(t) = −λ2(t)
(
∂F21

∂p2

(
t, x(t), p2(t), u(t, x(t))

)

+
∂F22

∂p2

(
t, x(t), p2(t), u(t, x(t))

)
ux

)T

− λ1(t)
∂F1

∂p2

(
t, x(t), p2(t), u(t, x(t))

)
(3.19)

− λ◦
∂L̃1

∂p2

(
t, x(t), p2(t), u(t, x(t))

)
, (3.20)

for almost every t ∈ [0, tf ]. Moreover, the following relations, called the
transversality conditions, hold:

λ2(0) = 0, λ1(tf )− λ◦
∂g1
∂x

(x(tf )) + λ2(tf )
∂2g2
∂x2

(x(tf )) = 0. (3.21)

3.3. Degeneration property. Equation (3.17) implies either that λ2 ≡ 0

or F22 ≡ 0 (or both) along the interval [0, tf ], where F22 = −p2
∂F1

∂u
− ∂L̃2

∂u
.

In the general case, the relation F22 ≡ 0 is not obvious to analyze, however
we will see that, in the linear-quadratic case, this relation does not hold
under a weak additional assumption of the Kalman type (see Proposition 3.7
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below). In the general nonlinear case, based on the genericity strategies
developed in [5,22–24], we conjecture that the relation F22 = 0 does not hold
generically. The strategy would consist in deriving an infinite number of
times the latter relation, to infer an infinite number of independent relations,
and to use Thom’s transversality theorem. However, it is not obvious to turn
this fact into a proper theorem and we let this question open in the general
nonlinear case. The next proposition, proved in the Appendix, investigates
the first case of that alternative, which is, in some sense, the generic one.

Proposition 3.5. Under the additional assumption that the (m1×m1)-
matrix

∂

∂u

(
p2
∂f

∂u
+
∂L2

∂u

)T

(3.22)

is invertible, we have

λ2 ≡ 0. (3.23)

Remark 3.4. The fact that λ2 ≡ 0 means that the leader does not take
into account the rational reaction set of the follower. It is actually not in
contradiction with the hierarchical position between the leader and the fol-
lower; indeed, in this case the leader does not take into account the reaction
of the follower, because he can impose his desired control to the follower.

The leader is omnipotent with respect to the follower. The condition
∂F22

∂u
invertible formalizes this privileged position of the leader.

Proposition 3.5, under a weak assumption, emphasizes the omnipotence
of the leader leading to a degeneration of the min-max and min-min Stack-
elberg strategies. The hierarchical roles of the players seem to disappear.
An omnipotent leader is able to impose his/her control to the other player
without taking into account the rational reaction set of the follower.

These conditions happen to be more explicit in the linear-quadratic case.
In the next paragraph we focus on that case, and analyze more deeply the
former necessary conditions. Our analysis finally leads to a more precise
result on the Stackelberg controls in the linear-quadratic case.

3.4. Linear-quadratic case. In this section, we focus on the linear-
quadratic case, due to its widespread presence in the literature [20], and
reformulate and make more explicit our previous results. Consider a linear
dynamic constraint

ẋ = Ax+B1u+B2v (3.24)

and the quadratic criteria

J1(u, v) =

tf∫

0

1

2

(
xTQ1x+ uTR11u+ vTR12v

)
dt
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+
1

2
x(tf )

TK1fx(tf ), (3.25)

J2(u, v) =

tf∫

0

1

2

(
xTQ2x+ uTR21u+ vTR22v

)
dt

+
1

2
x(tf )

TK2fx(tf ), (3.26)

where the matrices Qi, Rij , and Kif are symmetric for i, j ∈ K, and Qi ≥ 0,
Rii > 0, R12 > 0, and R21 invertible. In what follows, denote

Sij = BjR
−1
jj RijR

−1
jj B

T
j , Si = BiR

−1
ii B

T
i

for i, j ∈ K.

3.4.1. Necessary conditions for the follower. The Hamiltonian associated
with the follower (dynamic constraint (3.24) and criterion (3.26)) is

H2(t, x, p2, u, v) = p2(Ax+B1u+B2v)

+
1

2
(xTQ2x+ uTR21u+ vTR22v). (3.27)

Applying the relations (3.2) and (3.3), we obtain

ṗ2(t) = −dH2

dx

(
t, x(t), p2(t), u(t, x(t))

)
(3.28)

= −p2(t)A− xT (t)Q2 − p2(t)B1
∂u∗

∂x
(t, x(t))

− uT (t, x(t))R21
∂u∗

∂x
(t, x(t)),

p2(tf ) = x(tf )
TK2f , (3.29)

∂H2

∂v
= 0 = p2(t)B2 + vT (t, x(t))R22. (3.30)

Since R22 is invertible by assumption, the optimal control is

v(t, x(t)) = −R−1
22 B

T
2 p

T
2 (t) = S(t, x(t), p2(t), u(t, x(t))). (3.31)

3.4.2. Necessary conditions for the leader. In the case of quadratic criteria,
we have

F1(t, x, p2, u) = Ax+B1u− S2p
T
2 , (3.32)

F21(t, x, p2, u) = −p2A− xTQ2, (3.33)

F22(t, x, p2, u) = −p2B1 − uTR21. (3.34)

Using the expression of the optimal control of the follower (3.31), the in-
stantaneous leader’s criterion can be written as

L̃1(t, x, p2, u) =
1

2

(
xTQ1x+ uTR11u+ p2S12p2

)
.
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The necessary conditions (3.16), (3.17), (3.18), and (3.20) lead to

∂H

∂u
= 0 = λ1(t)B1 − λ2(t)

(
∂u

∂x
(t, x(t))

)T

R21 + λ◦uT (t, x(t))R11,

(3.35)

∂H

∂uy
= 0 = −λT2 (t)

(
p2(t)B1 + uT (t, x(t))R21

)
, (3.36)

λ̇1(t) = −λ1(t)A+ λ2(t)Q2 − λ◦xT (t)Q1, (3.37)

λ̇2(t) = λ1(t)S2 + λ2(t)

(
A+B1

(
∂u

∂x
(t, x(t))

))T

− λ◦p2(t)S12 (3.38)

with the transversality conditions

λ1(tf ) = λ◦x(tf )TK1f − λ2(tf )K2f , λ2(0) = 0. (3.39)

From (3.36), as discussed in Sec. 3.3, either λ2 ≡ 0 or

p2(t)B1 + uT (t, x(t))R21 ≡ 0

or both along the interval [0, tf ]. Without a priori consideration about
p2(t)B1 + uT (t, x(t))R21, by assuming that

∂

∂u

(
p2
∂f

∂u
+
∂L2

∂u

)
= R21

is invertible and by Proposition 3.5, we can deduce that λ2 ≡ 0.
We next prove by contradiction that λ0 �= 0. If λ0 were equal to 0, then

we would infer from (3.37)–(3.39) that λ1, like λ2 is identically equal to zero
by Cauchy uniqueness; thus, (λ1, λ2, λ

0) is trivial, and this is a contradiction
with the Pontryagin minimum principle. From now on, we normalize the
adjoint vector so that λ◦ = 1.

From (3.35), we deduce with the invertibility of R11, that

u(t, x(t)) = −R−1
11 B

T
1 λ

T
1 (t). (3.40)

Moreover, Eq. (3.38) becomes, with λ2 ≡ 0 along the interval [0, tf ],

λ1(t)S2 − p2(t)S12 ≡ 0.

Assuming that the rank of B2 is maximal, that is, rank B2 = m2 (the
number of the components of the control v), this relation yields

λ1(t)B2 = p2(t)B2R
−1
22 R12. (3.41)

Substitution of v from (3.31) into (3.41) gives R12v(t, x(t)) = −BT
2 λ

T
1 (t). If

R12 is invertible, then the control v admits two expressions:

v(t, x(t)) = −R−1
12 B

T
2 λ

T
1 (t) = −R−1

22 B
T
2 p

T
2 (t). (3.42)

We gather the previous necessary conditions for optimality in the follow-
ing proposition.
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Proposition 3.6. For x0 �= 0, if the matrices Qi, Rij, and Kif are
symmetric, if R11 > 0, R22 > 0, R12 > 0, and R21 invertible and if
rank B2 = m2 (B2 is of full rank), then the controls issued from a min-max
or min-min Stackelberg strategy with a closed-loop information structure are

u(t, x(t)) = −R−1
11 B

T
1 λ

T
1 (t), (3.43)

v(t, x(t)) = −R−1
22 B

T
2 p

T
2 (t) = −R−1

12 B
T
2 λ

T
1 (t), (3.44)

with

ẋ(t) = Ax(t) +B1u(t, x(t)) +B2v(t, x(t)), x(0) = x0, (3.45)

ṗ2(t) = −p2(t)A− xT (t)Q2 −
(
p2(t)B1 + uT (t, x(t))R21

) ∂u
∂x

(t, x(t)),

(3.46)

λ̇1(t) = −λ1(t)A− xT (t)Q1, λ1(tf ) = xTfK1f , p2(tf ) = xTfK2f ,
(3.47)

λ1(t)B2 = p2(t)B2R
−1
22 R12. (3.48)

Remark 3.5. As will be justified below by Proposition 3.7, the case x0 = 0
leads only to the trivial solution, which has only few interest. Thus in the
sequel of the paper, x0 is always considered non trivial to avoid the trivial
optimal trajectory.

From (3.36), even if λ2 ≡ 0, two cases must be yet considered to precise
necessary conditions: either p2B1 + uTR21 ≡ 0 or p2B1 + uTR21 �≡ 0.
We next prove that the first case is irrelevant under some additional weak
assumptions.

3.4.3. Case p2B1 + uTR21 ≡ 0.

Proposition 3.7. If the pair (AT , Q1) and one of the pairs (A,B1) or
(A,B2) satisfy the Kalman condition, then

x(t) ≡ λT1 (t) ≡ pT2 (t) ≡ 0 ∀t ∈ [0, tf ]. (3.49)

This means that there exists a unique optimal trajectory, which is trivial.

The proof of Proposition 3.7 (see the Appendix) relies on the following
lemma concerning the Kalman condition (also proved in the Appendix).

Lemma 3.1. Assuming that the pair
(
AT , Q1

)
and one of the pairs

(A,B1) or (A,B2) satisfy the Kalman condition, then the pair (A,B) satis-
fies also the Kalman condition, where

A =

⎡

⎣
AT −Q1 −Q2

−S1 −B2R
−1
12 B

T
2 −A 0

0 0 −A

⎤

⎦ ,
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B =

⎡

⎣
0 0
B2 B1R

−1
11 R21

−B2R
−1
22 R12 −B1

⎤

⎦ .

Remark 3.6. This means that the particular case p2B1 + uTR21 ≡ 0 can
be discarded under weak assumptions on the system. The leader should be
able to observe the system (pair (Q1, A) observable) and at least one player
should be able to control the system ((A,B1) or (A,B2) controllable). Once
again, it is emphasized that the roles of the players are not symmetric.

3.4.4. Case p2B1+u
TR21 �≡ 0. Relation (3.48) is equivalent to the following

two relations:

λ1(tf )B2 = xT (tf )K1fB2 = p2(tf )B2R
−1
22 R12 = xT (tf )K2fB2R

−1
22 R12,

(3.50)
and

λ̇1(t)B2 = ṗ2(t)B2R
−1
22 R12 = −

(
λ1(t)A+ xT (t)Q1

)
B2

= −
(
p2(t)A+ xT (t)Q2

)
B2R

−1
22 R12

− (p2(t)B1 + uT (t, x(t))R21)

(
∂u

∂x
(t, x(t))

)
B2R

−1
22 R12.

Hence along the interval T

(p2(t)B1 + uT (t, x(t))R21)

(
∂u

∂x
(t, x(t))

)
B2

=
(
λ1(t)A+ xT (t)Q1

)
B2R

−1
12 R22 − (p2(t)A+ xT (t)Q2)B2. (3.51)

Therefore, (3.48) is equivalent to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
BT

2 K1f −R12R
−1
22 B

T
2 K2f

)
x(tf ) = 0,

(
p2(t)B1 + uT (t, x(t))R21

)(∂u
∂x

(t, x(t))

)
B2

≡
(
λ1(t)A+ xT (t)Q1

)
B2R

−1
12 R22 − (p2(t)A+ xT (t)Q2)B2.

(3.52)

Equation (3.51) permits to derive an expression of
∂u

∂x
, since p2B1 +

uTR21 �≡ 0

(p2B1 + uTR21)

(
∂u

∂x

)
≡ w2 + w′

2, (3.53)

with

w2 ≡
( (
λ1(t)A+ xT (t)Q1

)
B2R

−1
12 R22

− (p2(t)A+ xT (t)Q2)B2

)
(BT

2 B2)
−1BT

2 , (3.54)

and (w′
2)

T ∈ Ker
(
BT

2

)
(arbitrary).
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Constraint (3.50) translates into a constraint on the set of initial points
x0 ∈ R

n from which a solution starts.

Lemma 3.2. The optimal solutions must emanate from initial condi-
tions x0 lying in a subspace of Rn of codimension m2 (at most).

Note that given a starting point x0 lying in the subspace of Lemma 3.2,
there exists a unique trajectory starting from x0, but it is achieved by all
controls which satisfy relation (3.51). An optimal trajectory induces several

possible
∂u

∂x
.

This fact appears in [41] where it is assumed that the initial state is
uniformly distributed over the unit sphere and replacing the optimization
criterion with its mean value over the initial state.

Remark 3.7. In the case of an optimization problem without terminal
criteria, relation (3.50) does not reduce the set of initial states x0 associated
with optimal trajectories.

We gather all previous results in the following theorem.

Theorem 3.1. Assume that the following assumptions hold :

• x0 �= 0,
• Qi, Rij, and Kif are symmetric, with Qi ≥ 0,
• R11 > 0, R22 > 0, R12 > 0, and R21 is invertible,
• the pair (AT , Q1) and one of the pairs (A,B1) or (A,B2) satisfy the
Kalman condition,

• rank B2 = m2 (B2 of full rank).

Then the optimal trajectory satisfies the necessary conditions

u(t, x(t)) = −R−1
11 B

T
1 K1(t)x(t), v(t, x(t)) = −R−1

12 B
T
2 K1(t)x(t), (3.55)

where

ẋ(t) =
(
A− (B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2 )K1(t)

)
x(t), x(0) = x0, (3.56)

where K1 is the unique solution of the matrix differential equation

K̇1(t) = −K1(t)A−ATK1(t)−Q1

+K1(t)
(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K1(t),

K1(tf ) = K1f .

(3.57)

Furthermore,
∂u(t, x(t))

∂x
satisfies along the interval [0, tf ]

(p2(t)B1 + uT (t, x(t)R21)
∂u

∂x
(t, x(t))B2

= (λ1(t)A+ xT (t)Q1)B2R
−1
12 R22 − (p2(t)A+ xT (t)Q2)B2, (3.58)
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where

ṗ2(t) = −p2(t)A−xT (t)Q2−
(
p2(t)B1+u

T (t, x(t))R21

)∂u
∂x

(t, x(t)), (3.59)

and

p2(tf ) = xT (tf )K2f , (BT
2 K1f −R12R

−1
22 B

T
2 K2f )x(tf ) = 0.

Theorem 3.1 provides rigorous necessary conditions for closed-loop min-
max and min-min Stackelberg solutions of generic linear-quadratic games.
Up to now, this problem has remained open and was only partially solved
in particular cases in [46]. It should be stressed again that the trajectory
associated with closed-loop Stackelberg solution is unique, nevertheless it
induces several possible ux, which satisfy Eqs. (3.58)–(3.59) and are com-
pletely characterized by 3.53. This degree of freedom in the choice of ux,
leading to the same trajectory, requires an additional objective, e.g., argu-
ments related to the robustness or the sensitivity of the min-max or min-min
Stackelberg solution.

4. Sufficient conditions

In this section, using elements of focal point theory, we derive sufficient
optimality conditions, first for the leader, and then for the follower in the
case of linear-quadratic games.

4.1. Preliminary comments, focal times. The optimization problem of
the leader is minu Ĵ1(u), where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĵ1(u) =
1

2

tf∫

0

(
xT (t)Q1x(t) + uT (t, x(t))R11u(t, x(t))

+ p2(t)S12p
T
2 (t)

)
dt+

1

2
xT (tf )K1fx(tf ),

ẋ(t) = Ax(t)− S2p
T
2 (t) +B1u(t, x(t)),

ṗT2 (t) = −AT pT2 (t)−Q2x(t)− wT
(
p2(t)B1 + uT (t, x(t))R21

)T
,

(4.1)

with x(0) = x0 and p2(tf ) = xT (tf )K1f . When p2(t)B1 + uT (t, x(t))R21 �≡
0, the control w is cheap (see [15] for the concept of cheap control), since
it only appears in the dynamics of p2, and nowhere else (it does also not
appear in the cost); then, we rather consider p2 as a control. Note that
this is a particular case of the so-called Goh transformation (see [6, 7, 15,
53] for the definition and properties of the Goh transformation, related to
singular trajectories or abnormal extremals). Actually, in what follows we
consider ξ = BT

2 p
T
2 as a control. Then problem (4.1) can be rewritten as
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min(u,ξ) Ĵ1(u, ξ), where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t)−B2R
−1
22 ξ(t) +B1u(t, x(t)),

Ĵ1(u, ξ) =
1

2
xT (tf )K1fx(tf ) +

1

2

tf∫

0

(
xT (t)Q1x(t)

+ uT (t, x(t))R11u(t, x(t)) + ξT (t)R−1
22 R12R

−1
22 ξ(t)

)
dt.

(4.2)

Remark 4.1. Note that this linear-quadratic problem with controls (u, ξ)
is related to the Team optimal approach in [11]. In this reference, the first
step in the research of min-max or min-min Stackelberg strategy is to obtain
the minimum of the criterion of the leader, by a team cooperation between
the leader and the follower. Then the follower control is modified to achieve
the minimum of the criterion of the follower.

A necessary condition for the existence of an optimal control of prob-
lem (4.2) is

R−1
22 R12R

−1
22 ≥ 0.

It is equivalent to R12 ≥ 0, since R22 is positive definite. When tf is small,
R12 > 0 is a sufficient condition for the existence of an optimal control (see,
e.g., [19, 35,54]). In the following, it is assumed that R12 > 0.

Under this assumption, the optimal controls u and ξ are given by

u(t, x(t)) = −R−1
11 B

T
1 λ

T
1 (t), ξ(t) = R22R

−1
12 B

T
2 λ

T
1 (t). (4.3)

Recall that, in order to characterize focal points (for a definition and
properties of focal points we refer the reader to [6, 15, 16]), we consider the
variational system

⎧
⎨

⎩

δẋ(t) = Aδx(t)−
(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
δλT1 (t),

δλ̇1(t) = −δλ1(t)A− δxT (t)Q1.
(4.4)

By definition, the first focal time tc > 0 along the trajectory x(t) associ-
ated with the controls (u, ξ) is the first positive time at which there exists
a solution (δx, δλ1) satisfying (recall that x(0) = x0 is fixed)

{
δx(0) = 0,

δλ1(tc) = δxT (tc)K1f .
(4.5)

It is well known that this condition is equivalent to

‖K(t)‖ t→tc, t<tc−−−−−−−→ +∞, (4.6)
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where K(t) is the solution of the Riccati differential equation
⎧
⎪⎪⎨

⎪⎪⎩

K̇(t) = K(t)A+ATK(t) +Q1

−K(t)
(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K(t),

K(0) = K1f .

(4.7)

The first focal time tc is a finite escape time for the Riccati differen-
tial equation (4.7). Note that K(t) = K1(tf − t), where K1(t) is defined
by (3.57). Rigorously, since the first focal time is defined by an infimum,
its existence must be proved (see the following lemma).

Lemma 4.1 (see [6, 15,16]). If R11 > 0 and R12 > 0, then the first focal
time tc is well defined, and tc is either a positive real number, or is equal to
+∞.

Remark 4.2. If Q1 ≥ 0, then Eq. (4.7) admits a solution on [0,+∞[.
There is no finite escape time for this equation. Thus, the first focal time
is infinite (tc = +∞) (see [2, Corollary 3.6.7 and Example 3.6.8]).

The optimization problem for the follower is min Ĵ2, where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) +B1u(t, x(t)) +B2v(t, x(t)), x(0) = x0,

Ĵ2 =
1

2
xT (tf )K2fx(tf ) +

1

2

tf∫

0

(
xT (t)Q2x(t)

+ uT (t, x(t))R21u(t, x(t)) + vT (t, x(t))R22v(t, x(t))
)
dt

(4.8)

with

v(t, x(t)) = −R−1
22 B

T
2 p

T
2 (t),

where p2(tf ) = xT (tf )K2f and

ṗ2(t) = −p2(t)A− xT (t)Q2 −
(
p2(t)B1 + uT (t, x(t))R21

)∂u
∂x

(t, x(t)). (4.9)

The variational system along the trajectory x(·) is

δẋ(t) = Aδx(t) +B1
∂u

∂x
δx− S2p

T
2 (t), (4.10)

δṗ2(t) = −δp2(t)A− δxT (t)Q2

−
(
p2(t)B1 + uT (t, x(t))R21

) ∂2u
∂x2

(t, x(t))δx

−
(

δp2(t)B1 +

(
∂u

∂x
(t, x(t))δx(t)

)T

R21

)
∂u

∂x
(t, x(t)). (4.11)
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Here, due to the freedom in the choice of w′
2 to obtain ux by rela-

tion (3.53), we choose u(t, x(t)) affine with respect to x(t), thus
∂2u

∂x2
= 0.

Equation (4.11) takes the form

δṗ2(t) = −δp2(t)A− δxT (t)Q2

−
(

δp2(t)B1 +

(
∂u

∂x
(t, x(t))δx(t)

)T

R21

)
∂u

∂x
(t, x(t)). (4.12)

By definition, the first focal time t′c along the trajectory x(t) associated
with the control v is the first time at which there exists a solution (δx, δp2)
of (4.10)–(4.11) such that δx(0) = 0 and δp2(t

′
c) = δxT (t′c)K2f . For each

choice of admissible term ux (that is choice of w′
2) satisfying relation (3.58),

there exists a first focal time t′c.

4.2. Sufficient conditions for min-max and min-min Stackelberg
strategies. We gather the previous remarks in the following result.

Theorem 4.1. Under the assumptions of Theorem 3.1, let w′
2 be a func-

tion of time t such that w′
2 ∈ (BT

2 )
⊥. This choice of w′

2 leads to design the
Jacobian ux satisfying (3.53):

(p2B1 + uTR21)ux = w2 + w′
2.

Let

T ∗ = min (tc, t
′
c) > 0, (4.13)

where tc is the first focal time of the Riccati differential equation (3.57) and
t′c is the first focal time of system (4.10)–(4.12), induced by ux, that is by w

′
2.

For every tf < T ∗, there exists a unique solution of the Riccati differential
equation (3.57). Denoting x(t, x0) the obtained trajectory, let

H =
{
x0 ∈ R

n
∣
∣
∣
(
BT

2 K1f −R12R
−1
22 B

T
2 K2f

)
x(tf , x0) = 0

}
. (4.14)

Then, for every x0 ∈ H, there exists a unique optimal solution of the op-
timization problem (4.8) on [0, tf ] associated with w′

2. The optimal con-
trols (u∗, v∗) associated with this unique optimal trajectory satisfy (p2B1 +
uTR21)ux = w2 + w′

2 and, furthermore,

u(t, x(t)) = −R−1
11 B

T
1 K1(t)x(t), v(t, x(t)) = −R−1

12 B
T
2 K1(t)x(t).

(4.15)
In addition, for every x0 /∈ H, there exists no optimal trajectory starting
from x0.

Remark 4.3. Theorem 4.1 is a result of existence of closed-loop min-max
and min-min Stackelberg strategies for linear-quadratic differential games,
which is new, to the best of our knowledge.
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Remark 4.4. The sufficient conditions for optimality are developed in the
linear-quadratic case, and are global in that case. It is also, by the same
argument, possible to express similar sufficient conditions in the general
case of nonlinear criteria. However, they are not developed here, because
their expressions are more technical and because they lead only to local
optimality results (see [6] or [16, Chap. 9]).

Remark 4.5. The assumption R12 > 0 is required to derive Theorem 4.1.
This assumption is used in a crucial way in order to derive Lemma 4.1
(more precisely, to derive inequality (A.53)). It is natural to make such

an assumption when inspecting the minimization criterion Ĵ1(u, ξ) defined
by (4.2): indeed, as explained few lines above (4.2), the problem degener-
ates into a cheap control problem. In this sense, ξ = BT

2 p
T
2 may then be

considered as a control, and therefore it is clear that one has to assume
that R12 > 0 in order to ensure nice coercivity properties for the quadratic
criterion Ĵ1(u, ξ).

Remark 4.6. From Remark 4.2, the assumption Q1 ≥ 0 ensures that
tc = +∞. A lower bound of T ∗ = min(tc, t

′
c) corresponds to a lower bound

of t′c the first focal time of the nonlinear variational system (4.10)–(4.12).
It depends implicitly on the choice of ux, that is the choice of w′

2. The
problem of determining a lower bound of t′c is open.

4.3. Extension: weighting of ux in criteria. The problem is degenerate

since for each x0 ∈ H, there may exist an infinite choice of terms
∂u∗

∂x
. A

way to yield a unique
∂u∗

∂x
is to include a weight on the term

∂u∗

∂x
in the

criterion J1 of the leader, as in [46]. Then the leader takes into account a
restriction on the Jacobian of its control. The leader is no more omnipotent.

The new criterion of the leader is then

J1(u, v) =
1

2
x(tf )

TK1fx(tf ) +
1

2

tf∫

0

[

xT (t)Q1x(t)

+ uT (t, x(t))R11u(t, x(t)) + vT (t, x(t))R12v(t, x(t))

+

m1∑

j=1

(
∂uj
∂x

(t, x(t))

)
Rj

(
∂uj
∂x

(t, x(t))

)T
]

dt, (4.16)

where uj are the m1 components of the control u, and Rj ∈ R
n×n, j =

1, . . . ,m1, are symmetric positive definite matrices.
Nothing changes for the follower. However the necessary conditions for

the leader are modified as follows:

∂H

∂u
= 0 = λ1(t)B1 − λ2(t)

(
∂u

∂x
(t, x(t))

)T

R21
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+ λ◦uT (t, x(t))R11, (4.17)

∂H

∂uy
= 0 =

(
λ2(t)

(
BT

1 p
T
2 (t) +R21u(t, x(t))

)
j

+
∂uj
∂x

(t, x(t))Rj

)

j=1,...,m1

. (4.18)

The other necessary conditions (3.18) and (3.20) are the same. Equa-
tions (4.17) and (4.18) are easily solvable, without considering different
cases. In this framework, λ2 cannot be trivial. As in [46], we obtain
from (4.18) that

∂u∗j
∂x

(t, x(t)) =
((
BT

1 p
T
2 (t) +R21u(t, x(t))

)
j
λ2(t)R

−1
j

)

j=1,...,m1

. (4.19)

For simplicity, we next assume, as in [46], that Rj = R > 0 for every
j = 1, . . . ,m1. Then

∂u∗

∂x
(t, x(t)) =

(
BT

1 p
T
2 (t) +R21u(t, x(t))

)
λ2(t)R

−1. (4.20)

Substituting this expression in (4.17), we get

R11u(t, x(t)) = −BT
1 λ

T
1 (t) +R21B

T
1 p

T
2 (t)λ2(t)R

−1λT2 (t)

+R2
21uλ2(t)R

−1λT2 (t), (4.21)

or
(
R11 − λ2(t)R

−1λT2 (t)R
2
21

)
u(t, x(t))

= −BT
1 λ

T
1 (t) +R21B

T
1 p

T
2 (t)λ2(t)R

−1λT2 (t). (4.22)

Remark 4.7. For t = 0, λ2(0) = 0, then

R11 − λ2(0)R
−1λT2 (0)R

2
21 = R11 > 0

is invertible. For sufficiently small t ≥ 0, the matrix R11−λ2(t)R−1λT2 (t)R
2
21

is invertible.

As long as R11 − λ2(t)R
−1λT2 (t)R

2
21 is invertible, the optimal control is

u(t, x(t)) =
(
R11 − λ2(t)R

−1λT2 (t)R
2
21

)−1

×
(
−BT

1 λ
T
1 (t) +R21B

T
1 p

T
2 (t)λ2(t)R

−1λT2 (t)
)
. (4.23)

The nonlinear optimization problem becomes

ẋ(t) = Ax(t)− S2p
T
2 (t) +B1

(
R11 − λ2(t)R

−1λT2 (t)R
2
21

)−1

×
(
−BT

1 λ
T
1 (t) +R21B

T
1 p

T
2 (t)λ2(t)R

−1λT2 (t)
)
, (4.24)

ṗ2(t) = −p2(t)A− xT (t)Q2 −
∥
∥
∥p2(t)B1
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+ uT (t, x(t))R21

∥
∥
∥
2

λ2(t)R
−1, (4.25)

λ̇1(t) = −λ1(t)A+ λ2(t)Q2 − xT (t)Q1, (4.26)

λ̇2(t) = +λ2(t)
(
AT +R−1λT2 (t)

(
p2(t)B1 + uT (t, x(t))R21

)
BT

1

)

+ λ1(t)S2 − p2(t)S12. (4.27)

with boundary conditions

x(0) = x0, p2(tf ) = xT (tf )K2f , (4.28)

λ2(0) = 0, λ1(tf ) = xT (tf )K1f − λ2(tf )K2f . (4.29)

Remark 4.8. For R = γ Id, if we let γ tend to +∞, then we recover
the necessary conditions for the strategy of Stackelberg with an open-loop
information structure. Note that this coincidence is obtained only by taking
the limit γ → +∞ without modifying the criterion of the leader.

Remark 4.9. These conditions are necessary conditions. As previously,
the theory of focal points leads to sufficient conditions associated with
the min-max or min-min Stackelberg strategy with closed-loop information
structure including a weight for ux in the criterion of the leader, namely,
given x0 ∈ R

n. For tf less than the global focal time of the system, there ex-
ists only one trajectory starting from x0 solution of (4.24)–(4.29) associated
with the optimal control (u, ux) (see (4.23)–(4.20).

5. Conclusion

In this paper, the min-max and min-min Stackelberg strategies with a
closed-loop information structure are studied. The framework is restricted
to two-player differential games. Necessary conditions for the existence of a
closed-loop min-max and min-min Stackelberg strategies are derived by con-
sidering all cases. It is also shown that they may degenerate whenever the
leader is omnipotent and can impose his control to the follower. The focal
times theory provides sufficient conditions for the optimization problems of
the two players. The linear-quadratic case is used to illustrate the obtained
necessary and sufficient conditions. Moreover in this linear-quadratic case,
the control u(t, x) is obtained for each state x. An extension is proposed to
allow an optimal trajectory starting from any initial state by including, in
the criterion, the Jacobian of his/her control in the criterion of the leader.
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Appendix A. Proofs of theorems

Preliminaries. We start with preliminaries essentially borrowed from [6,
15,35,54]. First, consider a usual optimal control problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minC(u)

under ẋ(t) = f(t, x(t), u(t)),

with C(u) =

tf∫

0

f0(t, x(t), u(t))dt,

(A.1)

where x(t) ∈ R
n and u(t) ∈ R

m. A usual way to derive the Pontryagin min-
imum principle for such an optimal control problem is to extend the control
system with a new state variable representing the cost, in the following
way. Define the extended state z = (x, x0)T ∈ R

n+1, where x0(0) = 0, and

f̃ = (f, f0)T . Consider the extended control system

ż(t) = f̃(t, z(t), u(t)). (A.2)

The associated endpoint mapping ez0,tf at time tf is defined by

ez0,tf : U −→ R
n+1, v �−→ zu(tf ), (A.3)

with zu the trajectory solution of (A.2) associated to the control u, and U
is the set of admissible controls. The crucial remark which is at the basis
of the proof of the minimum principle is the following: if a trajectory x(·),
associated with a control u on [0, tf ] is optimal, then the endpoint mapping
ez0,tf is not locally surjective at u, then it follows from an implicit function
argument that the first differential of the endpoint mapping at u is not
surjective (at least in the case where there is no constraint on the controls).
This fact leads to a Lagrange multipliers type equation which finally leads
to the well known Pontryagin minimum principle (see [54] for details).

In the present paper we are not dealing with such a classic optimal con-
trol problem, however the previous reasoning may be adapted, even though
our controls now depend also on x(t), and we first derive a proof of Propo-
sition 3.1.

Proof of Proposition 3.1. Define the extended state z = (x, x̂)T ∈ R
n+1

(and the projector q(z) = x), where x̂ is the instantaneous cost associated
with the criterion of the follower such that

˙̂x(t) = L2(t, x(t), u
∗(t, x(t)), v(t, x(t)), x̂(0) = 0,

which leads to the dynamic of the extended state z:

ż(t) = f̂(t, z(t), v(t, x(t))) =

(
f
L2

)
. (A.4)

It is pointed out that the function t �→ u∗(t, x(t)) is fixed and the control
of the follower v(t, x(t)) is the optimization variable.
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Definition A.1. The end-point mapping at time tf of system (A.4) with
the initial state z0 = (x0, 0)

T is the mapping

ez0,tf : V −→ R
n+1, v �−→ zv(tf ), (A.5)

where zv is the solution of (A.4) associated to v, starting from z0, and V is
the set of admissible controls.

To compute the Fréchet first derivative, consider a fixed control δv such
that v and v + δv belong to V and denote z + δz the trajectory associated

with the latter control [35,54]. An expansion to the first order of f̂ leads to

d(z + δz)

dt

= f̂
(
t, z + δz, u∗(t, q(z + δz)), v(t, q(z + δz)) + δv(t, q(z + δz))

)
+ o(δz),

= f̂
(
t, z, u∗(t, q(z)), v(t, q(z))

)
+ f̂z

(
t, z, u∗(t, q(z)), v(t, q(z))

)
δz

+ f̂u

(
t, z, u∗(t, q(z)), v(t, q(z))

)
u∗y + o(δz). (A.6)

Furthermore, to the first order,

v(t, q(z + δz)) = v
(
t, q(z) + qz(z)δz + o(δz)

)

= v(t, q(z)) + vy(t, q(z))qz(z)δz + o(δz),

u∗(t, q(z + δz)) = u∗(t, q(z)) + u∗y(t, q(z))qz(z)δz + o(δz),

δv(t, q(z + δz)) = δv(t, q(z)) + o(δz).

Substituting these Taylor series expansions into relation (A.6), we have, at
the first order,

d(δz)

dt
= f̂zδz + f̂uu

∗
yqzδz + f̂vδv + f̂vvyqz(z)δz

=
(
f̂z + f̂uu

∗
yqz + f̂vvyqz(z)

)

︸ ︷︷ ︸
a(t)

δz + f̂v︸︷︷︸
b(t)

δv.

Using the transition matrix Φ(t) satisfying Φ̇(t) = aΦ(t) and Φ(0) = Id (Id
denoting the identity matrix), it follows that

dez0,tf (v) · δv = δz(tf ) = Φ(tf )

tf∫

0

Φ−1(s)b(s)δvds. (A.7)

If a closed-loop Stackelberg control v∗ ∈ V of the follower is optimal, then
the first derivative of the end-point mapping, dez0,tf (v

∗), is not surjective,
and hence there exists a line vector φ̃ ∈ R

n+1, φ̃ �= 0 such that

φ̃ · dez0,tf (v∗)δv = 0 ∀δv ∈ V. (A.8)
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Set φ(t) = φ̃Φ(tf )Φ
−1(t); then relation (A.8) is satisfied for every control

δv, and thus
tf∫

0

φ(t)b(t)δvdt = 0.

This implies that almost everywhere on [0, tf ]

φ(t) b(t) = 0. (A.9)

Furthermore, deriving

φ(t) = φ̃Φ(tf )Φ
−1(t)

with respect to t, we obtain

φ̇(t) = −φ(t)a = −φ(t)
(
f̂z + f̂uu

∗
yqz + f̂vvyqz(z)

)
= −φ(t)

(
f̂z + f̂uu

∗
yqz

)
,

(A.10)
the last equality holds due to relation (A.9). Denoting

φ(t) =
(
p2(t) p◦2(t)

)
,

we obtain that p◦2 is a constant scalar. Finally, the initial condition z0 being
fixed and the final condition z(tf ) being free, the standard transversality
condition associated with system (A.4) implies that p◦2 �= 0 since

φ̃ =
(
p2(tf ) p◦2

)
�= 0.

We normalize the costate vector so that p◦2 = 1, since (p2(tf ), p
◦
2) is defined

up to a multiplicative scalar. The transversality condition leads to Eq. (3.4)
and p2 satisfies Eq. (3.3). In addition, relation (A.9) could be reformulated
into Eq. (3.2)).

Proof of Proposition 3.2. For each u ∈ U , the inclusion Tu ⊆ T ′u implies
that

max
v∈Tu

J1(u, v) ≤ max
v′∈T ′u

J1(u, v
′). (A.11)

With Assumption 1, in a neighborhood U∗
nb of u∗ ∈ U , we have

max
v∈Tu

J1(u, v) = max
v′∈T ′u

J1(u, v
′) ∀u ∈ U∗

nb. (A.12)

Thus, u∗ defined by (3.6) is also given by (3.7).

Proof of Proposition 3.4. As above, we define the extended state

Z =
(
xT p2 x◦

)T ∈ R
2n+1, (A.13)

where x◦ is the instantaneous cost associated with the criterion of the leader
satisfying

ẋ◦(t) = L̃1(t, x, p2, u), x◦(0) = 0.
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The extended system is subject to the dynamics

Ż(t) = F̃ (t, Z, u, uTy ) =

⎛

⎝
F1(t, x, p2, u)

(F21(t, x, p2, u) + F22(t, x, p2, u)uy)
T

L̃1(t, x, p2, u)

⎞

⎠ , (A.14)

where u = u(t, h(Z)) is a function of time t and of the projection h(Z) = x.
The end-point mapping at time tf of system (A.14) with initial state Z0

is the mapping

EZ0,tf : U −→ R
2n+1, u �−→ Zu(tf ), (A.15)

where Zu is the solution of (A.14) associated to u, starting from Z0. Here
U denotes the open set of controls u ∈ L∞([0, tf ]× R

n,Rm1) such that the
solution Zu(·) of (A.14), associated with u and starting from Z0, is well
defined on [0, tf ].

Note that, if F̃ is of class Cp, p ≥ 1, then EZ0,tf is also of class Cp.
To compute the Fréchet first derivative, we proceed as in [35,54], consider

a fixed control δu on U and note Z + δZ the trajectory associated with the
control u+ δu. An expansion to the first order of F̃ leads to

d(Z + δZ)

dt
= F̃

(
t, Z + δZ, u(t, h(Z + δZ)) + δu(t, h(Z + δZ)),

ux(t, h(Z + δZ))T + δux(t, h(Z + δZ))T
)
+ o(δZ). (A.16)

Furthermore, an expansion to the first order of the control u gives

u(t, h(Z + δZ)) = u(t, h(Z) + hZ(Z)δZ + o(δZ))

= u(t, h(Z)) + ux(t, h(Z))hZ(Z)δZ + o(δZ).

Therefore, at the first order,

d(δZ)

dt
= F̃ZδZ + F̃uuxhZδZ + F̃uδu+ F̃ux

uxxhZδZ + F̃ux
δuTx

=
(
F̃Z + F̃uuxhZ + F̃ux

uxxhZ

)

︸ ︷︷ ︸
A

δZ + F̃u︸︷︷︸
B

δu+ F̃ux︸︷︷︸
C

δuTx . (A.17)

Using the transition matrix M defined by Ṁ(t) = A(t)M(t) and M(0) = Id
(Id denoting the identity matrix), it follows that

dEZ0,tf (u) · δu = δZ(tf ) =M(tf )

tf∫

0

M−1(s)
(
B(s)δu(s) + C(s)δuTy (s)

)
ds.

(A.18)
If u is the control of the leader in a closed-loop min-max or min-min

Stackelberg solution, then there exists a vector ψ̃ ∈ R
2n+1, ψ̃ �= 0 such that

ψ̃ · dEZ0,tf (u)δu = 0, ∀δu ∈ U . (A.19)



416 M. JUNGERS, E. TRELAT, and H. ABOU-KANDIL

Set ψ(t) = ψ̃M(tf )M
−1(t); then

ψ̇(t) = −ψ(t)A(t) = −ψ(t)
(
F̃Z + F̃uuyhZ + F̃uy

uyyhZ

)
. (A.20)

Furthermore, relation (A.19) holds for every control δu, and thus

tf∫

0

ψ(t)
(
B(t)δu(t, x) + C(t)δuTy (t, x)

)
dt = 0. (A.21)

This relation is satisfied for all controls u functions of t and x. In particular
it is also satisfied for controls u functions of t only. For such a control,
relation (A.21) becomes

tf∫

0

ψ(t)
(
B(t)δu(t)

)
dt = 0.

This implies that almost everywhere on [0, tf ], ψ(t)B(t) = 0. Then (A.21)
leads to

tf∫

0

ψ(t)
(
C(t)δuTy (t, x)

)
dt = 0.

Hence, almost everywhere on [0, tf ], we have ψ(t)C(t) = 0.

Let H(t, Z, u, uy) = ψ(t) F̃ (t, Z, u, uy) be the Hamiltonian associated
with this optimization problem. The last equations can be rewritten al-
most everywhere on [0, tf ] as:

Ż(t) = F̃
(
t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t)))

)

=
∂H

∂ψ

(
t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t)))

)
,

ψ̇(t) = −ψ(t)
(
F̃Z

(
t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t)))

)

+ F̃u

(
t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t)))

)
uy(t, h(Z(t)))hZ(Z(t))

+ F̃uy

(
t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t)))

)
uyy(t, h(Z(t)))hZ(Z(t))

)

= −dH

dZ

(
t, Z(t), u(t, h(Z(t))), uy(t, h(Z(t)))

)
,

∂H

∂u
= ψ(t)B(t) = 0,

∂H

∂uy
= ψ(t)C(t) = 0.

Denoting ψ = (λ1, λ2, λ
◦), one obtains the necessary conditions (3.16)–

(3.20) given by Proposition 3.4 for a closed-loop min-max or min-min Stack-
elberg strategy. Finally, some part of the initial and final values of the
extended state Z, defined by (A.13) are imposed by the transversality
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condition for the follower optimization problem (3.4) and by the initial
state x(0) = x0. We can formalize these conditions by defining two sets M0

and M1 (
x(0)
pT2 (0)

)
=

(
x0

pT2 (0)

)
∈M0,

(
x(tf )
pT2 (tf )

)
=

(
x(tf )

∂g2
∂x

(h(Z(tf )))

)

∈M1,

(A.22)

where

M0 = {x0} × R
n =

{(
x
pT2

) ∣∣
∣
∣
∣
F0

(
x
pT2

)
= x− x0 = 0

}

, (A.23)

M1 =

{(
x
pT2

) ∣∣
∣
∣
∣
F1

(
x
pT2

)
=
∂g2
∂x

(h(Z(tf )))− p2 = 0

}

. (A.24)

The tangent manifolds TZ(0)M0 and TZ(tf )M1 are defined by

TZ(0)M0 =

{

(0, α) ∈ R
2n

∣
∣
∣
∣
∣
α ∈ R

n

}

, (A.25)

TZ(tf )M1 =

{(
β, β

∂2g2
∂x2

) ∣∣
∣
∣
∣
β ∈ R

n

}

. (A.26)

The transversality conditions can be written as (see [6] or [54, p. 104])

λ(0) ⊥ TZ0
M0, λ(tf )− λ◦

∂g1
∂Z

(h(Z(tf ))) ⊥ TZ(tf )M1, (A.27)

and lead to Eqs. (3.21).

Proof of Proposition 3.5. The proof goes by contradiction. The term
λT2 F22 in (3.17) is the product of a column vector (λT2 ) and a row vector

F22 = p2
∂f

∂u
+
∂L2

∂u
, since λ2 is a line costate vector. The triviality of this

term induces that all components of λ2 or all components of F22 are trivial
(or both).

Assume that λ2 �≡ 0, then

F22 = p2
∂f

∂u
+
∂L2

∂u
≡ 0.

If, furthermore,
∂F22

∂u
=

∂

∂u

(
p2
∂f

∂u
+
∂L2

∂u

)

is invertible, then the implicit-function theorem applied to the function F22

with respect to the variable u permits to write locally along the trajectory
the control u = u(t, x, p2).
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The system in (x, p2) is rewritten as

{
ẋ(t) = F1(t, x, p2, u(t, x, p2)),

ṗ2(t) = F21(t, x, p2, u(t, x, p2)),
(A.28)

since F22 = 0.
Since the dynamics and the criterion do not depend on uy, we can deduce

that any control uy is extremal for the optimization problem. But the
relation (3.16) is a constraint on uy. Relation (3.23) follows.

Proof of Lemma 3.1. The proof uses the controllability Hautus test.
The pair (A,B) satisfies the Kalman condition if and only if the matrix[
A− αI B

]
is of full rank, for every α ∈ C. The proof consists in

showing that all row vectors (zT1 , z
T
2 , z

T
3 ) satisfy

(
zT1 zT2 zT3

) [
A− αI B

]
= 0, (A.29)

are trivial. Developing Eq. (A.29), we have

−zT1 Q1 = zT2 (A− αIn), (A.30)

−zT1 Q2 = zT3 (A− αIn), (A.31)

zT1 (A
T − αIn) = zT2 (S1 +B2R

−1
12 B

T
2 ), (A.32)

zT2 B2 = zT3 B2R
−1
22 R12, (A.33)

zT2 B1R
−1
11 R21 = zT3 B1. (A.34)

Multiplying Eq. (A.30) by z1 and Eq. (A.32) by z2, we obtain

−zT1 Q1z1 = zT2 (A− αIn)z1 = zT2
(
S1 +B2R

−1
12 B

T
2

)
z2. (A.35)

The first term is nonpositive (Q1 ≥ 0) and the last term is nonnegative,
hence both are zero. It follows that zT1 Q1 = 0, zT2 B1 = 0 and zT2 B2 = 0.
Substituting these relations into (A.30) and (A.34) one gets

zT1 (A
T − αIn) = 0, zT1 Q1 = 0, (A.36)

zT2 (A− αIn) = 0, zT2 B2 = 0, zT2 B1 = 0, (A.37)

zT3 (A− αIn) = 0, zT3 B2 = 0, zT3 B1 = 0. (A.38)

Relations (A.36) correspond to the observability Hautus test of the pair
(Q1, A), the relations (A.37) and (A.38) to the controllability Hautus test
of the pair (A,B1) or (A,B2). The assumptions of controllability and ob-
servability lead to z1, z2 and z3 trivial.
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Proof of Proposition 3.7. With the condition

p2B1 + uTR21 ≡ 0, (A.39)

the term
∂u

∂x
does not appear anymore in the necessary conditions (3.45)–

(3.48). Derivating with respect to time the relation (A.39) does not induce

necessary conditions for
∂u

∂x
.

However assuming that R21 is invertible, the control u admits two rep-
resentations

u(t, x(t)) = −R−1
11 B

T
1 λ

T
1 (t) = −R−1

21 B
T
1 p

T
2 (t). (A.40)

From this relation and from (3.48), necessary conditions about x(tf ) are
developed by successive derivations with respect to time,

{
λ1(t)B2 − p2(t)B2R

−1
22 R12 = 0,

λ1(t)B1R
−1
11 R21 − p2(t)B1 = 0.

(A.41)

These two relations can be rewritten for every t ∈ [0, tf ] as follows:
(
x(t) λ1(t) p2(t)

)
B = 0. (A.42)

Substituting (A.39) into the dynamics of x, λ1 and p2, we obtain the
autonomous differential system

d

dt

(
xT (t) λ1(t) p2(t)

)
=
(
xT (t) λ1(t) p2(t)

)
A (A.43)

The k-order derivation of (A.42) with respect to time, at time t = tf ,
gives

[
xT (tf ) xT (tf )K1f xT (tf )K2f

]
AkB = 0 ∀k ∈ N. (A.44)

The assumptions of Lemma 3.1 are verified. This leads to the control-
lability of the pair (A,B), which implies that x(tf ) = 0. Furthermore
the autonomous linear system in x, λ1 and p2 with end value conditions
x(tf ) = λT1 (tf ) = pT2 (tf ) = 0 imposes, by a backward integration of (A.43)

x(t) ≡ λT1 (t) ≡ pT2 (t) ≡ 0 ∀t ∈ [0, tf ]. (A.45)

The unique optimal trajectory in this case is the trivial one.

Proof of Lemma 3.2. Similarly as in the classic linear-quadratic problem,
we seek a solution in the form λT1 (t) = K1(t)x(t). Then, the matrix K1(t) ∈
R

n×n must satisfy

K̇1(t)x(t) +K1(t)
(
Ax(t)−

(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K1(t)x(t)

)

= −ATK1(t)x(t)−Q1x(t). (A.46)
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This relation should hold for every x, which leads to define K1(t) as the
solution of the following Riccati differential equation

⎧
⎪⎨

⎪⎩

K̇1(t) = −K1(t)A−ATK1(t)−Q1

+K1(t)
(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K1(t),

K1(tf ) = K1f .

(A.47)

The existence of a solution of the optimization problem is ensured in a
standard way “a la Riccati” and by the uniqueness of an optimal trajectory.
This is justified a posteriori in the following by using the theory of focal
times.

Substituting λT1 (t) = K1(t)x(t) into (3.42) and (A.40), the state x(t) has
the dynamical constraint
{
ẋ(t) =

(
A−

(
B1R

−1
11 B

T
1 +B2R

−1
12 B

T
2

)
K1(t)

)
x(t) = Ãx(t),

x(0) = x0.
(A.48)

Let M(t) be the transition matrix associated with (A.48). Then x(t) =
M(t)x0. Then the constraint (3.50) becomes

(
BT

2 K1f −R12R
−1
22 B

T
2 K2f

)
M(tf )x0 = 0. (A.49)

This is a m2-codimension (at most) condition on the initial states x0.

Proof of Lemma 4.1. From Eq. (4.1), one gets

x(t) = etAx0 −
t∫

0

e(t−s)A
(
B2R

−1
22 ξ(s)−B1u(s)

)
ds.

There exist scalar constants Ck ≥ 0 such that for a given tf > 0, for every
t ∈ [0, tf ]

‖x(t)‖ ≤ C1‖x0‖

+ C2

√
tf

⎡

⎢
⎣

⎛

⎝
tf∫

0

‖ξ(s)‖2ds

⎞

⎠

1/2

+

⎛

⎝
tf∫

0

‖u(s)‖2ds

⎞

⎠

1/2
⎤

⎥
⎦ . (A.50)

Hence
∥
∥
∥
∥
∥
∥

tf∫

0

xT (s)Q1x(s)ds

∥
∥
∥
∥
∥
∥
≤ C3t

2
f

⎛

⎝
tf∫

0

‖ξ(s)‖2ds+
tf∫

0

‖u(s)‖2ds

⎞

⎠

+ C4‖x0‖2 + C5tf + C5t
2
f

tf∫

0

‖ξ(s)‖2ds+ C5t
2
f

tf∫

0

‖u(s)‖2ds. (A.51)
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In addition, assuming R11 > 0 and R−1
22 R12R

−1
22 > 0,

∥
∥
∥
∥
∥
∥

tf∫

0

uT (s)R11u(s)ds

∥
∥
∥
∥
∥
∥
≥ C6

tf∫

0

‖u(s)‖2ds, (A.52)

∥
∥
∥
∥
∥
∥

tf∫

0

ξT (s)R−1
22 R12R

−1
22 ξ(s)ds

∥
∥
∥
∥
∥
∥
≥ C6

tf∫

0

‖ξ(s)‖2ds. (A.53)

Using these inequalities and (4.2), we can compute a lower bound of the

criterion Ĵ1(u, ξ)

2Ĵ1(u, ξ) ≥
(
C6 − (C3 + C5) t

2
f

)
⎡

⎣
tf∫

0

‖u‖2ds+
tf∫

0

‖ξ‖2ds

⎤

⎦

+ xT (tf )K1fx(tf )− C4‖x0‖2 − C5tf . (A.54)

For sufficiently small tf > 0,

tf ≤
√

C6

C3 + C5
,

the criterion Ĵ1(u, ξ) is finite, then 0 < tf < tc.
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