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NORMAL FORMS AND REACHABLE SETS

FOR ANALYTIC MARTINET

SUB-LORENTZIAN STRUCTURES

OF HAMILTONIAN TYPE

M. GROCHOWSKI

Abstract. In this paper, we construct normal forms for sub-

Lorentzian structures (H, g), where H is an analytic Martinet-type
distribution on R

3 and g is an analytic Lorentzian metric on H, under
the assumption that abnormal curves foliating the Martinet surface
for H are timelike Hamiltonian geodesics. As an application, we com-
pute reachable sets from a point for such structures. It turns out that
such sets are described by four analytic functions and, consequently,
they are semi-analytic. We also compute future null conjugate and
cut loci, and the image under the exponential mapping for above-
mentioned structures.

1. Introduction

1.1. Statement of main results. In this paper, we investigate reachable
sets from a point for a class of sub-Lorentzian metrics on R

3. In order
to state our results, we introduce basic facts and notions from the sub-
Lorentzian geometry. For more details, the reader is referred to [5,8]. By a
sub-Lorentzian structure (or a metric) on a manifold M we mean a couple
(H, g), where H is a smooth bracket generating distribution of constant
rank on M and g is a Lorentzian metric on H. For q ∈M , a vector v ∈ Hq

is said to be timelike if g(v, v) < 0, nonspacelike if g(v, v) ≤ 0, and null
if g(v, v) = 0 but v �= 0. A time orientation of (H, g) is, by definition, a
continuous timelike vector field on M . Assume that (H, g) is time-oriented
by a vector field X. A nonspacelike vector v ∈ Hq is called future directed if
g(v,X(q)) < 0. In what follows, we assume that (M,H, g) is time-oriented.
As in our previous papers, the following abbreviations are used: t. means
“timelike,” nspc. means “nonspacelike,” and f.d. means “future directed.”
So, for example, t.f.d. means “timelike future directed.”
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By a curve we mean an absolutely continuous curve γ : [a, b]→ M such
that γ̇(t) ∈ Hγ(t) a.e. on [a, b]. A curve γ defined on an interval [a, b] is
said to be t.f.d. (respectively, nspc.f.d., null f.d.) if so is its tangent vector
γ̇(t) a.e. on [a, b]. Fix a point q0 ∈ M and a neighborhood U of it. By
I+(q0, U) (respectively, J+(q0, U), N+(q0, U)) we denote the set of all points
q ∈ U which can be reached by a t.f.d. (respectively, nspc.f.d., null f.d.)
curve starting at q0 and contained in U . I+(q0, U) (respectively, J+(q0, U),
N+(q0, U)) is called the (future) timelike (respectively, nonspacelike, null)
reachable set from q0 relative to U . In order to use some results concerning
reachable sets, we must make certain assumptions about a neighborhood U
of q0. Note that if U is sufficiently small, then our sub-Lorentzian metric
can be extended to a Lorentzian metric, say g̃, on U . So U is said to be a
normal neighborhood of q0 if it is a convex normal neighborhood of q0 with
respect to g̃, and U is contained in some other convex normal neighborhood
of q0 with respect to g̃ (see Sec. 5.2 for an alternative definition of normal
neighborhoods). For example, it can be proved (see [8]) that if U is a normal
neighborhood of q0, then J+(q0, U) is closed with respect to U . Also,

int I+(q0, U) = int J+(q0, U) = intN+(q0, U)

and

∂̃I+(q0, U) = ∂̃J+(q0, U) = ∂̃N+(q0, U),

where ∂̃ is the boundary with respect to U .
In determining reachable sets from q0 it is important to know nspc.f.d.

curves starting at q0 and contained in the boundary of reachable sets. Such
curves are called geometrically optimal.

Let U be an open subset of M . Assume that X0, . . . , Xk is an orthonor-
mal basis of (H, g) defined on U and such that X0 is timelike. On T ∗U , we
define the so-called geodesic Hamiltonian H : T ∗U → R associated with the
structure (H, g):

H(q, p) = −1

2
〈p,X0(q)〉2 +

1

2

k∑

j=1

〈p,Xj(q)〉2

(note that H also admits a global definition, which is independent of a local

orthonormal frame; see [8]). Denote by
−→H the Hamiltonian vector field on

T ∗U corresponding to the Hamiltonian H, and let Φt stand for the (local)

flow of
−→H . A curve γ : [0, T ] → M is called a Hamiltonian geodesic if it

has the form γ(t) = π ◦ Φt(λ), where λ ∈ T ∗
γ(0)M and π : T ∗M → M is

the canonical projection. It can be proved (see [5, 8]) that each sufficiently
short sub-arc of a nspc.f.d. Hamiltonian geodesic is a length maximizer.

In [9], we showed how to compute reachable sets from a point for contact
sub-Lorentzian structures on R

3. In this paper, we generalize this method to
a class of noncontact distributions. Let H be a rank-two bracket generating
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distribution defined in a neighborhood U of zero in R
3. For sufficiently

small U , H = kerω, ω is a 1-form on U . Clearly, ω ∧ dω = fΩ, where
f ∈ C∞(U) and Ω is a volume form. If f(0) �= 0, then H is a contact
distribution. On the other hand, assume that f(0) = 0 but d0f �= 0. Let
S = {f = 0}. For a generic point q ∈ S, we have (ω ∧ df)q �= 0. A

distribution H satisfying the condition (ω ∧ df)q �= 0 for every q ∈ S is

called a Martinet-type distribution (or simply a Martinet distribution), and
the surface S is called the Martinet surface for H. In what follows, we
assume that H is a Martinet distribution. By the definition, H induces
a nonsingular horizontal line field on S: S 
 q → TqS ∩ Hq. We assume
that this field is timelike. Curves on S that are trajectories of this line
field are abnormal curves for H; suitably parameterized, they become t.f.d.
Using Proposition 5.2, one can prove that these curves are in fact length
maximizers. They are also geometrically optimal.

Sub-Lorentzian structures (H, g), where H is a Martinet distribution
and the mentioned line field is timelike, are called Martinet sub-Lorenztian
structures. In this paper, we consider Martinet sub-Lorentzian structures
satisfying one additional condition: abnormal curves foliating S are, up to
a change of parameter, t.f.d. Hamiltonian geodesics. Such structures are
referred to as Martinet sub-Lorentzian structures of Hamiltonian type.

In [3], the authors computed normal forms for contact sub-Riemannian
structures on R

3. By adapting their reasoning to the sub-Lorentzian case,
normal forms for contact sub-Lorentzian structures on R

3 were found in [6].
Similar considerations in the Martinet case lead to the following theorem.

Theorem 1.1. Assume that (H, g) is an analytic, time-oriented, Mar-
tinet sub-Lorentzian structure defined in a neighborhood U of the zero in
R

3. Assume that (H, g) is of Hamiltonian type. Then, possibly after shrink-
ing U , there are coordinates x, y, z defined on U in which (H, g) admits an
orthonormal frame in the following normal form:

X =
∂

∂x
+ yϕ

(
y
∂

∂x
+ x

∂

∂y

)
+

1

2
y2(1 + ψ)

∂

∂z
,

Y =
∂

∂y
− xϕ

(
y
∂

∂x
+ x

∂

∂y

)
− 1

2
xy(1 + ψ)

∂

∂z

(1.1)

with a time orientation X, where ϕ and ψ are analytic functions on U ,
ψ(0, 0, z) = 0, and the Martinet surface S for H is given by S = {y = 0}.

Using these normal forms, one can investigate the structure of reachable
sets from the origin.

Theorem 1.2. Let (H, g) be an analytic, time-oriented, sub-Lorentzian
structure given by an orthonormal frame in the normal form (1.1), de-
fined on a neighborhood U of the zero. Assume that U is a sufficiently



52 M. GROCHOWSKI

small normal neighborhood of the origin. Then there exist analytic func-
tions η1, . . . , η4 on U and a 2-dimensional semi-analytic set Σ such that
U ∩ {x ≥ 0} \ Σ has two connected components, say Σ+ and Σ−, and

J+(0, U) = A1 ∪A2 ∪A3 ∪A4,

I+(0, U) = int (A1 ∪A2 ∪A3 ∪A4) ∪A5,

N+(0, U) = int (A1 ∪A2 ∪A3 ∪A4) ∪ ∂̃ (A1 ∪A2) \A5,

where

A1 = {(x, y, z) ∈ U : η1(x, y, z) ≤ 0} ∩ Σ+ ∩ {z ≥ 0},
A2 = {(x, y, z) ∈ U : η2(x, y, z) ≤ 0} ∩ Σ− ∩ {z ≥ 0},
A3 = {(x, y, z) ∈ U : η3(x, y, z) ≤ 0} ∩ {y ≥ 0, x ≥ 0} ∩ {z ≤ 0},
A4 = {(x, y, z) ∈ U : η4(x, y, z) ≤ 0} ∩ {y ≤ 0, x ≥ 0} ∩ {z ≤ 0},
A5 = {(0, 0, x) : x > 0} ;

A5 is the set of points of the abnormal t.f.d. geodesic starting at 0. In par-
ticular, the three sets I+(0, U), J+(0, U), and N+(0, U) are semi-analytic.

1.2. Structure of the paper. In Sec. 2, reachable sets for the flat Mar-
tinet sub-Lorentzian structure are computed (see Proposition 2.1).

In Sec. 3, we prove the main results of the paper, Theorems 1.1 and 1.2.
Section 4 presents some corollaries of Theorems 1.1 and 1.2. In Sec. 4.1,

the future null conjugate locus is computed. Then we draw attention to
an interesting feature of the future conjugate locus of a point belonging to
the Martinet surface: it contains unique maximizing geodesics (null and
timelike) starting at this point. The future null cut locus for a Martinet
sub-Lorentzian structure of Hamiltonian type is computed in Sec. 4.2. In
Sec. 4.3, we examine the image under the exponential mapping and conti-
nuity of the sub-Lorentzian distance function. Finally, in Sec. 4.4, we show
how to apply our results to computing reachable sets from a point for control
affine systems with a scalar input u, and with constraints |u| ≤ δ.

Section 5.1 presents two other normal forms for Martinet sub-Lorentzian
structures; by the way we prove Proposition 5.2 asserting that the abnormal
curve initiating at a point q is geometrically optimal, i.e., it is contained in
the boundary of the reachable set from q. In Sec. 5.2, we give a constructive
definition of normal neighborhoods.

2. Reachable sets in the Martinet flat case

In this section, we compute reachable sets in the so-called Martinet flat
case. To be more precise, let

X̂ =
∂

∂x
+

1

2
y2

∂

∂z
, Ŷ =

∂

∂y
− 1

2
xy

∂

∂z
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be two vector fields on R
3. Consider the sub-Lorentzian structure (Ĥ, ĝ),

where Ĥ = Span{X̂, Ŷ }. Let X̂, Ŷ be an orthonormal basis for ĝ with

a time orientation X̂. The Martinet surface for Ĥ is S = {y = 0}. S
is foliated by t.f.d. abnormal curves t → (t, 0, z). It can be easily proved
that in the case under consideration all abnormal curves are Hamiltonian
geodesics. Using [8, Theorems 3.1 and 3.2], we see that a curve t→ (t, 0, z),
which is a t.f.d. Hamiltonian geodesic, is contained in the boundary of the
reachable set. The sub-Lorentzian structure (Ĥ, ĝ) is referred to as the flat
Martinet sub-Lorentzian structure. This case is very important because, as
we shall soon see, the flat case gives an approximation to the general case
considered in the next section.

Our aim is to prove Proposition 2.1 below. By Ĵ+(0, U), Î+(0, U), and

N̂+(0, U) we denote the corresponding reachable sets from the origin for

(Ĥ, ĝ). We also use the following notation:

Ĵ+(0) = Ĵ+(0,R3), Î+(0) = Î+(0,R3), N̂+(0) = N̂+(0,R3).

Proposition 2.1. Reachable sets from zero for the flat Martinet sub-
Lorentzian structure have the form

Ĵ+(0) = Â1 ∪ Â2 ∪ Â3 ∪ Â4, (2.1)

Î+(0) = int
(
Â1 ∪ Â2 ∪ Â3 ∪ Â4

)
∪A5, (2.2)

N̂+(0) = int
(
Â1 ∪ Â2 ∪ Â3 ∪ Â4

)
∪ ∂̃

(
Â1 ∪ Â2

)
\A5, (2.3)

where

Â1 =

{
(x, y, z) : z − 1

16
(x2 − y2)(x+ 3y) ≤ 0, x ≥ 0, y ≥ 0, z ≥ 0

}
,

Â2 =

{
(x, y, z) : z − 1

16
(x2 − y2)(x− 3y) ≤ 0, x ≥ 0, y ≤ 0, z ≥ 0

}
,

Â3 =

{
(x, y, z) : −z − 1

4
(xy2 − y3) ≤ 0, x ≥ 0, y ≥ 0, z ≤ 0

}
,

Â4 =

{
(x, y, z) : −z − 1

4
(xy2 + y3) ≤ 0, x ≥ 0, y ≤ 0, z ≤ 0

}
,

A5 = {(x, 0, 0) : x > 0} .
Moreover, if U is a normal neighborhood of 0, then

Î+(0, U) = Î+(0) ∩ U, J+(0, U) = Ĵ+(0) ∩ U,
N̂+(0, U) = N̂+(0) ∩ U.

(2.4)

Before starting the proof, we recall a definition of one more notion that
will be used throughout the paper. Let (M,H, g) be a sub-Lorentzian man-
ifold. Let U ⊂ M be an open subset and f ∈ C∞(U). By the horizontal
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gradient of the function f we mean the vector field ∇Hf defined by the
condition

dqf(v) = g(v,∇Hf(q))

for every‘ q ∈ U and v ∈ Hq. If X0, . . . , Xk is an orthonormal basis for
(H, g) defined on U with a time orientation X0, then

∇Hf = −X0(f)X0 +X1(f)X1 + · · ·+Xk(f)Xk.

Clearly, if, for example, γ : [a, b]→ U is a t.f.d. curve and ∇Hf is null f.d.,
then the function t→ f(γ(t)) is decreasing.

Proof. In order to prove Proposition 2.1, we first note that, due to the
behavior of the fields X̂ and Ŷ on {y = ±x}, the two inclusions

Ĵ+(0) ⊂ {|y| ≤ x, x ≥ 0} , Î+(0) ⊂ {|y| < x, x > 0} (2.5)

hold. It is also clear that

Ĵ+(0) ∩ {z = 0} = {|y| ≤ x, x ≥ 0} ∩ {z = 0} (2.6)

since the half-lines {(x, ax, 0) : x ≥ 0} are t.f.d. Hamiltonian geodesics for
|a| < 1 and null f.d. Hamiltonian geodesics for |a| = 1.

Let us define two hypersurfaces

Γ1 = {(x, x, z) : x, z ∈ R} , (2.7)

Γ2 = {(x,−x, z) : x, z ∈ R} . (2.8)

We will construct four analytic functions η̂1, . . . , η̂4, where η̂1 is the solution
of the Cauchy problem

(X̂ − Ŷ )(η) = 0, η|Γ1
(x, x, z) = z,

η̂2 is the solution of the Cauchy problem

(X̂ + Ŷ )(η) = 0, η|Γ2
(x,−x, z) = z,

η̂3 is the solution of the Cauchy problem

(X̂ + Ŷ )(η) = 0, η|S(x, 0, z) = −z,
and η̂4 is the solution to the Cauchy problem

(X̂ − Ŷ )(η) = 0, η|S(x, 0, z) = −z.
After easy computations we obtain

η̂1(x, y, z) = z − 1

16
(x2 − y2)(x+ 3y),

η̂2(x, y, z) = z − 1

16
(x2 − y2)(x− 3y),

η̂3(x, y, z) = −z − 1

4
(xy2 − y3),

η̂4(x, y, z) = −z − 1

4
(xy2 + y3)
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(they are the functions appearing in the hypothesis of Proposition 2.1).
Moreover,

∇Ĥ η̂1(x, y, z) =
3

16
(x− y)(x+ 3y)(X − Y ),

∇Ĥ η̂2(x, y, z) =
3

16
(x+ y)(x− 3y)(X + Y ),

∇Ĥ η̂3(x, y, z) =
3

4
y2(X + Y ),

∇Ĥ η̂4(x, y, z) =
3

4
y2(X − Y ).

(2.9)

Thus, we see that ∇Ĥ η̂1 is null f.d. on
{− 1

3x < y < x, x > 0
}

, ∇Ĥ η̂2 is

null f.d. on
{−x < y < 1

3x, x > 0
}

, while ∇Ĥ η̂3 and ∇Ĥ η̂4 are null f.d. on
{y �= 0, x > 0}.

Now take a nspc.f.d. curve γ : [0, T ] → R
3, γ(0) = 0. In view of (2.5),

to prove that Ĵ+(0) is contained in the right-hand side of (2.1), it suffices
to note that the function t→ η̂1(γ(t)) is nonincreasing on every connected
component of

{t ∈ [0, T ] : γ(t) ∈ {0 ≤ y ≤ x, x ≥ 0}} ,
the function t → η̂2(γ(t)) is nonincreasing on every connected component
of

{t ∈ [0, T ] : γ(t) ∈ {−x ≤ y ≤ 0, x ≥ 0}} ,
the function t → η̂3(γ(t)) is nonincreasing on every connected component
of

{t ∈ [0, T ] : γ(t) ∈ {0 ≤ y ≤ x, x ≥ 0}} ,
and, finally, the function t → η̂4(γ(t)) is nonincreasing on every connected
component of

{t ∈ [0, T ] : γ(t) ∈ {−x ≤ y ≤ 0, x ≥ 0}} .
In order to prove the inverse inclusion in (2.1), first let us state a lemma

which easily follows from properties of Lorentzian metrics.

Lemma 2.1 (cf. [8]). Let U be an open subset of a sub-Lorentzian mani-
fold (M,H, g). Assume that f : U → R is a smooth function such that ∇Hf
is everywhere null f.d. Then every level surface {f = const} is invariant
with respect to ∇Hf . Moreover, for every q ∈ {f = const}, the tangent
space Tq{f = const} contains the unique nonspacelike direction, namely the
nonspacelike direction of ∇Hf(q). It also follows that trajectories of ∇Hf
are geometrically optimal and are unique (up to a change of parameter)
maximizing U -geodesics.

Take a point q = (x0, y0, z0) belonging to the right-hand side of (2.1). If
z0 = 0, then, by (2.6), there is nothing to do, so assume that z0 �= 0. To

proceed further, let us note that, by Lemma 2.1, the set ∂̃Â1∩{y > 0, z > 0}
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is formed by null f.d. curves starting at {y = x, x ≥ 0, z = 0}; they are
reparametrizations of trajectories of the horizontal gradient ∇Ĥ η̂1. Similar

reasonings show that ∂̃Â2 ∩ {y < 0, z > 0} is formed by null f.d. curves
that start at {y = −x, x ≥ 0, z = 0} and that are reparametrizations of

trajectories of ∇Ĥ η̂2. Also ∂̃Â3 ∩ {y > 0, z < 0} (respectively, ∂̃Â4 ∩ {y <
0, z < 0}) is made up of null f.d. curves starting at {y = z = 0, x ≥ 0} which
are reparametrizations of trajectories of ∇Ĥ η̂3 (respectively, ∇Ĥ η̂4). Now,

if q ∈ ∂̃
(
Â1 ∪ Â2 ∪ Â3 ∪ Â4

)
, then, by the above argument, q ∈ Ĵ+(0).

On the other hand, if q ∈ int
(
Â1 ∪ Â2 ∪ Â3 ∪ Â4

)
, let σ̇(t) = −X̂(σ(t)),

σ(0) = q0; σ is timelike past directed. Clearly,

q ∈ int
(
Â1 ∪ Â2 ∪ Â3 ∪ Â4

)
∩ Âi

for suitable i. Obviously, η̂i(q) < 0 and the function t→ η̂i(σ(t)) increases.

It follows that σ intersects first either {z = 0} or ∂̃
(
Â1 ∪ · · · ∪ Â4

)
(the y-

coordinate of σ(t) remains constant during the whole motion), in both cases

leading us, again by the above argument, to conclusion that q ∈ Ĵ+(0) which
proves (2.1).

Next let us recall that int Î+(0) = int Ĵ+(0) and ∂̃Î+(0) = ∂̃Ĵ+(0) (see

[8]). Thus, to obtain Î+(0), it suffices to take Ĵ+(0) and remove from it all
geometrically optimal curves which are not t.f.d. Using (2.1), Lemma 2.1,
and the above remark, we can see that the abnormal curve t → (t, 0, 0)
is the only t.f.d. geometrically optimal curve starting at 0. Thus, (2.2) is
proved.

Now (2.3) is easily proved. Finally, to obtain (2.4), we use the same
argument as in [7]. The proof of Proposition 2.1 is complete.

3. Reachable sets in the general Hamiltonian Martinet case

3.1. Normal forms. Assume that (H, g) is an analytic Martinet sub-
Lorentzian structure of Hamiltonian type defined in a neighborhood U of
the zero in R

3. Denote by S the Martinet surface for H. In this section, we
prove Theorem 1.1. During the proof, we will assume that U is as small as
is needed for our purposes. Let Γ be a curve which is contained in S, passes
through the origin and is transverse to H.

Lemma 3.1. There are coordinates x̃, ỹ, z̃ on U with the following prop-
erties :

1. S = {ỹ = 0}, Γ = {x̃ = ỹ = 0};
2. H|S = ker dz̃;
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3.
∂

∂x̃ |S
and

∂

∂ỹ |S
form an orthonormal basis for H|S with a time orien-

tation
∂

∂x̃ |S
.

Proof. Assume that γ = γ(z̃) is a parametrization of a curve Γ, γ(0) = 0.
Let X,Y be an orthonormal frame for (H, g) defined on U , such that X is
a time orientation and X |S is tangent to S. If gt (respectively, ht) is the
flow of X (respectively, Y ), then our coordinates are given by the mapping
(x̃, ỹ, z̃)→ hỹgx̃γ(z̃).

Denote by H the geodesic Hamiltonian for our structure. If p̃, q̃, r̃ are
dual coordinates to x̃, ỹ, z̃, then

H|T∗
SR3 = −1

2
p̃2 +

1

2
q̃2,

where

T ∗
SR

3 =
⋃

q∈S

T ∗
q R

3.

It follows that

H(x̃, ỹ, z̃, p̃, q̃, r̃) = −1

2
p̃2 +

1

2
q̃2 + ỹG1(x̃, ỹ, z̃, p̃, q̃, r̃)

for an analytic function G1. Using the assumption that the curves
t→ (t, 0, z0) are Hamiltonian geodesics, one in fact has

H(x̃, ỹ, z̃, p̃, q̃, r̃) = −1

2
p̃2 +

1

2
q̃2 + ỹ2G(x̃, ỹ, z̃, p̃, q̃, r̃) (3.1)

with an analytic function G. Let

AΓ = {(0, 0, z̃, p̃, q̃, 0) : z̃ ∈ (−ε, ε)} ⊂ T ∗
R

3,

ε > 0 is sufficiently small. Note that the set AΓ is simply the set of initial
conditions for Hamiltonian geodesics satisfying the transversality condition
of the Pontryagin maximum principle with respect to Γ. Define the mapping
μ : AΓ →M by the formula

μ(z̃, p̃, q̃) = π ◦ Φ1(0, 0, z̃, p̃, q̃, 0)

(recall that Φt is the flow of
−→H). One easily proves that if N is a suffi-

ciently small neighborhood of the set {(0, 0, z̃, 0, 0, 0) : z̃ ∈ (−ε, ε)} in AΓ,
then μ|N is a diffeomorphism onto its image. Thus we can assume that
U = μ(N). By the way we have proved that every t.f.d. Hamilton-
ian geodesic t→ π ◦ Φt(0, 0, z̃, p̃, q̃, 0), with (0, 0, z̃, p̃, q̃, 0) ∈ N , is length-
maximizing between Γ and its endpoint. The coordinates defined by the
composition

R
3 α←− R

3 (z̃,−p̃,q̃)←−−−−− N μ−1

←−− U,
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α(a, b, c) = (b, c, a), are called normal coordinates and are denoted by x, y, z.
To be precise, a point q has normal coordinates x, y, z if and only if q =
π ◦ Φ1(0, 0, z,−x, y, 0). Using (3.1) together with our assumption that the
abnormal curves are t.f.d. Hamiltonian geodesics, it is clear that S = {y =

0}. Moreover, X|S =
∂

∂x
and

∂

∂x |Γ
and

∂

∂y |Γ
form an orthonormal frame

for H|Γ.
Next, we proceed exactly as in [6] finally obtaining an orthonormal frame

X =
∂

∂x
− yB

(
y
∂

∂x
+ x

∂

∂y

)
− yA ∂

∂z
,

Y =
∂

∂y
+ xB

(
y
∂

∂x
+ x

∂

∂y

)
+ xA

∂

∂z

(3.2)

with a time orientation X, where A and B are analytic on U .
By the definition of a Martinet-type distribution, [X,Y ] (q) ∈ Hq for

every point q ∈ S. An easy computation yields

[X,Y ]|S = x

(
3B + x

∂B

∂x
+ x2B2

)
∂

∂y
+

(
2A+ x

∂A

∂x
+ x2BA

)
∂

∂z
; (3.3)

all quantities in the right-hand side of (3.3) should be taken at (x, 0, z).
Thus, there exists an analytic function r = r(x, z) such that

⎧
⎪⎪⎨

⎪⎪⎩

x

(
3B + x

∂B

∂x
+ x2B2

)
= r(1 + x2B),

2A+ x
∂A

∂x
+ x2BA = rxA

(3.4)

(again all quantities in (3.4) are to be taken at (x, 0, z)). We solve the first
equation in (3.4) with respect to r and substitute the result into the second
equation in (3.4). After simplifying we obtain

2A+ x
∂A

∂x
+ x3

(
∂A

∂x
B −A∂B

∂x

)
= 0, (3.5)

which implies that A(x, 0, z) vanishes identically. Indeed, assume that we
can find z such that the function x→ A(x, 0, z) does not vanish identically.
Then the Taylor formula gives

A(x, 0, z) = ak(z)xk + o(xk), x→ 0,

where ak(z) �= 0, k > 0. Substituting it into (3.5), we obtain

(k + 2)ak(z)xk = o(xk).

Therefore, ak(z) = 0; a contradiction.
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It follows that A can be replaced by yA (for some other A) in Eqs. (3.2).
As a result, we obtain an orthonormal frame in the form

X =
∂

∂x
− yB

(
y
∂

∂x
+ x

∂

∂y

)
− y2A ∂

∂z
,

Y =
∂

∂y
+ xB

(
y
∂

∂x
+ x

∂

∂y

)
+ xyA

∂

∂z
.

(3.6)

Now we will compute brackets [X,Y ], [X, [X,Y ]], and [Y, [X,Y ]]. Again,
by the definition of Martinet-type distributions, for every q ∈ S we have
[X,Y ](q) ∈ Hq and

Span{X(q), Y (q), [X, [X,Y ]](q), [Y, [X,Y ]](q)} = TqR
3. (3.7)

Our computations are carried out on S = {y = 0}, so we can ignore terms
of sufficiently high order with respect to y:

[X,Y ] =

(
3yB + xy

∂B

∂x
+ x2yB2

)
∂

∂x

+

(
3xB + x2

∂B

∂x
+ xy

∂B

∂y
+ x3B2

)
∂

∂y

+

(
3yA+ xy

∂A

∂x
+ x2yAB

)
∂

∂z
+O(y2),

[X, [X,Y ]] = 3

(
B + x

∂B

∂x
+ 3x2B2 + 2x3B

∂B

∂x

)
∂

∂y
+O(y),

[Y, [X,Y ]] = (. . . )
∂

∂x
+ (. . . )

∂

∂y

+

(
3A+ x

∂A

∂x
+ x2AB + x3

(
∂A

∂x
B −A∂B

∂x

))
∂

∂z
+O(y);

the terms in parentheses do not play any role since

H|S = Span

{
∂

∂x
,
∂

∂y

}
.

Using the last expression, we find that the fact that (3.7) holds on U is
equivalent to the inequality A(0, 0, z) �= 0 on U .

As a final step towards obtaining (1.1), we will normalize coefficients
of ∂/∂z in (3.6) by making the following change of coordinates: x → x,
y → y, z → α(z)z, where α is an analytic function, which is a solution to
the equation

α(z) + z
dα

dz
=

1

2A(0, 0, z)
.

As a result, we obtain exactly the same formulas as in (3.6) but additionally
with the condition A(0, 0, z) = 1/2 for every (0, 0, z) ∈ U . To complete the
proof of Theorem 1.1, now it suffices to set ϕ = −B and ψ = 2A− 1.
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3.2. Reachable sets. Let (H, g) be a sub-Lorentzian structure defined on
a neighborhood U of the origin in R

3. Assume that H = Span{X,Y },
where X and Y are in the normal form (1.1) and g is a Lorentzian metric
on H defined by declaring the frame X,Y to be orthonormal with a time
orientation X. In this section, we show how to compute reachable sets from
the origin for such structures. As in the previous section, we assume that U
is as small as we need. The procedure is almost the same as in the flat case
from Sec. 2. To start with, let us note that by the construction of normal
forms, (2.5) and (2.6) remain true in the general case.

Let Γ1 be defined as in (2.7) and Γ2 as in (2.8). We construct four analytic
functions η1, . . . , η4, where η1 is the solution of the Cauchy problem

(X − Y )(η) = 0, η|Γ1
(x, x, z) = z,

η2 is the solution of the Cauchy problem

(X + Y )(η) = 0, η|Γ2
(x,−x, z) = z,

η3 is the solution of the Cauchy problem

(X + Y )(η) = 0, η|S(x, 0, z) = −z,
and η4 is the solution of the Cauchy problem

(X − Y )(η) = 0, η|S(x, 0, z) = −z.
Let us write

X = X̂ +X1, Y = Ŷ + Y1, ηi = η̂i +Ri, i = 1, . . . , 4.

One can see that finding, for example, η1 is equivalent to solving the Cauchy
problem

(X − Y )(R1) = −(X1 − Y1)(η̂1), R1|Γ1
(x, x, z) = 0

from which it follows that

R1(x, y, z) = O(r4), r =
√
x2 + y2 + z2,

i.e., R1 has order (at zero) greater than η̂1. Since similar arguments are
valid for η2, η3, and η4, we conclude that every ηi can be regarded as a
perturbation of η̂i, i = 1, . . . , 4.

Now we will compute the horizontal gradient of each ηi. First, we take
η1. By the definition of η1,

∇Hη1 = −X(η1)(X − Y ).

Next,

X(η1) =
1

2
((X − Y ) + (X + Y ))(η1) =

1

2
(X + Y )(η1).

But (X + Y )|Γ1
is tangent to Γ1 and is equal to

∂

∂x
+

∂

∂y
; so, again by

the definition of η1, X(η1) is divisible by x − y. Using this fact, (2.9),
and the above remark, we obtain the first equation in (3.8) below. Similar
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considerations prove the second equality in (3.8). Further, take η3 into
considerations. Clearly,

∇Hη3 = −X(η3)(X + Y ).

Since η3|y=0 = −z, η3 = −z + yζ3 with analytic ζ3. By definition, (X +
Y )(η3) = 0. Writing this and substituting y = 0, we obtain the condition
(1 − x2β)ζ3|y=0 = 0 in a neighborhood of zero. Thus, η3 + z is divisible

by y2, and so is X(η3). In this way, we obtain the third equation in (3.8).
The fourth equation is obtained similarly. To sum up, we list just obtained
results:

∇Hη1(x, y, z) =
3

16
(x− y)(x+ 3y +O(r2))(X − Y ),

∇Hη2(x, y, z) =
3

16
(x+ y)(x− 3y +O(r2))(X + Y ),

∇Hη3(x, y, z) =
3

4
y2(1 +O(r))(X + Y ),

∇Hη4(x, y, z) =
3

4
y2(1 +O(r))(X − Y )

(3.8)

as r → 0.
Take a sufficiently small ε > 0. Using the expressions (3.8), we see that

∇Hη1 is null f.d. on
{(
−1

3
+ ε

)
x < y < x, x > 0

}
∩ U,

∇Hη2 is null f.d. on
{
−x < y <

(
1

3
− ε
)
x, x > 0

}
∩ U.

Moreover, η1 < η2, i.e., {η2 ≤ 0} ⊂ {η1 ≤ 0}, on

{εx < y < x, x > 0} ∩ U
and η2 < η1, i.e., {η1 ≤ 0} ⊂ {η2 ≤ 0}, on

{−x < y < −εx, x > 0} ∩ U.
Let

Z = {η1 = η2 = 0} ∩ {−εx < y < εx, x ≥ 0} ∩ U.
Clearly, looking at the horizontal gradients of η1 and η2, Z is a 1-dimensional
semi-analytic set (see [10] for properties of semi-analytic sets). Moreover, it
is seen that

(X − Y )(η1 − η2) = −2X(η2) > 0

on {−εx < y < εx, x > 0}. It follows that Z is formed by a single
analytic curve entering the origin. Let us set Σ = ρ−1(ρ(Z)) ∩ U , where
ρ : R3 
 (x, y, z)→ (x, y) ∈ R

2 is the projection onto the (x, y)-plane. The
set Σ is semi-analytic since ρ(Z) is semi-analytic, and ρ(Z) is semi-analytic
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since it can be considered as the image of the (semi-analytic) set Z under
ρ|{η1=0} : {η1 = 0} → R

2, which is a bi-analytic diffeomorphism (by the
implicit function theorem {η1 = 0} is of the the form {z = Φ(x, y)} with
an analytic function Φ). Now U ∩ {x ≥ 0}\Σ consists of two connected
components (which are also semi-analytic sets), say Σ+ and Σ−.

Now we define four sets A1, . . . , A4 as in the hypothesis of Theorem 1.2.
The above considerations yield that ∇Hηi is either null f.d. or equal to zero
on Ai, i = 1, . . . , 4; therefore, using the same arguments as in Sec. 2, one
proves that

J+(0, U) ⊂ A1 ∪ · · · ∪A4.

To prove the inverse inclusion, we note that, similarly as in the flat
case, the boundary ∂̃(A1 ∪ · · · ∪ A4) consists of nspc.f.d. curves start-

ing at the origin. Indeed, ∂̃A1 ∩ Σ+ ∩ {z > 0} is formed by null f.d.
curves starting at {y = x, x ≥ 0, z = 0}. By Lemma 2.1, they are
reparametrizations of trajectories of the horizontal gradient ∇Hη1. Sim-
ilarly, we find that ∂̃A2 ∩ Σ− ∩ {z > 0} is formed by null f.d. curves
which start at {y = −x, x ≥ 0, z = 0} and which are reparametrizations

of trajectories of ∇Hη2. Finally, ∂̃A3 ∩ {y > 0} ∩ {z < 0} (respectively,

∂̃A4 ∩ {y < 0} ∩ {z < 0}) is formed by null f.d. curves that start at
{y = z = 0, x ≥ 0} and are reparametrizations of trajectories of ∇Hη3
(respectively, ∇Hη4). Now, to complete the proof of Theorem 1.2 we pro-
ceed exactly as in the flat case.

3.3. Example. The first example of the exact computation of reachable
sets was given in Sec. 2; here we give another example. Consider the sub-
Lorentzian structure given by

X =
∂

∂x
+

1

2
y2(1 + xy)

∂

∂z
,

Y =
∂

∂y
− 1

2
xy(1 + xy)

∂

∂z
,

i.e., ϕ = 0 and ψ = xy in (1.1). Using the procedure described above we
obtain

η1(x, y, z) = η̂1 − 1

32
(x+ y)4(x− y) +

1

96
(x+ y)2(x− y)3

+
1

64
(x+ y)3(x− y)2 − 1

128
(x+ y)(x− y)4,

η2(x, y, z) = η̂2 +
1

32
(x− y)4(x+ y)− 1

96
(x− y)2(x+ y)3

− 1

64
(x− y)3(x+ y)2 +

1

128
(x− y)(x+ y)4,
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η3(x, y, z) = η̂3(x, y, z)− 1

6
(x− y)2y3 − 1

8
(x− y)y4,

η4(x, y, z) = η̂4(x, y, z)− 1

6
(x+ y)2y3 +

1

8
(x+ y)y4.

After some computations we obtain

η1(x, y, z)− η2(x, y, z) = − 1

192
(x− y) (x+ y)

(
5x3 + 55xy2 + 72y

)
.

The equation 5x3 + 55xy2 + 72y = 0 has one solution passing through zero:

y1(x) =
72

110x

(
−1 +

√
1− 275

1296
x4

)
.

Clearly,

y1(x) =
1

110x

(
−72 · 1

2
· 275

1296
x4 +O(x8)

)

as x→ 0; thus, y1(0) = y′1(0) = 0, and in this case

Σ =

{
(x, y, z) : y − 1

x

(
1−

√
1− 275

1296
x4

)
= 0, x ≥ 0

}
.

Finally, we obtain

A1 = {(x, y, z) ∈ U : η1(x, y, z) ≤ 0}

∩
{
y ≥ 1

x

(
1−

√
1− 275

1296
x4

)
, x ≥ 0

}
∩ {z ≥ 0},

A2 = {(x, y, z) ∈ U : η2(x, y, z) ≤ 0}

∩
{
y ≤ 1

x

(
1−

√
1− 275

1296
x4

)
, x ≥ 0

}
∩ {z ≥ 0},

A3 = {(x, y, z) ∈ U : η3(x, y, z) ≤ 0} ∩ {y ≥ 0, x ≥ 0} ∩ {z ≤ 0},
A4 = {(x, y, z) ∈ U : η4(x, y, z) ≤ 0} ∩ {y ≤ 0, x ≥ 0} ∩ {z ≤ 0},

where U is a sufficiently small neighborhood of 0.

4. Some further results

In this section, we prove certain results which are mainly straightforward
corollaries of Theorems 1.1 and 1.2. First, we state necessary definitions.

Let (M,H, g) be a sub-Lorentzian manifold. Let Dq be the set of all
covectors λ ∈ T ∗

qM such that the curve t → π ◦ Φt(λ) is defined on [0, 1].
By the exponential mapping with the pole at q we mean the map

expq : Dq →M, expq(λ) = π ◦ Φ1(λ).
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Clearly, Dq is an open set and expq is smooth (respectively, analytic) for
smooth (respectively, analytic) (M,H, g). It is easy to see that a Hamilton-
ian geodesic γ(t) = π ◦ Φt(λ), λ ∈ T ∗

qM , has the form γ(t) = expq(tλ).

4.1. Future conjugate loci. Let (M,H, g) be a time-oriented, sub-
Lorentzian manifold. A point q ∈ M is said to be conjugate to a point
q0 ∈ M if there is λ ∈ T ∗

q0M such that expq0(λ) = q and dλ expq0 is singu-
lar. Then we say that q is conjugate to q0 along a geodesic γ(t) = expq0(tλ).
By the future null (respectively, timelike, nonspacelike) conjugate locus of
a point q0 we mean the set of all points conjugate to q0 along null f.d. (re-

spectively, t.f.d., nspc.f.d.) Hamiltonian geodesics; we denote it by Conjnullq0

(respectively, Conjtq0 , Conjnspcq0 ). Obviously,

Conjnspcq0 = Conjnullq0 ∪Conjtq0

since Hamiltonian geodesics preserve their casual character.

Proposition 4.1. Assume that (H, g) is an analytic time-oriented Mar-
tinet sub-Lorentzian structure of Hamiltonian type defined on a sufficiently
small neighborhood U of a point q0 ∈ R

3. Then Conjnullq0 is equal to the
union of the two null f.d. Hamiltonian geodesics starting at q0.

Proof. We know from [8] that there are exactly two null f.d. Hamiltonian
geodesics γ+, γ− starting at q0 and that they are geometrically optimal.
We must show that γ+ (respectively, γ−) is formed by critical values for
expq0 . To this end, it suffices to show that γ+ (respectively, γ−) lies on the
boundary of the set expq0(Dq0). This becomes obvious when we transform
our structure to the “prenormal” form (3.2). Noting that a curve γ(t) is a
spacelike Hamiltonian geodesisc for the structure (H, g) if and only if γ(t)
is a timelike Hamiltonian geodesic for the structure (H,−g), we arrive at
the conclusion that all spacelike geodesics starting at q0 are, with respect
to the coordinates as in (3.2), contained in the set {|y| > |x|}. This and the
proof of Theorem 1.2 show that γ+ ∪ γ− ⊂ ∂ expq0(Dq0).

Note that the above result holds in fact for arbitrary smooth sub-
Lorentzian structures in R

3.
Proposition 4.1 allows to observe a phenomenon which is highly contra-

dictory to the intuition. Namely, γ+ (respectively, γ−) is a unique maximiz-

ing geodesic (see [8] for a definition), which is entirely contained in Conjnullq0 .
Similarly, in the situation described by Theorem 1.2, the curve t→ (t, 0, 0)
is a unique maximizing geodesic which is contained in Conjtq0 .

4.2. Future null cut locus. Again, we are given a time-oriented sub-
Lorentzian manifold (M,H, g). Fix a point q0 ∈ M . Let us define the

future null cut locus Cutnullq0 (M) of q0 as the set of all points q ∈ M such
that there exists a null f.d. geodesic γ : [0, T ] → M with the following
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properties: γ(0) = q0, γ(t) = q, 0 < t < T , γ|[0,t] is a maximizing geodesic,
and γ|[0,t+ε] is not a maximizing geodesic for any ε > 0, t+ ε ≤ T .

Proposition 4.2. Let (H, g) be an analytic, time-oriented, sub-
Lorentzian structure defined on a neighborhood U of the origin, where H
is a Martinet distribution. Assume that (H, g) is given on U as in Theo-

rems 1.1 and 1.2. Then the future null cut locus Cutnull0 (U) of the origin
is equal to

∂̃J+(0, U) ∩ {z > 0} ∩ Σ\{0}.
Proof. We know from Sec. 3 all null f.d. geometrically optimal curves start-
ing at the origin. There are two possibilities. First is to move along
t → (t, t, 0) and then along a reparametrization of a trajectory of ∇Hη1.

By the construction, such a curve remains on the boundary ∂̃J+(0, U) until
it reaches Σ and, by Lemma 2.1, is a unique length maximizer. After cross-
ing Σ it enters int J+(0, U) = int I+(0, U) and from this time is no longer
neither geometrically optimal nor length maximizing.

The second possibility is first to travel along t→ (t,−t, 0) and then along
a reparametrization of a trajectory of ∇Hη2. To complete the proof, we use
the similar reasoning as in the previous case.

By the way we see that Cutnull0 (U) is a semi-analytic set. We also have

Cutnull0 (U) ∩ Conjnull0 = ∅.

4.3. Image of the set of “nonspacelike” covectors under the expo-
nential mapping. First, we prove the following proposition.

Proposition 4.3. Let (H, g) be an analytic, time-oriented, sub-
Lorentzian structure given as in Theorem refthm1.1 on a normal neigh-
borhood U of the origin. Then

exp0 ({λ ∈ D0 : H(λ) < 0, 〈λ,X(0)〉 < 0}) ∩ U = I+(0, U) (4.1)

and

exp0 ({λ ∈ D0 : H(λ) ≤ 0, 〈λ,X(0)〉 < 0})∩U = I+(0, U)∪γ+∪γ−, (4.2)

where γ+ and γ− are the two null f.d. Hamiltonian geodesics in U starting
at the zero.

Proof. Our aim is to find maximizing geodesics. Using the reasoning con-
ducted in Secs. 3.2 and 4.2 we already know all maximizing geodesics initi-
ating at 0 and lying on the boundary ∂̃I+(0, U). As described above, these
are up to a reparametrization:

(i) concatenations of a segment of the trajectory of X + Y starting at 0
and a segment of a trajectory of X − Y ;

(ii) concatenations of a segment of the trajectory of X − Y starting at 0
and a segment of a trajectory of X + Y ;
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(iii) concatenations of a segment of the trajectory of X starting at 0 and
a segment of a trajectory of X + Y ;

(iv) concatenations of a segment of the trajectory of X starting at 0 and
a segment of a trajectory of X − Y .

Now we find about geodesics joining 0 to a point q1 ∈ int I+(0, U). To
this end, we consider the following optimization problem: among all curves
satisfying

q̇ = v0X(q) + v1Y (q), q(0) = 0, q(T ) = q1,

where the final time T > 0 is not fixed, controls are measurable and
bounded, −v20(t) + v21(t) ≤ 0, v0(t) > 0 a.e., find ones that maximize the
length functional

T∫

0

√
v20(t)− v21(t)dt.

This problem does not depend on the choice of parameterization, so we can
change it as follows: among all curves satisfying

q̇ = X(q) + uY (q), q(0) = 0, q(T ) = q1,

where the final time T > 0 is not fixed, controls are measurable, and |u| ≤ 1
a.e., find ones that maximize the length functional

T∫

0

√
1− u2(t)dt.

As we know (see [5]), this problem has a solution, and we use the Pontryagin
maximum principle (PMP for brevity; see, e.g., [1]) to solve it.

Assume that γ : [0, T ] → U is a maximizing geodesic. By the PMP, it
is a projection of either an abnormal or normal bi-extremal. Consider first
the abnormal case. In this case, the Hamiltonian of the PMP has the form

hu(q, p) = 〈p,X(q)〉+ u 〈p, Y (q)〉 .
Let (γ(t), p(t)) be an abnormal bi-extremal projecting onto γ, and let u(t)
be a control generating γ. By the PMP,

u(t) 〈p(t), Y (γ(t))〉 = max
|u|≤1

u 〈p(t), Y (γ(t))〉

a.e. and hu(t)(γ(t), p(t)) = 0. If 〈p(t), Y (γ(t))〉 does not vanish, then u(t) =
±1 and γ is null f.d. On the other hand, if 〈p(t), Y (γ(t))〉 vanishes on some
interval Δ (or u|Δ = 0), then γ is the abnormal (t.f.d.) geodesics starting
at 0. Thus, maximizing abnormal extremals are either timelike abnormal,
or null, or their suitable concatenations as described at the begining of
the proof (any additional switching causes a given extremal to cease to be
maximizing).
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Now assume that (γ(t), p(t)) is a normal bi-extremal. This time the PMP
Hamiltonian has the form

hu(q, p) = 〈p,X(q)〉+ u 〈p, Y (q)〉+
√

1− u2.
If u(t) is a control generating γ, then

u(t) 〈p(t), Y (γ(t))〉+
√

1− u(t)2 = max
|u|≤1

(
u 〈p(t), Y (γ(t))〉+

√
1− u2

)

(4.3)
a.e. It can be seen that the maximum in the right-hand side of (4.3) is
attained for

u(t) =
〈p(t), Y (γ(t))〉√
〈p(t), Y (γ(t))〉2 + 1

,

thus normal extremals are timelike. It follows (see [5]) that normal ex-
tremals are, up to a change of parameter, t.f.d. Hamiltonian geodesics. This
proves (4.1) and (4.2).

Let f [U ] be the sub-Lorentzian distance function (see [8]) for the sub-
Lorentzian structure considered in Proposition 4.3. We will prove the fol-
lowing corollary.

Corollary 4.1. The function f [U ] is not continuous at every point of

the set ∂̃J+(0, U) ∩ {z ≤ 0}\{y = ±x}.
Proof. Indeed, having proved Theorem 1.2, owing to Proposition 4.3 to-
gether with [5] we know that f [U ] is continuous at all points of int I+(0, U).
At the same time, the continuity of f [U ] on U\J+(0, U) is obvious. On
the other hand, by [8] we know that the continuity of f [U ] at a point q ∈
∂̃J+(0, U) is equivalent to the condition f [U ](q) = 0. To complete the proof,

it suffices to note that f [U ] restricted to ∂̃J+(0, U) ∩ {z ≤ 0}\{y = ±x} is
positive.

4.4. Application to control affine systems with constraints |u| ≤ δ.
All what we have said above can be applied to study reachable sets from a
point for affine control systems

q̇ = X(q) + uY (q), |u| ≤ δ, (4.4)

where δ > 0, X and Y are vector fields defined on an open subset of R
3

such that Span{X,Y } is a Martinet distribution. Indeed, assume that we
are given such a system. We define a time-oriented sub-Lorentzian structure
(H, g) where H = Span{X,Y } and 1

δX,Y is an orthonormal frame for g
with a time orientation X. Clearly, any trajectory of (4.4) is nspc.f.d. for
(H, g). Conversely, let γ : [0, T ]→ R

3 be nspc.f.d. for (H, g), i.e.,

γ̇(t) = u0(t)

(
1

δ
X

)
(γ(t)) + u1(t)Y (γ(t))
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with −u20(t) +u21(t) ≤ 0, u0(t) > 0 a.e. Let β : [0, T ]→ [0, T1] be defined by

β(t) =

t∫

0

1

δ
u0(s)ds, T1 =

T∫

0

1

δ
u0(s)ds.

The function β is invertible; let α : [0, T1] → [0, T ] be its inverse. Finally,
let γ̃ : [0, T1]→ R

3, γ̃(t) = γ(α(t)),

(γ̃(t))̇ = X(γ̃(t)) + δ
u1(α(t))

u0(α(t))
Y (γ̃(t)),

so this is a desired reparametrization of γ. Therefore, if q0 ∈ U for an
open U ⊂ R

3, the reachable set from a point q0 for (4.4) in U is just the
set J+(q0, U) computed for the structure (H, g) defined above. This has
one more implication—the passage to normal forms does not change the
reachble sets for (4.4).

4.5. Example. To give an idea how to compute reachable sets for (4.4), we
will compute one example corresponding to flat case studied in Sec. 2. In
fact, a control affine analogue of Theorem 1.2 can be proved. For simplicity,
we will prove a control affine analogue of Proposition 2.1.

Consider the affine control system

q̇ = X̂ + uŶ , |u| ≤ δ, (4.5)

where

X̂ =
∂

∂x
+

1

2
y2

∂

∂z
, Ŷ =

∂

∂y
− 1

2
xy

∂

∂z
,

and δ is a given positive number. Let

Γ1,δ = {(x, δx, z) : x, z ∈ R} , Γ2,δ = {(x,−δx, z) : x, z ∈ R} .
We define four analytic functions η̂1,δ, . . . , η̂4,δ, where η̂1,δ is the solution of
the Cauchy problem

(
1

δ
X̂ − Ŷ

)
(η) = 0, η|Γ1,δ

(x, δx, z) = z,

η̂2 is the solution of the Cauchy problem
(

1

δ
X̂ + Ŷ

)
(η) = 0, η|Γ2,δ

(x,−δx, z) = z,

η̂3 is the solution of the Cauchy problem
(

1

δ
X̂ + Ŷ

)
(η) = 0, η|S(x, 0, z) = −z,

and η̂4 is the solution of the Cauchy problem
(

1

δ
X̂ − Ŷ

)
(η) = 0, η|S(x, 0, z) = −z.
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We obtain

η̂1,δ(x, y, z) = z − 1

16δ
(δ2x2 − y2)(δx+ 3y),

η̂2,δ(x, y, z) = z − 1

16δ
(δ2x2 − y2)(δx− 3y),

η̂3,δ(x, y, z) = −z − 1

4δ
(δxy2 − y3),

η̂4,δ(x, y, z) = −z − 1

4δ
(δxy2 + y3).

Let A≤δ(0) (respectively, A<δ(0), A=δ(0)) be the set of endpoints of all
trajectories of (4.5) that start at 0 and are generated by controls with
values in [−δ, δ] (respectively, in (−δ, δ), {+δ,−δ}).

Proposition 4.4. We have

A≤δ(0) = Â1,δ ∪ Â2,δ ∪ Â3,δ ∪ Â4,δ,

A<δ(0) = int
(
Â1,δ ∪ Â2,δ ∪ Â3,δ ∪ Â4,δ

)
∪A5,

A=δ(0) = int
(
Â1,δ ∪ Â2,δ ∪ Â3,δ ∪ Â4,δ

)
∪ ∂̃

(
Â1,δ ∪ Â2,δ

)
\A5,

where

Â1,δ = {(x, y, z) : η̂1,δ(x, y, z) ≤ 0, x ≥ 0, y ≥ 0, z ≥ 0} ,
Â2,δ = {(x, y, z) : η̂2,δ(x, y, z) ≤ 0, x ≥ 0, y ≤ 0, z ≥ 0} ,
Â3,δ = {(x, y, z) : η̂3,δ(x, y, z) ≤ 0, x ≥ 0, y ≥ 0, z ≤ 0} ,
Â4,δ = {(x, y, z) : η̂4,δ(x, y, z) ≤ 0, x ≥ 0, y ≤ 0, z ≤ 0} ,
A5 = {(x, 0, 0) : x > 0} .

In particular, A≤δ(0), A<δ(0), and A=δ(0) are semi-analytic.

5. Appendices

5.1. Some other normal forms for Lorentzian metrics on Martinet-
type distributions. In this section, we provide two other normal forms
for Lorentzian metrics on Martinet type distributions, which are based on
different ideas than those presented in Sec. 3.

The first idea of constructing normal forms comes from [2], where Rie-
mannian metrics on Martinet distributions are studied. Arguments used
in [2] can be easily adopted to sub-Lorentzian situation. As a result, we
obtain the following proposition.

Proposition 5.1. Let (H, g) be an analytic, time-oriented, Martinet
sub-Lorentzian structure defined in a neighborhood of the origin in R

3. Then
there exist coordinates x, y, z defined near zero in which

H = ker

(
dz − 1

2
y2dx

)
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and g possesses an orthonormal frame X, Y , where X is a time orientation,
in the form

X = (1 + F )

(
∂

∂x
+

1

2
y2

∂

∂z

)
,

Y = (1 +G)
∂

∂y
,

where F and G are analytic functions such that F|y=0 = 0 and G(0) = 0.
In particular, denoting by S the Martinet surface for H, S = {y = 0}, we
see that the abnormal curves foliating S have the form t→ (t, 0, z0).

Proof. The proof is almost the same as in the sub-Riemannian case, with
obvious differences concerning indefiniteness of the metric. Consider, for ex-
ample, the isoperimetric case. We will use the same notation as in [2]. So, [2,
Lemma 2.11] remains unchanged, [2, Proposition 2.13] requires slight modi-
fication, namely, in our case g = a(x, y)dx2 + 2b(x, y)dxdy+ c(x, y)dy2 with
a(0, 0) < 0. Then it follows from [2, (2.8)] that also A(0) = a(0)σ2

X(0) < 0.
Now suitably rewriting the equation

3σy + yσyy = F (y, σ, σX , yσy, yσXX , yσXy),

one can prove the convergence of σ by the direct application of [4, Theo-
rem 6.3.1] (one easily checks that the Poincaré condition is satisfied). In [2,
Lemma 2.15] we need to have A|Y=0 = −1. It can be achieved by assuming
that σ0 satisfies the differential equation

σ′
0 = (−a0(σ0(X)))

−1/2
.

Finally, note that in [2, Lemma 2.17] we have det
(
a0c0 − b20

)
< 0 and

a0 < 0.

Note that here we do not have to assume that abnormal curves are Hamil-
tonian geodesics.

Normal forms from Proposition 5.1 are not very convenient to investigate
reachable sets, however they immediately give the following result.

Proposition 5.2. Let (H, g) be a time-oriented, Martinet, sub-
Lorentzian structure. Then for every q0 ∈ S, the Martinet surface S for
H, and every sufficiently small neighborhood U of q0, the abnormal curve
initiating at q0 is contained in ∂̃J+(q0, U).

Proof. We can assume that our structure is given as in Proposition 5.1 with
q0 = 0. Now, if γ(t) = (x(t), y(t), z(t)) is a nspc.f.d. curve in U , where U is
a sufficiently small neighborhood of 0, then ẋ > 0 a.e. On the other hand,
the equation for horizontal curves is

ż = y2ẋ.



SUB-LORENTZIAN GEOMETRY 71

Thus, if γ(t) = (x(t), y(t), z(t)) is a nspc.f.d. curve defined on [0, T ] such
that γ(0) = (0, 0, 0) and γ(T ) = (a, 0, 0), then

z(T ) =

T∫

0

y2(t)ẋ(t)dt = 0.

It follows that y(t) = 0 on [0, T ]. We conclude that γ is a reparametrization
of the t.f.d. abnormal curve t → (t, 0, 0). Now it suffices to recall [8] that
int I+(0, U) = int J+(0, U) = intN+(0, U).

Normal forms from Theorem 1.1 and Proposition 5.1 are suitable for
problems that are “measured” in some sense by the distance to a point.
Below we present normal forms which can be useful when considering prob-
lems which are measured by the distance to the Martinet surface. Their
idea comes from [3], where similar normal forms for Riemannian metrics on
Martinet distributions were suggested.

Proposition 5.3. Let (H, g) ba a smooth, time-oriented, Martinet, sub-
Lorentzian structure defined in a neighborhood U of the origin in R

3. As-
sume that (H, g) is of Hamiltonian type. Let S be the Martinet surface for
H. Then, provided that U is sufficiently small, there exist coordinates x, y, z
on U in which S = {y = 0}, and (H, g) admits an orthonormal frame in
the following normal form:

X = (1 + ya)
∂

∂x
+ y2(1 + yb)

∂

∂z
,

Y =
∂

∂y
,

(5.1)

where X is a time orientation and a, b ∈ C∞(U).

Proof. We assume that we are enclosed in a neighborhood U of the origin,
which is assumed to be as small as we need.

Let us note that there exist coordinates x̃, ỹ, z̃ on U such that S = {ỹ = 0}
and

∂

∂x̃ |S
and

∂

∂ỹ |S
form an orthonormal basis ofH|S with a time orientation

on S equal to
∂

∂x̃ |S
. Let p̃, q̃, r̃ be the dual coordinates. As in Sec. 3.1, the

geodesic Hamiltonian has the form

H(x̃, ỹ, z̃, p̃, q̃, r̃) = −1

2
p̃2 +

1

2
q̃2 + ỹ2G(x̃, ỹ, z̃, p̃, q̃, r̃)

with a smooth function G. Let

AS = {(x̃, 0, z̃, 0, q̃, 0)} ⊂ T ∗
R

3;

define the mapping

μ : AS → R
3, μ(x̃, z̃, q̃) = exp(x̃,0,z̃)(0, q̃, 0).
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Note that AS is the set of the initial conditions of spacelike Hamiltonian
geodesics satisfying the transversality condition with respect to S. Clearly,
there exists a neighborhood N of the set {(x̃, 0, z̃, 0, 0, 0)} in AS such that
μ|N is a diffeomorphism onto its image, and we can assume that U = μ(N).
Next, we similarly define the normal coordinates by the composition

R
3 α←− N μ−1

←−− U,
α(a, b, c) = (a, c, b). Thus, a point q has the normal coordinates (x, y, z) if
and only if q = exp(x,0,z)(0, y, 0).

By the definition of normal coordinates, spacelike Hamiltonian geodesics
with initial conditions from AS have the form γ(s) = (x, s, z). Now

(
∂

∂y

)

γ(s)

= γ̇(s);

in the other words, ∂/∂y is a unit spacelike vector field. Let λ =
(x, 0, z, 0, 1, 0). Then

γ(s) = π ◦ Φ1(x, 0, z, 0, s, 0) = π ◦ Φs(λ),

and s → Φs(λ) is the Hamiltonian lift of γ. Using the definition of the
geodesic Hamiltonian [8], we see that

g (γ̇(s), v) = 〈Φs(λ), v〉
for every v ∈ Hγ(s). Let C = {H = 1/2}. Of course, Φs(λ) ∈ C for every s
(for which Φs(λ) is defined). Recall that, since H(q, p) is homogeneous with
respect to p, the Liouville form α restricted to C is invariant with respect
to Φs. Finally, let ξ be the vector field on C defined by

π∗ ◦ Φs∗ξ =
∂

∂x

(ξ can be identified with ∂/∂x, where x is treated as a coordinate on AS).
Taking all what we have said together we obtain a sequence of equalities:
〈

Φs(λ),
∂

∂x

〉
= 〈Φs(λ), π∗ ◦ Φs∗ξ〉 =

〈
αΦs(λ),Φs∗ξ

〉

= 〈(Φ∗
sα)λ , ξ〉 = 〈αλ, ξ〉 = 〈λ, π∗ξ〉 =

〈
λ,

∂

∂x

〉
= 0,

where, since π ◦ Φs(λ) = (x, s, z), it is clear that

π∗ξ =
∂

∂x
.

Similarly, we show that 〈
Φs(λ),

∂

∂z

〉
= 0.
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In this way, we have proved that there exists an orthonormal basis for (H, g),
which, in normal coordinates, has the form

X = a
∂

∂x
+ b

∂

∂z
, Y =

∂

∂y
, (5.2)

where X is a time orientation and a and b are smooth functions. By the
construction, X|S = ∂/∂x, which implies that a|y=0 = 1 and b|y=0 = 0.
Thus, (5.2) can be written as follows:

X = (1 + ya)
∂

∂x
+ yb

∂

∂z
, Y =

∂

∂y
(5.3)

with some other smooth functions a and b. Further, note that the field
[X,Y ]|S is horizontal. We have

[X,Y ] = −
(
a+ y

∂a

∂y

)
∂

∂x
−
(
b+ y

∂a

∂y

)
∂

∂z
,

which yields b|y=0 = 0. Thus, b in (5.3) can be replaced by yb, for some
other smooth b, and we obtain

X = (1 + ya)
∂

∂x
+ y2b

∂

∂z
, Y =

∂

∂y
. (5.4)

We know that

Span {X(q), Y (q), [X, [X,Y ]] (q), [Y, [X,Y ]] (q)} = TqR
3

for every q ∈ S. We obtain that the coefficient of ∂/∂z in [X, [X,Y ]]|S
vanishes and

[Y, [X,Y ]]|S = −2
∂a

∂y |y=0

∂

∂x
− 2b|y=0

∂

∂z
.

Thus, b(x, 0, z) �= 0. Normalizing z-axis as in Sec. 3.1, we can assume that
b(x, 0, z) = 1. This allows one to replace b in (5.4) by 1 + yb for yet some
other smooth b. This completes the proof.

5.2. Alternative definition of sub-Lorentzian normal neighbor-
hoods. Some theorems on reachable sets J+(q0, U), I+(q0, U), and
N+(q0, U) and also some results on the existence of maximizing geodesics
that were proved in previous papers by the author require a special type of
neighborhoods U of q0; indeed, for example, in the Heisenberg case (see [7]),
the set J+(0, U) is not closed relative to U , where

U =

{
(x, y, z) : −1

2
x− δ < y < −1

2
x+ δ,

1

2
x− δ < y <

1

2
x+ δ, −δ2 < z < δ2

}
,
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δ > 0, is a convex neighborhood of the origin. The definition of normal
neighborhoods stated in the introduction is not constructive. Here we pro-
pose another, constructive definition of neighborhoods, which also allows
one to prove theorems on reachable sets.

Assume that (M,H, g) is a time-oriented, sub-Lorentzian manifold and
q0 ∈ M . Let X0, . . . , Xk be an orthonormal frame for (H, g) defined in a

neighborhood Û of q0, with a time orientation X0. Denote by f : Û → R a
smooth function satisfying the following conditions: f(q0) = 0, X0(f)(q0) =

1, and Xj(f)(q0) = 0, j = 1, . . . , k. Shrinking Û , if necessary, we can assume
that

inf
{
X0(f)(q) : q ∈ Û

}
>
√
k sup

{
|Xj(f)(q)| : q ∈ Û , j = 1, . . . , k

}
.

(5.5)
Inequality (5.5) ensures that the horizontal gradient ∇Hf is timelike past
directed (i.e., −∇Hf is t.f.d.). Of course, this implies that f is increasing

along nspc.f.d. curves contained in Û . Now let U ⊂ Û be a neighborhood
of q0 such that J+(q0, Û) ∩ ∂U = f−1(c) for c > 0. Every set U defined
like this possesses the following property: let γ : [0, T ] → U be a nspc.f.d.
curve starting at q0; if γ(t) ∈ ∂U for t ∈ [0, T ), then there exists ε > 0,
t+ ε < T , such that γ(s) /∈ U for t < s < t+ ε. This property is sufficient
to prove [5, Lemma 5.1] and, in what follows, to prove [8, Theorems 3.1
and 3.2] concerning reachable sets relative to U .
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