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MAXWELL STRATA IN THE EULER ELASTIC PROBLEM

YU. L. SACHKOV

Abstract. The classical Euler problem on stationary configurations
of elastic rod in the plane is studied in detail by geometric control
techniques as a left-invariant optimal control problem on the group
of motions of a two-dimensional plane E(2).

The attainable set is described, the existence and boundedness
of optimal controls are proved. Extremals are parametrized by the
Jacobi elliptic functions of natural coordinates induced by the flow
of the mathematical pendulum on fibers of the cotangent bundle of
E(2).

The group of discrete symmetries of the Euler problem generated
by reflections in the phase space of the pendulum is studied. The
corresponding Maxwell points are completely described via the study
of fixed points of this group. As a consequence, an upper bound on
cut points in the Euler problem is obtained.

1. Introduction

In 1744, L. Euler considered the following problem on stationary config-
urations of an elastic rod. Given a rod in the plane with fixed endpoints
and tangents at the endpoints, one should determine possible profiles of the
rod under the given boundary conditions. Euler obtained ODEs for station-
ary configurations of the elastic rod and described their possible qualitative
types. These configurations are called Euler elasticae.

An Euler elastica is a critical point of the functional of elastic energy
on the space of smooth planar curves that satisfy the boundary conditions
specified. In this paper, we address the issue of optimality of an elastica:
whether a critical point is a minimum of the energy functional? That is,
which elasticae provide the minimum of the energy functional among all
curves satisfying the boundary conditions (the global optimality), or the
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minimum compared with sufficiently close curves satisfying the boundary
conditions (the local optimality). These questions remained open despite
their obvious importance.

For the elasticity theory, the problem of local optimality is essential since
it corresponds to the stability of Euler elasticae under small perturbations
that preserve the boundary conditions. In the calculus of variations and
optimal control, the point where an extremal trajectory loses its local op-
timality is called a conjugate point. We will give an exact description of
conjugate points in the problem on Euler elasticae, which were previously
known only numerically.

From the mathematical point of view, the problem of global optimality
is fundamental. We will study cut points in the Euler elastic problem —
the points where elasticae lose their global optimality.

This is the first of three planned works on the Euler elastic problem.
The aim of this paper is to give a complete description of Maxwell points,
i.e., points where distinct extremal trajectories with the same value of the
cost functional meet one another. Such points provide an upper bound
on cut points: an extremal trajectory cannot be globally optimal after a
Maxwell point. In the second work [35], we prove that conjugate points in
the Euler elastic problem are bounded by Maxwell points. Moreover, we
pursue the study of the global optimal problem: in [36], we describe the
global diffeomorphic properties of the exponential mapping.

This paper is organized as follows. In Sec. 2, we review the history of the
problem on elasticae. In Sec. 3, we state the Euler problem as a left-invariant
optimal control problem on the group of motions of a two-dimensional plane
E(2) and discuss the continuous symmetries of the problem. In Sec. 4, we
describe the attainable set of the control system in question. In Sec. 5,
we prove the existence and boundedness of optimal controls in the Euler
problem. In Sec. 6, we apply the Pontryagin maximum principle to the
problem, describe abnormal extremals, and deduce the Hamiltonian system
for normal extremals.

Since the problem is left-invariant, the normal Hamiltonian system of the
PMP becomes triangular after an appropriate choice of the parametrization
of fibers of the cotangent bundle of E(2): the vertical subsystem is inde-
pendent of the horizontal coordinates. Moreover, this vertical subsystem is
essentially the equation of the mathematical pendulum. For the detailed
subsequent analysis of the extremals, it is crucial to choose convenient co-
ordinates. In Sec. 7, we construct such natural coordinates in the fiber of
the cotangent bundle over the initial point. First, we consider the “angle-
action” coordinates in the phase cylinder of the standard pendulum, and
then extend them to the whole fiber via continuous symmetries of the prob-
lem. One of the coordinates is the time of motion of the pendulum, and
the other two are integrals of motion of the pendulum. In Sec. 8, we apply
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the elliptic coordinates constructed in such way for the integration of the
normal Hamiltonian system. In particular, we recover the different classes
of elasticae discovered by Euler.

The flow of the pendulum plays the key role not only in the parametriza-
tion of extremal trajectories, but also in the study of their optimality. In
Sec. 9, we describe the discrete symmetries of the Euler problem generated
by reflections in the phase cylinder of the standard pendulum. Further, we
study the action of the group of reflections in the preimage and image of
the exponential mapping of the problem.

In Sec. 10, we consider Maxwell points of the Euler problem. The
Maxwell strata corresponding to reflections are described by certain equa-
tions in elliptic functions. In Sec. 11, we study solvability of these equations,
give sharp estimates of their roots, and describe their mutual disposition via
the analysis of the elliptic functions involved.

A complete description of the Maxwell strata obtained is important both
for global and local optimality of extremal trajectories. In Sec. 12, we derive
an upper bound on the cut time in the Euler problem due to the fact that
such a trajectory cannot be globally optimal after a Maxwell point. In
our subsequent work [35] we will show that conjugate points in the Euler
problem are bounded by Maxwell points and give a complete solution to
the problem of local optimality of extremal trajectories.

We used the system “Mathematica” [41] to carry out complicated calcu-
lations and to produce illustrations in this paper.

This paper is an essentially abridged version of the initial preprint [34].
The preprint contains additional information, illustrations, and complete
details of some proofs that appear here in a shortened form due to the
limitation of space.

Acknowledgments. The author wants to thank Professor A. A. Agrachev
for bringing the pearl of the Euler problem to author’s attention, and for
numerous fruitful discussions on this problem.

The author is also grateful to the anonymous referee for several valuable
suggestions on the improvement of exposition in this work.

2. History of the Euler elastic problem

In addition to the original works of the scholars who contributed to the
theory, in this section we follow also the sources on history of the subject
by C. Truesdell [39], A. E. H. Love [24], and S. Timoshenko [38].

In 1691, J. Bernoulli considered the problem on the form of a uniform
planar elastic bar bent by an external force. His hypothesis was that the
bending moment of the rod is equal to B/R, where B is the “flexural rigidity”
and R is the curvature radius of the bent bar. For an elastic bar of unit
excursion built vertically into a horizontal wall and bent by a load sufficient
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to make its top horizontal (rectangular elastica), J. Bernoulli obtained the
ODEs

dy =
x2 dx√
1 − x4

, ds =
dx√

1 − x4
, x ∈ [0, 1]

(where (x, y) is the elastic bar and s is its length parameter), integrated
them in series, and calculated precise upper and lower bounds for their
value at the endpoint x = 1 (see [7]).

In 1742, D. Bernoulli in his letter [6] to Euler wrote that the elastic energy
of the bent rod is proportional to the magnitude E =

∫
ds/R2 and suggested

to find the elastic curves from the variational principle E → min. At that
time, Euler was writing his treatise on the calculus of variations Methodus
inveniendi . . . [13] published in 1744, and he adjoined to his book an ap-
pendix De curvis elasticis, where he applied the newly developed techniques
to the problem on elasticae. Euler considered a thin homogeneous elastic
plate, rectilinear in the natural (unstressed) state. For the profile of the
plate, Euler stated the following problem:

“That among all curves of the same length which not only
pass through the points A and B, but are also tangent to
given straight lines at these points, that curve be determined

in which the value of
∫ B

A

ds

R2
be a minimum.”

(2.1)

Euler wrote down the ODE known now as the Euler–Lagrange equation
for the corresponding problem of calculus of variations and reduced it to
the equations

dy =
(α+ βx+ γx2) dx

√
a4 − (α+ βx+ γx2)2

, ds =
a2 dx

√
a4 − (α+ βx+ γx2)2

, (2.2)

where α/a2, β/a, and γ are real parameters expressed in terms of B, the
load of the elastic rod, and its length. Euler studied the quadrature defined
by the first of equations (2.2). In the modern terminology, he investigated
the qualitative behavior of the elliptic functions that parametrize the elastic
curves via the qualitative analysis of the determining ODEs. Euler described
all possible types of elasticae and indicated the values of parameters for
which these types are realized (see a copy of Euler’s original sketches in [34]).

Euler divided all elastic curves into nine classes, they are plotted respec-
tively as follows:

1. straight line, Fig. 4;
2. Fig. 5;
3. rectangular elastica, Fig. 6;
4. Fig. 7;
5. periodic elastica in the form of Fig. 8;
6. Fig. 9;
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7. elastica with one loop, Fig. 10;
8. Fig. 11;
9. circle, Fig. 12.

Following the tradition introduced by A. E. H.Love [24], the elastic curves
with inflection points (classes 2–6) are said to be inflectional, the elastica of
class 7 is said to be critical, and elasticae without inflection points of class 8
are said to be noninflectional.

Further, Euler established the magnitude of the force applied to the elas-
tic plate that results in each type of elasticae. He indicated the experimental
method for evaluation of the flexural rigidity of the elastic plate by its form
under bending. Finally, he studied the problem of stability of a column
modelled by the loaded rod whose lower end is constrained to remain verti-
cal, by presenting it as an elastica of the class 2 close to the straight line (a
sinusoid). After the work of Leonhard Euler, the elastic curves are called
Euler elasticae.

The first explicit parametrization of Euler elasticae was performed by
L. Saalchütz in 1880 [29].

In 1906, the future Nobel prize-winner Max Born defended a Ph. D.
thesis called Stability of elastic lines in the plane and the space [9]. Born
considered the problem on elasticae as a problem of calculus of variations
and derived from the Euler–Lagrange equation that its solutions (x(t), y(t))
satisfy the ODEs of the form

ẋ = cos θ, ẏ = sin θ,

Aθ̈ +R sin(θ − γ) = 0, A,R, γ = const,
(2.3)

and, therefore, the angle θ defining the slope of elasticae satisfies the equa-
tion of the mathematical pendulum (2.3). Further, Born studied stability
of elasticae with fixed endpoints and fixed tangents at the endpoints. Born
proved that an elastic arc without inflection points is stable (in this case,
the angle θ is monotone and, therefore, it can be taken as a parameter along
the elastica; Born showed that the second variation of the functional of the

elastic energy E =
1
2

∫
θ̇2 dt is positive). In the general case, Born wrote

down the Jacobian that vanishes at conjugate points. Since the functions
entering this Jacobian were too complicated, Born restricted himself to nu-
merical investigation of conjugate points. He was the first to plot elasticae
numerically and verify the theory against experiments on elastic rods, see
the photos from Born’s thesis in [34]. Moreover, Born studied stability of
Euler elasticae with various other boundary conditions and obtained some
results for elastic curves in R

3.
In 1993, V. Jurdjevic [19] discovered that Euler elasticae appear in the

ball-plate problem stated as follows. Consider a ball rolling on a horizontal
plane without slipping or twisting. The problem is to roll the ball from an
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initial contact configuration (defined by the contact point of the ball with
the plane and orientation of the ball in the 3-space) to a terminal contact
configuration, so that the curve traced by the contact point in the plane was
the shortest possible. Jurdjevic showed that such optimal curves are Euler
elasticae. Moreover, Jurdjevic also extensively studied the elastic problem
in R

3 and its analogs in the sphere S3 and in the Lorentz space H3 [20,21].
In 1993, R. Brockett and L. Dai [11] discovered that Euler elasticae are

projections of optimal trajectories in the nilpotent sub-Riemannian problem
with the growth vector (2,3,5) known also as the generalized Dido prob-
lem [30–33].

Elasticae were considered in the approximation theory as nonlinear
splines [8, 14, 17, 18, 23], in computer vision as a maximum likelihood re-
construction of occluded edges [27], their 3-dimensional analogues are used
in the modelling of DNA minicircles [25,26], etc.

Euler elasticae and their various generalizations play an important role
in the modern mathematics, mechanics, and their applications. However,
the initial variational problem as it was stated by Euler (2.1) is far from the
complete solution: neither local nor global optimality of Euler elasticae is
studied. This is the first of three planned works that will give a complete
description of the local optimality and present an essential progress in the
study of the global optimality of elasticae. In this paper, we give an upper
bound on the cut points along Euler elasticae, i.e., points where they lose
their global optimality. In the next work [35] we obtain a complete char-
acterization of conjugate points, i.e., points where elasticae lose their local
optimality. The global diffeomorphic properties of the exponential mapping
in the Euler problem will be described in [36].

3. Statement of the problem

3.1. Optimal control problem. First, we state the elastic problem math-
ematically. Let a homogeneous elastic rod in the two-dimensional Euclidean
plane R

2 have a fixed length l > 0. Take any points a0, a1 ∈ R
2 and ar-

bitrary unit tangent vectors at these points vi ∈ Tai
R

2, |vi| = 1, i = 0, 1.
The problem is to find the profile of a rod γ : [0, t1] → R

2 starting from the
point a0 and coming to the point a1 with the corresponding tangent vectors
v0 and v1:

γ(0) = a0, γ(t1) = a1, (3.1)

γ̇(0) = v0, γ̇(t1) = v1, (3.2)

with the minimum elastic energy. The curve γ(t) is assumed to be absolutely
continuous with the Lebesgue square-integrable curvature k(t). We suppose
that γ(t) is arc-length parametrized, i.e., |γ̇(t)| ≡ 1 and, therefore, the time
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Fig. 1. Statement of the Euler problem.

of motion along the curve γ coincides with its length:

t1 = l. (3.3)

The elastic energy of the rod is measured by the integral

J =
1
2

t1∫

0

k2(t) dt.

We choose the Cartesian coordinates (x, y) in the two-dimensional plane
R

2. Let the required curve be parametrized as γ(t) = (x(t), y(t)), t ∈ [0, t1],
and let its endpoints have coordinates ai = (xi, yi), i = 0, 1. Denote by θ the
angle between the tangent vector to the curve γ and the positive direction
of the axis x. Further, let the tangent vectors at the endpoints of γ have
the coordinates vi = (cos θi, sin θi), i = 0, 1 (see Fig. 1).

Then the required curve γ(t) = (x(t), y(t)) is defined by a trajectory of
the following control system:

ẋ = cos θ, (3.4)

ẏ = sin θ, (3.5)

θ̇ = u, (3.6)

q = (x, y, θ) ∈M = R
2
x,y × S1

θ , u ∈ R, (3.7)

q(0) = q0 = (x0, y0, θ0), q(t1) = q1 = (x1, y1, θ1), t1 fixed. (3.8)

For an arc-length parametrized curve, the curvature is, up to the sign,
equal to the angular velocity: k2 = θ̇2 = u2, whence we obtain the cost
functional

J =
1
2

t1∫

0

u2(t) dt→ min . (3.9)



176 YU. L. SACHKOV

We study the optimal control problem (3.4)–(3.9). Following V. Jur-
djevic [21], this problem is called the Euler elastic problem. Admissible
controls are u(t) ∈ L2[0, t1], and admissible trajectories are absolutely con-
tinuous curves q(t) ∈ AC([0, t1];M).

In the vector notation, the problem has the following form:

q̇ = X1(q) + uX2(q), q ∈M = R
2 × S1, u ∈ R, (Σ)

q(0) = q0, q(t1) = q1, t1 fixed,

J =
1
2

t1∫

0

u2dt→ min, u ∈ L2[0, t1],

where the vector fields in the right-hand side of system (Σ) are

X1 = cos θ
∂

∂ x
+ sin θ

∂

∂ y
, X2 =

∂

∂ θ
.

Note the multiplication table in the Lie algebra of vector fields generated
by X1, X2:

[X1,X2] = X3 = sin θ
∂

∂ x
− cos θ

∂

∂ y
, (3.10)

[X2,X3] = X1, [X1,X2] = 0. (3.11)

3.2. Left-invariant problem on the group of motions of a plane.
The Euler elastic problem has obvious symmetries — parallel translations
and rotations of the two-dimensional plane R

2. Therefore, it can naturally
be stated as an invariant problem on the group of proper motions of the
two-dimensional plane

E(2) =

⎧
⎨

⎩

⎛

⎝
cos θ − sin θ x
sin θ cos θ y

0 0 1

⎞

⎠
∣
∣
∣
∣ (x, y) ∈ R

2, θ ∈ S1

⎫
⎬

⎭
.

Indeed, the state space of the problem M = R
2
x,y × S1

θ is parametrized by
matrices of the form

q =

⎛

⎝
cos θ − sin θ x
sin θ cos θ y

0 0 1

⎞

⎠ ∈ E(2),

and dynamics (3.4)–(3.6) is left-invariant on the Lie group E(2):

q̇ =

⎛

⎝
cos θ − sin θ x
sin θ cos θ y

0 0 1

⎞

⎠

⎛

⎝
0 −u 1
u 0 0
0 0 0

⎞

⎠ .

The Lie algebra of the Lie group E(2) has the form

e(2) = span(E21 − E12, E13, E23),
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where Eij denotes the (3× 3)-matrix with the only identity entry in the ith
row and jth column, and zeros otherwise. In the basis

e1 = E13, e2 = E21 − E12, e3 = −E23,

the multiplication table in the Lie algebra e(2) takes the form

[e1, e2] = e3, [e2, e3] = e1, [e1, e3] = 0.

Then the Euler elastic problem becomes the following left-invariant prob-
lem on the Lie group E(2):

q̇ = X1(q) + uX2(q), q ∈ E(2), u ∈ R,

q(0) = q0, q(t1) = q1, t1 fixed,

J =
1
2

t1∫

0

u2dt→ min,

where
Xi(q) = qei, i = 1, 2, q ∈ E(2),

are basis left-invariant vector fields on E(2) (here qei denotes the product
of (3 × 3)-matrices).

3.3. Continuous symmetries and normalization of conditions of the
problem. Left translations on the Lie group E(2) are symmetries of the
Euler elastic problem. By virtue of these symmetries, we can assume that
initial point of trajectories is the identity element of the group Id = E11 +
E22 + E33, i.e.,

q0 = (x0, y0, θ0) = (0, 0, 0). (3.12)

In other words, parallel translations in the plane R
2
x,y shift the initial point

of the elastic rod γ to the origin (0, 0) ∈ R
2
x,y, and rotations of this plane

combine the initial tangent vector γ̇(0) with the positive direction of the
axis x.

Moreover, one can easily see one more continuous family of symmetries
of the problem — dilations in the plane R

2
x,y. Consider the following one-

parameter group of transformations of variables of the problem:

(x, y, θ, t, u, t1, J) �→ (x̃, ỹ, θ̃, t̃, ũ, t̃1, J̃)

= (esx, esy, θ, est, e−su, est1, e
−sJ). (3.13)

One immediately verifies that the Euler problem is preserved by this group
of transformations. Thus, choosing s = − ln t1, we can assume that t1 = 1.
In other words, we obtain an elastic rod of the unit length by virtue of
dilations in the plane R

2
x,y.

In the sequel, we usually fix the initial point q0 as in (3.12). However,
the terminal time t1 will remain a parameter, not necessarily equal to 1.
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4. Attainable set

Consider a smooth control system of the form

q̇ = f(q, u), q ∈M, u ∈ U. (4.1)

Let u = u(t) be an admissible control, and let q0 ∈M . Denote by q(t;u, q0)
the trajectory of the system corresponding to the control u(t) and satisfying
the initial condition q(0;u, q0) = q0. The attainable set of system (4.1) from
the point q0 for the time t1 is defined as follows:

Aq0(t1) = {q(t1;u, q0) | u = u(t) admissible control, t ∈ [0, t1]}.
Moreover, one can consider the attainable set for a time not greater than
t1: At1

q0
=

⋃

0≤t≤t1

Aq0(t), and the attainable set for an arbitrary nonnegative

time: Aq0 =
⋃

0≤t<∞
Aq0(t). The orbit of system (4.1) is defined as

Oq0 =
{
eτN fN ◦ · · · ◦ eτ1f1(q0) | τi ∈ R, fi = f(·, ui), ui ∈ U, N ∈ N

}
,

where eτifi is the flow of the vector field fi (see [2, 21] for basic properties
of attainable sets and orbits). In this section we describe the orbit and
attainable sets for the Euler elastic problem.

Multiplication rules (3.10), (3.11) imply that the control system (Σ) has
the full rank:

Lieq(X1,X2) = span(X1(q),X2(q),X3(q)) = TqM ∀q ∈M.

By the Nagano–Sussmann Orbit Theorem [2,21], the whole state space is a
single orbit: Oq0 = M for any q0 ∈M . Moreover, the system is completely
controllable: Aq0 = M for any q0 ∈ M . This can be shown either by
applying a general controllability condition for control-affine systems with
recurrent drift (see [21, Sec. 4, Theorem 5]), or via the controllability test for
left-invariant systems on semidirect products of Lie groups (see [21, Sec. 6,
Theorem 10]). On the other hand, it is obvious that system (Σ) is not
completely controllable on a compact time segment [0, t1]: At1

q0
	= M in

view of the bound

(x(t) − x0)2 + (y(t) − y0)2 ≤ t21, (4.2)

the distance between the endpoints of the elastic rod should not exceed
the length of the rod. We have the following description of the exact-time
attainable sets for the Euler problem.

Theorem 4.1. Let q0 = (x0, y0, θ0) ∈ M = R
2 × S1 and t1 > 0. Then

the attainable set of system (Σ) is

Aq0(t1) = {(x, y, θ) ∈M | (x− x0)2 + (y − y0)2 < t21

or (x, y, θ) = (x0 + t1 cos θ0, y0 + t1 sin θ0, θ0)}.
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Proof. The proof is straightforward. First, in view of continuous symmetries
of the problem (see Sec. 3.3), it suffices to prove this theorem in the case
q0 = (0, 0, 0), t1 = 1. Second, one should apply bound (4.2). Third, it
suffices to consider trajectories of the system corresponding to piecewise-
constant controls — concatenations of straight lines and circles in the plane
(x, y). All details are given in [34].

The following properties of attainable sets of system (Σ) follow immedi-
ately from Theorem 4.1.

Corollary 4.1. Let q0 be an arbitrary point of M . Then:
(1) Aq0(t1) ⊂ Aq0(t2) for any 0 < t1 < t2;
(2) At

q0
= Aq0(t) for any t > 0;

(3) q0 ∈ intAt
q0

for any t > 0.

Item (3) means that system (Σ) is small-time locally controllable. How-
ever, the restriction of (Σ) to a small neighborhood of a point q0 ∈ M is
not controllable since some points in the neighborhood of q0 are reachable
from q0 by trajectories of Σ far from q0.

Topologically, the attainable set Aq0(t) is an open solid torus united with
a single point at its boundary. In particular, the attainable set is neither
open nor closed.

In the sequel, we study the Euler problem under the natural condition

q1 ∈ Aq0(t1). (4.3)

5. Existence and regularity of optimal solutions

We apply known results of the optimal control theory in order to show
that, in the Euler elastic problem, optimal controls exist and are essentially
bounded.

5.1. Embedding the problem into R
3. The state space and attainable

sets of the Euler problem have a nontrivial topology, and we start from the
embedding of the problem into the Euclidean space. By Theorem 4.1, the
attainable set A = Aq0(1), q0 = (0, 0, 0), is contained in the set

M̃ = clA = {(x, y, θ) ∈M | x2 + y2 ≤ 1}.
Moreover, by item (2) of Corollary 4.1, any trajectory of system (Σ) starting
from q0 does not leave the set M̃ in the time segment t ∈ [0, 1]. Therefore,
this set can be considered as a new state space of the problem. The set M̃
is embedded into the Euclidean space R

3
x1x2x3

by the diffeomorphism

Φ : M̃ → R
3
x1x2x3

,

Φ(x, y, θ) = (x1, x2, x3) = ((2 + x) cos θ, (2 + x) sin θ, y).
(5.1)
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The image

Φ(M̃) = {(x1, x2, x3) ∈ R
3 | (2 − ρ)2 + x2

3 ≤ 1}, ρ =
√
x2

1 + x2
2,

is the closed solid torus.
In the coordinates (x1, x2, x3), the Euler problem has the form

ẋ1 =
x2

1

x2
1 + x2

2

− ux2, (5.2)

ẋ2 =
x1x2

x2
1 + x2

2

+ ux1, (5.3)

ẋ3 =
x2√
x2

1 + x2
2

, (5.4)

x = (x1, x2, x3) ∈ Φ(M̃), u ∈ R, (5.5)

x(0) = x0 = (2, 0, 0), x(1) = x1 = (x1
1, x

1
2, x

1
3), (5.6)

J =
1
2

1∫

0

u2dt→ min, (5.7)

u(·) ∈ L2[0, 1], x(·) ∈ AC[0, 1]. (5.8)

5.2. Existence of optimal controls. First, we recall an appropriate gen-
eral existence result for control-affine systems from Sec. 11.4.C of the text-
book of L. Cesari [12]. Consider an optimal control problem of the form

ẋ = f(t, x) +
m∑

i=1

uigi(t, x), x ∈ X ⊂ R
n, u = (u1, . . . , um) ∈ R

m,

(5.9)

J =

t1∫

0

f0(t, x, u) dt→ min, (5.10)

x(·) ∈ AC([0, t1],X), u(·) ∈ L2([0, t1],Rm), (5.11)

x(0) = x0, x(t1) = x1, t1 fixed. (5.12)

For such a problem, a general existence theorem is formulated as follows.

Theorem 5.1 (see [12, Theorem 11.4.VI]). Assume that the following
conditions hold :

(C ′) the set X is closed, and the function f0 is continuous on [0, t1]×X ×
R

m;
(L1) there exists a real-valued function ψ(t) ≥ 0, t ∈ [0, t1], ψ ∈ L1[0, t1],

such that f0(t, x, u) ≥ −ψ(t) for (t, x, u) ∈ [0, t1]×X×R
m and almost

all t;
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(CL) the vector fields f(t, x), g1(t, x), . . . , gm(t, x) are continuous on
[0, t1] ×X,

• the vector fields f(t, x), g1(t, x), . . . , gm(t, x) have bounded compo-
nents on [0, t1] ×X,

• the function f0(t, x, u) is convex in u for all (t, x) ∈ [0, t1] ×X,
• x1 ∈ Ax0(t1).

Then there exists an optimal control u ∈ L2([0, t1],Rm) for problem (5.9)–
(5.12).

For the Euler problem embedded into R
3 (5.2)–(5.8), we have:

• m = 1,
• the set X = Φ(M̃) is compact,
• the function f0 = u2 is continuous, nonnegative, and convex,

• the vector fields f(x) =
x2

1

x2
1 + x2

2

∂

∂ x1
+

x1x2

x2
1 + x2

2

∂

∂ x2
+

x2√
x2

1 + x2
2

∂

∂ x3

and g1(x) = −x2
∂

∂ x1
+ x1

∂

∂ x2
are continuous and have bounded

components on X,
• x1 ∈ Ax0(t1) as is supposed in (4.3).

Thus, all assumptions of Theorem 5.1 are satisfied, and there exists an
optimal control u ∈ L2[0, t1] for the Euler problem.

5.3. Boundedness of optimal controls. One can prove the essential
boundedness of optimal control in the Euler elastic problem by virtue of
the following general result due to A. Sarychev and D. Torres.

Theorem 5.2 (see [37, Theorem 1 and Corollary 1]). Consider an op-
timal control problem of the form (5.9)–(5.12). Let f0 ∈ C1([0, t1] ×
X × R

m,R), f, gi ∈ C1([0, t1] × X; Rn), i = 1, . . . ,m, and ϕ(t, x, u) =

f(t, x) +
m∑

i=1

uigi(t, x).

Under the assumtions:
(H1) full rank condition: dim span(g1(t, x), . . . , gm(t, x)) = m for all t ∈

[0, t1] and x ∈ X;
(H2) coercivity : there exists a function θ : R → R such that

f0(t, x, u) ≥ θ(‖u‖) > ζ ∀(t, x, u) ∈ [0, t1] ×X × R
m

and lim
r→+∞

r

θ(r)
= 0;

(H3) growth condition: there exist constants γ, β, η, and μ, where γ > 0,
β < 2, and μ ≥ max{β − 2, −2} such that for all t ∈ [0, t1], x ∈ X,
and u ∈ R

m, the relation

(|f0t|+|f0xi
|+‖f0ϕt−f0tϕ‖+‖f0ϕxi

−f0xi
ϕ‖)‖u‖μ ≤ γfβ

0 +η, i = 1, . . . , n,

holds,
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all optimal controls u(·) of the problem (5.9)–(5.12) satisfy the Pontryagin
maximum principle, and the normal ones are essentially bounded on [0, t1].

It is easy to see that all assumptions of Theorem 5.2 hold:

(H1) g(x) = −x2
∂

∂ x1
+ x1

∂

∂ x2
	= 0 on X;

(H2) θ(r) = r2;
(H3) f0t = f0xi

= ϕt = 0, ‖ϕxi
‖ ≤ C on X. The required bound ‖f0ϕxi

‖ ·
‖u‖μ ≤ γfβ

0 + η is satisfied for β = 1, μ = 1, γ = C, η = 0.

Thus, in the Euler elastic problem, all optimal controls satisfy the PMP,
and the normal ones are in L∞[0, t1]. In Sec. 6.2, we show that the abnormal
optimal controls are not strictly abnormal (i.e., are simultaneously normal)
and, therefore, they are also essentially bounded.

We summarize our results for the Euler elastic problem given in this
section. Obviously, we can return back from problem (5.2)–(5.8) in R

3
x1x2x3

to initial problem (3.4)–(3.9) in R
2
x,y × S1

θ .

Theorem 5.3. Let q1 ∈ Aq0(t1).

(1) Then there exists an optimal control for the Euler problem (3.4)–(3.9)
in the class u(·) ∈ L2[0, t1].

(2) All optimal solutions of the Euler problem satisfy the Pontryagin max-
imum principle.

(3) If an optimal control u(·) is normal, then u(·) ∈ L∞[0, t1]. The corre-
sponding optimal trajectory q(·) is Lipschitzian.

Certainly, Theorem 5.3 is not the best possible statement on regularity of
solutions of the Euler problem. We will deduce from the Pontryagin max-
imum principle that optimal controls and optimal trajectories are analytic
(see Theorem 6.3).

6. Extremals

6.1. Pontryagin maximum principle. In order to apply the Pontrya-
gin maximum principle (PMP) in the invariant form, we recall the basic
notions of the Hamiltonian formalism [2, 21]. Note that the approach and
conclusions of this section have much intersection with the book [21] of
V. Jurdjevic.

Let M be a smooth n-dimensional manifold, then its cotangent bundle
T ∗M is a smooth 2n-dimensional manifold. The canonical projection π :
T ∗M → M maps a covector λ ∈ T ∗

q M to the base point q ∈ M . The
tautological 1-form s ∈ Λ1(T ∗M) on the cotangent bundle is defined as
follows. Let λ ∈ T ∗M and v ∈ Tλ(T ∗M), then 〈sλ, v〉 = 〈λ, π∗v〉 (in
coordinates s = p dq). The canonical symplectic structure on the cotangent
bundle σ ∈ Λ2(T ∗M) is defined as σ = ds (in coordinates σ = dp ∧ dq). To
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any Hamiltonian h ∈ C∞(T ∗M), there corresponds a Hamiltonian vector
field on the cotangent bundle �h ∈ Vec(T ∗M) by the rule σλ(·,�h) = dλh.

Now let M = R
2
x,y × S1

θ be the state space of the Euler problem. Recall
that the vector fields

X1 = cos θ
∂

∂ x
+ sin θ

∂

∂ y
, X2 =

∂

∂ θ
, X3 = sin θ

∂

∂ x
− cos θ

∂

∂ y

form a basis in the tangent spaces to M . The Lie brackets of these vector
fields are given in (3.10), (3.11). Introduce the Hamiltonians linear on fibers
of T ∗M and corresponding to these basis vector fields:

hi(λ) = 〈λ,Xi〉, λ ∈ T ∗M, i = 1, 2, 3,

and the family of Hamiltonian functions

hν
u(λ) = 〈λ,X1 + uX2〉 +

ν

2
u2 = h1(λ) + uh2(λ) +

ν

2
u2,

λ ∈ T ∗M, u ∈ R, ν ∈ R,

the control-dependent Hamiltonian of the PMP for the Euler problem (3.4)–
(3.9).

By Theorem 5.3, all optimal solutions of the Euler problem satisfy the
Pontryagin maximum principle. We write it in the following invariant form.

Theorem 6.1 (see [2, Theorem 12.3]). Let u(t) and q(t), t ∈ [0, t1], be
an optimal control and the corresponding optimal trajectory in the Euler
problem (3.4)–(3.9). Then there exist a curve λt ∈ T ∗M , π(λt) = q(t),
t ∈ [0, t1], and a number ν ≤ 0 such that the following conditions hold for
almost all t ∈ [0, t1]:

λ̇t = �hν
u(t)(λt) = �h1(λt) + u(t)�h2(λt), (6.1)

hν
u(t)(λt) = max

u∈R

hν
u(λt), (6.2)

(ν, λt) 	= 0. (6.3)

Using the coordinates (h1, h2, h3, x, y, θ), we can write the Hamiltonian
system of the PMP (6.1) as follows:

ḣ1 = −uh3, (6.4)

ḣ2 = h3, (6.5)

ḣ3 = uh1, (6.6)

ẋ = cos θ, (6.7)

ẏ = sin θ, (6.8)

θ̇ = u. (6.9)

Note that the subsystem for the vertical coordinates (h1, h2, h3) (6.4)–(6.6)
is independent of the horizontal coordinates (x, y, θ); this is a consequence
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of the left-invariant symmetry of system (Σ) and of an appropriate choice
of the coordinates (h1, h2, h3) (see [2]).

As usual, the constant parameter ν can be either zero (the abnormal
case), or negative (the normal case, then one can normalize ν = −1).

6.2. Abnormal extremals. First, consider the abnormal case: let ν = 0.
The maximality condition of PMP (6.2) has the form:

hν
u(λ) = h1(λ) + uh2(λ) → max

u∈R

, (6.10)

and, therefore, h2(λt) ≡ 0 along an abnormal extremal λt. Then Eq. (6.5)
yields h3(λt) ≡ 0, and Eq. (6.6) gives u(t)h1(λt) ≡ 0. But in view of
the nontriviality condition of the PMP (6.3), we have h1(λt) 	= 0 and,
therefore, u(t) ≡ 0. Thus, abnormal extremal controls in the Euler problem
are identically zero. Note that these controls are singular since they are not
uniquely defined by the maximality condition of the PMP (6.10).

Now we find the abnormal extremal trajectories. For u ≡ 0, the horizon-
tal equations (6.7)–(6.9) have the form

q̇ = X1(q) ⇔

⎧
⎪⎨

⎪⎩

ẋ = cos θ,
ẏ = sin θ,
θ̇ = 0,

and the initial condition (x, y, θ)(0) = (0, 0, 0) gives

x(t) = t, y(t) ≡ 0, θ(t) ≡ 0.

The abnormal extremal trajectory through q0 = Id is the one-parameter
subgroup of the Lie group E(2) corresponding to the left-invariant field X1.
It is projected on the straight line (x, y) = (t, 0) in the plane (x, y). The
corresponding elastica is a straight line segment — the elastic rod without
any external forces applied. This is the trajectory connecting q0 with the
only attainable point q1 at the boundary of the attainable set Aq0(t1).

For u ≡ 0, the elastic energy is J = 0, the absolute minimum. Therefore,
the abnormal extremal trajectory q(t), t ∈ [0, t1], is optimal; it gives an
optimal solution for the boundary conditions q0 = (0, 0, 0), q1 = (t1, 0, 0).

Combining the description of abnormal controls just obtained with The-
orem 5.3, we obtain the following statement.

Theorem 6.2. For any q1 ∈ Aq0(t1), the corresponding optimal control
for the Euler problem (3.4)–(3.9) is essentially bounded.

6.3. Normal case. Now let ν = −1. The maximality condition of the
PMP (6.2) has the form

h−1
u = h1 + uh2 − 1

2
u2 → max

u∈R

,
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whence
∂ h−1

u

∂ u
= h2 − u = 0 and

u = h2. (6.11)

The corresponding normal Hamiltonian of the PMP is H = h1 +
1
2
h2

2, and
the normal Hamiltonian system of the PMP has the form

λ̇ = �H(λ) ⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ḣ1 = −h2h3,

ḣ2 = h3,

ḣ3 = h1h2,

q̇ = X1 + h2X2.

(6.12)

This system is analytic and, therefore, we obtain the following statement
(taking into account the analyticity in the abnormal case, see Sec. 6.2).

Theorem 6.3. All extremal (in particular, optimal) controls and trajec-
tories of the Euler problem are real-analytic.

Note that the vertical subsystem of the Hamiltonian system (6.12) admits
a particular solution (h1, h2, h3) ≡ (0, 0, 0) with the corresponding normal
control u = h2 ≡ 0. Thus, abnormal extremal trajectories are simultane-
ously normal, i.e., they are not strictly abnormal.

We define the exponential mapping for the problem

Expt1 : T ∗
q0
M →M, Expt1(λ0) = π ◦ et1 �H(λ0) = q(t1).

The vertical subsystem of system (6.12) has an obvious integral:

h2
1 + h2

3 ≡ r2 = const ≥ 0,

and it is natural to introduce the polar coordinates

h1 = r cosα, h3 = r sinα.

Then the normal Hamiltonian system (6.12) takes the following form:

α̇ = h2, ḣ2 = r sinα, ṙ = 0,

ẋ = cos θ, ẏ = sin θ, θ̇ = h2.
(6.13)

The vertical subsystem of the Hamiltonian system (6.13) is reduced to
the equation

α̈ = r sinα.

In the coordinates
c = h2, β = α+ π

we obtain the equation of the pendulum

β̇ = c, ċ = −r sinβ
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known as the Kirchhoff kinetic analog of elasticae. Note the physical mean-
ing of the constant:

r =
g

L
, (6.14)

where g is the gravitational acceleration and L is the length of the suspension
of the pendulum.

The total energy of the pendulum is

E =
c2

2
− r cosβ ∈ [−r,+∞), (6.15)

this is just the Hamiltonian H.
The equation of the mathematical pendulum is integrable in elliptic func-

tions. Consequently, the whole Hamiltonian system (6.13) is integrable in
quadratures: one can integrate first the vertical subsystem

⎧
⎪⎨

⎪⎩

ḣ1 = −h2h3,

ḣ2 = h3,

ḣ3 = h1h2

⇔

⎧
⎪⎨

⎪⎩

β̇ = c,

ċ = −r sinβ,
ṙ = 0

(6.16)

then the equation for θ, and then the equations for x, y. In Sec. 8, we find an
explicit parametrization of the normal extremals by the Jacobi elliptic func-
tions in terms of natural coordinates in the phase space of pendulum (6.16).

First, we apply continuous symmetries of the problem. The normal
Hamiltonian vector field has the form

�H = −h2h3
∂

∂ h1
+ h3

∂

∂ h2
+ h1h2

∂

∂ h3
+ cos θ

∂

∂ x
+ sin θ

∂

∂ y
+ h2

∂

∂ θ

= h2
∂

∂ α
+ r sinα

∂

∂ h2
+ cos θ

∂

∂ x
+ sin θ

∂

∂ y
+ h2

∂

∂ θ
.

The Hamiltonian system (6.13) is preserved by the one-parameter group of
transformations

(α, r, h2, x, y, θ, t) �→ (α, re−2s, h2e
−s, xes, yes, θ, tes) (6.17)

obtained by the continuation of the group of dilations of the plane
R

2
x,y (3.13) to the vertical coordinates.
The one-parameter group (6.17) is generated by the vector field

Z = −2r
∂

∂ r
− h2

∂

∂ h2
+ x

∂

∂ x
+ y

∂

∂ y
.

We have the Lie bracket and Lie derivatives

[Z, �H] = − �H, (6.18)

Zr = −2r, Zh2 = −h2, �Hr = 0, �Hh2 = r sinα. (6.19)
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The infinitesimal symmetry Z of the Hamiltonian field �H is integrated to
the symmetry at the level of flows:

et′ �H ◦ esZ(λ) = esZ ◦ et �H(λ), t′ = est, λ ∈ T ∗M.

The following decomposition of the preimage of the exponential mapping N
into invariant subsets of the fields �H and Z will be very important in the
sequel:

T ∗
q0
M = N =

7⋃

i=1

Ni, (6.20)

N1 = {λ ∈ N | r 	= 0, E ∈ (−r, r)}, (6.21)

N2 = {λ ∈ N | r 	= 0, E ∈ (r,+∞)} = N+
2 ∪N−

2 , (6.22)

N3 = {λ ∈ N | r 	= 0, E = r, β 	= π} = N+
3 ∪N−

3 , (6.23)

N4 = {λ ∈ N | r 	= 0, E = −r}, (6.24)

N5 = {λ ∈ N | r 	= 0, E = r, β = π}, (6.25)

N6 = {λ ∈ N | r = 0, c 	= 0} = N+
6 ∪N−

6 , (6.26)

N7 = {λ ∈ N | r = c = 0}, (6.27)

N±
i = Ni ∪ {λ ∈ N | sgn c = ±1}, i = 2, 3, 6. (6.28)

Any cylinder {λ ∈ N | r = const 	= 0} can be transformed to the cylinder
C = {λ ∈ N | r = 1} by the dilation Z; the corresponding decomposition
of the phase space of the standard pendulum

β̇ = c, ċ = − sinβ, (β, c) ∈ C = S1
β × Rc,

is shown in Fig. 3, where

Ci = Ni ∩ {r = 1}, i = 1, . . . , 5.

In order to integrate the normal Hamiltonian system

λ̇ = �H(λ),

i.e.,
β̇ = c, ċ = −r sinβ, ṙ = 0,

ẋ = cos θ, ẏ = sin θ, θ̇ = c,
(6.29)

we consider natural coordinates in the phase space of the pendulum.

7. Elliptic coordinates

7.1. Time of motion of the pendulum. Elliptic coordinates in the phase
cylinder of the standard pendulum

β̇ = c, ċ = − sinβ, (β, c) ∈ C = S1
β × Rc, (7.1)
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Fig. 2. Phase portrait of the pendulum.

Fig. 3. Decomposition of the phase cylinder of the pendulum.

were introduced in [30] for the integration and study of the nilpotent sub-
Riemannian problem with the growth vector (2, 3, 5). Here we propose a
more natural and efficient construction of these coordinates.

Denote
P = R+c × Rt, Ĉ = C1 ∪ C+

2 ∪ C+
3 ,

and consider the mapping

Φ : P → Ĉ, Φ : (c, t) �→ (βt, ct),
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where (βt, ct) is the solution of the equation of pendulum (7.1) with the
initial condition

β0 = 0, c0 = c. (7.2)

The mapping Φ : P → Ĉ is real-analytic since the equation of pendu-
lum (7.1) is a real-analytic ODE.

It is easy to show that Φ is a local diffeomorphism, see details in [34].
Denote by

k1 =

√
E + 1

2
=

√

sin2 β

2
+
c2

4
∈ (0, 1), (β, c) ∈ C1,

k2 =

√
2

E + 1
=

1
√

sin2 β

2
+
c2

4

∈ (0, 1), (β, c) ∈ C2,

a reparametrized energy (E =
c2

2
− cosβ) of the standard pendulum; below

k1, k2 play the role of the modulus for the Jacobi elliptic functions, and

K(k) =

π/2∫

0

dt
√

1 − k2 sin2 t
, k ∈ (0, 1),

is the complete elliptic integral of the first kind, see [22, 34]. It is well
known [22] that the standard pendulum (7.1) has the following period of
motion T depending on its energy E:

−1 < E < 1 ⇔ (β, c) ∈ C1 ⇒ T = 4K(k1), (7.3)

E = 1, β 	= π ⇔ (β, c) ∈ C3 ⇒ T = ∞, (7.4)

E > 1 ⇔ (β, c) ∈ C2 ⇒ T = 2K(k2)k2. (7.5)

Introduce the equivalence relation ∼ in the domain P as follows. For
(c1, t1) ∈ P and (c2, t2) ∈ P , we set (c1, t1) ∼ (c2, t2) iff c1 = c2 = c
and

t2 = t1 (mod 4K(k1)), k1 =
c

2
for c ∈ (0, 2),

t2 = t1 for c = 2,

t2 = t1 (mod 2K(k2)k2), k2 =
2
c

for c ∈ (2,+∞).

That is, we identify the points (c, t1), (c, t2) iff the corresponding solutions
of the equation of pendulum (7.1) with the initial condition (7.2) give the
same point (βt, ct) in the phase cylinder of the pendulum S1

β × Rc at the
instants t1 and t2.

Denote the quotient P̃ = P/ ∼. In view of the periodicity proper-
ties (7.3)–(7.5) of pendulum (7.1), the mapping

Φ : P̃ → Ĉ, Φ(c, t) = (βt, ct),
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is a global analytic diffeomorphism. Thus, there exists the inverse mapping,
an analytic diffeomorphism

F : Ĉ → P̃ , F (β, c) = (c0, ϕ), (7.6)

where ϕ is the time of motion of the pendulum in the reverse time from
a point (β, c) ∈ Ĉ to the semi-axis {β = 0, c = 0}. In the domains C1

and C+
2 , the time ϕ is defined modulo the period of the pendulum 4K(k1)

and 2K(k2)k2, respectively. We summarize the above construction in the
following proposition.

Theorem 7.1. There exists an analytic multivalued function

ϕ : Ĉ = C1 ∪ C+
2 ∪ C+

3 → R

such that for β0 = 0, c0 > 0, and the corresponding solution (βt, ct) of the
Cauchy problem (7.1), (7.2), the equality

ϕ(βt, ct) =

⎧
⎪⎨

⎪⎩

t (mod 4K(k1)) for (βt, ct) ∈ C1,

t for (βt, ct) ∈ C+
2 ,

t (mod 2K(k2)k2) for (βt, ct) ∈ C+
3

holds.

In other words, ϕ(βt, ct) is the time of motion of the pendulum in the
reverse time from the point (βt, ct) ∈ Ĉ to the semi-axis {β = 0, c > 0}.
7.2. Elliptic coordinates in the phase space of the pendulum. In
the domain C1∪C2∪C3, we introduce the elliptic coordinates (ϕ, k), where
ϕ is the time of motion of the pendulum from the semi-axis {β = 0, c > 0}
(in the domain Ĉ = C1 ∪ C+

2 ∪ C+
3 ) or from the semi-axis {β = 0, c < 0}

(in the domain C̃ = C−
2 ∪C−

3 ), and k ∈ (0, 1) is a reparametrized energy of
the pendulum — the modulus of the Jacobi elliptic functions.

7.2.1. Elliptic coordinates in C1. If (β, c) ∈ C1, then we set

sin
β

2
= k1 sn(ϕ, k1),

c

2
= k1 cn(ϕ, k1), cos

β

2
= dn(ϕ, k1), (7.7)

k1 =

√
E + 1

2
=

√

sin2 β

2
+
c2

4
∈ (0, 1), (7.8)

ϕ (mod 4K(k1)) ∈ [0, 4K(k1)].

Here and below, cn, sn, and dn are the Jacobi elliptic functions (see [22,34]).
The function ϕ defined in such way is indeed the time of motion of the

pendulum from the semi-axis {β = 0, c > 0} in view of the following:

(β = 0, c > 0) ⇒ ϕ = 0, (7.9)

dϕ

dt

∣
∣
∣
∣
Eq. (7.1)

= 1, (7.10)
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the total derivative with respect to the equation of pendulum (7.1).
The mapping (β, c) �→ (k, ϕ) is an analytic diffeomorphism since it is

decomposed into the chain of analytic diffeomorphisms:

(β, c)
(a)�→ (c0, ϕ)

(b)�→ (k1, ϕ),

where (a) is defined by F (7.6), while (b) is given by

k1 =

√
E + 1

2
=
c0
2

(cf. (7.8)).

7.2.2. Elliptic coordinates in C+
2 . Let (β, c) ∈ C+

2 . The elliptic coordinates
(ϕ, k1) in the domain C+

2 are analytic functions (ϕ, k1) defined as follows:
ϕ is the time of motion of the pendulum from the semi-axis {β = 0, c > 0},
and k1 =

E + 1
2

. By the uniqueness theorem for analytic functions, in the

domain C+
2 we have the same formulas as in C1:

sin
β

2
= k1 sn(ϕ, k1), (7.11)

c

2
= k1 cn(ϕ, k1), (7.12)

cos
β

2
= dn(ϕ, k1), (7.13)

k1 =

√
E + 1

2
∈ (1,+∞).

Here the Jacobi elliptic functions sn(u, k1), cn(u, k1), and dn(u, k1) for the
modulus k1 > 1 are obtained from the corresponding functions in the normal
case k1 ∈ (0, 1) by the analytic continuation along the complex modulus
k1 ∈ C through the complex plane around the singularity k1 = 1, see
Sec. 3.9 and Sec. 8.14 [22]. In order to obtain the Jacobi functions with
the modulus in the interval (0, 1), we apply the transformation of modulus

k �→ 1
k

by the formulas

sn
(

u,
1
k

)

= k sn
(u
k
, k
)
, cn

(

u,
1
k

)

= dn
(u
k
, k
)
, (7.14)

dn
(

u,
1
k

)

= cn
(u
k
, k
)
, E

(

u,
1
k

)

=
1
k

E
(u
k
, k
)
− 1 − k2

k2
u (7.15)

(see [22]). Transforming Eqs. (7.11)–(7.13) via formulas (7.14) and (7.15),
we obtain the following expressions for elliptic coordinates (ϕ, k2):

sin
β

2
= sn

(
ϕ

k2
, k2

)

,
c

2
=

1
k2

dn
(
ϕ

k2
, k2

)

, cos
β

2
= cn

(
ϕ

k2
, k2

)

,

(7.16)
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k2 =
1
k1

=

√
2

E + 1
∈ (0, 1).

Certainly, one can directly verify that ϕ is indeed the time of motion of
the standard pendulum from the point (β, c) to the semi-axis {β = 0, c > 0}
in the reverse time by verifying conditions (7.9) and (7.10) in the domain
C+

2 , but our idea is to obtain “for free” equalities in C+
2 from equalities in

C1 via the transformation of the modulus k �→ 1/k.

7.2.3. Elliptic coordinates in C+
3 . Let (β, c) ∈ C+

3 . Elliptic coordinates on
the set C+

3 are given by (ϕ, k = 1), where ϕ is the time of motion of the

pendulum from the semi-axis {β = 0, c > 0}, and k =

√
E + 1

2
= 1. The

analytic expressions for ϕ are obtained by passing to the limit k1 → 1 − 0
in formulas (7.7) or to the limit k2 → 1 − 0 in formulas (7.16), with the
use of formulas of degeneration of elliptic functions [22, 34]. As a result of
the both limit passages, we obtain the following expression for the elliptic
coordinate ϕ on the set C+

3 :

sin
β

2
= tanhϕ,

c

2
=

1
coshϕ

, cos
β

2
=

1
coshϕ

.

7.2.4. Elliptic coordinates in C−
2 ∪ C−

3 . For a point (β, c) ∈ C̃ = C−
2 ∪

C−
3 , the elliptic coordinates (ϕ, k) cannot be defined in the same way as in

Ĉ = C1 ∪ C+
2 ∪ C+

3 since such a point is not attainable along the flow of
pendulum (7.1) from the semi-axis {β = 0, c > 0}, see the phase portrait
in Fig. 2. Now we take the initial semi-axis {β = 0, c < 0}, and define ϕ in
C̃ equal to the time of motion of the pendulum from this semi-axis to the
current point. That is, for points (β, c) ∈ C̃ we consider the mapping

F (c, t) = (βt, ct), c < −2,
β0 = 0, c0 = c,

and construct the inverse mapping

Φ(β, c) = (c0, ϕ).

Pendulum (7.1) has an obvious symmetry — reflection with respect to
the origin (β = 0, c = 0):

i : (β, c) �→ (−β,−c). (7.17)

In view of this symmetry, we obtain:

Φ(β, c) = (c0, ϕ), (β, c) ∈ C−
2 ∪ C−

3 ,

Φ(−β,−c) = (−c0, ϕ), (−β,−c) ∈ C+
2 ∪ C+

3 ,

and, therefore,

ϕ(β, c) = ϕ(−β,−c), (β, c) ∈ C−
2 ∪ C−

3 .
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On the other hand, the energy of the pendulum E and the modulus of
elliptic functions k2 are preserved by reflection (7.17). Therefore, we have
the following formulas for elliptic functions in C̃.

(β, c) ∈ C−
2 ⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin
β

2
= − sn

(
ϕ

k2
, k2

)

,

c

2
= − 1

k2
dn
(
ϕ

k2
, k2

)

,

cos
β

2
= cn

(
ϕ

k2
, k2

)

,

(β, c) ∈ C−
3 ⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin
β

2
= − tanhϕ,

c

2
= − 1

coshϕ
,

cos
β

2
=

1
coshϕ

.

Summing up, in the domain C1 ∪ C2 ∪ C3 the elliptic coordinates (ϕ, k)
are defined as follows:

(β, c) ∈ C1 ⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sin
β

2
= k1 sn(ϕ, k1),

c

2
= k1 cn(ϕ, k1),

cos
β

2
= dn(ϕ, k1),

k1 =

√
E + 1

2
∈ (0, 1), ϕ (mod 4K(k1)) ∈ [0, 4K(k1)],

(β, c) ∈ C±
2 ⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin
β

2
= ± sn

(
ϕ

k2
, k2

)

,

c

2
= ± 1

k2
dn
(
ϕ

k2
, k2

)

,

cos
β

2
= cn

(
ϕ

k2
, k2

)

,

k2 =

√
2

E + 1
∈ (0, 1), ϕ (mod 2K(k2)k2) ∈ [0, 2K(k2)k2], ± = sgn c,

(β, c) ∈ C±
3 ⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin
β

2
= ± tanhϕ,

c

2
= ± 1

coshϕ
,

cos
β

2
=

1
coshϕ

,

k = 1, ϕ ∈ R, ± = sgn c.

A grid of elliptic coordinates in the phase cylinder of the standard pen-
dulum (R+ c × S1

β) is plotted in [34].
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7.3. Elliptic coordinates in the preimage of the exponential map-
ping. In the domain N̂ = N1∪N2∪N3 (recall decomposition (6.20)–(6.28)),
the vertical subsystem of the Hamiltonian system (6.12) has the form of the
generalized pendulum

β̇ = c, ċ = −r sinβ, ṙ = 0. (7.18)

Elliptic coordinates in the domain N̂ have the form (ϕ, k, r). On the set
N1 ∪ N+

2 ∪ N+
3 , the coordinate ϕ is equal to the time of motion of the

generalized pendulum (7.18) from a point (β = 0, c = c0 > 0, r) to a point
(β, c, r), while on the set N−

2 ∪N−
3 the time of motion is taken from a point

(β = 0, c = c0 < 0, r).
The one-parameter group of symmetries (β, c, r, t) �→ (β, ce−s, re−2s, tes)

of the generalized pendulum (7.18) is a restriction of the action of
group (6.17). We apply this group to transform the generalized pendu-
lum (7.18) in the domain {r > 0} to the standard pendulum (7.1) for r = 1.
This transformation preserves the integral of the generalized pendulum

k1 =

√
E + r

2r
=

√

sin2 β

2
+
c2

4r
.

Thus, we obtain the following expressions for elliptic coordinates in the
domain N̂ from similar expressions in the domain Ĉ (see Sec. 7.2):

λ = (β, c, r) ∈ N1 ⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sin
β

2
= k1 sn(

√
rϕ, k1),

c

2
= k1

√
r cn(

√
rϕ, k1),

cos
β

2
= dn(

√
rϕ, k1),

k1 =

√
E + r

2r
∈ (0, 1),

√
rϕ (mod 4K(k1)) ∈ [0, 4K(k1)],

λ = (β, c, r) ∈ N±
2 ⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin
β

2
= ± sn

(√
rϕ

k2
, k2

)

,

c

2
= ±

√
r

k2
dn
(√

rϕ

k2
, k2

)

,

cos
β

2
= cn

(√
rϕ

k2
, k2

)

,

k2 =

√
2r

E + r
∈ (0, 1),

√
rϕ (mod 2K(k2)k2) ∈ [0, 2K(k2)k2], ± = sgn c,

λ = (β, c, r) ∈ N±
3 ⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin
β

2
= ± tanh(

√
rϕ),

c

2
= ±

√
r

cosh(
√
rϕ)

,

cos
β

2
=

1
cosh(

√
rϕ)

,
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k = 1, ϕ ∈ R, ± = sgn c.

In the domain N2, it will also be convenient to use the coordinates
(k2, ψ, r), where

ψ =
ϕ

k2
,

√
rψ (mod 2K(k2)) ∈ [0, 2K(k2)].

In computations, if this does not lead to an ambiguity, we denote the both
moduli of the Jacobi functions k1 and k2 by k, noting that k ∈ (0, 1); this
is the normal case in the theory of the Jacobi elliptic functions (see [22]).

8. Integration of the normal Hamiltonian system

8.1. Integration of the vertical subsystem. In the elliptic coordinates
(ϕ, k, r) in the domain N̂ , the vertical subsystem (7.18) of the normal Hamil-
tonian system λ̇ = �H(λ) is rectified:

ϕ̇ = 1, k̇ = 0, ṙ = 0,

and, therefore, has the solutions

ϕt = ϕ+ t, k = const, r = const .

Then expressions for the vertical coordinates (β, c, r) are immediately given
by the formulas for elliptic coordinates found in Sec. 7.3. For λ ∈ N \ N̂ ,
the vertical subsystem is degenerated and is easily integrated. Thus, we
obtain the following description of the solution (βt, ct, r) of the vertical
subsystem (7.18) with the initial condition (βt, ct, r)|t=0 = (β, c, r):

λ ∈ N1 ⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sin
βt

2
= k1 sn(

√
rϕt),

cos
βt

2
= dn(

√
rϕt),

ct
2

= k1
√
r cn(

√
rϕt),

λ ∈ N±
2 ⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sin
βt

2
= ± sn

(√
rϕt

k

)

,

cos
βt

2
= cn

(√
rϕt

k

)

,

ct
2

= ±
√
r

k
dn
(√

rϕt

k

)

,

λ ∈ N±
3 ⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin
βt

2
= ± tanh(

√
rϕt),

cos
βt

2
=

1
cosh(

√
rϕt)

,

ct
2

= ±
√
r

cosh(
√
rϕt)

,

λ ∈ N4 ⇒ βt ≡ 0, ct ≡ 0,
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λ ∈ N5 ⇒ βt ≡ π, ct ≡ 0,
λ ∈ N6 ⇒ βt = ct+ β, ct ≡ c,

λ ∈ N7 ⇒ ct ≡ 0, r ≡ 0.

8.2. Integration of the horizontal subsystem. The Cauchy problem for
the horizontal variables (x, y, θ) of the normal Hamiltonian system (6.29)
has the form

ẋ = cos θ = 2 cos2
θ

2
− 1, x0 = 0,

ẏ = sin θ = 2 sin
θ

2
cos

θ

2
, y0 = 0,

θ̇ = c = β̇, θ0 = 0,

and, therefore,
θt = βt − β. (8.1)

We apply known formulas for integrals of the Jacobi elliptic functions
(see [22, 34]) and obtain the following parametrization of normal extremal
trajectories.

If λ ∈ N1, then

sin
θt

2
= k dn(

√
rϕ) sn(

√
rϕt) − k sn(

√
rϕ) dn(

√
rϕt),

cos
θt

2
= dn(

√
rϕ) dn(

√
rϕt) + k2 sn(

√
rϕ) sn(

√
rϕt),

xt =
2√
r

dn2(
√
rϕ)(E(

√
rϕt) − E(

√
rϕ))

+
4k2

√
r

dn(
√
rϕ) sn(

√
rϕ)(cn

√
rϕ) − cn(

√
rϕt))

+
2k2

√
r

sn2(
√
rϕ)(

√
rt+ E(

√
rϕ) − E(

√
rϕt)) − t,

yt =
2k√
r
(2 dn2(

√
rϕ) − 1)(cn(

√
rϕ) − cn(

√
rϕt))

− 2k√
r

sn(
√
rϕ) dn(

√
rϕ)(2(E(

√
rϕt) − E(

√
rϕ)) −√

rt).

Here E(u, k) is the Jacobi epsilon function (see [22,34]).
The parametrization of trajectories in N+

2 is obtained from the above

parametrization in N1 via the transformation k �→ 1
k

described in Sec. 7.2.4;

after this, trajectories in N−
2 are obtained via the reflection i (7.17). In the

domain N2, we will use the coordinate

ψt =
ϕt

k
.
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Then we obtain the following.
If λ ∈ N±

2 , then

sin
θt

2
= ±(cn(

√
rψ) sn(

√
rψt) − sn(

√
rψ) cn(

√
rψt)),

cos
θt

2
= cn(

√
rψ) cn(

√
rψt) + sn(

√
rψ) sn(

√
rψt),

xt =
1√
r
(1 − 2 sn2(

√
rψ))

(
2
k

(E(
√
rψt) − E(

√
rψ)) − 2 − k2

k2

√
rt

)

+
4

k
√
r

cn(
√
rψ) sn(

√
rψ)(dn(

√
rψ) − dn(

√
rψt)),

yt = ±
(

2
k
√
r
(2 cn2(

√
rψ) − 1)(dn(

√
rψ) − dn(

√
rψt))

− 2√
r

sn(
√
rψ) cn(

√
rψ)

(
2
k

(E(
√
rψt) − E(

√
rψ)) − 2 − k2

k2

√
rt

))

.

The formulas in N±
3 are obtained from the above formulas in N±

2 via the
limit k → 1 − 0.

Consequently, if λ ∈ N±
3 , then

sin
θt

2
= ±

(
tanh(

√
rϕt)

cosh(
√
rϕ)

− tanh
√
rϕ)

cosh(
√
rϕt)

)

,

cos
θt

2
=

1
cosh(

√
rϕ) cosh(

√
rϕt)

+ tanh(
√
rϕ) tanh(

√
rϕt),

xt = (1 − 2 tanh2(
√
rϕ))t

+
4 tanh(

√
rϕ)√

r cosh(
√
rϕ)

(
1

cosh(
√
rϕ)

− 1
cosh(

√
rϕt)

)

,

yt = ±
(

2√
r

(
2

cosh2 √rϕ)
− 1

)(
1

cosh(
√
rϕ)

− 1
cosh(

√
rϕt)

)

−2
tanh(

√
rϕ)

cosh(
√
rϕ)

t

)

.

Now we consider the special cases.
If λ ∈ N4 ∪N5 ∪N7, then

θt = 0, xt = t, yt = 0.

If λ ∈ N6, then

θt = ct, xt =
sin ct
c

, yt =
1 − cos ct

c
.

Thus, we parametrized the exponential mapping of the Euler elastic prob-
lem

Expt : λ = (β, c, r) �→ qt = (θt, xt, yt), λ ∈ N = T ∗
q0
M, qt ∈M,
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Fig. 4. E = ±r, r > 0, c = 0.

Fig. 5. E ∈ (−r, r), r > 0, k ∈ (0,
1√
2
).

by the Jacobi elliptic functions.

8.3. Euler elasticae. Projections of extremal trajectories on the plane
(x, y) are stationary configurations of the elastic rod in the plane — Euler
elasticae. These curves satisfy the system of ODEs

ẋ = cos θ, ẏ = sin θ, θ̈ = −r sin(θ − β), r, β = const . (8.2)

Depending on the value of energy E =
θ̇2

2
− r cos(θ − β) ∈ [−r,+∞) and

constants of motion r ∈ [0,+∞), β ∈ S1, of the generalized pendulum (8.2),
elasticae have different forms discovered by Euler.

If the energy E takes the absolute minimum −r 	= 0 and, therefore, λ ∈
N4, then the corresponding elastica (xt, yt) is a straight line (Fig. 4). The
corresponding motion of the generalized pendulum (the Kirchhoff kinetic
analog) is the stable equilibrium.
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Fig. 6. E ∈ (−r, r), r > 0, k =
1√
2
.

Fig. 7. E ∈ (−r, r), r > 0, k ∈ (
1√
2
, k0).

Fig. 8. E ∈ (−r, r), r > 0, k = k0.
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Fig. 9. E ∈ (−r, r), r > 0, k ∈ (k0, 1).

Fig. 10. E = r > 0, β 	= π.

Fig. 11. E > r > 0.

If E ∈ (−r, r), r 	= 0, and, therefore, λ ∈ N1, then the pendulum
oscillates between extremal values of the angle, and the angular velocity
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Fig. 12. r = 0, c 	= 0.

θ̇ changes its sign. The corresponding elasticae have inflections at the
points where θ̇ = 0 and vertices at the points where |θ̇| = max, since
θ̇ is the curvature of an elastica (xt, yt). Such elasticae are called inflec-
tional. See the plots of different classes of inflectional elasticae in Figs. 5–9.
The correspondence between the values of the modulus of elliptic functions

k =

√
E + r

2r
∈ (0, 1) and these figures is as follows:

k ∈
(

0,
1√
2

)

⇒ Fig. 5,

k =
1√
2

⇒ Fig. 6,

k ∈
(

1√
2
, k0

)

⇒ Fig. 7,

k = k0 ⇒ Fig. 8,

k ∈ (k0, 1) ⇒ Fig. 9.

The value k = 1/
√

2 corresponds to the rectangular elastica studied by
James Bernoulli (see Sec. 2). The value k0 ≈ 0.909 corresponds to the
periodic elastica in the form of figure-8 and is described below in Proposi-
tion 11.5. As was mentioned by Euler, as k → 0, the inflectional elasticae
tend to sinusoids. The corresponding Kirchhoff kinetic analog is provided
by the harmonic oscillator θ̈ = −r(θ − β).
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If E = r 	= 0 and θ − β 	= π and, therefore, λ ∈ N3, then the pendulum
approaches its unstable equilibrium (θ − β = π, θ̇ = 0) along the saddle
separatrix, and the corresponding critical elastica has one loop (see Fig. 10).

If E = r 	= 0 and θ − β = π and, therefore, λ ∈ N5, then the pendulum
stays at its unstable equilibrium (θ − β = π, θ̇ = 0), and the elastica is a
straight line (see Fig. 4).

If E > r 	= 0 and, therefore, λ ∈ N2, then the Kirchhoff kinetic analog
is the pendulum rotating counterclockwise (θ̇ > 0 ⇔ λ ∈ N+

2 ) or clock-
wise (θ̇ < 0 ⇔ λ ∈ N−

2 ). The corresponding elasticae have nonvanishing
curvature θ̇ and, therefore, they have no inflection points and are called
non-inflectional (see Fig. 11). The points where |θ̇| has local maxima or
minima are vertices of inflectional elasticae.

If r = 0 and θ̇ 	= 0 and, therefore, λ ∈ N6, then the pendulum rotates
uniformly: one may think that the gravitational acceleration is g = 0 (see
the physical meaning of the constant r (6.14)), while the angular velocity θ̇
is nonzero. The corresponding elastica is a circle (see Fig. 12).

Finally, if r = 0 and θ̇ = 0 and, therefore, λ ∈ N7, then the pendulum
is stationary (no gravity with zero angular velocity θ̇), and the elastica is a
straight line (see Fig. 4).

Note that the plots of elasticae in Figs. 5–11 do not preserve the real
ratio y/x for the sake of saving space.

9. Discrete symmetries of the Euler problem

In this section, we lift discrete symmetries of the standard pendulum (7.1)
to discrete symmetries of the normal Hamiltonian system

β̇ = c, ċ = −r sinβ, ṙ = 0,

θ̇ = c, ẋ = cos θ, ẏ = sin θ.
(9.1)

9.1. Reflections in the phase cylinder of the standard pendulum. It
is obvious that the following reflections of the phase cylinder of the standard
pendulum C = S1

β × Rc preserve the field of directions (although, not the
vector field) defined by the ODE of the standard pendulum (7.1):

ε1 : (β, c) �→ (β,−c),
ε2 : (β, c) �→ (−β, c),
ε3 : (β, c) �→ (−β,−c)

(see Fig. 13).
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Fig. 13. Reflections in the phase cylinder of the pendulum.

Fig. 14. Reflections of trajectories of the pendulum.

These reflections generate the dihedral group — the group of symmetries
of the rectangle D2 = {Id, ε1, ε2, ε3} with the multiplication table

ε1 ε2 ε3

ε1 Id ε3 ε2

ε2 ε3 Id ε1

ε3 ε2 ε1 Id

Note that the reflections ε1 and ε2 reverse the direction of time on tra-
jectories of the pendulum, while ε3 preserves the direction of time (in fact,
ε3 is the inversion i defined in (7.17)). All reflections εi preserve the energy

of the pendulum E =
c2

2
− cosβ.

9.2. Reflections of trajectories of the standard pendulum. We can
define the action of reflections on trajectories of the standard pendulum as
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follows:

εi : γs = {(βs, cs) | s ∈ [0, t]} �→ γi
s = {(βi

s, c
i
s) | s ∈ [0, t]},

where

(β1
s , c

1
s) = (βt−s,−ct−s), (9.2)

(β2
s , c

2
s) = (−βt−s, ct−s), (9.3)

(β3
s , c

3
s) = (−βs,−cs) (9.4)

(see Fig. 14).
All reflections εi map trajectories γs to trajectories γi

s; they preserve

both the total time of motion t and the energy E =
c2

2
− cosβ.

9.3. Reflections of trajectories of the generalized pendulum. The
action of reflections is obviously continued to trajectories of the general-
ized pendulum (7.18) — the vertical subsystem of the normal Hamiltonian
system (9.1) as follows:

εi : {(βs, cs, r) | s ∈ [0, t]} �→ {(βi
s, c

i
s, r) | s ∈ [0, t]}, i = 1, 2, 3, (9.5)

where the functions βi
s, c

i
s are given by (9.2)–(9.4). Then the reflections

εi preserve both the total time of motion t, the energy of the generalized

pendulum E =
c2

2
− r cosβ, and the elastic energy of the rod

J =
1
2

t∫

0

θ̇2s ds =
1
2

t∫

0

c2s ds.

9.4. Reflections of normal extremals. Now we define action of the re-
flections εi on the normal extremals

λs = es �H(λ0) ∈ T ∗M, s ∈ [0, t],

i.e., solutions of the Hamiltonian system

β̇s = cs, ċs = −r sinβs,

ṙ = 0, q̇s = X1(qs) + csX2(qs),
(9.6)

as follows:

εi : {λs | s ∈ [0, t]} �→ {λi
s | s ∈ [0, t]}, i = 1, 2, 3, (9.7)

λs = (νs, qs) = (βs, cs, r, qs), λi
s = (νi

s, q
i
s) = (βi

s, c
i
s, r, q

i
s). (9.8)

Here λi
s is a solution of the Hamiltonian system (9.6), and the action on the

vertical coordinates

εi : {νs = (βs, cs, r)} �→ {νi
s = (βi

s, c
i
s, r)}
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was defined in Sec. 9.3. The action of reflections on horizontal coordinates
(θ, x, y) is described in the next section.

9.5. Reflections of Euler elasticae. Here we describe the action of re-
flections on the normal extremal trajectories

εi : {qs = (θs, xs, ys) | s ∈ [0, t]} �→ {qi
s = (θi

s, x
i
s, y

i
s) | s ∈ [0, t]}.

Proposition 9.1. Let

λs = (βs, cs, r, qs), λi
s = εi(λs) = (βi

s, c
i
s, r, q

i
s), s ∈ [0, t],

be normal extremals defined in (9.7), (9.8). Then the following equalities
hold :

(1) θ1s = θt−s − θt,
(
x1

s

y1
s

)

=
(

cos θt sin θt

− sin θt cos θt

)(
xt − xt−s

yt − yt−s

)

,

(2) θ2s = θt − θt−s,
(
x2

s

y2
s

)

=
(

cos θt − sin θt

sin θt cos θt

)(
xt − xt−s

yt−s − yt

)

,

(3) θ3s = −θs,
(
x3

s

y3
s

)

=
(

xs

−ys

)

.

Proof. We prove only the formulas in item (1), the next two items are
studied similarly. By virtue of (8.1) and (9.2), we have

θ1s = β1
s − β1

0 = βt−s − βt = θt−s − θt.

Further,

x1
s =

s∫

0

cos θ1r dr =

s∫

0

cos(θt−r −θt) dr = cos θt(xt−xt−s)+sin θt(yt−yt−s)

and similarly

y1
s =

s∫

0

sin θ1r dr =

s∫

0

sin(θt−r −θt) dr = cos θt(yt−yt−s)− sin θt(xt−xt−s).

The proposition is proved.

Remark. Note the visual meaning of the action of the reflections εi on
the elastica {(xs, ys) | s ∈ [0, t]} in the case (xt, yt) 	= (x0, y0).

One can show that modulo inversion of time on elasticae and rotations
of the plane (x, y), we have:

• ε1 is the reflection of elastica in the center of its chord;
• ε2 is the reflection of elastica in the middle perpendicular to its chord;
• ε3 is the reflection of elastica in its chord

(see details in [34]).



206 YU. L. SACHKOV

9.6. Reflections of endpoints of extremal trajectories. Now we can
define the action of reflections in the state space M = R

2
x,y × S1

θ as the
action on endpoints of extremal trajectories:

εi : M →M, εi : qt �→ qi
t, (9.9)

as follows:

ε1 :

⎛

⎝
θt

xt

yt

⎞

⎠ �→
⎛

⎝
−θt

xt cos θt + yt sin θt

−xt sin θt + yt cos θt

⎞

⎠ , (9.10)

ε2 :

⎛

⎝
θt

xt

yt

⎞

⎠ �→
⎛

⎝
θt

xt cos θt + yt sin θt

xt sin θt − yt cos θt

⎞

⎠ , (9.11)

ε3 :

⎛

⎝
θt

xt

yt

⎞

⎠ �→
⎛

⎝
−θt

xt

−yt

⎞

⎠ . (9.12)

These formulas directly follow from Proposition 9.1. Note that the action
of reflections εi : M →M is well-defined in the sense that the image εi(qt)
depends only on the point qt, but not on the whole trajectory {qs | s ∈ [0, t]}.

9.7. Reflections as symmetries of the exponential mapping. The
action of reflections εi on the vertical subsystem of the normal Hamiltonian
system (9.5) defines the action of εi in the preimage of the exponential
mapping by restriction to the initial instant s = 0:

εi : ν = (β, c, r) �→ νi = (βi, ci, r),

where (β, c, r) = (β0, c0, r), (βi, ci, r) = (βi
0, c

i
0, r) are the initial points of

the curves νs = (βs, cs, r) and νi
s = (βi

s, c
i
s, r). The explicit formulas for

(βi, ci) are found from formulas (9.2)–(9.4):

(β1, c1) = (βt,−ct),
(β2, c2) = (−βt, ct),

(β3, c3) = (−β0,−c0).

Thus, we have the action of reflections in the preimage of the exponential
mapping:

εi : N → N, εi(ν) = νi, ν, νi ∈ N = T ∗
q0
M.

Since the both actions of εi in N and M are induced by the action of εi

on extremals λs (9.7), we obtain the following statement.
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Proposition 9.2. Reflections εi are symmetries of the exponential map-
ping Expt : N →M , i.e., the following diagram is commutative:

N
Expt ��

εi

��

M

εi

��
N

Expt �� M

ν � Expt ���

εi

��

qt�

εi

��
νi � Expt �� qi

t

9.8. Action of reflections in the preimage of the exponential map-
ping. In this section, we describe the action of reflections

εi : N → N, εi(ν) = νi,

in the elliptic coordinates (Sec. 7.3) in the preimage of the exponential
mapping N .

Proposition 9.3. (1) If ν = (k, ϕ, r) ∈ N1, then νi = (k, ϕi, r) ∈ N1

and

ϕ1 + ϕt =
2K√
r

(

mod
4K√
r

)

,

ϕ2 + ϕt = 0
(

mod
4K√
r

)

,

ϕ3 − ϕ =
2K√
r

(

mod
4K√
r

)

.

(2) If ν = (k, ψ, r) ∈ N2, then νi = (k, ψi, r) ∈ N2 and, moreover,

ν ∈ N±
2 ⇒ ν1 ∈ N∓

2 , ν2 ∈ N±
2 , ν3 ∈ N∓

2 , (9.13)

and

ψ1 + ψt = 0
(

mod
2K√
r

)

,

ψ2 + ψt = 0
(

mod
2K√
r

)

,

ψ3 − ψ = 0
(

mod
2K√
r

)

.

(3) If ν = (ϕ, r) ∈ N3, then νi = (ϕi, r) ∈ N3 and, moreover,

ν ∈ N±
3 ⇒ ν1 ∈ N∓

3 , ν2 ∈ N±
3 , ν3 ∈ N∓

3 ,

and
ϕ1 + ϕt = 0, ϕ2 + ϕt = 0, ϕ3 − ϕ = 0.

(4) If ν = (β, c, r) ∈ N6, then νi = (βi, ci, r) ∈ N6 and, moreover,

ν ∈ N±
6 ⇒ ν1 ∈ N∓

6 , ν2 ∈ N±
6 , ν3 ∈ N∓

6 , (9.14)
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and

(β1, c1) = (βt,−c), (β2, c2) = (−βt, c), (β3, c3) = (−β,−c). (9.15)

Proof. We prove only item (1) since the other items are proved similarly.
The reflections εi preserve the domain N1 since

εi : E �→ E, εi : r �→ r,

ε1, ε3 : c �→ −c, ε2 : c �→ c.

This follows from equalities (9.2)–(9.3). Further, we obtain from (9.2) that

θ1 = θt, c1 = −ct,
whence by virtue of the construction of elliptic coordinates (Sec. 7.3) it
follows that

sn(
√
rϕ1) = sn(

√
rϕt), cn(

√
rϕ1) = − cn(

√
rϕt)

and, therefore, ϕ1 + ϕt =
2K√
r

(

mod
4K√
r

)

. The expressions for the action

of the rest reflections in the elliptic coordinates are obtained similarly.

10. Maxwell strata

10.1. Optimality of normal extremal trajectories. Consider an ana-
lytic optimal control problem of the form:

q̇ = f(q, u), q ∈M, u ∈ U, (10.1)

q(0) = q0, q(t1) = q1, t1 fixed, (10.2)

Jt1 [q, u] =

t1∫

0

ϕ(q(t), u(t)) dt→ min . (10.3)

Here M and U are finite-dimensional analytic manifolds and f(q, u) and
ϕ(q, u) are an analytic vector field and a function depending on the control
parameter u, respectively. Let

hu(λ) = 〈λ, f(q, u)〉 − ϕ(q, u), λ ∈ T ∗M, q = π(λ) ∈M, u ∈ U,

be the normal Hamiltonian of the Pontryagin maximum principle for this
problem (see Sec. 6.1 and [2]). Suppose that all normal extremals λt of the
problem are regular, i.e., the strong Legendre condition is satisfied:

∂2

∂u2

∣
∣
∣
∣
u(t)

hu(λt) < −δ, δ > 0, (10.4)

for the corresponding extremal control u(t). Then the maximized Hamil-
tonian H(λ) = maxu∈U hu(λ) is analytic, and the exponential mapping

Expt : N = T ∗
q0
M →M, Expt(λ) = π ◦ et �H(λ) = q(t)

is defined for the time t.
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Fig. 15. Maxwell point qt.

Suppose that the control u maximizing the Hamiltonian hu(λ) is an an-
alytic function u = u(λ), λ ∈ T ∗M .

For covectors λ, λ̃ ∈ T ∗
q0
M , we denote the corresponding extremal trajec-

tories as follows:

qs = Exps(λ), q̃s = Exps(λ̃)

and the extremal controls as follows:

u(s) = u(λs), λs = es �H(λ),

ũ(s) = u(λ̃s), λ̃s = es �H(λ̃).

The time t Maxwell set in the preimage of the exponential mapping
N = T ∗

q0
M is defined as follows:

MAXt =
{
λ ∈ N | ∃ λ̃ ∈ N :

q̃s 	≡ qs, s ∈ [0, t], q̃t = qt, Jt[q, u] = Jt[q̃, ũ]
}
. (10.5)

The inclusion λ ∈ MAXt means that two distinct extremal trajectories
q̃s 	≡ qs with the same value of the cost functional Jt[q, u] = Jt[q̃, ũ] intersect
one another at the point q̃t = qt (see Fig. 15).

The point qt is called a Maxwell point of the trajectory qs, s ∈ [0, t1],
and the instant t is called a Maxwell time.

The Maxwell set is closely connected with the optimality of extremal
trajectories: such a trajectory cannot be optimal after a Maxwell point.
The following statement is a modification of a similar proposition proved
by S. Jacquet [15] in the context of sub-Riemannian problems.

Proposition 10.1. If a normal extremal trajectory qs, s ∈ [0, t1], admits
a Maxwell point qt, t ∈ (0, t1), then qs is not optimal in problem (10.1)–
(10.3).
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Proof. By contradiction, assume that the trajectory qs, s ∈ [0, t1], is opti-
mal. Then the broken curve

q′s =

{
q̃s, s ∈ [0, t],
qs, s ∈ [t, t1]

is an admissible trajectory of system (10.1) with the control

u′s =

{
ũ(s), s ∈ [0, t],
u(s), s ∈ [t, t1].

Moreover, the trajectory q′s is optimal in problem (10.1)–(10.3) since

Jt1 [q
′, u′] =

t1∫

0

ϕ(q′s, u
′(s)) ds =

t∫

0

ϕ(q′s, u
′(s)) ds+

t1∫

t

ϕ(q′s, u
′(s)) ds

=

t∫

0

ϕ(q̃s, ũ(s)) ds+

t1∫

t

ϕ(qs, u(s)) ds

= Jt[q̃, ũ] +

t1∫

t

ϕ(qs, u(s)) ds = Jt[q, u] +

t1∫

t

ϕ(qs, u(s)) ds

= Jt1 [q, u],

which is minimal since qs is optimal.
Therefore, the trajectory q′s is extremal, in particular, it is analytic. Thus,

the analytic curves qs and q′s coincide one with another on the segment
s ∈ [t, t1]. By the uniqueness theorem for analytic functions, these curves
must coincide everywhere: qs ≡ q′s, s ∈ [0, t1], and, therefore, qs ≡ q̃s,
s ∈ [0, t1], which contradicts the definition of the Maxwell point qt.

Maxwell points were successfully applied for the study of the optimality
of geodesics in several sub-Riemannian problems [1, 10, 28]. We will apply
this notion in order to obtain an upper bound on the cut time, i.e., the time,
where the normal extremals lose optimality (see [31–33] for a similar result
for the nilpotent sub-Riemannian problem with the growth vector (2, 3, 5)).

As was noted in the book of V. I. Arnold [5], the term Maxwell point
is originated “in connection with the Maxwell rule of the van der Waals
theory, according to which the phase transition takes place at a value of the
parameter for which two maxima of a certain smooth function are equal to
each other.”

10.2. Maxwell strata generated by reflections. We return to the Euler
elastic problem (3.4)–(3.9). It is easy to see that this problem has the form
(10.1)–(10.3) and satisfies all assumptions stated in the previous subsection,
and therefore, Proposition 10.1 holds for the Euler problem.
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Consider the action of reflections in the preimage of the exponential map-
ping:

εi : N → N, εi(λ) = λi,

and denote the corresponding extremal trajectories

qs = Exps(λ), qi
s = Exps(λ

i)

and extremal controls (6.11)

u(s) = cs, ui(s) = cis.

The Maxwell strata corresponding to reflections εi are defined as follows:

MAXi
t = {λ ∈ N | qi

s 	≡ qs, q
i
t = qt, Jt[q, u] = Jt[qi, ui]}, i = 1, 2, 3, t > 0.

(10.6)
It is obvious that

MAXi
t ⊂ MAXt, i = 1, 2, 3.

Remark. Along normal extremals we have

Jt[q, u] =
1
2

t∫

0

c2s ds.

In view of the expression for the action of reflections εi on trajectories of
pendulum (9.2)–(9.4), we have

Jt[qi, ui] = Jt[q, u], i = 1, 2, 3,

i.e., the last condition in the definition of the Maxwell stratum MAXt is
always satisfied.

10.3. Extremal trajectories preserved by reflections. In this section,
we describe the normal extremal trajectories qs such that qi

s ≡ qs. This
identity appears in the definition of Maxwell strata MAXi

t (10.6).

Proposition 10.2. (1) q1s ≡ qs ⇔ λ1 = λ.
(2) q2s ≡ qs ⇔ λ2 = λ or λ ∈ N6.
(3) q3s ≡ qs ⇔ λ3 = λ.

Proof. First, consider the chain

qi
s ≡ qs ⇒ θi

s ≡ θs ⇒ βi
s − βi

0 ≡ βs − β0, i = 1, 2, 3. (10.7)

(1) Let q1s ≡ qs. By equality (9.2), β1
s = βt−s and, therefore, we obtain

from (10.7) that
βt−s − βt ≡ βs − β0.

For s = t, we have βt = β0 and, therefore,

βt−s ≡ βs.
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Differentiating with respect to s and taking into account the equation of
generalized pendulum (7.18), we obtain

ct−s ≡ −cs.
In view of equality (9.2),

(β1
s , c

1
s) ≡ (βs, cs) ⇒ (β1, c1) = (β, c) ⇒ λ = λ1.

Conversely, if λ1 = λ, then q1s ≡ qs.
(2) Let q2s ≡ qs. In view of (9.3), β2

s = −βt−s and, therefore, (10.7) gives
the identity

−βt−s + βt ≡ βs − β0.

Differentiating twice with respect to the equation of generalized pendu-
lum (7.18), we obtain

ct−s ≡ cs ⇒ −r sinβt−s ≡ r sinβr

⇒ (βs ≡ β0 or βt−s ≡ −βs or r = 0).

If βs ≡ β0, then cs ≡ 0, which means that λ ∈ N4∪N5∪N7. If βt−s ≡ −βs,
then (β2

s , c
2
s) ≡ (βs, cs) and, therefore, λ2 = λ. Finally, the equality r = 0

means that λ ∈ N6 ∪N7. Thus, we have proved that

q2s ≡ qs ⇒ (λ2 = λ or λ ∈
7⋃

i=4

Ni).

But if λ ∈ N4 ∪ N5 ∪ N7, then βs ≡ 0 or π, cs ≡ 0 (see Sec. 8.1), and
equality (9.3) implies that (β2

s , c
2
s) = (βs, cs) and, therefore, λ2 = λ. The

implication ⇒ in item (2) follows. The reverse implication is directly veri-
fied.

(3) Let q3s ≡ qs. Equality (9.4) gives β3
s = −βs, and condition (10.7)

implies that βs ≡ β0. Then cs ≡ 0. Consequently, λ ∈ N4 ∪N5 ∪N7. But
if λ ∈ N4 ∪N5 ∪N7, then λ3 = λ by the argument used above in the proof
of item (2). The implication ⇒ in item (3) follows. The reverse implication
in item (3) is directly verified.

Proposition 10.2 means that the identity qi
s ≡ qs is satisfied in the fol-

lowing cases:
(a) λi = λ, the trivial case, or
(b) λ ∈ N6 for i = 2.

10.4. Multiple points of the exponential mapping. In this section,
we study solutions of the equations qi

t = qt related to the Maxwell strata
MAXi

t (10.6).
Recall that in Sec. 9.6, we have defined the action of reflections εi in the

state space M . We denote qi = εi(q), q, qi ∈M .



MAXWELL STRATA IN THE EULER ELASTIC PROBLEM 213

The following functions are defined on M = R
2
x,y × S1

θ up to a sign:

P = x sin
θ

2
− y cos

θ

2
, Q = x cos

θ

2
+ y sin

θ

2
,

although their zero sets {P = 0} and {Q = 0} are well defined.

Proposition 10.3. (1) q1 = q ⇔ θ = 0 (mod 2π);
(2) q2 = q ⇔ P = 0;
(3) q3 = q ⇔ (y = 0 and θ = 0 (mod π)).

Proof. We apply the formulas for the action of reflections εi in M obtained
in Sec. 9.6.

(1) Formula (9.10) means that

ε1 : (θ, x, y) �→ (−θ, x cos θ + y sin θ,−x sin θ + y cos θ),

which gives statement (1).
(2) Formula (9.11) has the form

ε2 : q = (θ, x, y) �→ q2 = (θ, x cos θ + y sin θ, x sin θ − y cos θ).

If (x, y) = (0, 0), then q2 = (θ, 0, 0) = q and P = 0 and, therefore, statement
(2) follows.

Suppose that (x, y) 	= (0, 0), then we can introduce polar coordinates:
x = ρ cosχ, y = ρ sinχ, ρ > 0. We have

q2 = q ⇔
{
x cos θ + y sin θ = x,

x sin θ − y cos θ = y

⇔
{

cosχ cos θ + sinχ sin θ = cosχ,
cosχ sin θ − sinχ cos θ = sinχ

⇔ cosχ sin
θ

2
− sinχ cos

θ

2
= 0 ⇔ P = 0,

and statement (2) is proved also in the case (x, y) 	= (0, 0).
(3) Formula (9.12) has the form

ε3 : q = (θ, x, y) �→ q3 = (−θ, x,−y),
and, therefore,

q3 = q ⇔
{
θ = −θ,
y = −y ⇔

{
θ = 0 (mod π),
y = 0.

The proposition is proved.

The visual meaning of the conditions qi
t = qt for the corresponding arcs

of Euler elasticae (xs, ys), s ∈ [0, t] in the case x2
t + y2

t 	= 0 is described
in [34].
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10.5. Fixed points of reflections in the preimage of the exponential
mapping. In order to describe fixed points of the reflections εi : N →
N , we use the elliptic coordinates (k, ϕ, r) in N introduced in Sec. 7.3.
Moreover, the following coordinate turns out to be very convenient:

τ =
√
r(ϕt + ϕ)

2
.

While the values
√
rϕ and

√
rϕt correspond to the initial and terminal

points of an elastic arc, their arithmetic mean τ corresponds to the midpoint
of the elastic arc.

Proposition 10.4. Let ν = (k, ϕ, r) ∈ N1, then νi = εi(ν) = (k, ϕi, r) ∈
N1. Moreover,

(1) ν1 = ν ⇔ cn τ = 0,
(2) ν2 = ν ⇔ sn τ = 0,
(3) ν3 = ν is impossible.

Proof. We apply Proposition 9.3. The inclusion νi ∈ N1 holds. Further,

ν1 = ν ⇔ ϕ1 = ϕ ⇔ ϕ+ ϕt =
2K√
r

(

mod
4K√
r

)

⇔ τ = K (mod 2K) ⇔ cn τ = 0,

ν2 = ν ⇔ ϕ2 = ϕ ⇔ ϕ+ ϕt = 0
(

mod
4K√
r

)

⇔ τ = 0 (mod 2K) ⇔ sn τ = 0,

ν3 = ν ⇔ ϕ3 = ϕ ⇔ 0 =
2K√
r

(

mod
4K√
r

)

,

which is impossible.

Note the visual meaning of fixed points of the reflections εi : N1 → N1 for
standard pendulum (7.1) in the cylinder (β, c), and for the corresponding
inflectional elasticae, see the corresponding figures in [34]. The equality
cn τ = 0 is equivalent to c = 0, these are inflection points of elasticae (zeros
of their curvature c). The equality sn τ = 0 is equivalent to β = 0, these are
vertices of elasticae (extrema of their curvature c).

In the domain N2, we use the convenient coordinate

τ =
√
r(ψ + ψt)

2
corresponding to the midpoint of a non-inflectional elastic arc.

Proposition 10.5. Let ν = (k, ψ, r) ∈ N2, then νi = εi(ν) = (k, ψi, r) ∈
N2. Moreover :

(1) ν1 = ν is impossible;
(2) ν2 = ν ⇔ sn τ cn τ = 0;
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(3) ν3 = ν is impossible.

Proof. We apply Proposition 9.3. The inclusion νi ∈ N2 holds. Implica-
tion (9.13) yields items (1) and (3). We prove item (2):

ν2 = ν ⇔ ψ2 = ψ ⇔ ψ + ψt = 0
(

mod
2K√
r

)

⇔ τ = 0 (mod K) ⇔ sn τ cn τ = 0.

The proposition is proved.

Note the visual meaning of the fixed points of the reflections εi : N2 →
N2. The equality sn τ cn τ = 0 is equivalent to the equalities β = 0 (mod π),
|c| = max, min, these are vertices of non-inflectional elasticae (local extrema
of their curvature c).

Similarly to the previous cases, in the set N3 we use the parameter

τ =
√
r(ϕt + ϕ)

2
.

Proposition 10.6. Let ν = (ϕ, r) ∈ N3, then νi = εi(ν) = (ϕi, r) ∈ N3.
Moreover :

(1) ν1 = ν is impossible;
(2) ν2 = ν ⇔ τ = 0;
(3) ν3 = ν is impossible.

The proof is similar to the proof of Proposition 10.5.
The visual meaning of fixed points of the reflection ε2 : N3 → N3: the

equality τ = 0 means that β = 0, |c| = max, these are vertices of critical
elasticae.

Proposition 10.7. Let ν = (β, c, r) ∈ N6, then νi = εi(ν) = (βi, ci, r) ∈
N6. Moreover :

(1) ν1 = ν is impossible;
(2) ν2 = ν ⇔ 2β + ct = 0 (mod 2π);
(3) ν3 = ν is impossible.

Proof. Items (1) and (3) follow from implication (9.14). Item (2) follows
from (9.15) and the formula βt = β0 + ct (see Sec. 8.1).

10.6. General description of the Maxwell strata generated by re-
flections. Now we summarize our computations of Maxwell strata corre-
sponding to reflections.

Theorem 10.1. (1) Let ν = (k, ϕ, r) ∈ N1. Then:

(1.1) ν ∈ MAX1
t ⇔

{
ν1 	= ν,

q1t = qt
⇔

{
cn τ 	= 0,
θt = 0;
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(1.2) ν ∈ MAX2
t ⇔

{
ν2 	= ν,

q2t = qt
⇔

{
sn τ 	= 0,
Pt = 0;

(1.3) ν ∈ MAX3
t ⇔

{
ν3 	= ν,

q3t = qt
⇔

{
yt = 0,
θt = 0 or π.

(2) Let ν = (k, ψ, r) ∈ N2. Then:

(2.1) ν ∈ MAX1
t ⇔

{
ν1 	= ν,

q1t = qt
⇔ θt = 0;

(2.2) ν ∈ MAX2
t ⇔

{
ν2 	= ν,

q2t = qt
⇔

{
sn τ cn τ 	= 0,
Pt = 0;

(2.3) ν ∈ MAX3
t ⇔

{
ν3 	= ν,

q3t = qt
⇔

{
yt = 0,
θt = 0 or π.

(3) Let ν = (ϕ, r) ∈ N3. Then:

(3.1) ν ∈ MAX1
t ⇔

{
ν1 	= ν,

q1t = qt
⇔ θt = 0;

(3.2) ν ∈ MAX2
t ⇔

{
ν2 	= ν,

q2t = qt
⇔

{
τ 	= 0,
Pt = 0;

(3.3) ν ∈ MAX3
t ⇔

{
ν3 	= ν,

q3t = qt
⇔

{
yt = 0,
θt = 0 or π.

(4) MAXi
t ∩Nj = ∅ for i = 1, 2, 3, j = 4, 5, 7.

(6) Let ν ∈ N6. Then:

(6.1) ν ∈ MAX1
t ⇔

{
ν1 	= ν,

q1t = qt
⇔ θt = 0;

(6.2) ν ∈ MAX2
t is impossible;

(6.3) ν ∈ MAX3
t ⇔

{
ν3 	= ν,

q3t = qt
⇔

{
yt = 0,
θt = 0 or π.

Proof. In view of the remark after the definition of Maxwell strata (10.6)
and Proposition 10.2, we have

MAXi
t = {ν ∈ N | νi 	= ν, qi

t = qt}, i = 1, 3,

MAX2
t ∩Nj = {ν ∈ Nj | ν2 	= ν, q2t = qt}, j 	= 6,

MAX2
t ∩N6 = ∅.

This proves the first implication in items (1.1)–(3.3). The second implication
in these items directly follows by combination of Propositions 10.4, 10.5,
and 10.6 with Proposition 10.3. Therefore, items (1)–(3) follow.

In the case ν ∈ N4 ∪ N5 ∪ N7 the corresponding extremal trajectory is
(xs, ys, θs) = (s, 0, 0), which is globally optimal since elastic energy of the
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straight segment is J = 0. By Proposition 10.1, there are no Maxwell points
in this case.

Finally, let ν ∈ N6. Items (6.1) and (6.2) follow by combination of
Proposition 10.7 with Proposition 10.3. Item (6.2) was already obtained
in (10.8) from item (2) of Proposition 10.2.

Remark. Items (1.3), (2.3), (3.3.), (4), and (6.3) of Theorem 10.1 show
that the Maxwell stratum MAX3

t admits a decomposition into two disjoint
subsets:

MAX3
t = MAX3+

t ∪MAX3−
t , MAX3+

t ∩MAX3−
t = ∅,

ν ∈ MAX3+
t ⇔

{
yt = 0,
θt = 0,

ν ∈ MAX3−
t ⇔

{
yt = 0,
θt = π.

In order to obtain a complete description of the Maxwell strata MAXi
t,

in the next section we solve the equations that determine these strata and
appear in Theorem 10.1.

11. Complete description of Maxwell strata

11.1. Roots of the equation θ = 0. In this section, we solve the equation
θt = 0 that determines the Maxwell stratum MAX1

t (see Theorem 10.1).

We denote by
[
A
B

the condition A ∨ B in contrast to

{
A

B
, which

denotes the condition A ∧B.

Proposition 11.1. Let ν = (k, ϕ, r) ∈ N1, then

θt = 0 ⇔
[
p = 2Kn, n ∈ Z,
cn τ = 0,

where p =
√
r(ϕt − ϕ)

2
and τ =

√
r(ϕt + ϕ)

2
.

Proof. We have

θt = 0 ⇔ βt

2
=
β0

2
(mod π) ⇔

{
sn(

√
rϕt) = sn(

√
rϕ),

dn(
√
rϕt) = dn(

√
rϕ)

⇔
[ √

rϕt =
√
rϕ (mod 4

√
rK)√

rϕt = 2
√
rK −√

rϕ (mod 4
√
rK)

⇔
[
p = 2Kn, n ∈ Z

cn τ = 0.

The proposition is proved.
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Proposition 11.2. Let ν = (k, ψ, r) ∈ N2, then

θt = 0 ⇔ p = Kn, n ∈ Z,

where p =
√
r(ψt − ψ)

2
.

Proof. Let ν ∈ N+
2 , then

θt = 0 ⇔ βt

2
=
β0

2
(mod π) ⇔

{
sn(

√
rψt) = ± sn(

√
rψ),

cn(
√
rψt) = ± cn(

√
rψ)

⇔
[
p = 0 (mod 2K)
p = K (mod 2K) ⇔ p = Kn, n ∈ Z.

If ν ∈ N−
2 , then the same result is obtained by the inversion i : N+

2 → N−
2 .

Proposition 11.3. Let ν ∈ N3, then

θt = 0 ⇔ t = 0.

Proof. The proof is similar to that of Proposition 11.2 (see details in [34]).

Proposition 11.4. Let ν ∈ N6. Then

θt = 0 ⇔ ct = 2πn, n ∈ Z.

Proof. We have θt = ct in the case ν ∈ N6.

11.2. Roots of the equation P = 0 for ν ∈ N1. Using the coordinates

τ =
√
r(ϕt + ϕ)

2
=

√
r

(

ϕ+
t

2

)

, p =
√
r(ϕt − ϕ)

2
=

√
rt

2
, (11.1)

and the addition formulas for the Jacobi functions (see [22, 34]), we obtain
the following in the case ν ∈ N1:

Pt =
4k sn τ dn τf1(p, k)√

rΔ
, ν ∈ N1,

f1(p, k) = sn pdn p− (2E(p) − p) cn p,

Δ = 1 − k2 sn2 p sn2 τ.

(11.2)

In order to describe roots of the equation f1(p) = 0, we need the following
statements. We denote by E(k) and K(k) the complete elliptic integrals of
the first and second kinds respectively (see [22,34]).

Proposition 11.5 (see [33, Lemma 2.1]). The equation

2E(k) −K(k) = 0, k ∈ [0, 1),

has a unique root k0 ∈ (0, 1). Moreover,

k ∈ [0, k0) ⇒ 2E −K > 0,
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k ∈ (k0, 1) ⇒ 2E −K < 0.

Note that for k = 1/
√

2 we have

K =
1

4
√
π

(

Γ
(

1
4

))2

, E =
2K2 + π

4K
⇒ 2E −K =

π

2K
> 0 (11.3)

(see [22, p. 89, Chap. 3, Exercise 24]). Thus,
1√
2
< k0 < 1. (11.4)

Numerical simulations show that k0 ≈ 0.909. To the value k = k0, there
corresponds the periodic Euler elastica in the form of figure-8 (see Fig. 8).

Proposition 11.6 (see [33, Proposition 2.1]). For any k ∈ [0, 1), the
function

f1(p, k) = sn pdn p− (2E(p) − p) cn p
has a countable number of roots p1

n, n ∈ Z. These roots are odd in n:

p1
−n = −p1

n, n ∈ Z;

in particular, p1
0 = 0. The roots p1

n are localized as follows:

p1
n ∈ (−K + 2Kn, K + 2Kn), n ∈ Z.

In particular, the roots p1
n are monotone in n:

p1
n < p1

n+1, n ∈ Z.

Moreover, for n ∈ N

k ∈ [0, k0) ⇒ p1
n ∈ (2Kn,K + 2Kn),

k = k0 ⇒ p1
n = 2Kn,

k ∈ (k0, 1) ⇒ p1
n ∈ (−K + 2Kn, 2Kn),

where k0 is the unique root of the equation 2E(k)−K(k) = 0 (see Proposi-
tion 11.5).

Proposition 11.7 (see [33, Corollary 2.1]). The first positive root p =
p1
1 of the equation f1(p) = 0 is localized as follows:

k ∈ [0, k0) ⇒ p1
1 ∈ (2K, 3K),

k = k0 ⇒ p1
1 = 2K,

k ∈ (k0, 1) ⇒ p1
1 ∈ (K, 2K).

Now we can obtain the following description of roots of the equation
Pt = 0 for ν ∈ N1.

Proposition 11.8. Let ν ∈ N1. Then

Pt = 0 ⇔
[
f1(p) = 0,
sn τ = 0 ⇔

[
p = p1

n, n ∈ Z,
sn τ = 0.
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Proof. Apply Eq. (11.2) and Proposition 11.6.

11.3. Roots of the equation P = 0 for ν ∈ N2. In order to find the
expression for Pt in the case ν ∈ N+

2 , we apply the transformation of the
Jacobi functions k �→ 1/k (see Sec. 7.2.2 and (7.14) and (7.15)) to Eq. (11.2):

Pt =
4k1 sn(τ1, k1) dn(τ1, k1)f1(p1, k1)√
r(1 − k2

1 sn2(p1, k1) sn2(τ1, k1))
, ν ∈ N1, k1 ∈ (0, 1),

τ1 =
√
r(ϕt + ϕ)

2
, p1 =

√
r(ϕt − ϕ)

2
.

(11.5)

The both sides of Eq. (11.5) are analytic single-valued functions of the
elliptic coordinates (k1, ϕ, r) and, therefore, this equality is preserved after
an analytic continuation to the domain k1 ∈ (1,+∞), i.e., ν ∈ N+

2 .
Denote k2 = 1/k1, then the formulas for the transformation k �→ 1/k of

the Jacobi functions (7.14) and (7.15) yield the following:

Pt =
4

1
k2

sn(τ1,
1
k2

) cn(τ1,
1
k2

)f1(p1,
1
k2

)

√
r(1 − 1

k2
2

sn2(p1,
1
k2

) sn2(τ1,
1
k2

))

=
4 sn(τ2, k2) cn(τ2, k2)f2(p2, k2)√
r(1 − k2

2 sn2(p2, k2) sn2(τ2, k2))
,

where

τ2 =
τ1
k2

=
√
r(ϕt + ϕ)

2k2
=

√
r(ψt + ψ)

2
, (11.6)

p2 =
p1

k2
=

√
r(ϕt − ϕ)

2k2
=

√
r(ψt − ψ)

2
, (11.7)

and

f2(p2, k2) =
1
k2

[k2
2 sn(p2, k2) cn(p2, k2)

+ dn(p2, k2)((2 − k2
2)p2 − 2E(p2, k2))].

Summing up, we have

Pt =
4 sn τ cn τf2(p, k)√

rΔ
, ν ∈ N+

2 ,

f2(p, k) =
1
k

[k2 sn p cn p+ dn p((2 − k2)p− 2E(p))],

τ =
√
r(ψt + ψ)

2
, p =

√
r(ψt − ψ)

2
, Δ = 1 − k2 sn2 p sn2 τ.

We will need the following statement.

Proposition 11.9 (see [33, Proposition 3.1]). The function f2(p) has
no roots p 	= 0.
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Proposition 11.10. Let ν ∈ N2. Then

Pt = 0 ⇔
[
p = 0
sn τ cn τ = 0.

Proof. In the case ν ∈ N+
2 , we obtain from (11.8) and Proposition 11.9:

Pt = 0 ⇔
[
f2(p) = 0
sn τ cn τ = 0 ⇔

[
p = 0
sn τ cn τ = 0.

The case ν ∈ N−
2 is obtained by the inversion i : N+

2 → N−
2 :

Pt = −4 sn τ cn τf2(p, k)√
rΔ

, ν ∈ N−
2 (11.8)

(see details in [34]), and the statement for the case ν ∈ N−
2 is proved.

11.4. Roots of the equation P = 0 for ν ∈ N3. Passing to the limit
k → 1 − 0 in Eqs. (11.8) and (11.8), we obtain the following:

Pt = ± 4 tanh τf2(p, 1)√
r cosh τ(1 − tanh2 p tanh2 τ)

, ν ∈ N±
3 , (11.9)

p =
√
r(ϕt − ϕ)

2
, τ =

√
r(ϕt + ϕ)

2
, (11.10)

f2(p, 1) = lim
k→1−0

f2(p, k) =
2p− tanh p

cosh p
. (11.11)

Proposition 11.11. Let ν ∈ N3. Then

Pt = 0 ⇔
[
p = 0
τ = 0.

Proof. We have

(2p− tanh p)′ = 2 − 1
cosh2 p

> 1

and, therefore,

f2(p, 1) = 0 ⇔ 2p− tanh p = 0 ⇔ p = 0,

and the statement follows from (11.9).

11.5. Roots of the equation P = 0 for ν ∈ N6.

Proposition 11.12. If ν ∈ N6, then Pt ≡ 0.

Proof. We have

Pt = xt sin
θt

2
− yt cos

θt

2
=

1
c

sin ct sin
ct

2
− 1
c
(1 − cos ct) cos

ct

2
≡ 0.

The proposition is proved.

The visual meaning of this proposition is simple: an arc of a circle has
the same angles with its chord at the initial and terminal points.
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11.6. Roots of the system y = 0, θ = 0. Note that
{
θt = 0,
yt = 0

⇔
⎧
⎨

⎩

θt = 0,

Pt = xt sin
θt

2
− yt cos

θt

2
= 0,

therefore, we can replace the first system by the second one and use our
previous results for equations θt = 0 and Pt = 0.

Proposition 11.13. Let ν ∈ N1. Then
{
θt = 0,
Pt = 0

⇔
⎡

⎣
k = k0, p = 2Kn,
p = p1

n, cn τ = 0,
p = 2Kn, sn τ = 0,

n ∈ Z.

Proof. By virtue of Propositions 11.1 and 11.8, we have
{
θt = 0,
Pt = 0

⇔
{
p = 2Km or cn τ = 0,
p = p1

n or sn τ = 0

⇔
{
p = 2Km,
p = p1

n,
or

{
cn τ = 0,
p = p1

n,

or

{
p = 2Km,
sn τ = 0,

or

{
cn τ = 0,
sn τ = 0.

By Proposition 11.6,
{
p = 2Km,
p = p1

n

⇔ p = p1
n = 2Kn ⇔

{
k = k0,

p = 2Kn.

Now it remains to note that the system cn τ = 0, sn τ = 0 is incompatible,
and the proof is complete.

Proposition 11.14. Let ν ∈ N2. Then
{
θt = 0,
Pt = 0

⇔
[
p = Kn, τ = Km,
p = 0, n,m ∈ Z.

Proof. Taking into account Propositions 11.2 and 11.10, we obtain
{
θt = 0,
Pt = 0

⇔
{
p = Kn,

p = 0 or τ = Km
⇔

[
p = Kn, τ = Km,
p = 0.

The proposition is proved.

Proposition 11.15. Let ν ∈ N3. Then
{
θt = 0,
Pt = 0

⇔ t = 0.

Proof. The proof immediately follows from Propositions 11.3 and 11.11.
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Proposition 11.16. Let ν ∈ N6. Then
{
θt = 0,
Pt = 0

⇔ ct = 2πn, n ∈ Z.

Proof. The proof immediately follows from Propositions 11.4 and 11.12.

11.7. Roots of the system y = 0, θ = π for ν ∈ N1. The structure of
solutions of the system yt = 0, θt = π is much more complicated than that
of the system yt = 0, θt = 0 studied above.

First, for any normal extremal
{
θt = 0,
yt = π

⇔

⎧
⎪⎨

⎪⎩

cos
θt

2
= 0,

Qt = xt cos
θt

2
+ yt sin

θt

2
= 0.

(11.12)

From now on, we suppose in this subsection that ν ∈ N1.
In the same way as at the beginning of Sec. 11.2, in the coordinates τ

and p given by (11.1) we obtain

cos
θt

2
= (dn2 p− k2 sn2 p cn2 τ)(dn2 τ + k2 cn2 p sn2 τ)/Δ2

= (1 − 2k2 sn2 p+ k2 sn2 p sn2 τ)(dn2 τ + k2 cn2 p sn2 τ)/Δ2,

Qt = 2E(p) − p+ k2 sn2 τ(2 cn p sn pdn p− (2E(p) − p)(2 − sn2 p)).

Thus,

cos
θt

2
= 0 ⇔ sn2 τ = (2k2 sn2 p− 1)/(k2 sn2 τ).

Substituting this value for sn2 τ into Qt, we get rid of the variable τ in the
second equation in (11.12):

Qt|sn2 τ=(2k2 sn2 p−1)/(k2 sn2 τ) =
2

sn2 p
g1(p, k),

g1(p, k) = (1 − k2 + k2 cn4 p)(2E(p) − p)

+ cn p sn pdn p(2k2 sn2 p− 1).

(11.13)

As a consequence, we obtain the following statement (see details in [34]).

Proposition 11.17. Let ν ∈ N1. Then
{
θt = π,

yt = 0
⇔

{
sn2 τ = (2k2 sn2 p− 1)/(k2 sn2 τ),
g1(p, k) = 0.

(11.14)

Now we study the solvability of the second system in (11.14) and describe
its solutions in the domain {p ∈ (0, 2K)}. For the study of the global
optimality of normal extremal trajectories, it is essential to know the first
Maxwell point. By Proposition 11.1, the first Maxwell point corresponding
to ε1 occurs at p = 2K and, therefore, for the study of the global optimal
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control problem we can restrict ourselves by the domain {p ∈ (0, 2K)}. As
concerns the local problem, in the forthcoming paper [35] we show that
only the Maxwell strata MAX1

t , MAX2
t , but not MAX3

t are important for
the local optimality. But for the global problem, the stratum MAX3

t is
very important: in fact, extremal trajectories lose global optimality on this
stratum, i.e., MAX3

t provides a part of the cut locus [35,36].
The second system in (11.14) is compatible iff the equation g1(p, k) = 0

has solutions (p, k) such that

0 ≤ 2k2 sn2 p− 1
k2 sn2 p

≤ 1,

or, which is equivalent,
2k2 sn2 p− 1 ≥ 0. (11.15)

After the change of variable

p = F (u, k) =

u∫

0

dt
√

1 − k2 sin2 t
⇔ u = am(p, k), (11.16)

where am(p, k) is the Jacobi amplitude (see [22,34]), we obtain

g1(p, k) = h1(u, k),

h1(u, k) = (1 − k2 + k2 cos4 u)(2E(u, k) − F (u, k))

+ cosu sinu
√

1 − k2 sin2 u(2k2 sin2 u− 1). (11.17)

Denote

h2(u, k) =
h1(u, k)

1 − k2 + k2 cos4 u
= 2E(u, k) − F (u, k)

+
cosu sinu

√
1 − k2 sin2 u(2k2 sin2 u− 1)

1 − k2 + k2 cos4 u
; (11.18)

a direct computation yields

∂ h2

∂ u
=

sin2 u
√

2 − k2 + k2 cos 2u
4
√

2(1 − k2 + k2 cos4 u)2
a1(u, k), (11.19)

a1(u, k) = c0 + c1 cos 2u+ c2 cos2 2u, (11.20)

c0 = 8 − 10k2 + 4k4, c1 = 4k2(3 − 2k2), c2 = 2k2(2k2 − 1).

One can prove the following statement.

Proposition 11.18. (1) The set
{

(u, k) ∈ R ×
[

1√
2
, 1
]

| a1(u, k) = 0
}

is a smooth curve.
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(2) There exists a function

ua1 :
[

1√
2
, 1
]

→
(π

4
,
π

2

]
, u = ua1(k),

such that

k =
1√
2
, 1 ⇒ ua1(k) =

π

2
,

k ∈
(

1√
2
, 1
)

⇒ ua1(k) ∈
(π

4
,
π

2

)
,

and for k =
1√
2
, 1,

a1(u, k) = 0 ⇔ u = ua1(k) + πn =
π

2
+ πn, (11.21)

while for k ∈
(

1√
2
, 1
)

,

a1(u, k) = 0 ⇔
[
u = ua1(k) + 2πn
u = π − ua1(k) + 2πn. (11.22)

Moreover,

ua1 ∈ C

[
1√
2
, 1
]

∩ C∞
(

1√
2
, 1
)

. (11.23)

Proof. The proof follows from the implicit function theorem (see details
in [34]).

Similarly to Proposition 11.18, one can prove the following statement.

Lemma 11.1. There exist numbers k∗ ∈
(

1√
2
, k0

)

, u∗ ∈
(
π

2
,
3π
4

)

and

a function

uh1 : [k∗, 1] →
(
π

2
,
3π
4

)

such that for k ∈ [k∗, 1], u ∈ (0, π − ua1(k)),

h1(u, k) = 0 ⇔ u = uh1(k).

Moreover, uh1 ∈ C[k∗, 1] ∩ C∞(k∗, 1) and uh1(k∗) = u∗ and uh1(k0) =
u(1) = π/2.

Numerical simulations give k∗ ≈ 0.841 and u∗ ≈ 1.954 (see a plot of the
elastica corresponding to k = k∗ in [34]).

Lemma 11.1 describes the first solutions of the equation h1(u, k) = 0 in
u for k ∈ [k∗, 1].

Proposition 11.19. Let the function g1(p, k) be given by (11.13).
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(1) The set

γg1 = {(p, k) | k ∈ (0, 1), p ∈ (0, 2K(k)), g1(p, k) = 0}
is a smooth connected curve.

(2) The curve γg1 does not intersect the domain

{(p, k) | k ∈ (0, k∗), p ∈ (0, 2K(k))}.
(3) The function

p = pg1(k) = F (u1(k), k), pg1 ∈ C∞(k∗, 1),

satisfies the condition

min{p > 0 | g1(p, k) = 0} = pg1(k), k ∈ [k∗, 1).

The function p = pg1(k) satisfies the bounds:

k ∈ [k∗, k0) ⇒ pg1(k) ∈
(

K,
3
2
K

)

,

k = k0 ⇒ pg1(k) = K,

k ∈ (k0, 1) ⇒ pg1(k) ∈
(

1
2
K,K

)

.

(4) For any k ∈ [k∗, 1),

p = pg1(k) ⇒ 2k2 sn2(p, k) − 1 ∈ (0, 1].

(5) If k ∈ (0, k∗), then the system of equations (11.14) has no solutions
(p, τ) such that p ∈ (0, 2K(k)). If k ∈ [k∗, 1), then the minimum p ∈
(0, 2K(k)) such that system (11.14) has a solution (p, τ) is p = pg1(k).

Proof. The proof follows from the implicit function theorem (see details
in [34]).

Thus, we have described the first solution of system (11.14) obtained in
Proposition 11.17.

11.8. Roots of the system y = 0, θ = π for ν ∈ N2. Similarly to
Proposition 11.17, we have the following statement.

Proposition 11.20.
{
θt = π,

yt = 0
⇔

⎧
⎨

⎩
sn2 τ =

2 sn2 p− 1
k2 sn2 p

,

g1(p, k) = 0,
(11.24)

where

g1(p, k) =
1
k

[k2 cn p sn pdn p(2 sn2 p− 1)

+ (1 − 2 sn2 p+ k2 sn4 p)(2E(p) − (2 − k2)p)]. (11.25)
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Proof. Let ν ∈ N+
2 . We apply the equivalence relation (11.12). Further, in

order to obtain expressions for cos
θt

2
and Qt through the variables τ2, p2

given by (11.6), (11.7), we apply the transformation of the Jacobi functions
k �→ 1/k in the same way as we did in Sec. 11.3 and obtain

cos
θt

2
=

(1 − 2 sn2 p+ k2 sn2 p sn2 τ)(cn2 τ + dn2 p sn2 τ)
Δ2

, (11.26)

Qt =
1
k

[(2 E(p) − (2 − k2)p)

+ sn2 τ(2k2 cn p sn pdn p− (2E(p) − (2 − k2)p)(2 − k2 sn2 p)].

Consequently, cos
θt

2
= 0 ⇔ sn2 τ =

2 sn2 p− 1
k2 sn2 p

. Then a direct compu-

tation yields

Qt|sn2 τ=(2 sn2 p−1)/(k2 sn2 p) =
2

k2 sn2 p
g1(p, k),

where the function g1(p, k) is defined in (11.25). The statement of this
proposition is proved for ν ∈ N+

2 , and for ν ∈ N−
2 it is obtained via the

inversion i : N+
2 → N−

2 .

Now we study the solvability of the system of equations (11.24) in the
domain p ∈ (0,K). This bound on p is given by the minimum p = K for
points in MAX2

t (see Proposition 11.2).

Proposition 11.21. Let the function g1(p, k) be given by (11.25). Then
for any k ∈ (0, 1), p ∈ (0,K(k)) we have g1(p, k) > 0.

Proof. The proof follows by the standard monotonicity argument (see de-
tails in [34]).

In fact, numerical simulations show that the equation g1(p, k) = 0 has
solutions p > K.

11.9. Roots of the system y = 0, θ = π for ν ∈ N3.

Proposition 11.22. If ν ∈ N3, then the system of equations yt = 0,
θt = π is incompatible for t > 0.

Proof. Let ν ∈ N+
3 . We pass to the limit k → 1 − 0 in Propositions 11.20

and 11.21 and obtain that the system of equations yt = 0, θt = π has no
roots for p ∈ (0,K(1− 0)), p =

√
rt/2. But K(1− 0) = lim

k→1−0
K(k) = +∞.

Thus, the system in question is incompatible for t > 0 and ν ∈ N+
3 . The

same result for ν ∈ N−
3 follows via the inversion i : N+

3 → N−
3 .
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11.10. Roots of the system y = 0, θ = π for ν ∈ N6.

Proposition 11.23. If ν ∈ N6, then the system of equations yt = 0,
θt = π is incompatible.

Proof. As always, we can restrict ourselves by the case ν ∈ N+
6 . Then it is

obvious that the system is incompatible:

yt =
1 − cos ct

c
= 0, θt = ct = π + 2πk.

The proposition is proved.

11.11. Complete description of Maxwell strata. Now we can summa-
rize our previous results and obtain the following statement.

Theorem 11.1. (1.1) N1∩MAX1
t = {ν ∈ N1 | p = 2Kn, cn τ 	= 0},

(1.2) N1 ∩ MAX2
t = {ν ∈ N1 | p = p1

n, sn τ 	= 0},
(1.3+) N1 ∩ MAX3+

t = {ν ∈ N1 | (k, p) = (k0, 2Kn) or (p = p1
n, cn τ =

0) or (p = 2Kn, sn τ = 0)},
(1.3−) N1 ∩ MAX3−

t = {ν ∈ N1 | g1(p, k) = 0, sn2 τ = (2k2 sn2 p −
1)/(k2 sn2 p)},1 N1 ∩ MAX3−

t ∩{p ∈ (0, 2K)} = {k ∈ [k∗, 1), p =
pg1(k), sn2 τ = (2k2 sn2 p− 1)/(k2 sn2 p)},2,

(2.1) N2 ∩ MAX1
t = {ν ∈ N2 | p = Kn, cn τ sn τ 	= 0},

(2.2) N2 ∩ MAX2
t = ∅,

(2.3+) N2 ∩ MAX3+
t = {ν ∈ N2 | p = Kn, sn τ cn τ = 0},

(2.3−) N2 ∩ MAX3−
t = {ν ∈ N2 | g1(p, k) = 0, sn2 τ = (2 sn2 p −

1)/(k2 sn2 p)},3, N2 ∩ MAX3−
t ∩{p ∈ (0,K)} = ∅,

(3.1) N3 ∩ MAX1
t = ∅,

(3.2) N3 ∩ MAX2
t = ∅,

(3.3+) N3 ∩ MAX3+
t = ∅,

(3.3−) N3 ∩ MAX3−
t = ∅,

(6.1) N6 ∩ MAX1
t = {ν ∈ N6 | ct = 2πn},

(6.2) N6 ∩ MAX2
t = ∅,

(6.3+) N6 ∩ MAX3+
t = {ν ∈ N6 | ct = 2πn},

(6.3−) N6 ∩ MAX3−
t = ∅.

Proof. It remains to compile the corresponding items of Theorem 10.1 with
appropriate propositions of this section:

(1.1) ⇒ Proposition 11.1;
(1.2) ⇒ Proposition 11.8;
(1.3+) ⇒ Proposition 11.13;
(1.3−) ⇒ Propositions 11.17 and 11.19;
(2.1) ⇒ Proposition 11.2;

1The function g1(p, k) is given by (11.13)
2k∗ and pg1 (k) are described in Proposition 11.19
3The function g1(p, k) is given by (11.25)
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(2.2) ⇒ Proposition 11.10;
(2.3+) ⇒ Proposition 11.14;
(2.3−) ⇒ Proposition 11.20 and 11.21;
(3.1) ⇒ Proposition 11.3;
(3.2) ⇒ Proposition 11.11;
(3.3+) ⇒ Proposition 11.15;
(3.3−) ⇒ Proposition 11.22;
(6.1) ⇒ Proposition 11.4;
(6.2) ⇒ item (6.2) of Theorem 10.1;
(6.3+) ⇒ Proposition 11.16;
(6.3−) ⇒ Proposition 11.23.

12. Upper bound of the cut time

Let qs, s > 0, be an extremal trajectory of an optimal control problem
of the form (5.9)–(5.11). The cut time for the trajectory qs is defined as
follows:

tcut = sup{t1 > 0 | qs is optimal on [0, t1]}.
For normal extremal trajectories qs = Exps(λ), the cut time becomes a
function of the initial covector λ:

tcut : N = T ∗
q0
M → [0,+∞], t = tcut(λ).

Short arcs of regular extremal trajectories are optimal and, therefore,
tcut(λ) > 0 for any λ ∈ N . On the other hand, some extremal trajectories
can be optimal on an arbitrarily long segment [0, t1], t1 ∈ (0,+∞); in this
case tcut = +∞.

Denote the first Maxwell time as follows:

tMAX
1 (λ) = inf{t > 0 | λ ∈ MAXt}.

By Proposition 10.1, a normal extremal trajectory qs cannot be optimal
after a Maxwell point and, therefore,

tcut(λ) ≤ tMAX
1 (λ). (12.1)

Now we return to the Euler elastic problem. For this problem, we can
define the first instant in the Maxwell sets MAXi, i = 1, 2, 3:

tMAXi

1 (λ) = inf{t > 0 | λ ∈ MAXi
t}.

Since tMAX
1 (λ) ≤ tMAXi

1 (λ), we obtain from inequality (12.1):

tcut(λ) ≤ min(tMAXi

1 (λ)), i = 1, 2, 3.

Now we combine this inequality with the results of Sec. 11 and obtain an
upper bound of the cut time in the Euler elastic problem. To this end, we
define the following function:

t : N → (0,+∞], λ �→ t(λ),
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λ ∈ N1 ⇒ t =
2√
r
p1(k),

p1(k) = min(2K(k), p1
1(k)) =

{
2K(k), k ∈ (0, k0],
p1
1(k), k ∈ [k0, 1),

(12.2)

λ ∈ N2 ⇒ t =
2k√
r
p1(k), p1(k) = K(k),

λ ∈ N6 ⇒ t =
2π
|c| ,

λ ∈ N3 ∪N4 ∪N5 ∪N7 ⇒ t = +∞.

Theorem 12.1. Let λ ∈ N . We have

tcut(λ) ≤ t(λ) (12.3)

in the following cases:

(1) λ = (k, p, τ) ∈ N1, cn τ sn τ 	= 0, or
(2) λ ∈ N \N1.

Proof. (1) Let λ = (k, p, τ) ∈ N1, cn τ sn τ 	= 0. Then Theorem 11.1 yields
the following:

k ∈ (0, k0] ⇒ t(λ) =
2√
r
2K = tMAX1

1 (λ),

k ∈ (k0, 1) ⇒ t(λ) =
2√
r
p1
1(k) = tMAX2

1 (λ).

(2) Let λ = (k, p, τ) ∈ N2, then we obtain from Theorem 11.1:

sn τ cn τ 	= 0 ⇒ t(λ) =
2K(k)k√

r
= tMAX1

1 (λ),

sn τ cn τ = 0 ⇒ t(λ) =
2K(k)k√

r
= tMAX3+

1 (λ).

If λ = (β, c, r) ∈ N6, then Theorem 11.1 implies that

t(λ) =
2π
|c| = tMAX1

1 (λ) = tMAX3

1 (λ).

If λ ∈ N3, then there is nothing to prove since t(λ) = +∞.
If λ ∈ N4 ∪ N5 ∪ N7, then there is also nothing to prove since, in this

case, the extremal trajectory qs is optimal on the whole ray s ∈ [0,+∞),
and tcut(λ) = t(λ) = +∞.

In the proof of Theorem 12.1, we used the explicit description (12.2) of
the function p1(k) = min(2K(k), p1

1(k)) which directly follows from Propo-
sition 11.5.
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Remarks. (1) For critical elasticae (λ ∈ N3), the upper bound (12.3) of
the cut time becomes trivial: tcut(λ) ≤ t(λ) = +∞. We conjecture that
the critical elasticae are optimal forever (tcut(λ) = +∞). For straight lines
(λ ∈ N4 ∪N5 ∪N7) this is obvious.

(2) In the forthcoming work [35], we prove that if λ = (k, p, τ) ∈ N1

and cn τ sn τ = 0, then the corresponding point qt = Expt(λ), t = t(λ)
is conjugate and, therefore, the trajectory qs is not optimal for s > t(λ);
consequently, tcut(λ) ≤ t(λ) (cf. item (1) of Theorem 12.1). Therefore, the
bound (12.3) is valid for all λ ∈ N .

Note the different role of the Maxwell strata MAX3+ and MAX3− for the
upper bound of the cut time obtained in Theorem 12.1. On the one hand,
the stratum MAX3+ generically does not give better bound of the cut time
than the strata MAX1, MAX2 since generically

tMAX3+

1 = min
(
tMAX1

1 , tMAX2

1

)

(see Theorem 11.1). This follows mainly from the fact that the system of
equations determining the stratum MAX3+ consists of equations determin-
ing the strata MAX1 and MAX2:

{
yt = 0,
θt = 0

⇔
{
Pt = 0,
θt = 0

(see Theorem 10.1).
The situation with the stratum MAX3− is drastically different. By

item (1.3−) of Theorem 11.1, we have

ν = (k, p, τ) ∈ N1 ∩ MAX3−, (12.4)

k ∈ [k∗, 1), p = pg1(k), sn2 τ =
2k2 sn2 p− 1
k2 sn2 p

∈ [0, 1]. (12.5)

Moreover, Proposition 11.19, Theorem 11.1, and Proposition 11.6 imply
that

k ∈ [k∗, k0) ⇒ pg1(k) <
3
2
K < 2K = p1(k),

k = k0 ⇒ pg1(k) = K < 2K = p1(k),

k ∈ (k0, 1) ⇒ pg1(k) < K < p1
1(k) = p1(k).

That is, pg1(k) < p1(k) for all k ∈ [k∗, 1) and, consequently,

tMAX3−
1 (λ) < t(λ) = min

(
tMAX1

1 (λ), tMAX2

1 (λ)
)

for all λ = ν defined by (12.4), (12.5).
It is natural to conjecture that for such λ, we have

tcut(λ) = tMAX3−
1 (λ) (12.6)
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and we will prove this equality in the forthcoming work [35].
However, the covectors λ = ν defined by (12.4) and (12.5) form a

codimension-2 subset of N and, therefore, Eq. (12.6) defines the cut time
for a codimension-1 subset of extremal trajectories. The question on an
exact description of the cut time for arbitrary extremal trajectories is under
investigation now.

An essential progress in the description of the cut time was achieved via
the study of the global properties of the exponential mapping. Moreover, a
precise description of locally optimal extremal trajectories (i.e., stable Euler
elasticae) was obtained due to the detailed study of conjugate points. These
results will be presented in [35].
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