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RIGID CARNOT ALGEBRAS: A CLASSIFICATION

A. AGRACHEV and A. MARIGO

ABSTRACT. A Carnot algebra is a graded nilpotent Lie algebra L =
L1®---® Ly generated by Li. The bidimension of the Carnot algebra
L is the pair (dim Li1,dim L). A Carnot algebra is said to be rigid
if it is isomorphic to any of its small perturbations in the space of
Carnot algebras of the prescribed bidimension. In this paper, we give
a complete classification of rigid Carnot algebras. In addition to free
nilpotent Lie algebras, there are two infinite series and 29 exceptional
rigid algebras of 16 exceptional bidimensions.

1. INTRODUCTION

One main motivation to study Carnot algebras is their role as local nilpo-
tent approximations of regular vector distributions.

Let M be a (C°-) smooth n-dimensional manifold and let F C Vec M
be a set of smooth vector fields on M. Given ¢ € M and an integer [ > 0,
we set

Afl:span{[fl,[...,[fi,l,fi]...]](q):fj cF, 1<j<i, igl} C T, M.

Of course, Af] C AY for I < m. The set F is said to be bracket generating
(or completely nonholonomic) at ¢ if there exists r such that Ay =T,M.
The minimum among these r is said to be the degree of nonholonomy of F
at q. The set F is called bracket generating if it is bracket generating at
every point.

Definition 1. We say that F C Vec M is regular at qo € M if dim Afl
is constant in a neighborhood of ¢q for all i > 0.

Let F be regular at gy and dim A;O =d. Take f1,..., fqg € F such that
vectors f1(qo), - - -, fa(qo) form a basis of A} . Then fi(q),..., fa(q) form a
basis of A}I for any ¢ from a neighborhood of ¢y. Hence for any f € F there

d
exist smooth functions aq,...,aq such that f(q) = > a;(q)fi(¢q) for any ¢
=1

~
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from the same neighborhood. It follows that
Aé :span{[fil,[...,fil]...](q) 1< < d} +Aé—17 1=1,2,....

The regularity implies that one can choose vector fields from the collection

{[fn,[m,fi,]...](q) 11<i; < d}

so that the values of the selected fields at ¢ form a basis of Aé / Aé’l for all
q sufficiently close to go. With these bases in hands we easily obtain the
following well-known fact.

Lemma 1. Assume that F C VecM is regular at qo, vi,v; € Vec M,
vi(q) € AL, vi(q) € AJ for all q, and vi(qo) = 0. Then [v;,v;](qo0) € AL~

It immediately follows from this lemma that the Lie brackets of the vector
fields with values in Aﬁp i =1,2,..., induce the structure of a graded Lie

algebra on the space Y Al /Al-!. We denote this graded Lie algebra by
i>0

Lieg, F. Obviously, Lieg, F is generated by Aéo. In particular, Lieg, F is a
Carnot algebra.

Moreover, any Carnot algebra L can be realized as Liey, F for some F.
Indeed, let M be a Lie group with Lie algebra L and ¢y be the unit element
of this group. Then L; is a regular bracket generating set of left-invariant
vector fields on M and L = Lieg, L;.

We now turn to the generic case. Let L4 be the free Lie algebra with d

generators (all algebras in this paper are over R); in other words, £, is the
oo

Lie algebra of commutator polynomials of d variables. We have £, = € L},
i=1
where £} is the space homogeneous commutator polynomials of degree i.

Then
r) def =~ i = i
£ =Dy D e
j=1 j=r+1

is the free nilpotent Lie algebra of “length” r. We set
T
la(i) = dim i, 6 =" ta(i) = dim £,
i=1

The classical recursion expression of £4() is
ila(i) = d' =Y jla(y).
Jli

Any Carnot algebra of bidimension (d, n) is a factor-algebra of ,C((in) with
respect to some graded ideal of codimension n. These algebras can be
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realized as follows. Any surjective linear mapping A : Egn) — R™ induces a
filtration of R™ by the subspaces

k
Ef =Y ALy, k=1,...,n.
=1

We set Ay, : L5 — E%/E%™' the composition of Al with the canonical

— n —
factorization, and A = @ Ay, the induced mapping of the graded linear
k=
spaces. !

Let 20(d,n) C Hom(/ﬁfi”),}R") be the set of all surjective linear mappings
A L&") — R” such that ker 4 is an ideal of L’El"). If A € 2(d,n), then
L'((in) /ker A is a Carnot algebra and any Carnot algebra can be realized

in this way. Of course, different ideals may provide isomorphic Carnot
algebras.

Definition 2. A Carnot algebra L of bidimension (d,n) is said to be

rigid if the set of A € 2(d,n) such that L = Efl")/kerfl is an open subset
of A(d,n).

Here the symbol 2 denotes the isomorphism relation for Carnot algebras.

Therefore, a Carnot algebra is rigid if it does not admit deformations: any
admissible small perturbation of A gives an isomorphic Carnot algebra. As a
first step towards the classification of rigid cases, we describe a more general
class of “generic” A which characterizes Carnot algebras Lieg, {f1,..., fa}
for generic germs of d-tuples of vector fields.

Proposition 1. Let 2y(d,n) be the set of all surjective linear mappings
A: C((i") — R”™ such that

B g(i)
ker Al = 0’_ El’L) <™
0 Ay =n.
Then Ao(d,n) C A(d,n) and Ao(d,n) is an open everywhere dense subset

of Hom(L\" | R™).

Proof. Let r = min{s : Zg) >n}. Then A € Ap(d,n) if and only if A|,_,
S
i=1

is an injective mapping and A

» is a surjective mapping. Surely, these
& e

properties hold for an open dense subset of Hom(ﬁ&n),R"). Moreover, if
A € o(d,n), then

ker A = (ker A,) ® A ( b /:g) .

1=r+1
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In other words, ker A is the direct sum of a linear subspace of L7, and

A ( &) EQ). Obviously, any such subspace is an ideal of C&n). O
i=r+1
Corollary 1. Any rigid Carnot algebra of bidimension (d,n) is isomor-
phic to E((ir)/E, where r = min{i : 65;) > n} and E is an (E(([) —n)-
dimensional subspace of L.

We set m = fg) —n. Then rigid Carnot algebras of bidimension (d,n)
are characterized by m-dimensional subspaces of L];. Let Gry(L])) be the
Grassmannian of m-dimensional subspaces of L. Of course, not every
E € Gry(L]) gives arigid Carnot algebra. Moreover, not every bidimension
admits a rigid Carnot algebra.

Definition 3. A bidimension (d, n) is called rigid if there exists a rigid
Carnot algebra of bidimension (d,n).

Two Carnot algebras E&T)/Ei, E;, € Gry(L]), i = 1,2, are isomorphic
if and only if there exists an automorphism of E&r) which transforms F;

into Fy. The automorphisms of the free nilpotent Lie algebra Eg) are in
a one-to-one correspondence with linear transformations of R? = [,é. More
precisely, the rule

def
e ]’

VOl ). ]S Ve, .., Va) .. ], @1,...,2 € L),

provides a canonical extension of V' € GL(R?) to the automorphism V(1) @
@ V) of E((;). In particular, we obtain a canonical action V — V() of
GL(R?) on L7; Carnot Lie algebras E(([) /E;, i = 1,2, are isomorphic if and
only if there exists V € GL(R?) such that V(" E; = Es.

Let ®(V) : Grs (L) — Grp(L5), V € GL(R?), be the induced action of
GL(R?) on the Grassmannian so that ®(V)(E) = VWE, E € Gry(L]).
The Carnot algebra E((ir) /E is rigid if and only if F belongs to a full-
dimensional orbit of the action ®. In particular, the bidimension (d,n)
is rigid if and only if there exists a full-dimensional orbit of ®. Moreover,
such orbits are actually in a one-to-one correspondence with the isomor-
phism classes of rigid Carnot algebras. The action ® is algebraic. This
implies the following assertion.

Corollary 2. Let (d,n) be a rigid bidimension. Then the set of E €
Gr(L]) such that E;T)/E is rigid is a Zarisski open (in particular, open
dense) subset of Gry(L]) and there is only a finite number of mutually
nonisomorphic rigid Carnot algebras of the bidimension (d,n).

In the next theorem we list all rigid bidimensions. It is convenient to give
special names to some infinite series of bidimensions. For d = 2,3,4, ...,
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the bidimensions (d, ES)), 1 = 1,2,3,..., are said to be free; the bidi-
mension (d,d + 1) is called the Darboux bidimension, and the bidimension
(d,(d—1)(d+2)/2) is called the dual Darboux bidimension.

Theorem 1. All free, Darbouz, and dual Darboux bidimensions are
rigid. FEach of these bidimensions admits a unique up to an isomorphism
rigid Carnot algebra. Moreover, there are 16 exceptional rigid bidimensions:

(2,4)1, (2,6)2, (2,7)2, (4,6)2, (4,7)2, (4,8)2,
(5,71, (5,8)2, (5,9)3, (5,11)3, (5,12)2, (5,13)1,
(6,8)2, (6,19)2, (7,9)1, (7,26)1,

where the subscript j in the expression (d,n); indicates the number of iso-
morphism classes of rigid Carnot algebras for the given bidimension (d,n).
All other bidimensions are not rigid.

In the rest of the paper we will prove this theorem: in Sec. 2, we will
give a necessary condition for a bidimension to be rigid. We obtain that
only free bidimensions are rigid if the degree of nonholonomy r is greater
than 4. The following sections are devoted to the analysis of bidimensions
corresponding to r = 2,3,4: Sec. 3 for r = 2, Sec. 4 for r = 3, and Sec. 5
for r = 4. We present a canonical basis and the multiplication table for
any isomorphism class of rigid Carnot algebras. Then these multiplication
tables are used in Sec. 6 to give the normal forms for all possible rigid Lie
algebras of vector fields.

2. RIGIDITY: A NECESSARY CONDITION
We have the following assertion.
Proposition 2. Let (d,n) be a rigid bidimension. Then
d* > (Lq(r) —m)m. (1)

Proof. It was shown in the previous section that to rigid Carnot alge-
bras there correspond full-dimensional orbits of the action of GL(R?) on
Gr(L]). Let us compare the dimensions. We have

dim GL(RY) = d?, L5 =R%" dim Gry, (£5) = m(la(r) — m).

Taking into account that scalar multiples of the identity matrix from
GL(R?) act trivially on the Grassmannian, we obtain that a necessary con-
dition for the existence of a full-dimensional orbit is

d*> —1> (by(r) —m)m

and the proposition is proved. O
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First, we observe that condition (1) is trivially satisfied when m = 0.
Moreover, the condition is satisfied for some m if and only if it is satisfied
for m = £4(r) — m.

For r = 1 we have ¢4(1) = d and hence, by the definition of m, it must
be m = 0. These cases correspond to the free bidimension (d, d).

For r = 2, since £4(2) = d(d — 1)/2, condition (1) holds for all
m=0,1,...,04(2) —1if d < 4, for m=0,1,...,04(2) — 1, with m # 5,
if d =5, and for all m = 0,1,2,04(2) — 2,¢4(2) — 1 if d > 6. Note that
bidimensions corresponding to m = 0,1, £4(2) — 1 are free, dual Darboux,
and Darboux bidimensions, respectively.

For 1 = 3, £4(3) = (d® — d)/3 and condition (1) holds for
m=0,1,....043) —1if d = 2 and for m =0,1,...,04(3) — 1 if d = 3.
The bidimensions corresponding to m = 0 are free.

Finally, for r = 4, £4(4) = (d* — d?)/4 and condition (1) holds for all
m=0,1,...,00(4) —1ifd =2.

For r > 4, condition (1) is never satisfied for m > 0.

In synthesis, in addition to the free bidimensions, we have the following
cases to analyze:

r=2|d=3 m=1,2
d=14 m=1,2,3,4,5
d=25 m=1,2,3,4,6,7,8,9
d>6|m=1,2,04(2) —2,04(2) — 1
r=3|d=2 m=1
d=3 m=17
r=4|d=2 m=1,2

Let m = {4(r) — m, and let £ be the adjoint space to L]. The invo-
lution E +— E* sends m-dimensional subspaces of L}, into m-dimensional
subspaces of Eg. Denote by ® the corresponding action of GL(R?) on
Gr,,(L7); it acts according to the rule ®(V)(E+) = (®(V)E)*.

In the following sections, we deal with the action ® on Grm(/jg) rather
than with the action ® on Gry(L£]); this makes shorter the way from the
classification of subspaces to the tables of products of the Lie algebras.
Moreover, we mainly work in a fixed Hall basis of £}, and do not make
difference between L7, and Eg.

3. THE CASES WHERE 7 = 2

The following proposition allows us to reduce the analysis of possible
rigid bidimensions for r = 2.

Proposition 3. If r = 2, then the bidimension (d, £ ' +m) is rigid if
and only if the dual bidimension (d, ¢, —m) is rigid. Moreover, the number
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of isomorphism classes of rigid algebras for the bi—-dimension (d, 6271 +m)
and the dual bidimension (d,{; —m) is the same.
Proof. Let ® be the action on Gr,,(£3) as in Sec. 1. Fix E € Gr,,(£3) and
consider the following mappings:

U : GL(R?Y) — Gr,(L3), Vi o(V)(E),

U :GLR?Y) — Griy)-m(£3), V= O(V)(EY).
Let V € GL(R?). Introduce the notation V-1 = (VT)~1. We show that for
all Ve GL(R?), (V-T) = (¥(V))1, so that a one-to-one correspondence

between the image of ¥ and that of U is established and the proposition is
proved.

Let V € GL(R?), V = (vil);{l:p and g;(q) = lf:l va(g) filg), i =1,...,d.
Then -
9005 = 2 51 = e (|0 ] 1

1<k gt ik
Hence
S(VT) = (@(V))T, 2(ViV3) = 2(V1)2(V3)
for all V, Vi, Vo € GL(RY). Tt follows that ®(V—T) = (®(V))~7 and for all
wy € E and wy € EL, we have

@V )ws, @(V)wr) = wi (®(V)) "' @(V)wy = (w2, w1) =0,
which proves that U(V-T) = (¥(V))*. O

Assume that we know a multiplication table for some m. Then we obtain
the dual multiplication table as follows.
Let f™, i =1,...,£4(2), be Lie brackets of order 2 which are linearly
independent with respect to the Jacobi identity. Assume that the multipli-
m

cation table gives f™ = 3 X\;;jf™ for i = m+1,...,44(2), i.e.,, Af =0,
j=1
where A = [A | =1y, 2)—ml,

)\(m+1)1 T )‘(m—i-l)m
Aeg@)1 o A@m

and f = [f™,..., f™®]. Then A+ = [I,, | AT]f represents the orthogonal

space to the space generated by A and the dual multiplication table is given
£4(2)

by Atf, ie., ff = — Y Aijf™ for j = 1,...,m. As an example, in
1=m-+1

this paper we will give the dual multiplication table and the corresponding

normal form for m = 1. The other dual cases can be obtained similarly.
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The space Efl is identified with the wedge square /\2 R?. Hence any
E € Gr,,(£3) is identified with an m-dimensional vector space of antisym-
metric (d x d)-matrices. In order to fix the notation, we next describe this
identification (and the corresponding action of GL(R?)) in more detail.

Fix generators fi,..., fq for L}i and let f™, ..., f™ be such that they
form a basis of E € Gr,,,(£3). Then we can write

[fis fu] = Zwlkfﬂh

Note that, since [fi, fx] = —[fx, fi] for all h = 1,...,m, W' = {wﬁc}lk
is an antisymmetric (d x d)-matrix. For a different choice of the set

{f™, h=1,...,m}, ie,

m
fﬂh = thifﬂ—ia
i=1

we have
[fis fu] = Zwlikfm, (2)
where
m
ot = Z xhiwh.
h=1
Consider the space generated by w”, h = 1,..., m, and write each element
of the space under consideration as w(z) = > z;w', * = (x1,...,Zm). Let

7

V € GL(R?). Then
( flafj Zvllvjk) flafk szllvjk)wlkf Z(thvT)ijfﬂ—h'

Hence ®(V)w(z) = Vw(z)VT.
Next we analyze all possible rigid bidimension for » = 2 up to duality:
(d,d+ 1): for any d, corresponding to m = 1, Sec. 3.1;
(d,d+ 2): for d > 4, corresponding to m = 2, Sec. 3.2;
(d,d+ 3): for d =4 and d = 5 corresponding to m = 3, Sec. 3.3;
(d,d+4): for d =5, corresponding to m = 4, Sec. 3.4.

3.1. The case m = 1. In this case, we have a one-dimensional space of
antisymmetric (d x d)-matrices. A generic antisymmetric (d x d)-matrix w
can be written in the form w = VDV”, where V is nonsingular and D is a
block-diagonal matrix with blocks D, as described next.

e If wis a (d x d)-matrix with even d, then D;, i = 1,...,d/2, are all

(2 x 2)-matrices of the form [ % §].
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e If wis a (d x d)-matrix with odd d, then D;, i =1,...(d — 1)/2, are
all (2 x 2)-matrices of the form | ° §] and D; for i = (d—1)/2+1 is
the zero one-dimensional block.

Then we have the following assertion.

Proposition 4. The Darbouz bidimension (d,d + 1) is rigid with a
unique isomorphism class. The representing family F is completely de-
scribed by the following multiplication table for even d (for odd d):

[fi, fo] af g =20, d d—1

=1,...,= (—— dd d). (3
0 otherwise, ! ’ 72( 2 Jor o ) 3

[f2i-1, fi] = {

By duality, also the dual Darbouz bidimension (d,(d — 1)(d 4+ 1)/2) is rigid
with a unique isomorphism class. The multiplication table is as follows:

/2
> [f2i-1, fail if d is even,
[fla f2] = 2=31)/2 (4)
_232 [foiz1, foi] if d is odd.

The normal forms are given in Sec. 6 (see Eqgs. (34) and (35) for the
Darboux and dual Darboux bidimension, respectively).

3.2. The case m = 2. If m = 2, then each E € Gr,,(£3) is identified with
a two-dimensional subspace of the vector space /\2 R? of antisymmetric
(d x d)-matrices. We distinguish between d even and odd.

Assume first that d is even and that Pf(w) is the Pfaffian of the anti-
symmetric (d x d)-matrix w. Recall that Pf is a degree-d/2 homogeneous
polynomial such that (Pf(w))? = det(w).

Let w!,w? € /\2 R? form a basis of the subspace E under consideration, so
that any element of the subspace can be written as w(z1, z2) = zrw! + zow?.
Consider the polynomial p(z1,x2) = Pf(w(z1,22)). A change of the basis of
E induces a linear change of variables of the polynomial p(z1,z2) and the
transformation w — VTwV, V € GL(R?) preserves p(z1,z2) up to a scalar
multiplier since Pf(VTw(xy,22)V) = det V Pf(w(z1, x2)).

The following proposition holds.

Proposition 5. If d is even, then the codimension of any orbit of the
action ® in Gra(L32) is no less than d/2 — 3.

Proof. The space of degree-d/2 homogeneous polynomials of two variables
has dimension d/2 + 1 and the group GL(2) of linear changes of variables
in the plane is four-dimensional. The polynomials p(z1, 22) = Pf(w(z1,22))
are invariant under the action ® up to linear changes of variables. We have
d/2+1—4=d/2—3. Tt remains to show that any polynomial of degree
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d/2 is realized as Pf(w(x1,x2)). This is easy. Consider, for example,

J 0 --- 0 a0 e 0

o J -~ 0 0 agd - 0
w=ao|. . . |, =],

00 --- J 0 0 - agJ

where J denotes the antisymmetric (2 x 2)-matrix [ % §].
We have that

Pf(w(w1,22)) = (@or1 + a1z2)(aoz1 + azxa) - (o1 + agam2);

hence any polynomial of degree d/2 in the variables 21 and x5 can be ob-
tained by a suitable choice of ag, a1, az, ..., aq/s. O

Corollary 3. Let d be even and (d,d + 2) be rigid. Then d < 8.

By Corollary 3, we should analyze only the cases, where d < 8, i.e., d =4
and d = 6. For these cases, we have the following assertion.

Proposition 6. Ford =4 and d = 6, the bidimension (d,d+2) is rigid
with two isomorphism classes distinguished by the sign of the discriminant
of the polynomial Pt(w(z1,x2)).

Proof. Note that the roots of
Pf(w(z1,22)) =0 (5)

can be:

for d = 4: either real or complex conjugate;
for d = 6: either three real or one real and two complex conjugate.

Next we provide the multiplication table for a representing family F for
each of the above cases. This will show that the bidimensions (d, d + 2) are
rigid and the isomorphism class is uniquely reconstructed from the number
of real roots of Eq. (5).

d =4, real case. Consider a generic two-dimensional subspace of /\2 R,
Then Eq. (5) has simple roots and to form a basis of the subspace under the
consideration, we can choose two corank-2, antisymmetric (4 x 4)-matrices
w! and w? with transversal kernels. Let e, ez, e3,e4 € R* be linearly inde-
pendent and such that eq, ey € ker w? with elTwleQ =1 and e3, eq € kerw!
with elw?es = 1. By writing Eq. (2) in these coordinates, we obtain the
following multiplication table:

[flafﬂ :fﬂ—17 [f37f4]:f7r2, [flafj] = 0 otherwise. (6)
The normal form for F is given in Sec. 6 (see Eq. (36)).
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d =4, complex case. Let (z1,1), (Z1,1) be a pair of conjugate complex
solutions of Eq. (5). Then w! = 210! + @©? and w? = 710! + &? are two
corank-2, antisymmetric (4 x 4)-matrices with complex coefficients such that

wh +w? =2Re(w!), w'—w?=2Im(w!).
Note that it suffices to find a normal form for Re(w!) and Im(w'). Indeed,

W T+ wf™ = (Re(w') +1Im(w!)) f™ + (Re(w") — ¢ Im(w')) f7

141~ 1—1 -
f7l'1+ 4 f7l'2>

= (Re(wl) +zIm(w1)) < 1

+Refw!) = stm@)) (S 4 )
= (Relw) + ati) (17 + 570 + P - )
HRe(!) () (107 + ) - (7 - )
= 2 (Re(@") (/™ + ) ~ () (™ — )
= 5 (Re(w!) ~Tm(w")) /™ + 3 (Re(w!) + Tm(w)) .

Let p = p1 +1p2 and ¢ = p3 + 1py € kerw' with p; Re(w!)ps =1 and
po Im(w!)py = 1. Then we can write in the coordinates py, pa, ps, pa:

0 0 1 1 0 0 -1 1

W lo 01 -1 W lo o011
Re(w) =1 3 ¢ o Im) 1 -1 0 0
-1 1 0 0 1 -1 0 0

Finally, writing the equation w = w’ f”l +w? f ™ in the new coordinates, we
obtain the following multiplication table:

[f1, o] = [fs, fa] = 0,
[f1, fa] = =1fa, fa] = f™, (7)
[fr, fa] = [fa, f3] = ™.
The normal form for F is given in Sec. 6 (see Eq. (37)).

d = 6, real case. Consider a generic two-dimensional subspace of /\2 R,
Then Eq. (5) has simple roots (x1,1), (z2,1), and (z3,1). Let A1, Ao, A3 # 0
be such that Aj(z1,1) + Aa(z2,1) = A3(w3,1). Then w! = \a;@b + \@?
for i = 1,2,3 are antisymmetric (6 x 6)-matrices such that w3 = w! + w?.
Moreover, by generic assumptions, we also have that the kernels of the
above matrices are transversal. Then let p; € R®, i = 1,...,6, be linearly
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independent, with p;,ps € kerw?, p3,ps € kerw?, and ps,pg € ker w? such
that piw'ps = 1 and psw?ps = 1. In these coordinates we can write

J 0 0 0 0 O J 0 0
wl=10 0 0], w?=1]0 J 0|, &*=|0 J 0
0 0 —J 0 0 J 0 0 O
Finally, Eq. (2) gives the following multiplication table for F:
[f57f6]:7[f17f2]+[f37f4}7 [fiafj]:()OtherWise' (8)

The normal form is given in Sec. 6 (see Eq. (39)).

d = 6, complex case. Let (z1,1), (x2,1), and (x3,1) be the three solutions
of Eq. (5), where x3 € R and 2o = 7; (we denote by Z the conjugate of
x). There exist A1, A2, 3 € C, where Ay = A\ and A3 € R, such that
W' = Nxi@o! + @2, i =1,2,3, are antisymmetric with

W+ w? =2Re(w!), w'—w?=2uImw'), w?=w'+w?=2Re(w).
Let p1,p2 € ker(w®), where p; Im(w')p2 = 1 and ps,...,ps are orthogonal

to the two-dimensional space generated by {Im(w!)p;, i = 1,2}. In these
coordinates we write:

Re(w’) = [8 Re(gl)m}  Im) = B Im(gl)”] ’

where Re(w!)zs and Im(w!)ey are antisymmetric (4 x 4)-matrices with
Re(w!)ge 4= 2Im(wl)gs of corank 2. Therefore, it remains to consider the
complex case for d = 4 and, with the same arguments, we can write

00 0 00 0
00 0 00 0
w_loo o o1 1
Re(@)=149 09 o 01 -1/
00 -1 =10 0
00 -1 10 0
01 0 0 00
10 0 0 00
w00 0o 0o -11
m@H =199 0o 0o 11
00 1 -1 00
00 -1 -1 00

and
0= 3 (Re(w!) — Im(Wh)) ™ + S(Re(w!) + Im(w!)) .
Finally, we obtain the following multiplication table:
[fi.fo) = F™ = ™, fs.fsl = —1fa, fo] = f™,
(f3, fo] = [fa, f5] = ™, [fir fj] = O otherwise.
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The normal form for F is given in Sec. 6 (see Eq. (40)). O

To complete the analysis for m = 2, it remains to study the cases where
d is odd.

Proposition 7. Let d = 2k + 1. Then the codimension of any orbit of
the action ® on Gra(L32) is no less than k — 3.

Proof. Consider the action (V;(w!,w?)) — (VIW!'V,VTw2V) of the group
GL(R?) on the space of pairs of antisymmetric (d x d)-matrices. It suffices
to show that the codimension of orbits of this action is no less than k.
Indeed, the space of bases (w1,ws) of a fixed two-dimensional subspace is
four-dimensional, but the difference of the codimensions of the given orbit
in the space of pairs of matrices and in the Grassmannian cannot be greater
than 3 since the action of scalar matrices V' = ¢l on (w1, ws) does not change
the subspace.
Let w! € A\°RZ+1 with

o [210), wepmn

0
J 0O -~ 0
0o J --- 0
ot =
00 --- J
The subspace of Q(2k + 1) C GL(R?**!) which preserves w! is given by the
matrices ~
V1o
V=l

where V € Sp(k), the group of symplectic transformations, and v € R2*.
The codimension of the orbit of the pair (w;,ws) is equal to the codimension
of the orbit of a matrix w? € A>R2*1 under the action of Q(2k +1). We

have
2 (:)2 —l/T
N 0 ’

v € R?*. The codimension of the orbit of w? under the action of Q(2k + 1)
is no less than the codimension of @2 under the action of Sp(k). Indeed, let
Stab(©?) C Sp(k) be the stabilizer of ©@2. Then

Stab(@?) | 0
0 1
is contained in the stabilizer of w? under the action of Q(2k + 1) and the

codimension of Sp(k) in Q(2k + 1) is equal to the codimension of \*R?* in
/\2 R2k+1
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On the other hand, the codimension of the orbit of @2 under the action of
Sp(k) is equal to the codimension of the orbit of the pair (@*, ©?) under the
action of GL(IR?*). The codimension of the last orbit is no less than & since
the action of GL(IR?*) leaves invariant the Pfaffian p(x1,z2) = Pf(z10! +
row?), up to a scalar multiplier (see the proof of Proposition 5). O

As a consequence of the above proposition we have that (d,d + 2) is not
rigid for all d > 8. Then the only bidimensions to analyze are (5,7) and
(7,9). We prove the following assertion.

Proposition 8. Let d =5 or d = 7. Then the bidimensions (d,d + 2)
are rigid with only one isomorphism class.

Proof. The case d = 5. Consider a pair of antisymmetric (5 X 5)-matrices,
w! and w?. Recall that antisymmetric (d x d)-matrices with odd d always
have corank at least 1 and, therefore, we take p; € kerw' and py € ker w?.
By generic assumptions we have that p; and p, are linearly independent.
In these coordinates we write

1 2
1_|%Y1 U1 2 _ | Wi V2
“ __[—v? 0}’ ? “[—ug 0}’
where vi,v2 € R* and, for i = 1,2, w!, is the first principal (4 x 4)-submatrix

of w’ and has corank 2. Hence, using the same arguments as for the real
case with d = 4, we can assume the w! and w? have the following form:

J 0 00
w=] 00 ||, =] o0 J |®
- 0 —U; 0
Now let
P 0
Pp=| 0o pn |“],
0 1

where P; and P, are (2 X 2)-matrices with determinant equal to 1 and
a € R*. We have that

(P)"&\(P) =

where

For a suitable choice of a, P; and P», we can write

vy =10,0,1,0]", wh=[1,0,0,0]",
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0 1

J 0 0 0 0 0

wl = 1 , w? = 0
0 0 0 0 J 0

00 -1 07]0 -1 00 0|0

Equation (2) in these coordinates gives the following multiplication table
for a representative family F:

[f3: f5] = [f1. fa] = ™,
[fr, fs] = [fs, fal = 72, (10)
[fi, fi] =0 otherwise.

The normal form for F is given in Sec. 6 (see Eq. (38)).

The case d = 7. With the same arguments as for the previous case, we
can reduce this case to the case of a pair of antisymmetric (d x d)-matrices
of the form

J 0 0 0 0 O
1 _ 0 0 0 (% 2 0 J 0 V2
“ =1 00 —J YTl 0 0 g
—oT | 0 —v7 | 0
By setting
P 0 O
_ 0 P2 0 «
P= 0 0 P ’
0 B

where Py, Po, and P5 are (2 x 2)-matrices with determinants equal to 1 and
a € RS, we obtain, for a suitable choice of P;, Py, Ps, and a:
vy =10,0,1,0,1,0", wh=][1,0,0,0,0,1]"

and

&
I
OO O = OO

00 -1 0 -1 0
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1
0 0 0 0

0

o 0o J 0 0
0

o 0 J .
10000 —1]0 |

Finally, we have the following multiplication table:

[f3, f7] = Ufs, fr] = [f1, f2] = 7,

[flaf'?]:[f67f7]:[f37f4]:fﬂ27 (11)
[f5: fo] = =™ + f™,
[fi, f;] = 0 otherwise.

For the normal form, see Sec. 6, Eq. (41). O

3.3. The case m = 3. In this case, we deal with the three-dimensional
space of antisymmetric (d x d)-matrices.

Proposition 9. The bidimension (4,7) is rigid with two isomorphism
classes distinguished by the signature of the quadratic form

Pf(z1w!" + zow? + z3w3).
Proof. The equation Pf(z;w! +z2w? +3w%) = 0 can be rewritten as follows:
(71, T, w3) Alz1, 72, 23]7 =0, (12)

where A is a symmetric (3 x 3)-matrix. Depending on the signature of A, we
either have real roots (corresponding to an indefinite matrix A) or complex
roots (corresponding to sign-definite A). Next, we provide the multiplication
table for a representing family F for each of these cases. This will show that
the bidimensions (d, d + 3) are rigid and the isomorphism class is uniquely
reconstructed from the number of real roots of Eq. (12).

d =4, real case. Consider a generic three-dimensional subspace of /\2 R,
Then the matrix A of Eq. (12) is nondegenerate. If A is not sign-definite,
then we can assume that

0 2 0
A=|4 00
0 0 1
Hence the real solutions of Eq. (12) are
[211, 221, 231 = [1,0,0],
[‘TlZv 22, 1’32] - [07 1, 0])
(%13, T3, 233] = [a,b,¢], where ab+ c? = 0.
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Then w' = &', w? = @2, and w3 = a@' + b2 + c&?, where ab+ ¢ = 0, have
corank 2. Moreover, under generic assumptions, we have that the kernels
of w!, w? and w3 are transversal. In the coordinates pi,ps € ker(w?),
p3, s € ker(w!), with piwlps = 1 and psw?py = 1, we write:

01 0 0 0 0 0 0

1| -1 000 o |00 0 0

Y1 ooo0oo0|" Y T]loo o1

0 0 0 O 0 0 -1 0

and
W = ad' + bo? + ®

0 a + cwiz CwWi3 CW14

| —a—cwi2 0 cwa3 CWa4
o —Cw1s3 —CWa3 0 b+ cwsy

—CW14 —CW24 —b— CWs34 0

where w;; are the components of @*. Since w® has corank 2, the following
condition holds for all a, b, and ¢ such that ab+ ¢ = 0:

0 = (a+ cwiz)(b+ cwsy) — c*(wi3way — Wazwiy). (13)

By Eq. (13), it follows that wis = w34 = 0 and

W13W24 — W23W14 = —1. (14)
In particular, setting a = 1, b = —1, and ¢ = 1, we obtain that w? has the
form
W J (@%)12
@, I

where by (@%);; we denote the (i, j)th (2 x 2)-block of the block matrix de-
composition of &3, Now let P; = (&°)}5 . Then, by Eq. (14), det(P;) = —1
and, setting

A0
=[5 1)
we obtain
T 15 | —J 0 7 25 | 0 0
(P)wP—[ o ol (P)'w*P 0o J |

Finally,

fﬂ'l + f7T2

OO = O
OO OO
O O OO
OO OO
O O OO
O = O O
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0 -1 1 0

100 1],
1l 00 -1 |f

0 -1 1 0

which gives the following multiplication table:
Lo, fo] = =™ = 7,
[fs: fa] = f7 = [,
[f1, f3] = [f2, fal = 72,
[f1, fa] = [fo, f3] = 0.
The normal form is given in Sec. 6 (see Eq. (42)).

d = 4, complex case. A positive-definite matrix A can be represented in
the following form:

1 0 0
A=1]10 1 0
0 0 1
Consider the complex solutions [x11,z21,231] = [1,4,0], [212, 222, X32] =

[1,—14,0], and [z13, 723, 733] = [a,b, c], where a® 4+ b? + ¢ = 0. With this
choice, w! = &' +1@?, w? = @' —1@?, and w? = a®' + b@? + c@®, where
a® + b% 4 ¢ = 0, have corank 2. Moreover, following the same arguments
as for the complex case with m = 2 and d = 4, we can write

0 0 1 1]
- 0 01 -1
1\ _ ~1 _
Re(l=&'=1 1 4 ¢ o
| -1 1 0 0 |
[0 0 —1 1]
- 0 0 1 1
1\ _ ~2 _
m{w) === 1 1
| -1 ~1 0 0 |
In the same coordinates we write
W = ad' + bo? + ?
0 cwis a—b+cwis a-+b+ cwis
_ —CW12 0 a+b+cw23 —a+b+cwg4
—a+b—cwiz —a—b— cwsys 0 CwWsy ’
—a—b—cwiy a+b—cwoy —Cw34 0

where w;; are the components of @3. Since w? has corank 2, the following
condition holds for all a, b, ¢ such that a? + b% + ¢ = 0:

2(a® + b) + be(wag + wig + wag — wi3)
+ ac(w23 + w4 — wag + wlg) + 02\/ det(&ﬁ) =0. (17)



RIGID CARNOT ALGEBRAS: A CLASSIFICATION 467

By Eq. (17), it follows that wi3 = w4, wez = —w14, and /det(w3) = 1,
hence wiawss — wi; — w?, = 1. Let now P = —(@%)(@%)12, where by
(@%);; we denote the (i, j)th (2 x 2)-block of the block matrix decomposition

of @3, and
p— [ 1}]12]2 Vw2 Py }
0 Vil |

Then we obtain
. J 0
T~3p _
while @1 and @9 remain unchanged. In particular, by setting a =0, b =1,
c =1, we have

(P)TwsP = o(P)T&yP + (P)T 03P

and
0 0 1 1 0 0 -1 1
c=| e oY 00|
-1 1 0 0 -1 -1 0 0
0 1 0 0
-1
o0 01|l
0 0 -1 0
The corresponding multiplication table is
[f1, f2] = [f3, fal = 72,
[f1, fs] = =[fa, fa] = ™ = f7, (18)
[f1, fa] = [fo, f3] = [T + [
The normal form is given in Sec. 6 (see Eq. (43)). O

Now let d = 5. Recall that an antisymmetric matrix can be considered
as a skew form of degree 2, we consider the wedge products v’ = w* Aw? for
i < j which are 4-forms in R%. We then have that v/, i < j,4,j = 1,2, 3, are
6 vectors in R®. Let a;; € R, i < j, i = 1,2,3, be such that Y a0 =
3

zpiw”, we have
=1

Taking @' =
h=

Vij = E ThiTkjVhk, Ok = E ThiThj Qi
hk hk

That is the symmetric matrix A of coefficients aj,

a1 x12 @13

2

— Q12 Q23
A= 2 Q22 2 )

Q
s
e

Q23
B} «

M’
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is mapped to =T Az~!, where

T11 X211 T31
T= | Ti2 T2 T32
T13 T23 33
The matrix A is defined up to a nonzero scalar multiplier, hence the trans-
formation A — —A is also allowed. We have the following assertion.

Proposition 10. The bidimension (5,8) is rigid with two isomorphism
classes distinguished by the signature of the symmetric matriz A.

Proof. First, observe that w A w € kerw if corank(w) =1 and w Aw = 0 if
corank(w) > 1. Then

VIV (VT wAw) =VIw(wAw) =0.

Now, since

(1w +20w? + 23w A (210 F20w? +1303) = E Tz w AW = g TiT;V;5,
ij i

we have that, under the action of V' € GL(R®), each vector v;; is mapped
into V~'v;;. Hence the coefficients «;; of A remain unchanged under the
action of GL(R®). This fact shows that the signature of the symmetric
matrix A is an invariant for the bidimension (5, 8).

Under generic assumptions the matrix A is nondegenerate and the pos-
sibly arising signatures of A are +++ and ++—. Next we provide the
multiplication table for a representing family F for each of the two cases.
Thus we will show that (5,8) is a rigid bidimension with two isomorphism
classes.

We can assume that A has the form either

1 0 O
A=]10 1 0
0 0 -1
or
1 00
A=10 1 0 |,
0 0 1
depending on the signature of A. Recalling the geometric meaning of the
coefficients of A, we have v11 + v92 = v33 Or v11 + V29 = —v33, in the first

and second case, respectively. First, we choose a coordinate systems for the
case m = 2 and d = 5. Then we can write

J 0
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In these coordinates v1; = [0,0,0,1,0] and ves = [0,1,0,0,0]. Therefore,
v33 = £[0,1,0,1,0] for the first and second case. Since w3v33 = 0, we have
that w? has the form

0 w1z W13 —Wi2 W15
—wi2 0 Wa3 0 was
wP=| —wiz —wos 0 waez W35 |,
w12 0 —Wa23 0 —W2s
—wis —W25 —W35 W25 0

where wiowss + wisweg — wiswes = 1. Computing now v;; for ¢ < j, we
have

vi2 = [0,0,0,0,—1], wiz = £[0, —wi2, —was5, —wW3s — W12, Wa3),

V19 = E[was, —was — was, 0, —was3, wia].

Taking P = [v11, V22, V12, V13, V23], We obtain:
0 0 0 00 0 00 -1 0
0 0 0 0|1 0 0 0 0 0
PTolP={0 0 0 1|0, PTw?P=]0 0 0 O0f-1
0 0 -1 010 1 00 0 0
0 -1 0 0]0 001 0| O
and, either
[0 0 10 0
0 0 -1 0 0
Plw3P=| -1 1 0 0] 0
00 0 O0|-1
| 00 0 1] 0
if the first case holds, or
0 0 1 00
00 -1 00
PTW3pP=|-11 0 o0]0 ],
0 0 0 01
0 0 0 —1|0
if the second case holds. Finally, by
0 0 0 00 0 0 0 -1 0
0 0 0 0|1 0 0 0 0 0
w=1|0 0 0O 1({0|f™*+]0 0 O 0|—-11|f™
0 0 -1 010 100 0 0
0 -1 0 0]0 0 0 1 O| 0
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00 1 0] O
00 -1 0] O
+]1 -1 1 0 0| 0|/ f™
0 0 0 0=F1
00 0 £1| 0
we have the following multiplication table:
[f27f5] = [f37f4} = fﬂ—17
[f17f4]:[f37f5}:_f7r27 (19)
[flaf?)] = _[f27f3] = $[f47f5] = f7\'37
Lf1, fo] = [f1, f5] = [fo, fa] = 0.
The normal forms are given in Sec. 6 (see Eq. (44)). O

3.4. The case m = 4. Recall that for m = 4, the only case to analyze is the
case of d = 5. A simple calculation shows that the submanifold of rank-2
antisymmetric (5 x 5)-matrices has codimension 3 in the projectivized space
A’ R® of all antisymmetric (5 x 5)-matrices. Let & = [z1, 22, 23, 74] and

w(x) = Tiw! 4 zow? + 23w + Tyt

be a generic 4-dimensional vector subspace (or a three-dimensional pro-
jective subspace) of /\2 R®. Then w(z) intersects the submanifold of rank-2
matrices in a finite number of points. We show that the bidimension (5, 9) is
rigid with isomorphism classes distinguished by the number of these points
which we are going to locate effectively.
First of all, we may assume without loss of generality that
4
w = Z(miwz)lg
i=1

does not vanish in rank-2 points. Provided that w # 0, we can assume the
following block matrix decomposition (the Schur theorem):

w(m)z{“’“o(‘”) 0 }

w22 (LC)

where wy (r) = wJ is nonsingular antisymmetric (2 x 2)-matrix and

. 0 ds da
w22 (33) = E —d5 0 d3
—dy —ds O

is antisymmetric (3 x 3)-matrix, where d; = d;(w(x)) is the Pfaffian of the
ith principal minor of order 4 of w(z). Then we have that w(z) has rank 2
if and only if d3, d4, and d5 are zero, i.e., if x is the root of 3 homogeneous
polynomials of degree 2, with the additional condition that w # 0. Of
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course, d; and dy also vanish at such a root (otherwise w(z) would have
rank 4).

Proposition 11. The bidimension (5,9) is rigid with three isomorphism
classes distinguished by the number of real solutions of the system d; = 0,
i=1,...,5.

Proof. As in the proof of Proposition 10, we have that under the action of
V € GL(R?), each vector v; is mapped into ¥;; = Vflvij. Then

dp = di(VTw(z)V) = Z:mfrj (Vij)k = sz% <Z(V1)kh(vm‘)h>

h

=Y (Ve wiwj (i) = > (V") knds,
h ij h
where (v), (respectively, (V)xr) denotes the kth (respectively, (kh)th) com-
ponent of the vector v (respectively, of the matrix V'); thus, we obtain that
dy belongs to the linear space generated by dy, ..., ds. This shows that such
a linear space is invariant under the action of ®.
Now we assume that w!, w?, and w?® are in the normal form obtained for
m =3 and d = 5. Then w(z) is equal to

0 T4W12 T3 + Tawis —T2 + T4W14 T4W15
—XT4W12 0 —X3 + Tawas T4W24q T1 + Tawas
—I3 — T4aw13 T3 — T4W23 0 T1 4 Tawza  —X2 + Tawss |,
T2 — T4aW14 —X4W24 —T1 — T4W34 0 +x3 + TaW4s
—Z4w1s —T1 — TaWzs T2 — T4W35  FT3 — TaWas 0
where w;; are the coefficients of w*. The computation of d; for i = 3, 4,5
yields
ds = ds(w*)2? + (— +
3 = d3(w*)xg + (—wiam1 + was T2 £ w12T3)2Ts + 2122,

dy = dy(wh)z] + (—wi3m1 — wiaTs — (W5 + Wis)T3) T4 — T1T3,
ds = d5(w4)xﬁ + (wi2x1 — wazs — (Wos + W14)x3)T4 + T3T2.

Generically, there are 8 solutions of the system d; = 0, ¢ = 3,4, 5. Note that
3 out of 8 solutions correspond to solutions with x4 = 0. Since such kind of
solution violates the condition w # 0, it must be discarded. There remains
5 solutions. We can have:

(1) five real solutions;
(2) three real and two complex conjugate solutions;
(3) one real and two pairs of complex conjugate solutions.

Next we provide the multiplication table for a representing family F for
each of these cases. This will show that (5,9) is a rigid bidimension with
three isomorphism classes.



472 A. AGRACHEV and A. MARIGO

Case (1). Assume that the five solutions x' = [x1;, 72, ¥3i, Tai]s
i=1,...,5, are all real and, since w(z) is a generic subspace, 4 by 4 linearly
independent. Let A1,..., A5 # 0 be such that

4
E /\i]}Z = /\5335.
i=1

Let @ = w(\;x?). By the choice of \; we have that

4
> @i = @s.
=1

Now assume that for all i = 1,...,4, & has rank 2 and denote by V; its
kernel, which is a three-dimensional space, and by v;; the one-dimensional
space V;NV; (recall that, generically, V; are transversal). With this notation
we have that

Vi = {v12,v13,v14}, Vo = {12, v23, v},
Vs = {13, v23, v34}, Vi = {vi4,v24, V34 }.

Now let P = [v12,v13, V14, V23, V24], Where v;; are suitably rescaled. Then
we obtain

000 00 0 0000
000 00 0 0100
PTo'p=10 00 00|, Pe*P=|0 -1 0 0 0],
000 01 0 0000
|00 0 -1 0 |0 0000
[ 00 1 0 1 [0 b 0 1 0
00 00 0 b 0 0 ¢ 0
PT*Pp=| -1 0 0 0 a |, Pla*P= 0 0 0 0 O
00 00 0 -1 — 0 0 0
| -1 0 —a 0 0 . 0 0000
Since
0 b 1 1 1
-b 0 1 ¢ O
PlosP=| -1 -1 0 0 a
-1 — 0 0 1
-1 0 —a -1 0
has also rank 2, it must be a = —b = ¢ = 1. Finally, we have
000 00 0 0000
4 000 00 0 0100
w=Y @ff=1000 00|ff+[0 -1 00 0|fm
=1 000 01 0 0000
000 —10 0 0000
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0 0 1 0 1 0 -1 0 1 0
00 00 0] 1 001 0]
+1 -1 0 0 0 1| f™+ 0 0 0 0 O | fm™
00 00O -1 -1 0 0 O
-1 0 -1 0 O 0 0 0O
and the following multiplication table:
[f4af5]:fﬂla
[fo, f3] = ™,
L1 fol = U1 fs) = [fss fo] = 7, (20)
—[f1, fol = [f1, fa] = [f2, fal = F™,
[f2, f5] = [f3, fa] = 0.

The normal form is given in Sec. 6 (see Eq. (45)).

Case (2). Next, consider the generic case, where two solutions ! and z?
are complex conjugate and 2, z#, and 2° are real and Re(z!), Im(z!), 23,
z* and z°, 4 by 4 linearly independent as points of R*. Then we can choose
A1, ..., A5 # 0 such that

4
A Re(zh) 4+ Mg Im(zh) + Z izt = AsaP.

With this choice, &' = w(A; Re(x!)), @2 = w(Ay Im(2!)), and &° = w(\;x?)
for i = 3,4,5 are such that
4

Ex

Note that
@ = Re (w(Azh)), @2 =Im (w(Ae2?)).
Now w(A12t) has rank 2 and, if v1, vo, and v3 are three independent vectors
of the kernel, then the conjugate vectors vy, U2, and U3 are independent
vectors of the kernel of w(Agz?).
Note that for every ai,as, as € C3,

)\13: (Z awz> = w( )\gx (Z a,v,) =0.

On the other hand, there exist «;, i = 1, 2,3, such that
v = Zaivi = Z (Re(ai) Re(v;) — Im(c;) Im(v;))
+1 Z (Re(a;) Im(v;) + Im(c;) Re(v;))
is a vector with real coefficients, i.e.,

> (Re(e) Tm(v;) + Im(a;) Re(v;)) = 0.
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Therefore, there exists v € R® such that

whzhv = wez?)v =0
and, in particular, @'v = @?v = 0. Then we take vy, vz, and v; = v as the
basis for the kernel of w(Ajz?).
Let Vi be the space generated by {v1,Revs,Revs} and V3 and Vj be
the kernels of @* and &%, respectively. Then we denote vi; = V3 N'V; for
j = 3,4, and 9;; are the vectors such that

what)(vyj +2015) = 0.
Finally, if we set P = (v1 v13 v14 013 14), we obtain
Re (w(Aiz!)) v1; = Im (w(Xzh)) 01y,
Re (w()\lml)) 015 = —Im (w()\lml)) v,
which implies
f)i'; Re (w(Aiz!)) v1; = vlj Im (w(Az!

) 0
)\1]}1)
) 0
)

V15 =
of Tm (w()\lxl)) v1j = vi; Re (w "y

1] vlz Re ( ()\1.%1)) ’lA)lj,

<.

(
=vf; Im (w(A 2!
(

of; Im (w(M2')) 915 = vf; Re (w(Az!

vsz m (w()q:z:

01
) vy = vli Re (w(/\lxl)) V1.

H\_/\_/\_/~,

Therefore,
[0 0 0 0 0]
0 0 a O b
PTRe (w(Mz"))P={0 —a 0 —b 0|,
0 0 b 0 —a
|0 b 0 a 0]
[0 0 0 0 0]
0 0 —b 0 a
P'Im (w(ha'))P=|0 b 0 —a 0
0 0 a 0 D
| 0 —a 0 —b 0 |
Similarly, we obtain a form for Re (w(A22?)) and Im (w(A2a?)). Moreover,

by a suitable choice of the lengths of the columns of P, we obtain

0 00 0 0
0o 01 0 1
PTG'P=PTRe (w(Mz"))P=|0 -1 0 -1 0 |,
0 01 0 -1
0 -1 0 1 0
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o 0 0 00
0o 0 -1 0 1
PT&*P =Pl Im (w(Xe2?))P=]0 1 0 -1 0 |,
0 0 1 0 1
| 0 —1 0 -1 0
[ 0 0 1 ai as
0 0 0 0 0
PT@HhP=| -1 0 0 a3 a4 |,
—a1 0 —as 0 as
L —Aas 0 —a4 —as 0
[0 b 0 by b3
—b1 0 0 by b
PT(@YP = 0 00 0 O
—by —by O 0 bg
| —b3 —bs 0 —bs O
Since @3, ©*, and ©® = > &' have rank 2, we have as = ajas — aszas,
b1b6 = b2b5 - b3b4, and dl(J}S) =0 for all i = 1, .. .,5, i.e.,
b —2)b 2 b
by = ——2, b4:_M7 bs:_w.
as as ag

Now we set for all i < j, 9;; = (PT@'P) A (PT&I P). In particular, we have
511 = 22 = [2,0,0,0,0] and 3% = 3% = 312 = [0,0,0,0, 0].
By choosing Py = [013014023024034] (and suitably rescaling it), we obtain

0 &+ 0 -1 0]

-+ 0 4 0 o0
(PP)ToY(PP) = 0o -+ 0 -1 11,

10 L 0 41

| 0 0 -1 1 0|

[0 3 0 i -1

-3 0 -4 0 1
(PP)TQ*(PP) = o 2 o0 -1 o],

-3 0 & 0 0

| 1 -1 0 0 0]

000 00

000 —1 0
(PP)T&3(PP)=|0 0 0 0 0|,

010 00

000 00
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001 00
0 00 0O
(PP)TGYPP)=| -1 0 0 0 0
00 0 0 O
0 00 00O
Finally, Eq. (2) gives the following multiplication table:

[f3, 5] = =[fa, fs] = [,

_[f17f5]:[f27f5]:f7r2u

—[f2, fa] = ™,

[f17f3}:f7r47 (21)

[uo fol = ~Uss il = 57 + 172,
[uofil = =Lfan fil = 5(=17 + 7).

The normal form is given in Sec. 6 (see Eq. (46)).

Case (3). Finally, we consider the case of two distinct pairs of complex
conjugate solutions and only one real solution. We denote these solutions

by z!, 22 = 2! 23, 2* = 72, and x5 € R*. Moreover, generically, there exist

A1,y A5 # 0 such that
A Re(z!') + Ao Tm(2!) + A3 Re(2®) + A\g Im(2®) = A5,

and hence, by denoting y1 = A1 + tAa, Yo = Y1, Y3 = A3 + 1Ay, Y4 = ¥3, and

Ys = A5, we have

Re(y12") + Re(ys2®) = ysa°.

Therefore,

1 3 5

ol + & =P,

where

) 4 &% = w(ysxs).

o' =Re(w(mal)),  @* = Re(w(ysz?)),

Im(w(yr2)), = Im(w(y32?)),

Moreover, @' 4 1&? and @3 + 1@* are two complex, rank-2, antisymmetric
matrices.

By the same arguments as for the previous case, there exist vy, vy € R®
such that &'v; = &%v; = 0 and @3vs = @4ve = 0. Complete vq,vs to a basis
of R%. Then, in these coordinates, we can write

2
Y (@)11 ] 0 .
w—{ 0 0}, 1= 3,4,
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where (@0')22, (©?)22, (©3)11, and (©?)11 are some antisymmetric (4 x 4)-
matrices with determinant 1. Indeed, since @' + @2 has rank 2, we can
write

0= (@' +10H) A (@Y +10%) = (@' AO' — D* AD?) + (@ A &P,
which implies that

GPA* =0, d'AD ZAa2. (22)
Hence from the second of Egs. (22), \/ (@1)a22) = y/det((@?)22). The
same relation holds for (& )11 and ()11

Now recall that @° = @' + &% is a real rank-2 antisymmetric matrix.
Then

0=’ AP =" AT+ PP NG + 201 AP,
and hence 1
&1AJ)3:—§(®1A®1+J)3A¢D3). (23)
Finally, denoting v;; = &' A @/ for all i < j, we have that vi; = vaa,
V33 = V44, V12 = 0, v3g =0 (by Egs. (22)), and 2v13 + v11 + ve2 = 0 (by
Eq. (23)). Then the suitably rescaled matrix P = [v1] v14 V23 Vog4 s3]
transforms @' as follows:
[0 O 0 0 0] [0 0 0 0 0]
0O 0 -1 0 0 0 0 0 0 1
Pfotp=l01 00 o0, P'&?P=|l0 0 0 1 0],
0 0 00 -1 0 0 -1 0 0
1 00 0 1 0 | | 0 —1 0 0 0|
[0 001 0] [0 0 -1 0 0]
0 01 00 0 0 0 1 0
PTH3p = 0 -1 00 0}, Plo*P=|1 0 0 0 0
-1 0 0 00O 0 -1 0 0O
0 000 0 (0 0 00 0|
Finally, we have the following multiplication table:
7[f4’f5]:fﬂla [f?aff)}:[f37f4]:fﬂ2a [flafd:fﬂ—sa
_[flaf?)]:[f27f4]:fﬂ47 [f23f3]:_f7r1+f7r37 (24)
[f1, fo] = [f1, f5] = [f3, f5] = 0.
The normal form is given in Sec. 6 (see Eq. (47)). O

4. THE CASES WHERE r = 3

We only have to consider the cases
(i) d=2and m =1,

(i) d=3 and m =1,

(ili) d=3 and m = 7.
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First we observe that (i) corresponds to the Engel algebra: the growth
vector is (2,3,4). It is known that there is only one isomorphism class for
this case. For completeness, we give its normal form in Sec. 6 (see Eq. (48)).
For (ii) and (iii), the following propositions allow us to reduce the analysis
of (iii) to that of (ii).

Proposition 12. Any E € Gr,,(£3) can be identified with an m-
dimensional subspace of the space T'(3) of (3 x 3)-matrices v such that
trace(Cvy) = 0, where
0 01
C=]0 -1 0
1 00

Proof. Fix generators fi, fa, and f3 for £} and let f™ be generators of
FE e Gr,, (ﬁ%) Then we can write

s L7 ] me”

Note that, since
Lf1, [f2, f3] = [f2, [f1s f5]] = [, [fas £l

the relation viys = 54 — 7% holds. Denoting

h h h
Y112 Y212 V312

h
Y= Mis Y s |
h h h
Y123 7223 7323
we have that trace(Cy") = 0 for all h = 1,...,m. Moreover, if we choose a

different set of generators for F, i.e.,

m
fﬂh = Z:Ehifﬂ—iv
i=1

then
fla f]a fh Z
where
= Z 2",
h=1
and

trace(C3') = Z p; trace(Cy") = 0.
3

Then E can be described by an m-dimensional subspace in I'(3) generated
by v*, h=1,...,m. O
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Proposition 13. If r = 3, then the bidimension (d, E:fl + 1) is rigid if
and only if the dual bidimension (d, ¢}, — 1) is rigid.
Proof. Now in I'(3), we define the bilinear symmetric product
ra) xr3)—R

by (v,n) — trace(yn?). Then if E is generated by 7", h = 1,...,m, we
define E+ to be the set of v such that (y,7*) =0forall h=1,...,m
Now we consider the mappings

U : GL(RY) — Gr,,(L3), Vi o(V)(E),
qj : GL(Rd) - Grld(3)—’rn(£§)? V- (I)(V)(EJ_)

We show that for all V € GL(R?), B(V-T) = (¥(V))*, so that a one-to-one
correspondence between the image of ¥ and that of U is established and
the proposition is proved.

The induced action of ®(V) on v € I'(3) is calculated as follows:

3 3 3
[z ol [z vjrfr,zvksfSH
=1 r=1 s=1

3
Z 'Uilvjrvks[flv [frv fs]]

S(V)[fi, [f: fill

l,s,r=1
= szl <Z VjrVks fla frvfsu>
s,r=1
= szl <Z VjrVks — Ujs”kT)[fb [f'm fs]]) 5
r<s

from which we obtain
(V) =cv-TCTyhyT, h=1,...,m.
Note that
trace(V =T CTyVT) = trace(VIV=TCT ) = trace(CT).

Therefore,
(V) :T'(3) — I'(3)
for all V € GL(R?). Moreover,

(@(V)y,2(V= 1)) = trace((CV-TCTAVT)(CVCTyv—1)T)
= trace((CV-LCTHv T (V- TypTovTo™))
—trace((CVTCT)(CV ™)
= trace(yn?) =

for all y € E and n € E*. O
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Next, we analyze the case of m =1.
Let ®(V) : CTT(3) — CTT(3), where ®(V) = CT o ®(VT) 0 C, i.e.,
d(V)(CTy) =CTev=rcTyv =v—icTyv.
The dimensions of the orbit of ® and that of ® coincide. We have the

following assertion.

Lemma 2. The codimension of any orbit of ® in I'(3) is greater that or
equal to 2.

Proof. The characteristic polynomial of Cy is an invariant of the action of
®. Indeed,

p(\) = det(VICTAV — AI3) = det(CTy — \I3).

Since trace(CT+) = 0, we have that p()) is defined by 2 coefficients and the
codimension of any orbit of ® is no less than 2. O

Proposition 13 and Lemma 2 immediately imply the following assertion.

Proposition 14. The bidimensions (3,7) and (3,13) are not rigid.

5. THE CASES WHERE r = 4

For r = 4 we only should consider the cases where d = 2 and m = 1, 2.
For d = 2 and r = 4, we have ¢5(4) = 3 brackets of degree 4 which are
linearly independent with respect to the Jacobi identity: [fi, [f1, [f1, f2]]]s

[f2, [f1, [f1, f2ll], and [f2, [f2, [f1, fol]].
Now let E C Gr,,,(£3) and f™, h =1,...,m, be generators of E. Then F

can be identified with an m-dimensional space of (2 x 2)-symmetric matrices.
Indeed, for all I, s = 1,2, we can write

o, s U Jolll = D alef™.
h=1

Let Q" be the matrix with coefficients ¢/'. Since
Mlfrs [ U P+ Aalfa, e, 1 folll = (2, L [ f2lD,

m -

we have that Q" are symmetric of order 2. Moreover, if f™ = > ap; f™,
i=1

then

m

[fla [fsa [flanH] = Zqzsfﬂi7

i=1

-~ m
where Q% = > z5,,Q".
h=1
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Next, we compute the induced action of ®(V), V € R2, on the space
Sm(2) of symmetric matrices of order 2 corresponding to E. From

(V) [fu, [fs, i, £5)l] = [Z Vi frs [ Vsm fm, det (V)] f1, fz]]]

Zvlrfh [Z vsmfm7 [fh f2“‘|

= det(V) Z'Ulr'l}sm[fra [fma [f17 fQ]H

= det(V)

we obtain ®(V)Q" = det(V)VQ"VT. Therefore, the degree-2 homogeneous
polynomial

det (Z thh> (25)
h

in the m variables x1, ..., x,, is invariant under the action ® up to a positive
scalar multiplier.
For m = 1 we have the following assertion.

Proposition 15. The bidimension (2,6) is rigid with two isomorphism
classes distinguished by the sign of determinant (25).

Proof. For m = 1, Eq. (25) reduces to det(Q)), whose sign is invariant under
the action ®. A generic symmetric form @ can be either sign-definite or
indefinite (corresponding, respectively, to det(Q) > 0 or det(Q) < 0). For
each of these cases, we will give the multiplication table thus showing that
(2,6) is rigid with two isomorphism classes.

m =1, Q is positive-definite. Assume that @) is positive definite and of

the form
2 1
o=[1 ]

Then we have the following multiplication table:
[f27 [flv [f17 fQ]]] = [Oa I]Q[lvo]Tfﬂl = fﬂlv
[f1:[f1s [frs foll]l = [1,00Q[1, 0] f™ = 2™, (26)
[f?v [f?v [fl, f2]” = [Oa 1]Q[07 1]Tf7r1 = 2]('71'1.

The normal form is given in Sec. 6 (see Eq. (49)).

m =1, Q is indefinite. Assume that @ is indefinite and has the form

o=V o
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Then we have the following multiplication table:

[f1, [f2, [, foll]l = [1,01Q[0, 17 f™ = ™,

[fla[fla[flaf?]]] = [170]Q[130]Tfﬂ—1 :07 (27)
[f27 [f2’ [fla fz]]] = [07 1]Q[0’ 1]Tfm =0.
The normal form is given in Sec. 6 (see Eq. (27)). O

For m = 2, we have the following assertion.

Proposition 16. The bidimension (2,7) is rigid with two isomorphism
classes distinguished by the sign of the discriminant of polynomial (25).

Proof. (25) is a homogeneous polynomial of degree 2 in two variables whose
coefficients are invariant under the action of ®. Then the equation

det(z;Q" + 22Q%) =0 (28)
has two solutions that can be either real or complex conjugate. For each of

these cases, we will give the multiplication table thus showing that (2,7) is
rigid with two isomorphism classes. O

Remark. The sign of polynomial (25) could serve as an extra invariant in
the complex case, but a simple analysis shows that this sign is unavoidably
negative.

m = 2, real case. Assume that Eq. (28) has real solutions. Under generic
assumptions, we can assume that they are distinct and that there exist Q'
and Q? in the linear space S3(2) of symmetric (2 x 2)-matrices of order two
corresponding to F, of corank 1 with transversal kernel. By setting p; and
po to be eigenvectors corresponding to the zero eigenvalue of Q? and Q!
respectively, we have that P = [p1, po], the matrix of columns p; and ps, is
such that

Q1=PT(Q1)P=[(1) 8}7 Q2=PT(Q2)P=[8 (1)}

Finally, we obtain the following multiplication table:
1, s T Jolll = [L,01(Quf™ + Qo f™)[1,0]7 = f™,
[for [fos [f1s 2] = [0, (@1 f™ + Q2 ™)[0,1]" = f2, (29)
Lfz, (1 L1 folll = [0, 1(Quf™ + Q2f™)[1,0]" = 0.

The normal form is given in Sec. 6 (see Eq. (51)).

m = 2, complex case. If there exists a pair of complex conjugate solutions
of Eq. (28) then we can assume that @1 and @2 in S3(2) are complex
conjugate. Now let p; and po be such that p = p; 4+ 1p2 € ker Q1, i.e.,

0= (Re(Q1) +2Im(Q1))p
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= (Re(Q1)p1 — Im(Q1)p2) + 2 (Re(Q1)p2 + Im(Q1)p1)
hence, by setting P = [p1,p2], we obtain

Re(Qu) = PT(Re@)IP= | |} .
1
1

(@) = P m(@0)P = | )
Denoting
= G ) = (P =),
we have that
QU™ + Q2™ =Re(Q1)f™ — Im(Q1)f™

and obtain the following multiplication table:

(s L1 [ foll]l = [1,0] (Re(Q1) /™ — Im(Qq) f™2)[1,0]7 = f™ + f™,
[fo, [f2, Lf1, f2]]] = [0, ](Re(Q1) f™ — Im(Q1) f™)[0, 1] = —f™ — f™,
[fo, [f1, [frs £2l] = [0, 1] (Re(Q1) f™ — Tm(Q1) f™)[1,0)" = f™ — fm=.

(30)

The normal form is given in Sec. 6 (see Eq. (52)).

6. NORMAL FORMS

To calculate the normal form of a set of smooth vector fields F, by the
known multiplication table, it suffices to apply the Campbell-Hausdorff
formula. Indeed, assume that 7 = {f1,..., fa} is regular at go and the Lie
algebra Lie F is n-dimensional with the basis f?, i = 1,...,n. Then the
exponential mapping

P Z%’fi — qo exp (Z%‘fi)
i=1 i=1

is smoothly invertible in a neighborhood of 0 € Lie F = R™ and defines local
coordinates in a neighborhood of qq.
Let ¢ — get!’, t € R, be the flow on M generated by the field f7. If

g=® (i xifi),then

i=1

gexp(tf’) = qoexp (Z xifi> exp (tf7)

i=1

= goexpln <exp (Z mﬂ”) exp (tfj)>

i=1
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= <lnexp (i: 351]”) exp (tfj)> )

where the product under the logarithm is an element of the “abstract” Lie
group generated by the Lie algebra F. Hence the coordinate representation
of the flow ¢ — ge'” is as follows:

infi — In <exp (Z :cifi> exp(tfj)> ,

=1 i=1

and the coordinate representation of the vector field f7 as a vector-valued
function of z = (z1,...,z,) is

0 In (exp (Z 33le> exp(tfj)> .
t=0 i=1

Trr— —

ot

By the Campbell-Hausdorff formula we can write
In(ef e ") = f+ 57 + [mm

) _ _ 1 , _
+ ﬁ([fa [f7tfj“ - [tfja [fatfj]]) - ﬂ[‘ﬂ [tfja [fathH] +
(31)
from which
d

Sl mef ey = P Sl P S (32

t=0

Note that in Eq. (31), the brackets of order 4 appear only as a O(t?) term.
Hence in Eq. (32), the brackets of order 4 disappear. Substituting in (32)
the expression of f yields:

ol 1 (efet?) sz [ 1] +— Z wixnlf [ F]) +

ot t=0 zh 1

(33)
and, finally, substituting the expressions for [f?, f/] and [f?, [f", f7]] as in
the multiplication tables yields the expression for f7 in the coordinates
0/0x; at the point z.

Next we give the resulting expressions of f7 for each multiplication table.
First, we consider the rigid bidimension (d,d + 1) corresponding to r = 2
and m = 1. From the multiplication table given in (3), we have f* = f; for
i=1,...,d and f¥*! = [f}, fo]. Then Eq. (33) has the form

d , 1
| Tty = £+ 2 wilhi £,
t=0 i=1
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and hence, in the coordinates 0/0x;, we have

i—l—lm L if 7 is even
axj 2 i1 8xd+1 J ’

fj = o 1 9 (34)
if j is odd.

—_— = =T
835]- 2 i+ 8xd+1

For the dual case, the multiplication table is given in (4). Choose f7,
j=1,...,n, as follows:

fi=fi i=1,....d,
i . d

fd I+ :[f2i717f2i]7 2227"'57

f’idJrg*l(i)‘i’k _ [fzafk] ’ k> i,

5 1 ) 1 A .
where [(i) = Z—i—i(—l)”l +§i2+i andd=difdisevenord=d—1if d

is odd. Then we have the corresponding normal form:
: i
0 1 0 1 0
R ) o R A
83:1 2 i—2 8Id_1+i s 2 8xd+g—l(1)+i
d

d
2

a 1 & ) 1 )
fQ*Tm*ixl;m*ZE”iaxi’

i—2 2d+4—1(2)+i
1o} 2 ZT; 0 Tj-1 0
Ul D Dk ¥ e S ra
7=l id+g —1(i)+j 3 (35)
d T 0 P
— Z W if j is even,
R
ol im0 om0
J Ox; “—~ 20T, 4 ;.. 2 Or, jn
i=1 id+§—1(i)+j d—5=+1
d
i 0 s
— Z %87 if 7 is odd.
imj12 © OTjatrd—i(j)+i

Now we consider the bidimensions (d, d + 2) corresponding to r = 2 and
m = 2. We have rigid cases for d = 4,6, each with two isomorphism classes,
and for d = 5,7 with one isomorphism class. For d = 4 and the multiplica-
tion table as in Eq. (6), by setting

fi=fi, i=1,...,4,
=1 Ll=m fP=1fsfd =1,
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we have that the normal form is

we obtain

0 mo
! (9$1 2 81‘5
o0 om0
2 8302 2 8375’ (36)
PR
3 8:53 2 8-'176
PR
4 0xa 2 Oxg
For d = 4 and the multiplication table as in Eq. (7), by setting
fi=1fi, i=1,...,4,
fo =111, fs] = =1fa, fal = F7,
fO=1h, fa = fa, 3] = ™,
we have that the normal form is
pod w30 w0
Y7 0z 2 0ry 2 Oxg’
_ 0 Ty 0 T3 0
f2 B 8%2 + 2 (91'5 2 8:56’ (37)
Dm0 w0
57 8$3 2 31‘5 2 821?6’
o0 md m 0
1T 8.134 2 8%‘5 2 61)6.
For d = 5, considering the multiplication table (10) and setting
fi=fi, i=1,...,5,
fO=1f1, f2) = [fs, f5] = £,
f7 = [f37f4] = [flaffl] = fﬂ—27
pod w20 w9
Y7 0z 2 0mg 2 Oxr)
o 0 X1 0
f2 B 5:02 + 2 8x6’
0 z5 O x4 O
fa—a—x?’—?a—%—ga—m?, (38)
- 0 I3 0
f4 a 8$4 + 2 8%‘7,
o) T3 0 T 0
fs =

ozs T2 0g T 2 0w
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For d = 6 with multiplication table as in (8), by setting

fi=fi, i=1,...,6,
[f17f2]2f7, [f37f4]:f87
we have:
f= 1o} 1 0
e 8:51 2x281'7
e 0 L1 1 0
2= 8x2 2 6m7
0 1 0
f3 (9.1‘3 23648938
0 1 0
fa= a_ 2 Gy
1 0
f5 + 2336 <8 81'8>
1
Jo = a—zﬁ ~ o (am axs)
For d = 6 with multiplication table as in (9) and setting
fi=f, i=1,...,6,
JT=1fs,fs] = =[fa fo] = f™,
f8 = [f37f6] = [f4af5] = fTr27
we have:
0 1 (0 o
! o1 2:5 Oxy; Oxg )’
o0 1 (0 &
2 81‘2 2 833‘7 63:8 ’
L0 1 0 1 0
3 8333 2 58$7 2 83387
L0 1 0 1 0
4 83?4 2 66.’177 2 83’33’
L0 1 0 10
> O 93 Oz 94 Oxg’
0 1 0 1 0
fe = = + -

T owg 20w 27 0ms

487

(39)

Finally, for d = 7, whose multiplication table is given in (11), by setting

fi=fi, i=1,...,7,
fE=1f, ) =fs fol = fs, f1] = £,
fg = [f3af4] = [f17f7] = [fﬁvfﬂ :fﬂ2a
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we have the following normal form:

0 1 0 1 0
fl_a_xl_§x23_x8__ 78—x9
0 1 0
f2:8—x2+§m18—1:8’
0 1 0o 1 0
f?’_a—a:g,_§x78_xg__ 46—339
fa= 8%54 + %xgaimg, (41)
0 1 0 1 0
fsza—%+§($6—$7)a—%—§$68x9,
0 1 0 1 0
f6:5_356_§x58—z8+§($5 3?7)8—%’
0 1 1
f7=8—x7+§(x3+x5)—8+5(m1 +1'6)79

Next we consider the bidimensions (d, d + 3) corresponding to r = 2 and
m = 3. We have seen that such bidimensions are rigid for d =4 and d = 5
with two isomorphism classes.

For d = 4 and multiplication table (16), by setting

fi=fi, i=1,....4,

PP=rm==lfifal = fO= "= fs, fa + [T,
f7 = [f17f3] = [anf4] :fﬂ-sa

we obtain:
0 1 0 1 0
1= Gar T 3%, Tl T g,
0 1 0 1 0
fz—a—xz 2$18—%—§($1+$4)8—x77 )
PR T TR
57 (91‘3 2x48f£6 2 e T 85677
1o} 1 0 1 1o}
f4—6—+§ _+ (.’EQ—xg)a—x?.

Oxe
For d = 4 and multiplication table (18), by setting

fi=fi, i=1,...,4,
f5 _ fm, fﬁ — fﬂz7
T =1f1, 2] = [f3: fa] = ™,
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we obtain:
0 1 0 1 0 1 0
ho= ey ~aWs ey ot 5w —w) g = srag
f —i 1( _ )3 _1( + )i_Fl i
27 Opy 2T Mg T W ) e T (43)
f i+l( + )8 _1( _ )i_l i
57 Ors g\ Ozs g\t T2 Ozg 2% Oxy’
P A VY S PN A
1T Puy T T gy T g\ TG T 9Ty
For d = 5 and multiplication table (19), by setting
fi:fia iil,...,5,
fO=1fas fo] = [fs: fa] = f™,
f7:7[f1,f4]:7[f3,f5]:fﬂ2a
f8:[f17f3]:_[f27f3]::|:[f47f5]:f7r37
we have:
L0 10 10
te 81‘1 2 46357 2 381‘3
o0 10 10
27 8,@2 2:55 8906 2 6338
0 1 0 1 0 1 0
3= Gy T 2%y T 20 T2 T ) g (44)
0 1 0 1 0 1 0
= e T 300 2 0 L 2 By
o9 1,0 10 1.2
57 Dz 2005 2 0z 2" Oy

Now we consider the bidimension (d,d 4 4) corresponding to r = 2 and
m = 4. This bidimension is rigid with three isomorphism classes for d = 5.
First, we consider the multiplication table as in (20) and set

fi=fi, i=1,...,5,
o= fsl =1 T =1[f2 f3] = f™,
2 =1 fsl = fs) = [fs fs] = 7,
[P = =lf1, f2 = Uf1, fa] = [fo, fa] = f™.



490 A. AGRACHEV and A. MARIGO

The normal form is

0 1 0 1 0
fi= 5—331_§($3+x5)8 +§($2—$4)a—a:9,
1o} 1 0 1
f2= 6—@—55&38—%7 §($1+x4)8_3597
0 1 0 1 0
=5 —— t+3 — — 4
fs Ox3 t3 2 283:7 + 2($1 x5)8x8’ (45)
f — i 1 i_Fl( + )i
1 81'4 2$5 8&66 2 o 2 81‘9’
f — i+l i+ 1( + ) 9
57 Bzs 2 Y0wg | 2 T Gy

Next, for the multiplication table as in (21), setting

fi=fi, i=1,...,5,
fO=1fa, fs] = =[fa. fs] = /™,
fT==lffs] = f2. fs] = ™,
[P =—=lfo, fal = [, f2=1f, fs] = f™,

we have the following normal form:

f2=%4—%(501—333)%4‘%(901*'333_%5)5 ; 828
f4_6ix4 i(m1+x3 25)326+i($1—$3)5% ; 328
f5_%4—%(»‘53—%4)%—%(%1_@)%'

Finally, for the multiplication table as in (24), setting

fi=fi, i=1,...,5,
fo==lfa. fs] =1 [T =1[fo, fs] =fs, fa] = [,
fgz[f13f4]:fﬂ3a fgz_[f17f3]:[f23f4]:fﬂ4a
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we obtain the normal form

0 1 0 1 0

fl:a—ml B 3—+2 a—xgy
0 1 0 1 0 1 0 0

f2:6—x2 2%58737 23048—339*—5963 (8—956_8_338)’
0 1 0 1 0 1 0 0

f3:87x3 2x467£1:7 2I187339*§$2 (@3368568)’ (47)
0 1 0 1 0 1 0 1 0

f4 874 55873?6+§ 87.%‘7+§ 188+§ 287.');‘9’

0 19 19
5= oy 2™ 0w 2 0w

For r = 3, the unique rigid case is the Engel algebra. The multiplication
table is given by

fr=fi i=12,
fgz[flvaL f4:[f1’f3]:[f2af3}'

The normal form of F is

0 1 0 1

1= ey T 3% 13O T )

(48)
f—i—i—lx 0 1(696 xx—xg)i
2_812 2 18 €T3 12 3 1 8174.

For r = 4, the unique rigid bidimensions are (2,6) and (2,7); the corre-
spond to d = 2, m = 1 and d = 2, m = 2 respectively. For n = 6,7, we
calculate the brackets [f, f;] by setting f* = f; fori = 1,2 and f* = [fl, fals

fH=1f1, %, and f° = [fo, f7]:
[f, [l = szfuﬁ +x2(f2, [1] + @s[[f1, fol, fi]

+ 334[[f1, [f1, P2l o] + as[[f2, [f1s 2], fa
= —xa[f1, fo] — z3[f1,[f1, fo]]
— z4(f1, [f1, [f1, foll]l — @s[f1, [fe, [fas f2]l],

[f, fo] = Ziﬂz [fis fo] = +anlfr, fo] + as[[f1, fol, f2]

+ I4[[f1, [f1, foll, fo] + @s5[[fo, [f1, fol], fol

= +x1lf1, fo] — x3lfa, [f1, f2]]

— x4l fo, [f1, 1, folll = @s(f2, [f2: [ folll,
LU Al = =22 (@[ [y, fo]l + 22l f2, [, fol])

— a3 (x1[f1, [f1, [f1, foll] + @2l fo, [f1s [f1s f2ll])
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[fs [fs foll = a1 (z1[f1, [f1, fol] + @2l fo, [f1, fol])
— a3 (v1[f1, [f2, [f1, foll] + @2lf2, [f2, [f1, f2]]]) -

Then according to the multiplication table (26) for m =1 and setting

16 =[fa, f4] = f™, we have:

o 1, @8 d 0
= — — — 2 JR—
h ory 2(582 Ors + s 0y + (224 +m5)8x6)
L 0 22 4 (22321 + )i
12 T2t (9:174 2 81‘5 T3t T3t 8:66
o 1 8 1 L 5 0
= om  2%%0s, 12000 i) = o 2 50s

1 8
— 5(12954 + 6x5 4+ 22123 + xﬂg)(’)_xﬁ

0 1 0 0 0
f2 + = ( —r35— — (va + 2375)—)

_'ax2 Yory P Ows
0 0 0
R 2 —_— —_—
+ 12 < 1(9 + X122 D (1‘3.%‘1 + 2$3$2)3I6)

0 10 1,0

= a5, T 2" a_3+ﬁxla_u_12(

(49)

0
61’3 — xll‘g)a—xf)

1
_ E(12965 + 624 + 2x0x3 + T173) =— 8%

For the multiplication table (27), setting f& = [f1, f°] = f™, we have
instead the following normal form:

JARNCI Y (R
Y7 0, 0z 30z P Omg

I R R )
12 Yors T 0xs P O

o 1 o 1 )
=0 T 3%20s, 130T T mT) g
1,01 B
127255, ~ 190%s F22ms) 5

0xs
0 1 0] 0 0
fa= 8_+§ (ma—%—xga—%—ma—%)
1
12

+ 28+xx8 xmi
Xy 12a 138306

Oy
A B WY A
dro 27 0xs 12710y
1 0 1
— —2(6ZL'3 1‘1$2)6x5 2(6$4 + $11‘3)8$6
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For m = 2 and the multiplication table (29), setting

== =1 rf1=r1m,

we have
0 1 0
fl:a—xl_i (3328 S + 33—m+x43x6>
1 0 0 0
_ E(552:1:16 + 5 e + 7371 3—!136)
0 1 0 1 0
= a—xl — 5%26—1'3 12 (6$3 + $1$2)8x4
_ %x%ai% 112 (6:1;‘4 + 1‘11‘3)636
o 1( 0 P ) (51)
ﬁ:%fiewaﬂ@m‘%%ﬂ

1 /45,0 0 0
+E (mla—u +$1$26—m5—$3l‘28—x7>
0 1 0 1,0
5 T3 i

- 8£U2 8 I3 + —.131 81'4
1 o 1 9
— (6 < <
15 (673 = m1m2) 5 = = 35 (625 + wam3) 5

Finally, for the multiplication table (30), setting f¢ = f™ and f7 = f72,

we have:
PR R (NI S G NN
L 8551 2 T2 61’3 3 8$4 T4 8906 61’7 5 8%6 8567

(0 a0 (0 0N . (o o
12 ! 23334 28%5 s O0xg Oxr 23 Oxg oxr

-9 4 16:0 —&—:c:v)i—i:fa
3 128174 12 28:135

Lo 1
ory 2 70xs 12
624 + 65 — 2123 + mgxa)

—%(6934 + 6x5 + 2123 + 1’21’3)88 + 112(

[ N (PO R R (LR N N
2= Ors 2 laxg 38365 Ore Ox7 5 83:6

8 7
(0 0 (0 9N 0 o
12 18%4 ! 261‘5 3 61’6 8{E7 3%2 8:56 8377
0 0 1 0 1
= + + 2 — (6xs — x122) —

8%2 82: Bx T 12 8x5

1
12(61:4 — 625 + T123 — {E2$3)88 + 12(6904 + 625 + z123 + acz:cs)ai 2
52
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