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LOCAL REGULARITY OF OPTIMAL TRAJECTORIES
FOR CONTROL PROBLEMS

WITH GENERAL BOUNDARY CONDITIONS

M. SIGALOTTI

Abstract. Let f and g be two smooth vector fields on a manifold
M . Given a submanifold S of M , we study the local structure of
time-optimal trajectories for the single-input control-affine system
q̇ = f(q) + ug(q) with the initial condition q(0) ∈ S. When the
codimension s of S in M is small (s ≤ 4) and the system has a small
codimension singularity at a point q0 ∈ S, we prove that all time-
optimal trajectories contained in a sufficiently small neighborhood of
q0 are finite concatenations of bang and singular arcs. The proof
is based on an extension of the index theory to the case of general
boundary conditions.

1. Introduction

Consider the single-input control-affine system

q̇ = f(q) + u g(q), q ∈ M, u ∈ [−1, 1], (1.1)

on a smooth manifold M . Given a smooth submanifold S of M , we study the
regularity of trajectories of (1.1) connecting in minimum time S with points
of M close to S. The regularity can be expressed in terms of upper bounds
on the number of bang and singular arcs of time-optimal trajectories, and
on restrictions on the possible concatenations of such arcs.

We call the point-to-point problem the case where S reduces to one point,
while we refer to the general case as to the manifold-to-point problem. The
analysis of generic regularity properties of time-minimizing point-to-point
trajectories has initiated a rich literature (see, e.g., [16,17] for the case where
M is two-dimensional and [4,14,18] for the three-dimensional situation). For
local time-optimal syntheses, we refer to [9] and [15] for dimensions two and
three, respectively.

Less results are available, up to our knowledge, for the manifold-to-point
problem. The main contributions are given by [7] and [11]. These two

2000 Mathematics Subject Classification. 49K15, 49K30.
Key words and phrases. Optimal control, transversality conditions, index theory.

91

1079-2724/05/0100-0091/0 c© 2005 Springer Science+Business Media, Inc.

DOI: 10.1007/s10883-005-0003-5



92 M. SIGALOTTI

papers furnish a classification of time-optimal syntheses for the manifold-
to-point problem, when S has codimension one and M has dimension two
or three, for generic analytic systems. In [11], the results are extended in
the following way: no restriction is imposed on the dimension of M and the
synthesis is obtained near all points of S, where the system has a singularity
of codimension smaller than three. Moreover, the cited articles, together
with [8], study in detail the situation where g is everywhere tangent to S,
since it is motivated by applications to control problems for batch reactors.

The results obtained in the present paper hold for source manifolds S of
codimension less than or equal to four, without restrictions on the dimension
of M . The systems are assumed to be smooth but not necessarily analytic.
The case of codimension four is new also when S reduces to a point, i.e.,
for the point-to-point problem in dimension four. In general, if s is the
codimension of S, we give a local description of the time-optimal trajectories
near all points of S, where the singularity of the system has codimension
smaller than 5 − s.

The index theory for bang-bang controls, developed by Agrachev and
Gamkrelidze [4], can be reformulated in order to be applied to the manifold-
to-point problem (Theorem 2). The upper bounds on the number of arcs
which are obtained in this way turn out to be the same as the ones which
hold for the point-to-point problem in an s-dimensional manifold.

Sections 2–5 contain the formulation of the problem and obtaining vari-
ous properties of optimal trajectories. In particular, the notion of extremal
trajectory is recalled, as well as the transversality condition associated with
the general boundary condition q(0) ∈ S. In Sec. 6, we study the cases
of lower codimension, for which the Pontryagin maximum principle is suf-
ficient to characterize time-optimal trajectories. In the remaining cases,
index theory is applied to bound the number of arcs of bang-bang trajec-
tories (Proposition 1). The general case of trajectories which contain also
singular arcs is treated by arguments which can be developed independently
of dimension considerations (see Sec. 8). Sections 9 and 10 constitute the
core of the computational machinery. Various asymptotic expressions of
quadratic forms corresponding to second-order variations of the switching
times are obtained.

2. Formulation of the problem

Let M be a finite-dimensional manifold and S be an embedded subman-
ifold of M of codimension s. Denote by n + s the dimension of M . All
manifolds and vector fields considered in this paper are assumed to be of
class C∞.
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Consider the control problem{
q̇ = f(q) + u g(q), q ∈ M, u ∈ [−1, 1],
q(0) ∈ S,

(2.1)

where f and g are two vector fields on M . We say that S is the source
of trajectories of the system. Admissible controls are measurable functions
u : t �→ u(t) ∈ [−1, 1]. For each T > 0, the attainable set from S at time T
is the set of all endpoints of trajectories of (2.1) corresponding to admissible
controls evaluated at time T .

By analogy with what was done in [6] for the point-to-point problem, we
introduce a notion of optimality, which includes time-minimality, appropri-
ate for formulating general regularity results.

Definition 1. An admissible trajectory q : [0, T ] → M of (2.1) is said to
be quasi-optimal if for every neighborhood W of the pair (f, g), with respect
to the C1 product topology on the space of pairs of vector fields, there exists
(f ′, g′) in W such that q(T ) is not in the interior of the attainable set from
S at time T for the system corresponding to (f ′, g′).

In particular, all trajectories which minimize or maximize the time
needed to join S to a point q of M are quasi-optimal.

Our main result is the following.

Theorem 1. Let M be a finite-dimensional manifold and S be a sub-
manifold of M . For a generic pair (f, g) of vector fields on M , there exists
a stratified set A of codimension five in M such that, for every q0 in S \A,
the following condition holds: there exist T > 0 and a neighborhood U of
q0 such that a quasi-optimal solution of (2.1) contained in U and of time-
length less than T is the concatenation of at most seven between bang and
singular arcs.

For the definition of bang and singular arcs, see Sec. 3. Note that if
the codimension of S in M is greater than four, then the theorem gives no
information. On the other hand, if the dimension of M is less than or equal
to four, then A is necessarily empty.

From now on, q0 will denote a fixed point in S. By the Thom transversal-
ity theorem, the proof of Theorem 1 is obtained by furnishing a classification
of the singularities of the Lie bracket configuration of (f, g) at q0 up to order
4− s, and by showing that, for all such configurations, the bound holds for
quasi-optimal solutions of (2.1) contained in a neighborhood of q0.

In order to classify concisely these singularities, we introduce the notation

X± = [f ± g, [f, g]], X±∓ = [f ± g,X∓].

We also find it useful to define

V = span{g(q0), [f, g](q0)} + Tq0S. (2.2)
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We use the symbol � to denote the transversal intersection of vector sub-
spaces of Tq0S, and we say that a vector intersects transversally a subspace
if the span that it generates does.

We label the singularities of the classification by means of the codimen-
sion of the source and the codimension of the singularity: an (s, d)-point is
a codimension-d singularity on a codimension-s source.

(1,0) g(q0) � Tq0S;
(1,1) g(q0) ∈ Tq0S and [f, g](q0) � Tq0S;
(1,2) g(q0), [f, g](q0) ∈ Tq0S and X+(q0), X−(q0) � Tq0S;
(1,3) g(q0), [f, g](q0), X+(q0) ∈ Tq0S and X−(q0), X++(q0) � Tq0S;
(2,0) span{g(q0), [f, g](q0)} � Tq0S;
(2,1) codim V = 1 and span{g(q0), X+(q0)}, span{g(q0), X−(q0)} � Tq0S;

(2,2a) codim V = 1, X+(q0) ∈ V , and the intersection of span{g(q0), X−(q0)},
span{g(q0), X++(q0)} with Tq0S is transversal;

(2,2b) g(q0) ∈ Tq0S and span{[f, g](q0), X+(q0)}, span{[f, g](q0), X−(q0)} �
Tq0S;

(3,0) span{g(q0), [f, g](q0), X+(q0)}, span{g(q0), [f, g](q0), X−(q0)} � Tq0S;
(3,1) codim V = 1, X+(q0) ∈ V , and X−(q0), X++(q0) � V ;
(4,0) span{g(q0), [f, g](q0), X+(q0), X−(q0)}, span{g(q0), [f, g](q0), X+(q0),

X++(q0)}, and span{g(q0), [f, g](q0), X−(q0), X−−(q0)} intersect Tq0S
transversally.

The classification does not consider singularities which can be obtained
from those listed above by performing a transposition between + and −.
This is justified, since the substitution −g instead of g in (1.1) preserves the
control system, reversing the formal roles of + and −.

The general upper bound of seven arcs stated in Theorem 1 can be re-
fined when we deal, one by one, with the different cases. Table 1 collects
all local upper bounds on the number of arcs of quasi-optimal trajectories,
as they will be obtained in the paper. Each row corresponds to one class
of (s, d)-points. The second column contains the corresponding local bound
for trajectories which have at least one singular arc of positive length, and
accounts for the maximal non-bang-bang concatenations which are candi-
date to be quasi-optimal. In the third column, the bound is presented which
applies to purely bang-bang trajectories.

As was said in the introduction, the cases (1, 0), (1, 1), and (1, 2) have
already been studied, at least in the analytic case, in [7, 11], with different
methods and in a different perspective. In fact, these works deal with the
whole local synthesis of the problem and the upper bound comes as a pre-
liminary step. We prefer to treat these cases here as well, since they give
us the opportunity to proceed more gradually and, we hope, to clarify our
reasoning.
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(s, d) non-bang-bang bang-bang general
bound bound bound

(1, 0) 0 / 1 1
(1, 1) 0 / 2 2
(1, 2) 3 BSB 3 3
(1, 3) 4 BSBB, BBSB 3 4
(2, 0) 0 / 2 2
(2, 1) 3 BSB 3 3
(2, 2a) 4 BSBB, BBSB 3 4
(2, 2b) 3 BSB 3 3
(3, 0) 3 BSB 3 3
(3, 1) 4 BSBB, BBSB 4 4
(4, 0) 4 BSBB, BBSB 7 7

Table 1

3. First-order optimality conditions

By the Pontryagin maximum principle [13], if q(·) is a quasi-optimal so-
lution of problem (2.1), then there exist c ∈ R and an absolutely continuous
covector trajectory λ(·) in T ∗M such that

λ(t) ∈ T ∗
q(t)M \ {0} for every t ∈ [0, T ], (3.1)

λ(0) ⊥ Tq(0)S, (3.2)

which satisfy for almost every t the equation

λ̇(t) = �hu(t)(λ(t)) (3.3)

and the relation
hu(t)(λ(t)) = min

v∈[−1,1]
hv(λ(t)) ≡ c, (3.4)

where the family of Hamiltonians hv is defined by

hv(λ(t)) = 〈λ(t), (f + vg)(q(t))〉 (3.5)

and �hv denotes the Hamiltonian vector field on T ∗M associated with hv. If
a coordinate system is fixed and covectors are identified with row vectors,
then (3.3) can be written as

λ̇(t) = −λ(t)
(
Df(q(t)) + u(t)Dg(q(t))

)
. (3.6)

An extremal pair is a pair (λ(·), q(·)) of absolutely continuous trajecto-
ries, where q(·) is admissible for (1.1) and λ(·) satisfied (3.1), (3.3), and
(3.4). A trajectory of (1.1) is extremal if it admits an extremal lift in T ∗M .

Definition 2. If an extremal pair (λ(·), q(·)) satisfies (3.2), then we say
that it is an S-extremal pair and q(·) is called an S-extremal trajectory.
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With any extremal pair (λ(·), q(·)), it is classically associated the switch-
ing function

ϕ(t) = 〈λ(t), g(q(t))〉 , (3.7)

which has the property, easily deducible from (3.4), that

u(t) = − sign(ϕ(t))

for almost all t such that ϕ(t) �= 0.
Given a vector field X on M , the function t �→ 〈λ(t),X(q(t))〉 is almost

everywhere differentiable and, for almost all t in [0, T ],

d

dt
〈λ(t),X(q(t))〉 = 〈λ(t), [f + u(t)g,X](q(t))〉 , (3.8)

which can be deduced from (3.3). It follows that the switching function is
C1, its derivative is given by

ϕ̇(t) = 〈λ(t), [f, g](q(t))〉
and that, for almost all t, there exists

ϕ̈(t) = 〈λ(t), [f + u(t)g, [f, g]](q(t))〉 . (3.9)

An arc is a piece of trajectory q|[τ1,τ2] such that the corresponding control
function u|[τ1,τ2] is C∞ up to modifications on a set of measure zero. We
will always assume that an arc is maximal in the sense that for every subin-
terval J of the domain of definition of q(·) which contains [τ1, τ2] strictly, no
representative of u|J is C∞. We will use the word “arc” also to refer to the
interval [τ1, τ2] itself. We say that two distinct arcs [τ1, τ2] and [t1, t2] are
concatenated if τ2 = t1 or τ1 = t2. Particular arcs are the so-called bang
arcs, for which u(·) is constantly equal (a.e.) to −1 or +1. A trajectory
which is a finite concatenation of bang arcs is called a bang-bang trajectory.
An arc which is not bang is said to be singular. A finite concatenation of
arcs is described by juxtaposition of the letters S or B, each of them cor-
responding to a singular or, respectively, a bang arc. For example, a BSB
trajectory is the concatenation of bang, singular, and bang arcs. The letter
B is sometimes replaced by one of the symbols + and −, depending on the
sign of the corresponding control.

In the interior of bang and singular arcs, the right-hand side of (3.8) is
absolutely continuous with respect to t, and the formula can be iterated
infinitely many times. In particular, ϕ is C∞ along any arc.

We complete this section by recalling some notions from chronological
calculus (see [3]). Here and in the sequel, all the vector fields under consid-
eration are assumed to be complete. This is justified by the fact that our
attention is focused on local results only. The convenience of such assump-
tion relies on the fact that, with any complete vector field X on M and with
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any time t ∈ R, we can associate the flow of X at time t, which we denote
by

etX : q �→ etX(q).
Similarly, with any complete nonautonomous vector field t �→ Xt, measur-
able with respect to t, and with any two time instants t1, t2 ∈ R, we can
associate the flow −→exp

∫ t2
t1

Xtdt, which maps q ∈ M to the solution at time
t2 of the nonautonomous Cauchy problem

q̇(t) = Xt(q(t)), q(t1) = q.

Note that
−→exp

∫ t2

t1

Xtdt =
(
−→exp

∫ t1

t2

Xtdt

)−1

.

A vector field X has a natural interpretation in the space of linear op-
erators on C∞(M): given a smooth function a on M and a point q ∈ M ,
(Xa)(q) is defined as the derivative of a in the direction X(q) at the point
q. From this point of view, the Lie bracket of two vector fields X1 and X2

is given by the commutator between them, i.e.,

((ad X1)X2)a = [X1,X2]a = X1(X2a) − X2(X1a).

Any diffeomorphism P acts on the space of vector fields, associating with
X the vector field AdP (X), by the formula

Ad P (X)(q) = (P−1)∗(X(P (q))).

One easily obtains

Ad P ([X1,X2]) = [AdP (X1),Ad P (X2)]. (3.10)

The formula
d

dt

((
Ad−→exp

∫ t

t1

Xτdτ

)
Y

)
(q) =

((
Ad−→exp

∫ t

t1

Xτdτ

)
[Xt, Y ]

)
(q),

which holds at q fixed, for almost all t, justifies the notation

−→exp
∫ t

t1

ad Xτdτ = Ad−→exp
∫ t

t1

Xτdτ.

For a particular case of autonomous vector fields, we write

et ad X = Ad etX .

Let (λ(·), q(·)) be an extremal pair and u(·) be the corresponding control
function. Fix a vector field X and two time instants t1 and t2 in the domain
of definition of q(·). From Eq. (3.3), it follows that

〈λ(t1),X(q(t1))〉 =
〈

λ(t2),
(
−→exp

∫ t1

t2

ad(f + u(τ)g)dτX

)
(q(t2))

〉
(3.11)

(see [5, Proposition 11.3]).
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4. Second-order optimality conditions

Our aim is to derive necessary conditions for a bang-bang trajectory to
be quasi-optimal, in the spirit of results of [4].

Theorem 2. Let (λ(·), q(·)) be an S-extremal pair for (2.1) and u(·) be
the corresponding control function. Assume that u(·) is bang-bang on a
subinterval [τ0, τK+1] of the domain of definition of q(·), with K switching
times (τ0 <)τ1 < τ2 < · · · < τK(< τK+1). Denote by ν the value of u
on (τ0, τ1). Assume that λ(·) is the unique S-extremal lift of q(·), up to
multiplication by a positive scalar. Fix τ in the domain of definition of q(·)
and set

hi =
(
−→exp

∫ τi

τ

ad(f + u(τ)g)dτ

)
(f + (−1)iνg), i = 0, . . . , K. (4.1)

Fix a system of coordinates (x1, . . . , xn+s) in a neighborhood of q(τ) so that(
−→exp

∫ τ

0

(f + u(τ)g)dτ

)
(S) = {(x1, . . . , xn+s) | xn+1 = 0, . . . , xn+s = 0}.

(4.2)
Associate with every vector field X its horizontal and vertical parts Xh and
Xv satisfying at every point of the neighborhood the relations

Xh ∈ span{∂x1 , . . . , ∂xn
}, Xv ∈ span{∂xn+1 , . . . , ∂xn+s

}, (4.3)

respectively. For every i = 0, . . . , K and every j = 1, . . . , n, let Hh
i,j ∈ R be

defined by

hh
i (q(τ)) =

n∑
j=1

Hh
i,j∂xj

.

Let Q be the quadratic form

Q(α) =
∑

0≤i<j≤K

αiαj 〈λ(τ), [hi, hj ](q(τ))〉

−
n∑

j=1

(
K∑

i=0

αiH
h
i,j

)(
K∑

i=0

αi

〈
λ(τ), ∂xj

hv
i (q(τ))

〉) (4.4)

defined on the space

H =
{

α = (α0, . . . , αK) ∈ R
K+1

∣∣∣∣ K∑
i=0

αi = 0,

K∑
i=0

αihi(q(τ)) ∈
(
−→exp

∫ τ

0

(f + u(τ)g)dτ

)
∗
(Tq0S)

}
.

(4.5)

If q(·) is quasi-optimal, then Q is nonnegative definite.
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Proof. Let (λ(·), q(·)) and the notation be as in the statement of the theo-
rem. Note that the choice of hi is made so that if ui

s(·) denotes the control
function obtained from u(·) by modifying the length of the (i + 1)th bang
arc, replacing τi+1 − τi by τi+1 − τi + s, then

d

ds

∣∣∣∣
s=0

(
−→exp

∫ τK+1

τ

(f + u(τ)g)dτ

)−1

(
−→exp

∫ τK+1+s

0

(f + ui
s(τ)g)dτ(q(0))

)
= hi(q(τ)).

Choose n vector fields Y1, . . . , Yn which form a basis of TS in a neigh-
borhood of q(0) on S. We introduce a family of admissible trajectories for
problem (2.1), obtained from q(·) by variation of both the starting point
and control. For every pair (α, β) in

W =
{

(α = (α0, . . . , αK), β = (β1, . . . , βn)) ∈ R
K+1 × R

n

∣∣∣∣ K∑
i=0

αi = 0
}

and for every s ∈ R, let

G(α, β, s) =
(
−→exp

∫ τK+1

τ

(f + u(τ)g)dτ

)−1

◦e(τK+1−τK+sαK)(f+(−1)Kνg) ◦ · · · ◦ e(τ1−τ0+sα0)(f+νg)

◦−→exp
∫ τ0

0

(f + u(τ)g)dτ ◦ esβnYn ◦ · · · ◦ esβ1Y1(q(0)).

For small |s|,

s �→ −→exp
∫ τK+1

τ

(f + u(τ)g)dτ(G(α, β, s))

is a curve in M passing through q(τK+1) at s = 0. Each point of this curve
is the evaluation of an admissible trajectory of (2.1) at time τK+1. Let

P =

(
−→exp

∫ τ

0

(f + u(τ)g)dτ

)−1

.

The tangent vector to s �→ G(α, β, s) at s = 0 is given by

V1(α, β) =
n∑

j=1

βj AdP (Yj)(q(τ)) +
K∑

i=0

αihi(q(τ)).

If (α, β) ∈ W is such that V1(α, β) = 0, then the tangent vector
d2

ds2
G(α, β, s)

∣∣∣∣
s=0

at q(τ) is intrinsically defined and, roughly speaking,
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points toward an attainable direction. It turns out that a necessary condi-
tion for q(·) to be quasi-optimal is that there exist no (α, β) ∈ W ∩ ker V1

such that 〈
λ(τ),

d2

ds2
G(α, β, s)

∣∣∣∣
s=0

〉
< 0 (4.6)

(see, e.g., the proof of Theorem 2.1 in [6].)
The second-order derivative of G with respect to s evaluated at s = 0 is

given on the kernel of V1 by

V2(α, β) =
∑

1≤i<j≤n

βiβj AdP ([Yi, Yj ])(q(τ))

+
n∑

j=1

K∑
i=0

αiβj [Ad P (Yj), hi](q(τ)) +
∑

0≤i<j≤K

αiαj [hi, hj ](q(τ)).

Since S is an integral leaf for the distribution generated by the Yi, then
[Yi, Yj ](q(0)) ∈ Tq(0)S for every i, j; therefore, due to the transversality
condition (3.2), the first term of the expression of V2 is annihilated by λ(τ),
which can be deduced from (3.11). Thus,

〈λ(τ), V2(α, β)〉 =
n∑

j=1

K∑
i=0

αiβj

〈
λ(τ), [Ad P (Yj), hi](q(τ))

〉
+

∑
0≤i<j≤K

αiαj

〈
λ(τ), [hi, hj ](q(τ))

〉
.

(4.7)

Let
Q(α) =

∑
0≤i<j≤K

αiαj

〈
λ(τ), [hi, hj ](q(τ))

〉
, (4.8)

and

R =
n∑

j=1

K∑
i=0

αiβj

〈
λ(τ), [Ad P (Yj), hi](q(τ))

〉
.

Due to the freedom in the choice of Yi, we can assume that Ad P (Yi) =
∂xi

, i = 1, . . . , n. If (α, β) is in the kernel of V1, then

n∑
j=1

βj Ad P (Yj)(q(τ)) = −
K∑

i=0

αihi(q(τ)),

and, therefore,

βj = −
K∑

i=0

αiH
h
i,j . (4.9)

Note that (4.9) defines an identification between W ∩ ker V1 and the space
H introduced in (4.5).
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We have

R = R(α) =
n∑

j=1

βj

(
K∑

i=0

αi

〈
λ(τ), ∂xj

hv
i (q(τ))

〉)

= −
n∑

j=1

(
K∑

i=0

αiH
h
i,j

)(
K∑

i=0

αi

〈
λ(τ), ∂xj

hv
i (q(τ))

〉)
.

The theorem follows since the existence of a variation (α, β) as in (4.6) is
equivalent to the positivity of the index of the quadratic form given in (4.7).

Remark 1. The choice of τ does not modify the nature of the second-order
necessary condition stated in Theorem 2. Varying τ , we obtain a family of
equivalent formulations, one of which will be chosen, in the applications, for
its computational convenience.

Remark 2. Let q : [0, T ] → M be an admissible trajectory of (1.1) such
that q(T ) ∈ S. The trajectory t �→ q′(t) = q(T − t) obtained from q(·) by
the reversion of time, is admissible for the control system

q̇ = −f(q) − ug(q), u ∈ [−1, 1]. (4.10)

There is a one-to-one correspondence between extremal lifts of q(·) and
of q′(·). Indeed, (λ(·), q(·)) is an extremal pair for (1.1) if and only if t �→
(−λ(T − t), q′(t)) is an extremal pair for (4.10).

Assume that q′(·) is quasi-optimal for (4.10). In particular, there exists
an extremal lift λ(·) of q(·) satisfying

λ(T ) ⊥ Tq(T )S. (4.11)

Let q(·) be bang-bang on [τ0, τK+1] ⊂ [0, T ], and denote by (τ0 <)τ1 < τ2 <
· · · < τK(< τK+1) its K switching times. In addition, assume that q(·) has
a unique extremal lift λ(·) which satisfies (4.11), up to multiplication by a
positive scalar. Fix τ ∈ [0, T ] and define hi as in (4.1), i = 0, . . . , K. If h′

i is
the vector field corresponding to the switching time T −τi for system (4.10),
then h′

i = −hi. Define Q and H as in (4.4) and (4.5), where the horizontal-
vertical splitting is given by a system of coordinates near q(τ) which rectifies
−→exp

∫ τ

T
(f + u(τ)g)dτ(S). Since q′(·) is quasi-optimal, it follows from the

above considerations that Q is a nonnegative-definite quadratic form on H.

Theorem 3 (generalized Legendre condition). Let (λ(·), q(·)) be an S-
extremal pair of (2.1). Assume that λ(·) is uniquely defined (up to multi-
plication by a positive scalar) and let I be a singular arc contained in the
domain of definition of q(·) such that ϕ|I ≡ 0. Then〈

λ(t), [g, [f, g]](q(t))
〉
≤ 0

for every t ∈ I.
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A proof of Theorem 3 for extremal trajectories can be found in [5,
Chap. 20]. (The first formulation and mathematical proof of the gener-
alized Legendre condition go back, anyhow, to [2,10].) The proof fits in the
case of S-extremal trajectories, where λ(·) may not be unique as extremal
lift, but it is when also (3.2) is taken into account.

We point out that the sign condition in Theorem 3 is formulated in
the opposite way than in [5]. This is due to the fact that, in the present
statement of the Pontryagin maximum principle, condition (3.4) is given
in terms of minimization of the Hamiltonian, whereas in [5] it has a more
standard maximization form.

5. Preliminary results

Lemma 1. Let U be an open, relatively compact subset of M . Fix an
Euclidean structure on the cotangent bundle T ∗U , i.e., associate with each
q ∈ U an Euclidean structure on T ∗

q M , smooth with respect to q. Let X be
a vector field on M . Then, for every T > 0 there exists a constant L such
that, for every interval I of length smaller than T , every extremal trajectory
q : I → U , and every corresponding extremal lift λ(·), normalized so that
|λ(t)| = 1 at some t ∈ I, the function t �→ 〈λ(t),X(q(t))〉 is L-Lipschitz
continuous.

Corollary 1. Let U be an open, relatively compact subset of M . Con-
sider a family Y1, . . . , Yn+s of vector fields on M , linearly independent at
every point of U . Let, for every q ∈ U and λ ∈ T ∗

q M , the norm |λ| be given
by

|λ| = max
{∣∣〈λ, Yi(q)〉

∣∣ | i = 1, . . . , n + s
}

.

Let X be another vector field on M linearly independent of Y1, . . . , Yn+s−1

at every point of U . Then there exist ε0 ∈ (0, 1) and two nonincreasing
functions T, δ : [0, ε0] → (0,+∞) such that for every ε ∈ [0, ε0] and every
extremal pair (λ(·), q(·)) defined on a domain I of length smaller than T (ε),
normalized so that |λ(τ)| = 1 at some τ ∈ I, if each of the functions t �→∣∣〈λ(t), Yi(q(t))〉

∣∣, i = 1, . . . , n + s− 1, attains at least one value less than or
equal to ε in I, then

∣∣〈λ(t),X(q(t))〉∣∣ ≥ δ(ε) for every t ∈ I.

Lemma 1 and Corollary 1 are in the spirit of Lemma 3.3 in [6], to which
we refer for the details of the proofs, which follow from a straightforward
application of Gronwall inequality to the adjoint equation (3.6).

From now on, fix n vector fields Y1, . . . , Yn on M and a relatively compact
neighborhood U of q0 such that, for every q ∈ S ∩ U ,

span{Y1(q), . . . , Yn(q)} = TqS. (5.1)

In order to shorten the formulation of local properties which hold near
the fixed point q0 ∈ M , we find it useful to introduce the following agree-
ment: we say that all short trajectories of a certain class (e.g., S-extremal
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trajectories) have a given property (P) if there exist T > 0 and a neighbor-
hood U of q0 such that all trajectories of this class, which are contained in
U and have time-length smaller than T , satisfy (P).

6. Cases of small codimension: s + d ≤ 2

Assume that q0 is a (1, 0)-point. By (3.2), we can apply Corollary 1,
with ε = 0 and Yn+1 = X = g. We deduce that the switching function
corresponding to a short S-extremal pair has constant sign. Therefore, a
short S-extremal trajectory is made of a single bang arc. In particular, it
does not contain singular arcs.

The same reasoning as above, applied to the case (1, 1), with the choice
Yn+1 = X = [f, g], implies that for every short S-extremal pair, the deriv-
ative of the corresponding switching function does not change sign. In the
case (2, 0), we fix Yn+1 = g and Yn+2 = X = [f, g], and the same conclusion
holds for every short S-extremal pair such that the corresponding switching
function has at least one zero. In both situations (1, 1) and (2, 0), along
any short S-extremal trajectory which is not made of a single bang arc, the
switching function is strictly monotone. Therefore, a short S-extremal tra-
jectory does not contain singular arcs and is the concatenation of at most
two bang arcs.

7. Cases of higher codimension

If s �= 4 and s + d = 3, 4, then V defined as in (2.2) has codimension
one in Tq0M and X−(q0) � V . We complete {Y1, . . . , Yn} to a full-rank
distribution on U . Choose Yn+1, . . . , Yn+s−1 between g, [f, g] so that

span{Y1(q0), . . . , Yn+s−1(q0)} = V (7.1)

and set Yn+s = X−. Let U be a relatively compact neighborhood of q0, such
that {Yi}n+s

i=1 is a moving basis in U . Further smallness assumptions on U
will be made when necessary. Associate with {Yi}n+s

i=1 the corresponding
Euclidean structure | · | on T ∗U , as in the statement of Corollary 1. We can
always assume that T > 0 is such that, for every admissible control function
u : [0, T ] → [−1, 1], for every t ∈ [0, T ] and q ∈ S ∩ U ,(

−→exp
∫ t

0

(f + u(τ)g)dτ

)
∗
(TqS) � span

{
Yn+1(q′), . . . , Yn+s(q′)

}
, (7.2)

where

q′ =
(
−→exp

∫ t

0

(f + u(τ)g)dτ

)
(q).

Once a moving basis and its corresponding Euclidean structure are fixed,
we say that an extremal pair (λ(·), q(·)) is a normalized extremal pair if, at
some time t, |λ(t)| = 1.
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If the switching function has at least two distinct zeros (this is true, e.g.,
if it contains a singular arc or a compactly contained bang arc), then its
derivative annihilates at least once. Let Ξ be the class of short normalized
S-extremal pairs whose corresponding ϕ has at least two zeros. Note that
Ξ depends implicitly on the choice of some T and some U . By (3.2), we can
apply Corollary 1 (with ε = 0) and obtain that for any vector field X which
is transversal to V at q0, there exists a positive constant δX such that for
every pair (λ(·), q(·)) ∈ Ξ, we have∣∣〈λ(t),X(q(t))〉∣∣ ≥ δX

for all t. A possible choice of X is given by X = X−. Whenever s + d = 3,
as well as in the case (2, 2b), the role of X can also be played by X+. In all
the other cases studied here, the alternative choice of X++ is allowed.

Therefore, we can assume that Ξ satisfies one of the following conditions:

(A) there exists δ > 0 such that
∣∣〈λ(t),X±(q(t))〉∣∣ ≥ δ for every

(λ(·), q(·)) ∈ Ξ and all t;
(B) there exists δ > 0 such that

∣∣〈λ(t),X−(q(t))〉∣∣, ∣∣〈λ(t),X++(q(t))〉∣∣ ≥ δ
for every (λ(·), q(·)) ∈ Ξ and all t.

Remark 3. In the case where dim S = 0, where the transversality condi-
tion (3.2) has no role in deducing (A) or (B), the assumption can be further
strengthened; indeed, we can suppose that (A) or (B) holds for the class of
all normalized extremal pairs with at least two zeros of ϕ. That is, we can
neglect the requirement that the initial point of the trajectory lies in S. We
will omit to mention at each step this kind of extension, which applies to
all regularity properties of S-extremal or quasi-optimal trajectories which
are going to be stated. We will come back to the consequences of this fact
in Secs. 9 and 10, while formulating Propositions 2 and 3.

The case (4, 0) is reduced to subproblems sharing one of the properties
(A) or (B), as follows. Complete {Y1, . . . , Yn} to a local moving basis by
taking Yn+1 = g, Yn+2 = [f, g], Yn+3 = X+, and Yn+4 = X−. Such
basis defines, as above, an Euclidean structure in the cotangent bundle
over a compact neighborhood of q0. Keep on calling Ξ the class of short
normalized S-extremal pairs whose switching function annihilates at least
twice. By Lemma 1, we can assume that

∣∣〈λ(t), Yi(q(t))〉
∣∣ is smaller than

any prescribed positive constant, for every i = 1, . . . , n + 2 and every pair
(λ(·), q(·)) in Ξ. Given η ∈ (0, 1), we split Ξ in three subclasses: the class
Ξ1

η of pairs (λ(·), q(·)) for which∣∣〈λ(0),X+(q(0))〉∣∣ < η, (7.3)

the class Ξ2
η defined by ∣∣〈λ(0),X−(q(0))〉∣∣ < η, (7.4)
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and the complement Ξ3
η of Ξ1

η ∪Ξ2
η in Ξ. If η is fixed and sufficiently small,

then Lemma 1 and Corollary 1 imply that there exists a common T = T (η)
such that Ξ1

η satisfies property (B), Ξ3
η satisfies property (A) and Ξ2

η satisfies
an analogue of property (B), where the role of + is played by − and vice
versa. Since the definition of (4, 0)-point is symmetric with respect to +
and −, the regularity properties which can be stated for Ξ1

η apply to Ξ2
η as

well. Therefore, we will essentially neglect Ξ2
η, and restrict our attention to

Ξ1
η and Ξ3

η.
In order to fix η, we impose an additional requirement whose impor-

tance will be clear in the next section. Since [g, [f, g]] is transversal to
span{Y1, . . . , Yn+s−1}, we can again apply Corollary 1 and assume that
|〈λ(·), [g, [f, g]](q(·))〉| is separated from zero, uniformly in Ξ1

η. Moreover,
by the monotonicity of the function δ appearing in the statement of Corol-
lary 1, we can choose sufficiently small η so that the sign of〈

λ(·),X−(q(·))〉 =
〈
λ(·),X+(q(·))〉− 2

〈
λ(·), [g, [f, g]](q(·))〉

is equal to the sign of −〈λ(·), [g, [f, g]](q(·))〉 along the trajectory. That is,
we choose η such that Ξ1

η satisfies (B) and

(B′) sign(
〈
λ(t),X−(q(t))

〉
) = − sign(

〈
λ(t), [g, [f, g]](q(t))

〉
) for every

(λ(·), q(·)) ∈ Ξ1
η for all t.

Note that for all (s, d)-points with s �= 4, s + d = 3, 4, if Ξ does not
satisfy (A), then the same reasoning as above shows that Ξ can be assumed
to satisfy both (B) and (B′).

The following proposition represents the crucial step toward the proof of
Theorem 1.

Proposition 1. There exists an integer-valued function k(s, d) such
that, if q0 is an (s, d)-point with s + d ≤ 4, then there exist a neighbor-
hood U of q0 and a time T > 0 for which a trajectory in U of (2.1), of
time-length smaller than T , which contains more than k(s, d) concatenated
bang arcs, is not quasi-optimal.

Note that the proposition has already been proved for (s, d)-points such
that s + d ≤ 2. We have shown that a possible choice of k is given by
k(1, 0) = 1, k(1, 1) = k(2, 0) = 2. The values of the function k for which
Proposition 1 will be proved are contained in the third column of Table 1.

The next section describes the structure of short quasi-optimal trajecto-
ries under the assumption that Proposition 1 holds true. It adapts to the
manifold-to-point problem the arguments of [6, Sec. 5].

8. Regularity of non-bang-bang trajectories

Let q0 be an (s, d)-point, s+d ≤ 4. Fix a short S-extremal pair (λ(·), q(·)).
We can assume that (λ(·), q(·)) belongs to a class (Ξ or Ξi

η) which satisfies
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(A) or (B–B′). In particular, λ(·) never annihilates X−(q(·)). The same
is true for X+(q(·)) when (A) holds, and for X−−(q(·)) under the assump-
tion (B).

Lemma 2. Given a subinterval I of the domain of definition of q(·), if
q|I does not contain bang arcs, then the switching function ϕ is identically
equal to zero on I and u|I is smooth.

Proof. Let t ∈ I be such that ϕ(t) �= 0 and denote by J the maximal
neighborhood of t in I on which u(·) is smooth. It cannot be a bang arc by
the hypothesis and, therefore, it must be singular. The set

J̃ = int{τ ∈ J | ϕ(τ) = 0}
is a proper nonempty subset of J . Let τ be in the boundary of J̃ and in
the interior of J . By the definition, τ is both a density point for J̃ , where
ϕ(n) ≡ 0 for every n ≥ 0, and for {τ ∈ J | ϕ(τ) �= 0}, where |u| = 1. Since u
and ϕ are smooth on J , it follows that |u(τ)| = 1 and ϕ(n)(τ) = 0 for every
n ≥ 0. As was already noted in Sec. 2, however, ϕ(n) can be computed
iterating (3.8). Therefore,

〈
λ(τ),

(
adn(f + u(τ)g)g

)
(q(τ))

〉
= 0. We reach

a contradiction both with the assumption (A) and with the assumption (B).
It follows that ϕ|I ≡ 0.

Therefore, ϕ̇ and the further derivatives of ϕ are also identically equal to
zero on I. In particular,

λ(t) ⊥ g(q(t)), [f, g](q(t)),

and, for almost all t ∈ I,〈
λ(t), [f, [f, g]](q(t))

〉
+ u(t)

〈
λ(t), [g, [f, g]](q(t))

〉
= 0. (8.1)

In both cases (A) and (B),
〈
λ(t), [g, [f, g]](q(t))

〉 �= 0 for every t for which
(8.1) holds; otherwise, we would have

〈
λ(t),X−(q(t))

〉
= 0. If, however,〈

λ(t̄), [g, [f, g]](q(t̄))
〉

= 0

for some t̄ ∈ I, then the function t �→
∣∣∣〈λ(t), [f, [f, g]](q(t))

〉∣∣∣ would be
uniformly separated from zero near t̄ and, consequently, |u(t)| > 1 for some
t at which (8.1) holds. Thus, for every t ∈ I,

〈
λ(t), [g, [f, g]](q(t))

〉 �= 0 and

u(t) = −
〈
λ(t), [f, [f, g]](q(t))

〉〈
λ(t), [g, [f, g]](q(t))

〉 . (8.2)

Substituting (8.2) in (3.3), we obtain that λ|I is a solution of the smooth
(autonomous) Hamiltonian system generated by the Hamiltonian

h(λ) = 〈λ, f〉 −
〈
λ, [f, [f, g]]

〉〈
λ, [g, [f, g]]

〉 〈λ, g〉
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and, in particular, is smooth. Thus, q|I is also smooth and, according to
(8.2), the same is true for u|I .

Remark 4. The lemma implies, in particular, that the union of bang and
singular arcs is dense in the domain of definition of q(·). A property of this
kind turns out to be more general. Indeed, a straightforward generalization
of the proof of Proposition 1 in [1] shows that, independently of the dimen-
sion of M and of S, if I(g) is the ideal generated by g in the Lie algebra of
vector fields generated by f and g, and if

{X(q0) | X ∈ I(g)} + Tq0S = Tq0M,

then the control function corresponding to a short S-extremal trajectory is
smooth on an open and dense subset of its domain of definition.

Lemma 2 implies that along any singular arc, ϕ ≡ 0. In particular, if t is
such that ϕ(t) = 0 and ϕ̇(t) �= 0, then it is the switching time between two
concatenated bang arcs. In both cases (A) and (B), the second derivative of
ϕ has constant sign along all “−” arcs. Therefore, ϕ̇ is different from zero
at the boundary points of each compactly contained “−” arc. It follows
that each compactly contained “−” arc is concatenated to two “+” arcs.
If (A) holds, a symmetric reasoning for “+” arcs leads to the conclusion
that if q(·) has at least one compactly contained bang arc, then it is purely
bang-bang, because of Proposition 1. On the other hand, if q(·) does not
have compactly contained bang arcs, then it follows from Lemma 2 that it
is the concatenation of at most a bang, a singular, and a bang arc.

If (B) holds, the situation is slightly more complicated. Nevertheless, it
is still true that a compactly contained “−” arc cannot be concatenated to a
singular arc. The condition 〈λ(·),X++(·)〉 �= 0 implies that the third deriva-
tive of the switching function along “+” arcs has constant sign. Therefore, ϕ̈
can change sign only once along a “+” arc, and always in the same direction
(from negative to positive or the other way round). In particular, q(·) can-
not have a bang, a singular, and a bang concatenated compactly contained
arcs. In addition, a compactly contained bang arc is always concatenated
to at least one more bang arc.

We want to prove that if q(·) has a singular arc, then it cannot have more
than one compactly contained bang arc. On the contrary, assume that it has
two. Without loss of generality, they are concatenated; indeed, if they are
not, they identify a bounded nonempty interval I situated between them.
If I contains no bang arc, then, by Lemma 2, we would have detected a
BSB compactly contained concatenation, which cannot be the case. Vice
versa, a bang arc compactly contained in I is necessarily concatenated to
another bang arc. As it will be proved in Lemmas 3 and 4, the existence of
two compactly contained concatenated bang arcs implies (at least for small
T ) the uniqueness of the corresponding covector trajectory. Thus, from the
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generalized Legendre condition and Theorem 3, it follows that

〈λ(t), [g, [f, g]](q(t))〉 ≤ 0 (8.3)

along the singular arcs of the trajectory. Since we assumed that also holds
(B′), we have that (8.3) is satisfied for every t and that ϕ̈ is positive along
each “−” arc, as ϕ is. It follows that q(·) cannot have compactly contained
“−” arcs. We reached a contradiction, and, therefore, we have proved that, if
q(·) is not purely bang-bang, then it admits at most one compactly contained
bang arc.

Finally, either a short quasi-optimal trajectory is bang-bang or it is of the
type −+S± or ±S+− (allowing some arc to have length zero). In the cases
where property (A) holds, we further restricted the possible quasi-optimal
concatenations to bang-bang and ±S± trajectories. Theorem 1 is proved,
as soon as it is shown that Proposition 1 holds, with max{k(s, d) | s + d ≤
4} ≤ 7.

9. Proof of Proposition 1 for s < 4

9.1. General facts. Throughout this section, we assume that s + d = 3, 4
and s �= 4. Fix Y1, . . . , Yn+s and the corresponding Euclidean structure
on the cotangent bundle over a sufficiently small neighborhood of q0, as in
Sec. 7.

In order to apply Theorems 2 and 3, we need to recover a corank one
condition on S-extremal lifts. This is the scope of the following lemma,
whose proof introduces many notations and concepts which will be widely
used in the sequel.

Lemma 3. A short S-extremal trajectory which has at least one com-
pactly contained “+” arc and one compactly contained “−” arc admits a
unique covector lift, up to multiplication by a positive scalar.

Proof. Let (λ(·), q(·)) be an S-extremal pair. Assume that it has at least
one compactly contained “+” arc and one compactly contained “−” arc.
Denote the compactly contained “+” arc by (t0, t0 + t1). The equations
ϕ(t0) = 0 and ϕ(t0 + t1) = 0 can be written, according to (3.11), as

〈λ(t0), g(q(t0))〉 = 0, (9.1)〈
λ(t0), et1 ad(f+g)g(q(t0))

〉
= 0. (9.2)

Let λ(·) be normalized so that

|λ(t0)| = 1. (9.3)

Define, for every i = 1, . . . , n + s,

ai = 〈λ(t0), Yi(q(t0))〉 . (9.4)
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By (9.3), we have that

max
{|ai| | i = 1, . . . , n + s

}
= 1.

We set

π0 = 〈λ(t0), [f, g](q(t0))〉 (9.5)

π� = 〈λ(t0),X�(q(t0))〉 , 
 = +,−,+ + . (9.6)

Note that an+s = π−, while an+1, . . . , an+s−1 are taken among ϕ(t0) = 0
and π0.

We want to describe the asymptotic behavior, as T goes to zero, of real-
valued functions of the trajectory and of the chosen “+” arc. An example
of function of this kind is given by t1, which associates with the trajectory
the length of the chosen “+” arc. We say that a function in this class is
O(1) if its absolute value can be bounded uniformly on the set of all pairs
q(·)–(t0, t0 + t1) such that q(·) lifts in Ξ. Clearly t1 = O(1). We write that
a function is O(tr1) or O(T ) to express that its quotient with, respectively,
tr1 or the total length of the trajectory is O(1).

From (3.2) we deduce that, for every i = 1, . . . , n,

0 = ai +
〈
λ(t0), (Ad P−1 − Id)Yi(q(t0))

〉
= ai +

n+s∑
j=1

ajO(T ), (9.7)

where

P = −→exp
∫ t0

0

(f + u(τ)g)dτ (9.8)

and Id denotes the identity operator on the space of vector fields on M .
Similarly, from (9.2) we obtain

π0 =
n+s∑
j=1

ajO(t1). (9.9)

Thus,
max

{|ai| | i = 1, . . . , n + s − 1
} ≤ O(T ),

and, in particular, we can assume that |an+s| = 1. Recall now that, since
(A) or (B) holds, 〈λ(t),X−(q(t))〉 does not change sign along the trajectory.
On the compactly contained “−” arc of q(·), ϕ(t) is nonnegative and ϕ̈(t) =
〈λ(t),X−(q(t))〉. Thus, ϕ̈ must be negative and, therefore, an+s = π− = −1.

We can single out a system of n+s−1 linear equations for a1, . . . , an+s−1,
associating with any i = 1, . . . , n the corresponding equation (9.7) and,
eventually, adding some extra equations chosen between (9.1) and (9.9), de-
pending on which vector fields, if any, have been chosen as Yn+1, . . . , Yn+s−1.
The determinant of the (n + s − 1) × (n + s − 1)-matrix of coefficients of
the system is given by 1 + O(T ). The uniqueness of its solution is proved,
at least for sufficiently small T .
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Now assume that (λ(·), q(·)) is a short S-extremal pair and that q(·) con-
tains a bang-bang concatenation of the type −+−+. Lemma 3 guarantees
that we can apply Theorem 2 to the trajectory q(·).

Let t0 be the second switching time and denote by t1 and t2 the length
of, respectively, the second and third bang arcs. The switching times t0−t1,
t0, and t0 + t2 are characterized by the equations〈

λ(t0), e−t1 ad(f+g)g(q(t0))
〉

= 0, (9.10)

〈λ(t0), g(q(t0))〉 = 0, (9.11)〈
λ(t0), et2 ad(f−g)g(q(t0))

〉
= 0. (9.12)

Renormalize, if necessary, λ(·), in order to have |λ(t0)| = 1. Let ai and
π� be defined as in (9.4), (9.5), and (9.6). Lemma 3 states that they can be
considered as functions of the trajectory and of the choice of the bang-bang
concatenation. Moreover, we can assume that π− = −1. Equalities (9.10)
and (9.11) imply that

π0 =
t1
2

π+ − t21
6

π++ + O
(
t31
)
. (9.13)

Similarly, from (9.12) and (9.13) we deduce that

t2 = 2π0 + O
(
t22
)

= t1π+ − t21π++

3
+ π2

+O
(
t21
)

+ O
(
t31
)
. (9.14)

Note that t2 = O(t1).
The role of the time τ which appears in the statement of Theorem 2 will

be played by t0. According to (4.1), we have

h0 = e−t1 ad(f+g)(f − g) = f − g + 2t1[f, g] − t21X+ + O
(
t31
)
,

h1 = f + g,

h2 = f − g,

h3 = et2 ad(f−g)(f + g) = f + g + 2t2[f, g] + O
(
t22
)
.

Let
σij =

〈
λ(t0), [hi, hj ](q(t0))

〉
, 0 ≤ i < j ≤ 3. (9.15)

From the above asymptotic expressions for hi, 0 ≤ i ≤ 3, we obtain

σ01 = 2π0 − 2t1π+ + t21π++ + O
(
t31
)
,

σ02 = 2t1 + O
(
t21
)
,

σ12 = −2π0,

σ03 = σ01 + σ23 − 2π0 + O
(
t21t2

)
,

σ13 = 2t2π+ + O
(
t22
)
,

σ23 = 2π0 − 2t2 + O
(
t22
)
.
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A system of coordinates rectifying P (S) can be obtained from the coor-
dinate mapping

M(x1, . . . , xn+s) = exn+sYn+s ◦ · · · ◦ exn+1Yn+1

◦exn Ad P−1(Yn) ◦ · · · ◦ ex1 Ad P−1(Y1)(q(t0)),
(9.16)

which is nondegenerate at (0, . . . , 0), since we assume that (7.2) holds. As-
sociate with (x1, . . . , xn) a horizontal-vertical splitting as in (4.3). From the
definition of M it follows that

∂xj
Y v

i (q(t0)) = 0, Y h
i (q(t0)) = 0 (9.17)

for every j = 1, . . . , n and every i = n+1, . . . , n+ s. It is important to note
that for any fixed vector field X and any j = 1, . . . , n, the jth component
of Xh(q(t0)) is O(1), as well as

〈
λ(t0), ∂xj

Xv(q(t0))
〉
.

In Sec. 9.2, we will treat separately different (s, d) situations. When
convenient, we will consider second-order variations of the switching times
on a shorter part of the bang-bang piece of q(·), i.e., on the concatenation
of three instead of four bang arcs. Denote by K the number of switching
times which are involved in the variation.

Let Q(α), R(α), and H be defined as in (4.8), (4.10), and (4.5). Recall
that H consists of all (α0, . . . , αK) ∈ R

K+1 such that
K∑

i=0

αi = 0, (9.18)

K∑
i=0

αihi(q(t0)) ∈ Σ, (9.19)

where
Σ = P∗

(
Tq(0)S

)
. (9.20)

We find it convenient, in most situations, to replace (9.19) by
K∑

i=0

αi(hi − f)(q(t0)) ∈ Σ, (9.21)

as is justified by (9.18).
We claim that the codimension of H in R

K+1 is equal to s for sufficiently
small T . Indeed, let

A :
{

(α0, . . . , αK) ∈ R
K+1

∣∣∣∣ K∑
i=0

αi = 0
}

−→ Tq(t0)M/Σ

be the linear function which maps (α0, . . . , αK) into the class
K∑

i=0

αihi(q(0)) + Σ. Since q(·) is an S-extremal trajectory, there exists

λ ∈ T ∗
q(t0))

\ {0} which is orthogonal to Σ and to (hi − hi−1)(q(t0)) for
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i = 1, . . . , K. The previous assertion is just a reformulation, obtained
through (3.11), of (3.2) and of the fact that ϕ is equal to zero at the
switching times. In the proof of Lemma 3, it has been shown that these
orthogonality relations identify λ uniquely, up to multiplication by a scalar.
Therefore, the codimension of the image of A in Tq(0)M/Σ is equal to one.
Since H is equal to the kernel of A, its dimension is equal to K − s + 1.
Finally, as claimed, H has codimension s in R

K+1.

9.2. Case analysis. In this section, different types of (s, d)-points are con-
sidered separately. Each paragraph deals with one or two classes of points,
specified by the opening framed declaration.

Cases (1, 2) and (1, 3). We compute the second-order variation of q(·) with
respect to its −+− concatenation. This means that K = 2 and that H is a
codimension one subspace of R

3. An explicit expression for H is given by
(9.18), as follows:

H =
{

(α0, α1, α2) ∈ R
3
∣∣∣ α0 = −α1 − α2

}
.

The quadratic form Q defined in (4.8) is given by

Q(α1, α2) =
(
2π0 − 2t1π+ + O

(
t21
))

(−α1 − α2)α1

+
(
2t1 + O

(
t21
))

(−α1 − α2)α2 − 2π0α1α2

=
(−t1π+ + O

(
t21
))

α2
1 +

(−2t1 + π+O(t1) + O
(
t21
))

α1α2

− (2t1 + O
(
t21
))

α2
2.

Let Gj be the jth component of g(q(t0)) and ηj be equal to〈
λ(t0), ∂xj

gv(q(t0))
〉

for j = 1, . . . , n. Then

R(α1, α2) =
n∑

j=1

((2Gj + O(t1))α1 + O(t1)α2) ((2ηj + O(t1))α1 + O(t1)α2)

= O(1)α2
1 + O(t1)α1α2 + O

(
t21
)
α2

2.

Whenever t1 is sufficiently small, the coefficient of α2
2 of Q = Q + R is

negative. Note that, even if we computed the variation only on a smaller
part of the bang-bang piece, our reasoning relies on the assumption that
π− = −1, which was justified by the presence of a compactly contained “−”
arc. It follows from Theorem 2 that a short trajectory which contains a
−+−+ or a +−+− concatenation cannot be quasi-optimal. Proposition 1
is proved for (s, d) = (1, 2) and (1, 3) with k(1, 2) = k(1, 3) = 3.

We have already noted that our results partially overlap those of [11]
for the cases (1, 0), (1, 1), and (1, 2). We stress that the restrictions given
here, namely, that the maximal possible concatenations for a quasi-optimal
trajectory are of the type BBB or BSB, are sharp, since in the classification
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of time-optimal syntheses given in [11] these kind of concatenations actually
appear.

Cases (2, 1) and (2, 2a). Let, as above, K = 2. The space H has codi-
mension two and can be described by (9.18) and another independent
linear relation deduced from (9.21). Note, e.g., that the component of
K∑

i=0

αi(hi − f)(q(t0)) in the direction g(q(t0)), with respect to the basis

P∗(Y1(q(0))), . . . , P∗(Yn(q(0))), g(q(t0)), X−(q(t0))

is equal to zero. Thus,

−(1 + O(t1))α0 + α1 − α2 = 0. (9.22)

From (9.18) and (9.22) we obtain

α1 = O(t1)α0, α2 = −(1 + O(t1))α0.

The transversality of g and Σ also implies, as follows from (9.17), that
R(α0) = O(t21)α

2
0. The quadratic form Q is easily computed, and, finally,

Q can be written as

Q(α0) = Q(α0) + R(α0) = − (2t1 + O(t21)
)
α2

0.

Thus, Q is negative definite for small t1. We conclude, as above,
that a short trajectory with four concatenated bang arcs is not quasi-
optimal. This proves Proposition 1 in the cases (2, 1) and (2, 2a) with
k(2, 1) = k(2, 2a) = 3.

Case (2, 2b). Let here as in the next cases K = 3. Denote by γ the compo-
nent of g(q(t0)) in the direction [f, g](q(t0)), with respect to the basis

P∗(Y1(q(0))), . . . , P∗(Yn(q(0))), [f, g](q(t0)), X−(q(t0)).

The space H is characterized by (9.18) and by the component of the relation

3∑
i=0

αi(hi − f + g)(q(t0)) ∈ Σ

in the direction [f, g](q(t0)), i.e., by a system of the type

α0 + α1 + α2 + α3 = 0, (9.23)(
2t1 + O

(
t21
))

α0 + 2γα1 +
(
2γ + 2t2 + O

(
t22
))

α3 = 0, (9.24)

from which we obtain

α0 =
(
− γ

t1
+ γO(1)

)
α1 +

(
−γ + t2

t1
+ γO(1) + O(t1)

)
α3,

α2 = −α0 − α1 − α3.

(9.25)
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Consider the linear change of variables on H given by

β1 = α1 + α3,

β2 = α1 − α3.

The quadratic form Q(β1, β2) turns out to have the following expression:

Q(β1, β2) = − 1
2t1

[(
4γ2 + 2γ(π+ − 2)t1 − π+(π+ + 4)t21 + γ2O(t1)

+ γO(t21) + O(t31)
)
β2

1 + 2
(
t1π+(t1 − γ) + γ2O(t1)

+ γO(t21) + O(t31)
)
β1β2 +

(
π2

+t21 + γO(t21) + O(t31)
)
β2

2

]
.

Let Gj be the jth component of g(q(t0)) and ηj be equal to〈
λ(t0), ∂xj

gv(q(t0))
〉

for j = 1, . . . , n. Taking into account (9.17), one ob-
tains

R(β1, β2) = −
n∑

j=1

((2Gj + O(t1))β1 + O(t1)β2) ((2ηj + O(t1))β1 + O(t1)β2)

= O(1)β2
1 + O(t1)β1β2 + O

(
t21
)
β2

2 .

Finally, the coefficient of β2
2 of the quadratic form

Q(β1, β2) = Q(β1, β2) + R(β1, β2)

is given by π2
+t1 + γO(t1) + O

(
t21
)
. Since property (A) ensures that π2

+ is
uniformly separated from zero, q(·) cannot be quasi-optimal for sufficiently
small T and U (consequently, t1 and |γ|).

By the symmetry with respect to “+” and “−,” we conclude that Propo-
sition 1 holds in the case (2, 2b) with k(2, 2b) = 3.

Let us focus on the point-to-point problem on a two-dimensional man-
ifold M . As it has been noted in Remark 3, the transversality condition
(3.2) gives no restrictions on the extremal lifts of a quasi-optimal trajec-
tory. The above computations actually prove that if q0 ∈ M is a (2, d)-
point, d = 0, 1, 2a, 2b, then there exist a neighborhood U of q0 and a time
T > 0 such that a bang-bang trajectory contained in U (not necessarily
passing through q0) of time-length smaller than T with four (or more) arcs
is not quasi-optimal. Thanks to the additional analysis of non-bang-bang
trajectories contained in Sec. 8, standard transversality considerations lead
to the following proposition.

Proposition 2. Let M be a two-dimensional manifold. Then for a
generic pair (f, g) of vector fields on M , for every point q0 ∈ M , there
exist a neighborhood U of q0 and a time T > 0 such that a quasi-optimal
trajectory of (1.1) contained in U and of time-length smaller than T is the
concatenation of at most four bang and singular arcs. The only possible
maximal concatenations are of the type BBB, BSBB, or BBSB.
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A quantitative bound of this kind is slightly better than the ones available
in the literature (see [9, 12,16]).

Case (3, 0). We describe H, which has codimension three, by (9.18) and the
components of (9.21) in the directions g(q(t0)) and [f, g](q(t0)) as follows:

α0 + α1 + α2 + α3 = 0,

− (1 + O
(
t21
))

α0 + α1 − α2 +
(
1 + O

(
t21
))

α3 = 0,(
2t1 + O

(
t21
))

α0 +
(
2t2 + O

(
t21
))

α3 = 0.

Then we obtain

α0 = −
(

t2
t1

+ O(t1)
)

α3,

α1 = − (1 + O
(
t21
))

α3,

α2 =
(

t2
t1

+ O(t1)
)

α3.

Therefore, after some computations, we obtain

Q(α3) = −2
(
t1π

2
+ + O

(
t21
))

α2
3.

Applying (9.17) to Yn+1 = g, we obtain that R(α3) = O
(
t21
)
α2

3. Since
(A) holds, Q is negative definite, at least for short trajectories. The sym-
metry with respect to “+” and “−” implies that Proposition 1 holds for the
case (3, 0) with k(3, 0) = 3.

Case (3, 1). The computations made for the case (3, 0) are still valid, but,
since the property (A) fails to hold, we cannot conclude as above. We need
to take into account higher order terms in the expansion of Q. In particular,
it is no more true that t1 = O(t2), while we find it convenient to replace, in
the estimate of the remainders, the still valid relation t2 = O(t1) by a more
accurate one t2 = π+O(t1) + O

(
t21
)
. We rewrite the parametrization of H

obtained for the case (3, 0), distinguishing between the roles of t1 and t2,

α0 = −
(

t2
t1

+ O(t2)
)

α3,

α1 = −(1 + O(t1t2))α3,

α2 =
(

t2
t1

+ O(t2)
)

α3.

Recalling that (9.17) holds for Yn+1 = g and Yn+2 = [f, g], it follows that
R(α3) = O

(
t21t

2
2

)
. On the other hand,

Q(α3) = −2t2
(
π+ + π+O(t1) + O(t21)

)
α2

3.
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Assume that Q is nonnegative definite. Note that since π0 = ϕ̇(t0) ≥ 0, the
following inequality holds:

π+ − t1
π++

3
+ O(t21) ≥ 0.

From this relation and the sign condition on Q, we deduce that

t1π++ + π+O(t1) + O(t21) ≤ 0.

Since (B) holds, π++ is uniformly bounded away from 0. A necessary
condition for Q to be nonnegative definite is that π++ < 0, provided that T
and U are small. In particular, if X−(q0) and X++(q0) point on the opposite
side of the hyperplane V , then a short trajectory is not quasi-optimal if it
contains a −+−+ concatenation of arcs.

We already noted that the time-reversion of a trajectory of (1.1) is ad-
missible for (4.10). If we replace f and g by −f and −g, then the roles of
X± and X++(q0) are played, respectively, by −X±(q0) and X++(q0). We
stress, in particular, that q0 is a (3, 1)-point for the time-reversed system
as well. In obtaining all the above asymptotic relations, we never used the
fact that (3.2) holds at the starting point of the trajectory. We used it
only to obtain that ai = O(T ) for i = 1, . . . , n. The same relations can be
recovered for trajectories attaining S at their final point T , replacing (3.2)
by the symmetric transversality condition (4.11). It follows from Remark 2
that if X−(q0) and X++(q0) point on the same side of V , then the quadratic
form associated with a short trajectory of the time-reversed system which
contains a −+−+ concatenation is negative definite and, therefore, a short
trajectory of the original system which contains a +−+− concatenation is
not quasi-optimal.

Finally, a short quasi-optimal trajectory of the original system has at
most four concatenated bang arcs, i.e., we proved Proposition 1 in the case
(3, 1) with k(3, 1) = 4.

Remark 5. In the case n = 0, we can read the local bounds for (3, 0)-
and (3, 1)-points from the point of view of generic properties of the point-
to-point problem in dimension three, by analogy with what has been done
for s = 2 in Proposition 2. We recover in this way Theorem 1 in [6]. In
particular, it turns out that the presence of general boundary conditions
does not weaken the regularity properties which have been proved to hold
for the point-to-point problem.

10. Proof of Proposition 1 for (s, d) = (4, 0)

Throughout this section, we assume that q0 is a (4, 0)-point. As for the
cases treated in Sec. 9, the preliminary step is to investigate the uniqueness
of S-extremal lifts.
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Lemma 4. A short S-extremal trajectory which has at least two concate-
nated compactly contained bang arcs admits a unique S-extremal lift, up to
multiplication by a positive scalar.

Proof. Let (λ(·), q(·)) be an S-extremal pair and assume that it has two
concatenated compactly contained bang arcs. Denote by t0 the switching
time between them. Let Y1, . . . , Yn+4 be chosen as in Sec. 7 and define

ai = 〈λ(t0), Yi(q(t0))〉
for i = 1, . . . , n + 4. Normalize λ(·) so that

max
{|ai| | i = 1, . . . , n + 4

}
= 1.

By (3.2), we obtain that

ai =
n+4∑
j=1

ajO(T ), i = 1, . . . , n. (10.1)

Define π� as in (9.5) and (9.6), 
 = 0,+,−,++. Note that

an+1 = ϕ(t0) = 0, (10.2)

an+2 = π0, an+3 = π+, and an+4 = π−. Since 〈λ(t), [f, g](q(t))〉 = ϕ̇(t) has
at least one zero along the trajectory, we can assume that |an+2| is smaller
than one. The presence of compactly contained + and − arcs implies, for
small T , that either an+3 = 1 or an+4 = −1.

Without loss of generality, the control switches at t0 from +1 to −1.
Denote by t1 and t2 the lengths of the “+” and “−” arc, respectively. From
the relation

ϕ(t0 − t1) = ϕ(t0) = ϕ(t0 + t2) = 0

we obtain

π0 − t1
2

π+ +
n+4∑
j=1

ajO
(
t21
)

= 0, (10.3)

π0 +
t2
2

π− +
n+4∑
j=1

ajO
(
t22
)

= 0. (10.4)

Collecting (10.1), (10.2), (10.3), and (10.4), we obtain a linear system
of n + 3 homogeneous linear equations satisfied by a1, . . . , an+4. The rank
of the coefficient matrix of the system is, for small T , equal to n + 3 and,
therefore, the solutions form a one-dimensional linear subspace of R

n+4. Its
intersection with{
(b1, . . . , bn+4)

∣∣ |bi| ≤ 1 for every i = 1, . . . , n+4; bn+3 = 1 or bn+4 = −1}
has cardinality one.
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Fix an S-extremal pair (λ(·), q(·)) and assume that it contains a +−+−+
concatenation. Let t0 be the second switching time of the bang-bang con-
catenation and denote by t1, t2, and t3 the length of the second, third, and
fourth bang arc, respectively. Thus, the following equations are satisfied:〈

λ(t0), e−t1 ad(f−g)g(q(t0))
〉

= 0, (10.5)

〈λ(t0), g(q(t0))〉 = 0, (10.6)〈
λ(t0), et2 ad(f+g)g(q(t0))

〉
= 0, (10.7)〈

λ(t0), et2 ad(f+g)et3 ad(f−g)g(q(t0))
〉

= 0. (10.8)

Assume that (λ(·), q(·)) belongs to Ξ1
η ∪ Ξ3

η, where Ξi
η and η are defined

as in Sec. 7. If T is sufficiently small, then, as follows from Lemma 1, we
have ∣∣〈λ(t),X−(q(t))〉∣∣ ≥ η

2
(10.9)

along q(·). The presence of a compactly contained − arc implies that the
sign of 〈λ(t),X−(q(t))〉 is negative. Possibly renormalizing λ(·), we may
assume that

〈λ(t0),X−(q(t0))〉 = −1. (10.10)

Note that applying this renormalization, it is possible that we exit from
the class of normalized pairs, as was defined in Sec. 7. Let for i = 1, 3, Ξ̃i

η

be the class of S-extremal pairs containing a +−+−+ concatenation which
are obtained from a pair in Ξi

η by means of renormalization (10.10). Note
that since (10.9) holds, the rescaling factor is bounded from below by 2/η.
Therefore, for any vector field X, 〈λ(t0),X(q(t0))〉 = O(1), as a function of
the pair (λ(·), q(·)), chosen in Ξ̃1

η ∪ Ξ̃3
η, and of the choice of the bang-bang

concatenation.
Define π� as in (9.5) and (9.6), 
 = 0,+,++. Note that we can still

assume Ξ̃1
η to satisfy (B) and Ξ̃3

η to satisfy (A).
From equations (10.5)–(10.7) we obtain that

π0 = − t2
2

π+ − t22
6

π++ + O(t32),

t1 = t2π+ +
t22
3

π++ + π+O(t22) + O(t32),

t3 = t2π+ +
2
3
t22π++ + π+O(t22) + O(t32).

(10.11)

We find it useful to introduce another agreement on how to formulate
asymptotic properties. We say that a function is Ω(t2) if it can be expressed
as a sum of the type π+O(1) + O(t2). Briefly,

Ω(t2) = π+O(1) + O(t2). (10.12)
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For example, t1, t3 = t2Ω(t2). In order to recover Q, we compute

h0 = f + g − 2t1[f, g] + t21X− + O(t31),
h1 = f − g,

h2 = f + g,

h3 = f − g − 2t2[f, g] − t22X+ + O(t32),

h4 = f + g + 2t3[f, g] + 2t2t3X+ + t23X− + O(t22t3).

The asymptotic expressions of σij , 0 ≤ i < j ≤ 4, can be obtained from
the above relations. They are omitted for brevity.

By analogy with what was done in Sec. 9, one can derive from Lemma 4
that for sufficiently small T , the space H has codimension four in R

5. A
system of equations for H is given by (9.18) and the components of (9.21)
in the directions g, [f, g], and X+ are as follows:

α0 + α1 + α2 + α3 + α4 = 0,(
1 + O

(
t21
))

α0 − α1 + α2 −
(
1 + O

(
t32
))

α3 + (1 + t2t3Ω(t2))α4 = 0,

− (2t1 + O
(
t21
))

α0 −
(
2t2 + O

(
t32
))

α3 + (2t3 + t2t3Ω(t2))α4 = 0,

O
(
t21
)
α0 −

(
t22 + O

(
t32
))

α3 + (2t2t3 + t2t3Ω(t2))α4 = 0.

From the above relations, we deduce that

α0 =
t3
t1

(1 + Ω(t2)) α4,

α1 = −α3 + t2t3Ω(t2)α4,

α2 = −α0 − (1 + t2t3Ω(t2))α4,

α3 = 2
t3
t2

(1 + Ω(t2))α4.

Finally, one obtains

Q(α4) = −2t2
3t1

(
t3
(
6π2

+ + 6t2π+π++ + t22π
2
++

)
+ t22Ω(t2)Ω(t2)Ω(t2)

)
α2

4.

(10.13)
By (9.17), we have R(α4) = O

(
t42t

2
3

)
and, finally, Q has the same asymp-

totic expression as Q in (10.13).
On the class Ξ̃3

η, the quantity π+ is uniformly separated from zero, for
small T . It follows from Theorem 2 that a short S-extremal pair in Ξ̃3

η which
contains a +−+−+ concatenation is not quasi-optimal. By symmetry with
respect “+” and “−,” we actually proved that a short S-extremal pair in
Ξ̃3

η with five concatenated arcs is not quasi-optimal. On the contrary, the
case of the class Ξ̃1

η deserves a further analysis.

Lemma 5. If q(·) is short and quasi-optimal, then the pair (π+, π++)
lies in the interior of the second or of the fourth quadrant of R

2.
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Fig. 1. The set C ∩ D.

Proof. If q(·) is quasi-optimal, then Q ≥ 0. Taking into account the asymp-
totic expression for t3 given in (10.11), we obtain from (10.13) that

0 ≥ (6 +O(t2))π3
+ + (10 +O(t2))π2

+π++t2

+(5 +O(t2))π+π2
++t22 +

(
2
3
+O(t2)

)
π3

++t32.
(10.14)

Note that the leading term of (10.14) is a homogeneous polynomial inequal-
ity in (π+, t2π++). Its set of solutions in R

2 is given by the cone

C =
{
(x, y) ∈ R

2

∣∣∣∣ 6x3 + 10x2y + 5xy2 +
2
3
y3 ≤ 0

}

=
{
(r cos θ, r sin θ)

∣∣∣ r ∈ [0,+∞), θ ∈ S1, P (θ) ≤ 0
}

,

where

P (θ) = 6 cos3 θ + 10 cos2 θ sin θ + 5 cos θ sin2 θ +
2
3
sin3 θ.

Fix a cone C ′ such that C ⊂ C ′ and ∂C ∩ ∂C ′ = {0}. Taking sufficiently
small t2, we have that (π+, t2π++) ∈ C ′. Indeed, the trigonometric polyno-
mial P which defines C has six simple zeros on S1, which are stable under
small perturbations of the coefficients.
Let

D =
{
(x, y)

∣∣∣ x+
y

3
≥ 0

}
.

Consider a cone D′ which contains the half-plane D and such that ∂D ∩
∂D′ = {0}. Since the condition π0 ≤ 0 must also be satisfied, we have
(π+, t2π++) ∈ D′ for small t2. If we choose C ′ and D′ sufficiently close to
C and D, then C ′ ∩ D′ is contained in the union of the second and fourth
quadrant (see Fig. 1) and the lemma is proved.
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Let

π̃+ = 〈λ(t0 − t1),X+(q(t0 − t1))〉 ,

π̃++ = 〈λ(t0 − t1),X++(q(t0 − t1))〉 .

We have that

π̃+ = lim
t→t−1

ϕ̈(t0 − t) = ϕ̈(t0) − t1ϕ
(3)(t0 − t),

where t ∈ [0, t1]. Since

sup
t∈[0,t1]

|ϕ(3)(t0 − t)| = sup
t∈[0,t1]

|〈λ(t0 − t),X++(q(t0 − t))〉| = O(1),

we have
π̃+ = π+ + t2Ω(t2).

For the same reason,
π̃++ = π++ + t2Ω(t2).

In particular, an inequality in the form (10.14) is still true if we replace
π+ and π++ by π̃+ and π̃++, respectively. Similarly, the inequality t3 > 0
can be rewritten, in terms of π̃+ and π̃++, as

π̃+ +
2
3
t2π̃++ + t2Ω(t2) > 0.

Thus, for sufficiently small T , (π̃+, t2π̃++) ∈ C ′ ∩ D′, where C ′ and D′

are chosen as in the proof of Lemma 5. In particular, for short quasi-optimal
pairs, (π̃+, t2π̃++) lies in the interior of the second or fourth quadrant.

Consider now a short S-extremal pair (λ(·), q(·)) which contains seven
concatenated bang arcs, the first and the last one corresponding to control
+1. Let τ1 < · · · < τ8 be the boundary points of such arcs. Note that
q
∣∣
[τ1,τ6]

and q
∣∣
[τ3,τ8]

are both +−+−+ restrictions of q(·), and that q(τ4) is

both the first switching point of q
∣∣
[τ3,τ8]

and the second switching point of

[τ1, τ6] � t �→ q(τ1 + τ6 − t), (10.15)

which is a +−+−+ piece of trajectory for the time-reversed system (4.10).
Normalize λ(·) according to the choice of the +−+−+ concatenation

q
∣∣
[τ3,τ8]

. Denote by q′(·) the time-reversed trajectory of q(·) and by λ′(·)
an extremal lift of q′(·) for (4.10), which satisfies (4.11), obtained from
λ(·) by time-reversion and multiplication by a scalar. Assume that λ′(·) is
normalized according to the choice of the +−+−+ concatenation singled
out in (10.15).

Choosing T sufficiently small (depending on η), we can assume either
that one between these lifts is in Ξ̃3

η or that they both belong to Ξ̃1
η or to

Ξ̃2
η. In the first case, we have already proved that the trajectory is not

quasi-optimal.
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Assume that they both are in Ξ̃1
η. Let us apply to both of them Lemma 5.

The role of (π̃+, π̃++) for (λ(·), q(·)) is played by a pair which is positively
proportional to

p1 =
( 〈λ(τ4),X+(q(τ4))〉 , 〈λ(τ4),X++(q(τ4))〉

)
.

Similarly, the role of (π+, π++) for (λ′(·), q′(·)) is played by a pair which is
positively proportional to

p2 =
( 〈(−λ(τ4)),−X+(q(τ4))〉 , 〈(−λ(τ4)),X++(q(τ4))〉

)
=
( 〈λ(τ4),X+(q(τ4))〉 ,−〈λ(τ4),X++(q(τ4))〉

)
.

If q(·) were quasi-optimal, then p1 and p2 would both lie in the interior of
the second or fourth quadrant of R

2, which is, clearly, impossible.
Proposition 1 is proved with k(4, 0) = 7.
Consider the point-to-point problem corresponding to the case (4, 0),

i.e., let dim S = 0 and dimM = 4. As was said in Remark 3, the above
computations apply to any extremal bang-bang trajectory of sufficiently
small time-length in a sufficiently small neighborhood of a (4, 0)-point q0 of
M . Therefore, the following property holds.

Proposition 3. Let M be a four-dimensional manifold. Then, for a
generic pair (f, g) of vector fields on M , there exists a three-dimensional
stratified set W ⊂ M , such that, for every point q0 in M \ W , there exist a
neighborhood U of q0 and a time T > 0, such that a quasi-optimal trajectory
of (1.1) contained in U and of time-length smaller than T is the concate-
nation of at most seven bang and singular arcs. The only possible maximal
concatenations including singular arcs are of the type BSBB or BBSB.
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8. B. Bonnard and J. de Morant, Toward a geometric theory in the time-
minimal control of chemical batch reactors. SIAM J. Control Optim. 33
(1995), 1279–1311.

9. U. Boscain and B. Piccoli, Optimal syntheses for control systems on
2-D manifolds. Math. Appl. 43 (2004).

10. H. J. Kelley, R. E. Kopp, and H. Gardner Moyer, Singular extremals.
Topics in Optimization, Academic Press, New York (1967), pp. 63–101.

11. G. Launay and M. Pelletier, The generic local structure of time-optimal
synthesis with a target of codimension one in dimension greater than
two. J. Dynam. Control Systems 3 (1997), No. 2, pp. 165–203.

12. B. Piccoli, Regular time-optimal syntheses for smooth planar systems.
Rend. Sem. Mat. Univ. Padova 95 (1996), 59–79.

13. L. S. Pontryagin, V. G. Boltyansky, R. V. Gamkrelidze, and E. F. Mis-
chenko, The mathematical theory of optimal processes. Wiley, New
York (1962).

14. H. Schättler, On the local structure of time-optimal bang-bang trajec-
tories in R

3. SIAM J. Control Optim. 26 (1988), 186–204.
15. , Regularity properties of optimal trajectories: recently devel-

oped techniques. In: Nonlinear Controllability and Optimal Control.
Monogr. Textbooks Pure Appl. Math. 133, Dekker, New York (1990),
pp. 351–381.

16. H. J. Sussmann, Time-optimal control in the plane. In: Feedback Control
of Linear and Nonlinear Systems. Lect. Notes Control Inform. Sci. 39,
Springer-Verlag, Berlin (1985), pp. 244–260.

17. , The structure of time-optimal trajectories for single-input sys-
tems in the plane: The C∞ nonsingular case. SIAM J. Control Optim.
25 (1987), pp. 433–465.

18. , Envelopes, conjugate points, and optimal bang-bang extremals.
In: Algebraic and Geometric Methods in Nonlinear Control Theory.
Math. Appl. 29, Reidel, Dordrecht (1986), pp. 325–346.

(Received October 25 2003, received in revised form March 26 2004)

Author’s address:
INRIA Sophia Antipolis, France
E-mail: Mario.Sigalotti@sophia.inria.fr


