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Abstract
This paper addresses the minmax regret 1-sink location problem on a dynamic flow
path network with parametric weights. A dynamic flow path network consists of an
undirected path with positive edge lengths, positive edge capacities, and nonnegative
vertexweights. A path can be considered as a road, an edge length as the distance along
the road, and a vertex weight as the number of people at the site. An edge capacity
limits the number of people that can enter the edge per unit time. We consider the
problem of locating a sink where all the people evacuate quickly. In our model, each
weight is represented by a linear function of a common parameter t , and the decision
maker who determines the sink location does not know the value of t . We formulate
the problem under such uncertainty as the minmax regret problem. Given t and sink
location x , the cost is the sum of arrival times at x for all the people determined by t .
The regret for x under t is the gap between this cost and the optimal cost under t . The
problem is to find the sink location minimizing the maximum regret over all t . For the
problem, we propose an O(n42α(n)α(n)2 log n) time algorithm, where n is the number
of vertices in the network and α(·) is the inverse Ackermann function. Also, for the
special case in which every edge has the same capacity, we show that the complexity
can be reduced to O(n32α(n)α(n) log n).

Parts of this paper appeared in preliminary form in Proceedings of WALCOM2021 (Fujie et al. 2021).
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1 Introduction

Recently, many parts of the world have been struck by disasters such as earthquakes,
nuclear plant accidents, volcanic eruptions, and flooding, leading to the recognition
of the urgent need for orderly evacuation planning. A powerful tool for evacuation
planning is the dynamic flow model introduced by Ford and Fulkerson (1958), which
represents the movement of people or goods over time in a network. In this model,
we are given a graph with source vertices and sink vertices; each source vertex has a
positive weight called a supply, each sink vertex has a positive weight called a demand,
and each edge has positive length and capacity, with an edge capacity limiting the
amount of supply that can enter the edge per unit time. One variant of the dynamic
flow problem is the quickest transshipment problem, the objective of which is to
send exactly the right amount of supply from sources to sinks while satisfying the
demand constraints in the minimum overall time. Hoppe and Tardos (2000) provided
a polynomial-time algorithm for this problem when the transit times are integral,
but their algorithm is very complex. Therefore, finding a practical polynomial-time
solution to this problem remains an open problem; see the survey by Skutella (2009)
on dynamic flows.

Discussed herein is the related sink location problem (Belmonte et al. 2015;
Benkoczi et al. 2018, 2020; Bhattacharya et al. 2017; Chen and Golin 2016, 2023;
Higashikawa et al. 2014, 2015b; Mamada et al. 2006), the objective of which is to
locate sinks in a given dynamic flow network so that all the supply is sent to the sinks
as quickly as possible. As the criterion for optimal location, the following two can
naturally be considered: (i) minimization of evacuation completion time or (ii) mini-
mization of aggregate evacuation time (i.e., the sum of evacuation times), and we refer
to the sink location problem with criterion (i) or (ii) as the CTSL problem or the ATSL
problem, respectively. Several previous papers have studied CTSL problems (Belmonte
et al. 2015; Bhattacharya et al. 2017; Chen and Golin 2016, 2023; Higashikawa et al.
2014, 2015b; Mamada et al. 2006), but for ATSL problems the results are scarce and
only for path networks (Benkoczi et al. 2018, 2020; Higashikawa et al. 2015b).

To model the evacuation behavior of people, it would be natural to treat each
supply as a discrete quantity as in Hoppe and Tardos (2000); Mamada et al. (2006).
However, almost all previous papers on sink location problems (Belmonte et al. 2015;
Bhattacharya et al. 2017;Chen andGolin 2016, 2023;Higashikawa et al. 2014, 2015b)
have treated each supply as a continuous quantity, this being because doing so makes
it easier to handle the problems mathematically, and also the effect of such treatment
is small enough to ignore when the number of people is large. Therefore, here we
likewise adopt the model with continuous supplies.

Although the above two criteria are reasonable, theymay be impractical because the
population distribution is assumed to be fixed. In a real situation, the number of people
in an area may vary with time; for example, an office area in a large city contains many
people during weekdays but far fewer people on weekends and during the night. To
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account for such uncertainty, Kouvelis and Yu (1997) introduced the minmax regret
model. In a minmax regret sink location problem, we are given a finite or infinite set S
of scenarios, with each scenario giving a particular assignment of weights on all the
vertices. Here, for a sink location x and a scenario s ∈ S, we denote the evacuation
completion time or aggregate evacuation time by F(x, s). Then, the problem can be
understood as a two-person Stackelberg game as follows. The first player picks a sink
location x , and the second player chooses a scenario s ∈ S that maximizes the regret
defined as R(x, s) := F(x, s) − minx F(x, s); the objective of the first player is to
choose x that minimizes themaximum regret. Here, we refer to theminmax regret sink
location problem with the regret defined based on the evacuation completion time or
the aggregate evacuation time as the MMR-CTSL problem or the MMR-ATSL problem,
respectively. MMR-CTSL problems have been studied previously (Arumugam et al.
2019; Bhattacharya and Kameda 2015; Golin and Sandeep 2018; Higashikawa et al.
2015a, 2014; Li and Xu 2016; Li et al. 2016; Golin and Sandeep 2022), but there
are few results forMMR-ATSL problems (Bhattacharya et al. 2018; Higashikawa et al.
2018) despite being important both theoretically and practically.

As for how to define a set of scenarios, all previous studies on minmax regret sink
location problems adopted the model with interval weights, in which each vertex is
given aweight as a real interval, and a scenario is defined by choosing an element of the
Cartesian product of all the weight intervals over the vertices. However, a drawback
of the minmax regret model with interval weights is that each weight can take an
independent value, thus we consider some extreme scenarios that may not happen in
real situations, such as a scenario in which all the vertices have either maximum or
minimumweights. To account for the dependency among theweights of all the vertices,
we adopt the model with parametric weights (first introduced by Vairaktarakis and
Kouvelis (1999) for the minmax regret median problem), in which each vertex is given
a weight as a linear function in a common parameter t on a real interval, and a scenario
is determined just by choosing t . Note that when considering a real situation, each
weight function is likely to be more complex but can be approximated by a piecewise
linear function. Thus, by superimposing all such piecewise linear functions, it turns
out that for a sufficiently small subinterval of t , every weight function can be regarded
as linear, and we can obtain the solution by solving multiple subproblems with linear
weight functions.

Herein, we study the MMR-ATSL problem on a dynamic flow path network with
parametricweights for the first time. For this problemwith both general edge capacities
and uniform edge capacity, we give polynomial time algorithms. Our main theorem
is as follows.

Theorem 1 (Main Results) Suppose that we are given a dynamic flow path network
of n vertices with parametric weights.

(i) TheMMR-ATSL problem can be solved in O(n42α(n)α(n)2 log n) time, where α(·)
is the inverse Ackermann function.

(ii) When all the edge capacities are uniform, the MMR-ATSL problem can be solved
in O(n32α(n)α(n) log n) time.

Note that theMMR-ATSLproblemwith intervalweightswas studiedbyBhattacharya
et al. (2018),Higashikawaet al. (2018) but only for the casewith uniformedge capacity.
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Table 1 The current best results on MMR-CTSL problems

Interval weight Parametric weight

Edge capacity Uniform General Uniform General

Path O(n) (Arumugam et al.
2019)

O(n4 log n) (Golin and
Sandeep (2022))

Open Open

Tree O(n log n) (Bhattacharya
and Kameda 2015)

Open Open Open

Table 2 The current best results on MMR-ATSL problems

Interval weight Parametric weight

Edge
capacity

Uniform General Uniform General

Path O(n2 log2 n)

(Bhattacharya et
al. 2018)

Open O(n32α(n)α(n) log n)

(this paper)
O(n42α(n)α(n)2 log n)

(this paper)

Tree Open Open Open Open

Higashikawa et al. (2018) provided an O(n3) time algorithm,whichBhattacharya et al.
(2018) improved to one running in O(n2 log2 n) time.However, no algorithmyet exists
for the casewith general edge capacities. Therefore, our result implies that the problem
becomes solvable in polynomial time by introducing parametric weights. Tables 1 and
2 summarize the current best results and our results.

The rest of this paper is organized as follows. In Sect. 2, we give the notation and
fundamental properties that are used throughout the paper. In Sect. 3, we give the key
lemmas and the algorithm for solving the problem, which concludes the paper.

2 Preliminaries

For two real values a, b with a < b, let [a, b] = {t ∈ R | a ≤ t ≤ b}, (a, b) = {t ∈
R | a < t < b}, and (a, b] = {t ∈ R | a < t ≤ b}.

In our problem, we are given a real interval T = [t−, t+] ⊂ R and a dynamic flow
path network P = (P,w(t), c, l, τ ) that consists of five elements. P = (V , E) is
a path with vertex set V = {vi | 1 ≤ i ≤ n} and edge set E = {ei = (vi , vi+1) |
1 ≤ i ≤ n − 1}. A vector w(t) = 〈w1(t), . . . , wn(t)〉 consists of the weight function
wi : T → R≥0 that is linear in a parameter t and nonnegative for any t ∈ T . A vector
c = 〈c1, . . . , cn−1〉 consists of the capacity ci of edge ei . A vector l = 〈�1, . . . , �n−1〉
consists of the length �i of edge ei , and τ is the time that the supply takes to move a
unit distance on any edge. Let us explain how edge capacities and lengths affect the
evacuation time. Consider an evacuation under fixed t ∈ T . Suppose that at time 0,
supply of amount w is at vertex vi+1 and going through edge ei toward vertex vi . The
first fraction of supply from vi+1 can arrive at vi at time τ�i . The edge capacity ci
represents the maximum amount of supply that can enter ei in a unit time interval, so
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all the supply w can complete leaving vi+1 at time w/ci . Therefore, all the supply w

can complete arriving at vi at time τ�i + w/ci .
For any integers i, j with 1 ≤ i ≤ j ≤ n, we denote the sum of weights from

vi to v j by Wi, j (t) = ∑ j
h=i wh(t). For the notation, we define Wi, j (t) = 0 for i, j

with i > j . For a vertex vi ∈ V , we use vi to denote the distance between v1 and vi ,
that is, vi = ∑i−1

j=1 � j . For an edge ei ∈ E , we use ei to denote a real open interval
(vi , vi+1). We also use P to denote a real closed interval [0, vn]. If a real value x
satisfies x ∈ (vi , vi+1), then x is said to be a point on edge ei to which the distance
from vi is x − vi . Let Ci, j be the minimum capacity for all the edges from ei to e j ,
that is, Ci, j = min{ch | i ≤ h ≤ j}.

Note that we precompute the values of vi andW1,i (t) for all i in O(n) time, and then
Wi, j (t) for any i, j can be obtained in O(1) time as Wi, j (t) = W1, j (t) − W1,i−1(t).
In addition, Ci, j for any i, j can be obtained in O(1) time with O(n) preprocessing
time, which is known as the range minimum query (Alstrup et al. 2002; Bender and
Farach-Colton 2000).

2.1 Evacuation completion time on a dynamic flow path network

In this section, we give a formula for the evacuation completion time for fixed x ∈ P
and t ∈ T . Suppose that sink x is on edge ei = (vi , vi+1). In this case, all the supply
on the right side (i.e., at vi+1, . . . , vn) will flow left to sink x , and all the supply
on the left side (i.e., at v1, . . . , vi ) will flow right to sink x . First, we consider the
evacuation for the supply on the right side of x . Supply on the path is viewed as a
continuous value, and we regard all the supply on the right side of x as being mapped
to the interval (0,Wi+1,n(t)]. The value z satisfying z ∈ (Wi+1, j−1(t),Wi+1, j (t)]
with i + 1 ≤ j ≤ n represents all the supply at vertices vi+1, vi+2, . . . , v j−1 plus the
partial supply of z − Wi+1, j−1(t) at v j . Let θ

ei
R (x, t, z) denote the time at which the

first z amount of supply on the right side of x (i.e., vi+1, vi+2, . . . , vn) completes its
evacuation to sink x . Higashikawa (2014) gives the following formula for θeiR (x, t, z);
For z ∈ (Wi+1, j−1(t),Wi+1, j (t)] with i + 1 ≤ j ≤ n, we have

θ
ei
R (x, t, z) = max

i+1≤h≤ j

{

τ(vh − x) + z − Wi+1,h−1(t)

Ci,h

}

. (1)

In a symmetric manner, we consider the evacuation for the supply on the left side
of x (i.e., v1, . . . , vi ). The value z satisfying z ∈ (Wj+1,i (t),Wj,i (t)] with 1 ≤
j ≤ i represents all the supply at vertices vi , vi−1, . . . , v j+1 plus the partial supply of
z−Wj+1,i (t) at v j . Let θ

ei
L (x, t, z) denote the time atwhich the first z amount of supply

on the left side of x completes its evacuation to sink x . Higashikawa (2014) gives the
following formula for θ

ei
L (x, t, z); For z ∈ (Wj+1,i (t),Wj,i (t)] with 1 ≤ j ≤ i , we

have

θ
ei
L (x, t, z) = max

j≤h≤i

{

τ(x − vh) + z − Wh+1,i (t)

Ch,i

}

. (2)
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Let us turn to the case in which sink x is at a vertex vi ∈ V . We confirm that the
evacuation times when supply of amount z originates from the right and left sides of
vi to sink vi are given by θ

ei
R (vi , t, z) and θ

ei−1
L (vi , t, z), respectively.

2.2 Aggregate evacuation time

Let Φ(x, t) be the aggregate evacuation time (i.e., the sum of evacuation time) when
the sink is at a point x ∈ P and the weight functions are fixed by the parameter
t ∈ T . For point x on edge ei and parameter t ∈ T , the aggregate evacuation time
Φ(x, t) is defined by the integrals of the evacuation completion times θ

ei
L (x, t, z) over

z ∈ [0,W1,i (t)] and θ
ei
R (x, t, z) over z ∈ [0,Wi+1,n(t)], that is,

Φ(x, t) =
∫ W1,i (t)

0
θ
ei
L (x, t, z)dz +

∫ Wi+1,n(t)

0
θ
ei
R (x, t, z)dz. (3)

Similarly, if sink x is at vertex vi , then Φ(vi , t) is given by

Φ(vi , t) =
∫ W1,i−1(t)

0
θ
ei−1
L (vi , t, z)dz +

∫ Wi+1,n(t)

0
θ
ei
R (vi , t, z)dz. (4)

2.3 Minmax regret formulation

Wedenote byOpt(t) theminimumaggregate evacuation timewith respect to parameter
t ∈ T . Higashikawa et al. (2015b) and Benkoczi et al. (2020) showed that for the
minsum k-sink location problem, there exists an optimal k-sink such that all the k
sinks are at vertices. This implies that we have

Opt(t) = min
x∈V Φ(x, t) (5)

for any t ∈ T . For a point x ∈ P and a value t ∈ T , a regret R(x, t) with regard to x
and t is the gap between Φ(x, t) and Opt(t) defined as

R(x, t) = Φ(x, t) − Opt(t). (6)

The maximum regret for a sink x ∈ P , denoted by MR(x), is the maximum value of
R(x, t) with respect to t ∈ T . Thus, MR(x) is defined as

MR(x) = max
t∈T R(x, t). (7)

Given a dynamic flow path network P and a real interval T , MMR-ATSL problem is
defined as follows:

minimize MR(x) subject to x ∈ P. (8)

Let x∗ denote an optimal solution of (8).

123



Journal of Combinatorial Optimization            (2024) 48:15 Page 7 of 20    15 

2.4 Piecewise functions and upper/lower envelopes

A function f : X(⊂ R) → R is called a piecewise polynomial function if and only
if the real interval X can be partitioned into subintervals X1, X2, . . . , Xm so that f
is formed as a polynomial fi on each Xi . We denote such a piecewise polynomial
function f by f = 〈( f1, X1), . . . , ( fm, Xm)〉, or simply f = 〈( fi , Xi )〉. We assume
that such a partition into subintervals is maximal in the sense that for any i and i + 1,
we have fi 
= fi+1. We call each pair ( fi , Xi ) a piece of f , and an endpoint of the
closure of Xi a breakpoint of f . A piecewise polynomial function f = 〈( fi , Xi )〉 is
called a piecewise polynomial function of degree at most two if and only if each fi
is quadratic or linear. We confirm the following property about the sum of piecewise
polynomial functions.

Proposition 1 Let m and m′ be positive integers, and f , g : X(⊂ R) → R be piece-
wise polynomial functions of degree at most two with m and m′ pieces, respectively.
Then, a function h = f + g is a piecewise polynomial function of degree at most two
with at most m + m′ pieces. Moreover, given f = 〈( fi , Xi )〉 and g = 〈(g j , X ′

j )〉, we
can obtain h = f + g = 〈(h j , X ′′

j )〉 in O(m + m′) time.
Let F = { f1(y), . . . , fm(y)} be a family of m polynomial functions, where fi :

Yi (⊂ R) → R and Y denotes the union of Yi , that is, Y = ∪m
i=1Yi . An upper envelope

UF (y) and a lower envelope LF (y) of F are functions from Y to R defined as
follows:

UF (y) = max
i=1,...,m

fi (y), LF (y) = min
i=1,...,m

fi (y), (9)

where the maximum and the minimum are taken over those functions that are
defined at y, respectively. For the upper envelope UF (y) of F , there exists an
integer sequence UF = 〈u1, . . . , uk〉 and subintervals I1, . . . , Ik of Y such that
UF (y) = 〈( fu1(y), I1), . . . , ( fuk (y), Ik)〉 holds. That is, the upper envelope UF (y)
can be represented as a piecewise polynomial function. We call the above sequence
UF = 〈u1, · · · , uk〉 the function sequence of UF (y).

In our algorithm, we compute the upper/lower envelopes of partially defined, uni-
variate polynomial functions. The following result is useful for this operation.

Theorem 2 (Hart and Sharir 1986; Hershberger 1989; Agarwal et al. 1989) LetF be
a family of n partially defined polynomial functions of degree at most two. Then UF
and LF consist of O(n2α(n)) pieces, and one can obtain them in O(nα(n) log n)

time, where α(n) is the inverse Ackermann function. Moreover, if F is a family of n
partially defined linear functions, thenUF andLF consist of O(nα(n)) pieces, and
one can obtain them in O(n log n) time. Furthermore, if F is a family of n totally
defined linear functions, thenUF andLF consist of O(n) pieces, and one can obtain
them in O(n log n) time.

Note that the number of pieces and the computation time for the upper/lower envelopes
are associated with the maximum length of Davenport–Schinzel sequences; see Hart
and Sharir (1986) for the details. For a familyF of functions, if we say that we obtain
envelopesUF (y) orLF (y), then we obtain the information of all pieces ( fui (y), Ii ).
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2.5 Property of inverse Ackermann function

The Ackerman function is defined as follows:

A(n,m) =
⎧
⎨

⎩

m + 1 if n = 0,
A(n − 1, 1) if n > 0,m = 0,
A(n − 1, A(n,m − 1)) otherwise.

The inverse Ackermann function α(n) is defined as

α(n) = min{k ∈ N0 | n ≤ A(k, k)},

and we show the following inequality.

Property 1

α(n3) ≤ α(n) + 1 (10)

holds for any positive integer n with n ≥ 8.

Let us suppose that n ≥ 8 and k = α(n) ≥ 3 because A(2, 2) = 7 holds. Inequal-
ity (10) holds if the inequality

n3 ≤ A(k + 1, k + 1).

holds. By the definition and the monotonicity of the Ackermann function, we have

A(k + 1, k + 1) = A (k, A(k + 1, k)) > A (k, A(k, k)) ≥ (
A(k, k)

)3
.

The last inequality arises from the fact that

A (k,m) ≥ A (3,m) = 2m+3 − 3 ≥ m3

holds for any integer k ≥ 3 and any positive integer m ≥ 1, where A(3,m) =
2m+3 − 3 is shown by Porto and Matos (1980). Because n ≤ A(k, k) holds, we have
n3 ≤ (

A(k, k)
)3 ≤ A(k + 1, k + 1). Thus, the proof is complete.

3 Algorithm

The main task of the algorithm is to compute the following O(n) values: MR(v) for
all v ∈ V and min{MR(x) | x ∈ e} for all e ∈ E . Once we compute these values,
we immediately obtain the solution of the problem by choosing the minimum among
them in O(n) time.

Let us focus on computing min{MR(x) | x ∈ e} for each e ∈ E . (Note that we
can compute MR(v) for v ∈ V in a similar manner.) Recall the definition of the
maximum regret for x , MR(x) = max{R(x, t) | t ∈ T }. A main difficulty lies in
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evaluating R(x, t) over t ∈ T even for a fixed x because we must treat an infinite set
T . Furthermore, we are also required to find an optimal location among an infinite
set e. To tackle this issue, our key idea is to partition the problem into a polynomial
number of subproblems as follows. We partition interval T into a polynomial number
of subintervals T1, . . . , Tm so that R(x, t) is represented as a (single) polynomial
function in x and t on {x ∈ e} × Tj for each j = 1, . . . ,m. For each Tj , we compute
the maximum regret for x ∈ e over Tj denoted by G j (x) = max{R(x, t) | t ∈ Tj }.
An explicit form of G j (x) will be given in Sect. 3.1. We then obtain MR(x) for x ∈ e
as the upper envelope of functions G1(x), . . . ,Gm(x) and find the minimum value of
MR(x) for x ∈ e by elementary calculation.

In the rest of the paper, wemainly show that for each e or v, there exists a partition of
T with a polynomial number of subintervals such that the regret R(x, t) is a polynomial
function of degree at most two on each subinterval.

3.1 Key lemmas

Recalling (5) and (6), function R(x, t) is based on function Φ(x, t). First, let us con-
sider extracting a univariate function in t fromΦ(x, t) as much as possible. According
(3), Φ(x, t) is defined as the some of definite integrals θ

ei
R (x, t, z) and θ

ei
L (x, t, z)

over z. By (1) and (2), θ
ei
R (x, t, z) (resp.θeiL (x, t, z)) can be decomposed into term

−τ x and the other term independent of x , denoted by f ei , jR (t, z) (resp. f ei , jL (t, z)).

Formally, for 1 ≤ i < j ≤ n, let function f ei , jR (t, z) be defined on t ∈ T and
z ∈ (Wi+1, j−1(t),Wi+1,n(t)] as

f ei , jR (t, z) = τv j + z − Wi+1, j−1(t)

Ci, j
, (11)

and for 1 ≤ j < i ≤ n, let function f ei , jL (t, z) be defined on t ∈ T and z ∈
(Wj+1,i (t),W1,i (t)] as

f ei , jL (t, z) = −τv j + z − Wj+1,i (t)

C j,i
. (12)

In addition, let Fei
L (t) and Fei

R (t) denote univariate functions defined as

Fei
L (t) =

∫ W1,i (t)

0
f eiL (t, z)dz, Fei

R (t) =
∫ Wi+1,n(t)

0
f eiR (t, z)dz, (13)

where f eiL (t, z) and f eiR (t, z) denote functions defined as

f eiL (t, z) = max
1≤ j≤i

{
f ei , jL (t, z)

}
, f eiR (t, z) = max

i+1≤ j≤n

{
f ei , jR (t, z)

}
. (14)
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Fig. 1 Graph of f
ei
L (t, z) w.r.t. z

with a focus on f
ei , j
L (t, z). The

gray area represents F
ei
L (t)

See also Fig. 1. Recall the definition of the aggregate evacuation time Φ(x, t) given
in (3). We observe that for x ∈ ei , Φ(x, t) can be represented as

Φ(x, t) = (
W1,i (t) − Wi+1,n(t)

)
τ x +

∫ W1,i (t)

0
f eiL (t, z)dz +

∫ Wi+1,n(t)

0
f eiR (t, z)dz

= (
W1,i (t) − Wi+1,n(t)

)
τ x + Fei

L (t) + Fei
R (t). (15)

Similarly, by the definition in (4) and by (13), we have

Φ(vi , t) = (
W1,i−1(t) − Wi+1,n(t)

)
τvi + Fei−1

L (t) + Fei
R (t). (16)

Let us focus on the function Fe
L(t). As t increases, while the function sequence of

f eL(t, z) w.r.t. z remains the same, function Fe
L(t) is represented as the same polyno-

mial, whose degree is at most two by (11)–(13). In other words, a breakpoint of Fe
L(t)

corresponds to the value t such that the function sequence of f eL(t, z) w.r.t. z changes.

We notice that such a change happens only when then three functions f e,hL (t, z),

f e,iL (t, z), and f e, jL (t, z) intersect each other, which can happen at most once. We
immediately see that Fe

L(t) consists of O(n3) breakpoints; that is, it is a piecewise
polynomial function of degree at most two with O(n3) pieces. The following lemmas
show that the number of pieces is actually O(n2α(n)) and O(n) for the cases with
general edge capacities and uniform edge capacity, respectively.

Lemma 1 For each e ∈ E, Fe
L(t) and Fe

R(t) are piecewise polynomial func-
tions of degree at most two with O(n2α(n)) pieces, and they can be computed in
O(n3α(n) log n) time.

Lemma 2 If all the edge capacities are uniform, for each e ∈ E, Fe
L(t) and Fe

R(t) are
piecewise polynomial functions of degree at most two with O(n) pieces, and they can
be computed in O(n2 log n) time.

Proof of Lemma 1 Let us suppose that x is on ei ∈ E . We prove the lemma only for
Fei
L (t) because the case of Fe

R(t) can be proved in a symmetric manner. We prove the
following statements separately.

(i) The number of pieces of Fei
L (t) is O(n2α(n)).
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Fig. 2 Illustration of z j ′, j (t) for the case of C j ′, j = C j , j with 1 ≤ j ′ < j ≤ i

(ii) The function of each piece of Fei
L (t) is a piecewise polynomial function of

degree at most two in t .
(iii) All pieces of Fei

L (t) can be obtained in O(n3α(n) log n) time.

First, we prove statement (i). Recall that f eiL (t, z) is the upper envelope of{
f ei , jL (t, z)

∣
∣
∣ 1 ≤ j ≤ i

}
w.r.t. z ∈ (0,W1,i (t)]. For integers j, j ′ with 1 ≤ j ′ <

j ≤ i , let z j ′, j (t) be a function in t defined as follows. If C j ′,i = C j,i , then we have

z j ′, j (t) =
{

Wj ′+1,i (t) if f ei , jL (t,Wj ′+1,i (t)) ≤ f ei , j
′

L (t,Wj ′+1,i (t)), (17)

W1,i (t) if f ei , jL (t,Wj ′+1,i (t)) > f ei , j
′

L (t,Wj ′+1,i (t)), (18)

as shown in Fig. 2, otherwise; in other words, if C j ′,i < C j,i , then we have

z j ′, j (t) =
⎧
⎨

⎩

Wj ′+1,i (t) if f ei , jL (t,Wj ′+1,i (t)) ≤ f ei , j
′

L (t,Wj ′+1,i (t)), (19)

min{z∗j ′, j (t),W1,i (t)} if f ei , jL (t,Wj ′+1,i (t)) > f ei , j
′

L (t,Wj ′+1,i (t)), (20)

where z∗j ′, j (t) is the solution for z of the equation f ei , j
′

L (t, z) = f ei , jL (t, z) as shown
in Fig. 3. Note that when t changes from t ≤ t j ′, j to t > t j ′, j , the function z∗j ′, j (t)
changes from (17) to (18) or from (18) to (17), where t j ′, j is the solution for t of the

equation f ei , jL (t,Wj ′+1,i (t)) = f ei , j
′

L (t,Wj ′+1,i (t)). The same thing holds for (19)
and (20). This change happens at most once while t ∈ [t−, t+].

For any t ∈ T , let U (t) be the function sequence of f eiL (t, z) in z. Now, for some
t ′, suppose that U (t ′) = 〈u1, . . . , uk〉. Note that u1 > · · · > uk holds. Then, the h-th
smallest breakpoint of f eiL (t ′, z) for z ∈ (0,W1,i (t ′)) is zuh+1,uh (t

′). We notice that if
t changes from t ′ under the conditions that U (t) and the formula for each zuh+1,uh (t)
remain the same, then the formula for Fei

L (t) also remains the same. In other words,
a breakpoint of Fei

L (t) corresponds to when U (t) or the formula for some zuh+1,uh (t)
changes. Let us consider in what cases this happens.

Case 1: When t reaches some value t1, the formula for some zuh+1,uh (t) changes from
(17) to (18) or from (19) to (20) (see Fig. 4).

Case 2: When t reaches some value t2, the formula for some zuh+1,uh (t) changes from
(18) to (17) or from (20) to (19) (see Fig. 5).
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Fig. 3 Illustration of z j ′, j (t) for the case of C j ′, j < C j , j with 1 ≤ j ′ < j ≤ i

Fig. 4 When t reaches t1, the formula for some zuh+1,uh (t) changes to Wuh+1+1,i (t) from z∗uh+1,uh

Fig. 5 When t reaches t2, the formula for some zuh+1,uh (t) changes to z∗uh+1,uh from Wuh+1+1,i (t)

Case 3: Just after t reaches some value t3, that is, when t = t3 + ε, f ei , jL (t3 + ε, z)
for some j appears as a part of f eiL (t3 + ε, z) so that U (t3 + ε) =
〈u1, . . . , uh, j, uh+1, . . . , uk〉 (see Fig. 6).

Case 4: When t reaches some value t4, f ei ,uhL (t4, z) disappears from f eiL (t4, z), that
is, U (t4) = 〈u1, . . . , uh, uh+2, . . . , uk〉 (see Fig. 7).

Note that t1 and t2 are the solutions of
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Fig. 6 When t = t3 + ε, f
ei , j
L (t3 + ε, z) appears as a part of f

ei
L (t3 + ε, z) so that U (t3 + ε) =

〈. . . , uh , j, uh+1, . . .〉

Fig. 7 When t reaches t4, f
ei ,uh
L (t4, z) disappears from f

ei
L (t4, z), that is, U (t4) = 〈. . . , uh , uh+2, . . .〉

f ei ,uhL (t,Wuh+1+1,i (t)) = f ei ,uh+1
L (t,Wuh+1+1,i (t)). For any t ∈ T and j with

2 ≤ j ≤ i , z j (t) is defined as

z j (t) = min
h

{
zh, j (t) | 1 ≤ h ≤ j − 1

}
. (21)

Then, t1, t2, t3, and t4 in Cases 1–4 are breakpoints of zuh (t). Therefore, the number
of breakpoints of Fei

L (t) is at most the number of all the breakpoints of the functions
z j (t) for all j with 2 ≤ j ≤ i . Recall that z j (t) is the lower envelope of O( j) line
segments by (17)–(21). Thus, the number of breakpoints of z j (t) for any j is O(nα(n))

by Theorem 2. Therefore, the total number of breakpoints of the functions z j (t) for
all j with 2 ≤ j ≤ i is O(n2α(n)). This completes the proof for property (i).

Next, we prove statement (ii). Let (H(t), T ′) be a piece of Fei
L (t) such that for

t ∈ T ′, U (t) = 〈u1, . . . , uk〉 and the formula for each zuh+1,uh (t) remains the same.
We then have

H(t) =
k∑

h=1

∫ zuh+1,uh (t)

zuh ,uh−1 (t)
f ei ,uhL (t, z)dz, (22)

where zu1,u0(t) = 0 and zuk+1,uk (t) = W1,i (t). By (12), it holds for h with 1 ≤ h ≤ k
that

f ei ,uhL (t, z) = ρh
1 z + ρh

2 t + ρh
3 , (23)
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where ρh
1 , ρh

2 , ρh
3 are some constants. Substituting (23) into (22), we obtain

H(t) =
k∑

h=1

{ρh
1

2

(
zuh+1,uh (t)

2 − zuh ,uh−1(t)
2
)

+(ρh
2 t + ρh

3 )
(
zuh+1,uh (t) − zuh ,uh−1(t)

) }
, (24)

which is quadratic in t because zuh+1,uh (t) and zuh ,uh−1(t) are linear in t by (17)–(20).
Note that if the coefficient of t2 in the function H(t) of (24) is zero, then H(t) is a
linear function. This completes the proof for property (ii).

Finally, we prove statement (iii). Our algorithm consists of the following two steps.
Step 1: Obtain breakpoints of Fei

L (t). For each j with 1 ≤ j ≤ i , we find all
the breakpoints of z j (t), which is a lower envelope of z j ′, j (t) for integers j ′ with
1 ≤ j ′ < j by (21). Because z j ′, j (t) is a piecewise linear function with at most
three pieces, we can obtain all breakpoints of z j (t) in O(n log n) time for each j by
Theorem 2. Thus, Step 1 requires O(n2 log n) time.
Step 2: Obtain functions of all pieces of Fei

L (t). Let T ′ be an interval of a
piece of Fei

L (t). Choosing the parameter t ∈ T ′, we obtain a function sequence
U (t) = 〈u1, . . . , uk〉 of f eiL (t, z). Because f eiL (t, z) is the upper envelope of par-
tially defined linear functions by (12) and (14), U (t) can be computed in O(n log n)

time by Theorem 2. We obtain a polynomial of degree at most two in O(n) time by
evaluating (24). Because the number of pieces of Fei

L (t) is O(n2α(n)), Step 2 requires
O(n3α(n) log n) time.

In total, our algorithm requires O(n2 log n + n3α(n) log n) = O(n3α(n) log n)

time. 
�
Proof of Lemma 2 Let us suppose that x is on ei ∈ E . We prove the lemma only for
Fei
L (t) because the case of Fe

R(t) can be proved in a symmetric manner. We prove the
following statements separately, as in the proof of Lemma 1.

(i) The number of pieces of Fei
L (t) is O(n).

(ii) The function of each piece of Fei
L (t) is a piecewise polynomial function of degree

at most two in t .
(iii) All pieces of Fei

L (t) can be obtained in O(n2 log n) time.

Because statement (ii) has been shown in the proof of Lemma 1, we will prove only
statements (i) and (iii).

First, we prove statement (i). For any t ∈ T , let U (t) be the function sequence of
f eiL (t, z) in z as in Lemma 1. Note that only Cases 3 and 4 in the proof of Lemma 1
happen when all edge capacities are uniform. Therefore, some t ′ is a breakpoint of
Fei
L (t) if and only if U (t) changes at t = t ′. In the following, we will prove that any

index comes intoU (t) at most once, and thereforeU (t) changes O(n) times. Suppose
that when t reaches t ′, j comes out from U (t). We then show that j never comes into
U (t) for any t with t ′ < t . In this case, some j ′ with j < j ′ ≤ i comes to dominate
j at time t ′; that is, when t = t ′ − ε for sufficiently small ε > 0, f ei , jL (t, z) is above

f ei , j
′

L (t, z) for z ∈ (Wj+1,i (t),W1,i (t)], and when t = t ′, f ei , jL (t, z) = f ei , j
′

L (t, z)
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holds for z ∈ (Wj+1,i (t ′),W1,i (t ′)] because the slopes in z of f ei ,hL (t, z) for all h are
the same. Recall that in the proof of Lemma 1, the function z j ′,h(t) for h = 1, . . . , j ′
changes from (17) to (18) or from (18) to (17) at most once. Therefore, we can see

that while t > t ′, f ei , jL (t, z) remains below f ei , j
′

L (t, z) for z ∈ (Wj+1,i (t),W1,i (t)].
Thus, the number of changes of U (t) w.r.t. j is at most two. Because a breakpoint of
Fei
L (t) corresponds to t where some j comes either into or out fromU (t), the number

of breakpoints of Fei
L (t) is O(n).

Next, we prove statement (iii). We need only prove that all of O(n) breakpoints of
Fei
L (t) can be obtained in O(n2 log n) time because after that, we can apply the same

operation as in Step 2 in the proof of Lemma 1 for computing O(n) pieces of Fei
L (t).

Let us consider a value t = t ′ where U (t) changes. Then, for some j with 1 ≤ j ≤ i ,
the index of the function consisting of f eiL (t, z) over z ∈ (Wj+1,i (t),Wj,i (t)] changes
at t = t ′. To compute such t ′, it is enough to consider f eiL (t, z) with z = Wj,i (t); that
is, t ′ is a breakpoint of the univariate function g j (t) := f eiL (t,Wj,i (t)). Thus, t ′ is a
value where U (t) changes if and only if t ′ is a breakpoint of g j (t) for some j with
1 ≤ j ≤ i .

From the above discussion, we can compute Fei
L (t) by the following two steps.

Step 1: Obtain breakpoints of Fei
L (t). For all j = 1, . . . , i , compute the breakpoints

of g j (t). The function f ei ,hL (t,Wj,i (t)) is a linear function for any t in [t−, t+] by
substitutingWj,i (t) into (12). For any j with 1 ≤ j ≤ i , g j (t) is the upper envelope of

f ei ,hL (t,Wj,i (t)) for all h with j ≤ h ≤ i , so we can compute the breakpoints of g j (t)
in O(n log n) time and the number of breakpoints is O(n) by Theorem 2. Therefore,
we can compute the breakpoints of g j (t) for all j with 1 ≤ j ≤ i in O(n2 log n)

time. Note that some breakpoints may be obtained multiple times. Then, by removing
duplicates, we obtain all O(n) breakpoints of Fei

L (t). Because the number of obtained
breakpoints before removing duplicates is O(n2), this operation takes O(n2 log n)

time. In total, Step 1 takes O(n2 log n) time.
Step 2: Obtain functions of all pieces of Fei

L (t). The number of pieces of Fei
L (t)

is O(n) by statement (i). Therefore, by the same operation as that of Step 2 of the
proof of Lemma 1, we can obtain polynomial functions of all the pieces of Fei

L (t) in
O(n2 log n) time.

In total, our algorithm requires O(n2 log n) time to compute Fei
L (t). 
�

Let NF denote themaximumnumber of pieces of Fe
L(t) and Fe

R(t) over e ∈ E . Then
we have NF = O(n2α(n)), and for the case with uniform edge capacity, NF = O(n).
Next, we consider Opt(t) = min{Φ(x, t) | x ∈ V }, which is the lower envelope
of a family of n functions Φ(vi , t) in t . Theorem 2 and Lemmas 1 and 2 imply the
following lemma.

Lemma 3 Opt(t) is a piecewise polynomial function of degree at most two with
O(nNF2α(n)) pieces, and it can be obtained in O(nNFα(n) log n) time if functions
Fe
L(t) and Fe

R(t) for all e ∈ E are available.

Proof Equation (5) implies that Opt(t) is the lower envelope of a family of n functions
{Φ(v, t) | v ∈ V }. Recall that for vi ∈ V , we have

Φ(vi , t) = (
W1,i−1(t) − Wi+1,n(t)

)
τvi + Fei−1

L (t) + Fei
R (t).
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By Lemmas 1 and 2, because Fe
L(t) and Fe

R(t) for any e ∈ E are piecewise polynomial
functions of degree at most two with at most NF pieces, Opt(t) is the lower envelope
of O(nNF ) partially defined polynomial functions of degree at most two.

Theorem 2 implies that Opt(t) is a piecewise polynomial function of degree at
most two with at most O(nNF2α(nNF )) = O(nNF2α(n)) pieces and can be obtained
in O(nNFα(nNF ) log(nNF ))) = O(nNFα(n) log n) time, where we used the fact
that NF = O(n3) and Property 1. This completes the proof. 
�

Let NOpt denote the number of pieces of Opt(t). Then we have NOpt =
O(nNF2α(n)).

Let us consider R(x, t) in the case that sink x is on an edge ei ∈ E . Substituting
(15) for (6), we have

R(x, t) = Φ(x, t) − Opt(t) = (
W1,i (t) − Wi+1,n(t)

)
τ x + Fei

L (t) + Fei
R (t) − Opt(t).

By Proposition 1, Fei
L (t) + Fei

R (t) − Opt(t) is a piecewise polynomial function of
degree at most two with at most 2NF + NOpt = O(NOpt) pieces. Let Nei be the
number of pieces of Fei

L (t)+ Fei
R (t)−Opt(t) and T ei

j be the interval of the j-th piece

(from the left) of Fei
L (t) + Fei

R (t) − Opt(t). Thus, R(x, t) is represented as a (single)
polynomial function in x and t on {x ∈ e} × Tj for each Tj . For each integer j with
1 ≤ j ≤ Nei , let G

ei
j (x) be a function defined as

Gei
j (x) = max{R(x, t) | t ∈ T ei

j }. (25)

We then have the following lemma.

Lemma 4 For each ei ∈ E and j with 1 ≤ j ≤ Nei , G
ei
j (x) is a piecewise polynomial

function of degree at most two with at most three pieces, and it can be obtained in
constant time if functions Fei

L (t), Fei
R (t), and Opt(t) are available.

Proof Recall that we have

R(x, t) = Φ(x, t) − Opt(t) = (
W1,i (t) − Wi+1,n(t)

)
τ x + Fei

L (t) + Fei
R (t) − Opt(t).

BecauseW1,i (t),Wi+1,n(t) are linear in t and Fei
L (t)+Fei

R (t)−Opt(t) is a polynomial
function of degree at most two on t ∈ Tj , we can represent R(x, t) on {x ∈ ei } × Tj

with five real constants βk (k = 1, . . . , 5) as

R(x, t) = β1t
2 + β2xt + β3t + β4x + β5.

Let us consider the explicit form of the maximum valueG j (x) of R(x, t) for x ∈ ei
over t ∈ Tj . Let Tj = [t j−1, t j ]. If β1 ≥ 0, then R(x, t) takes the maximum value
when t = t j−1 or t = t j for any x . Thus, we haveG j (x) = max{R(x, t j−1), R(x, t j )}
that is a piecewise linear function in x with atmost two pieces, because both R(x, t j−1)

and R(x, t j ) are linear in x . Let us consider the other case in which β1 < 0 holds.
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Fig. 8 Graph of G j (x) in the
case of vi < x1 < x2 < vi+1

When the axis of symmetry of R(x, t) w.r.t. t , that is, t = −(β2x + β3)/(2β1), is
contained in Tj , it holds that G j (x) = R(x,−(β2x + β3)/(2β1)). Thus we have

G j (x) =

⎧
⎪⎪⎨

⎪⎪⎩

R(x, t j−1) if − β2x+β3
2β1

< t j−1,

R
(
x,−β2x+β3

2β1

)
if t j−1 ≤ −β2x+β3

2β1
≤ t j ,

R(x, t j ) if − β2x+β3
2β1

> t j .

(26)

Note that the inequality conditions in (26) can be solved for x as [x < x1; x1 ≤
x ≤ x2; x > x2] or [x > x1; x1 ≥ x ≥ x2; x < x2], where x1 is the solution
for x of the equation −(β2x + β3)/(2β1) = t j−1 and x2 is the solution for x of
the equation −(β2x + β3)/(2β1) = t j (see Fig. 8). Therefore, G j (x) is a piecewise
polynomial function with at most three polynomials of degree at most two because

R
(
x,−β2x+β3

2β1

)
is a quadratic function in x . 
�

Recalling the definition of MR(x), it holds that for x ∈ e,

MR(x) = max{R(x, t) | t ∈ T } = max{Ge
j (x) | 1 ≤ j ≤ Ne},

that is, MR(x) is the upper envelope of functions Ge
1(x), . . . ,G

e
Ne

(x). Applying The-
orem 2, we have the following lemma.

Lemma 5 For each e ∈ E, there exists an algorithm that finds a location thatminimizes
MR(x) under the restriction with x ∈ e in O(NOptα(n) log n) time if functions Fe

L(t),
Fe
R(t), and Opt(t) are available.

Proof We give how to find a location x∗,e that minimizes MR(x) over x ∈ e. Because
functions Fe

L(t), Fe
R(t), and Opt(t) are available, we can apply Lemma 4 and then

compute the explicit forms of functions Ge
j (x) for all j with 1 ≤ j ≤ Ne, which

are obtained in O(Ne) = O(NOpt) time. Function MR(x) for x ∈ e is the upper
envelope of functions Ge

1(x), . . . ,G
e
Ne

(x). Because Ge
j (x) is a piecewise polynomial

function of degree at most two with at most three pieces, MR(x) is the upper envelope
of at most 3Ne = O(NOpt) functions of degree at most two. Theorem 2 implies that
MR(x) consists of O(NOpt2α(NOpt)) = O(NOpt2α(n)) pieces and can be obtained in
O(NOptα(NOpt) log NOpt) = O(NOptα(n) log n) time, where we used the fact that the
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inverse Ackermann function satisfies that α(n3) ≤ α(n) + 1 holds for any positive
integer n with n ≥ 8.

For each piece, compute a point that minimizes MR(x) in constant time, and from
the obtained values, choose the minimum one as x∗,e. Summarizing the above argu-
ment, these operations take O(NOptα(n) log n) time. 
�

Note that a small modification to the algorithm of Lemma 5 allows us to also
compute MR(v) for all v ∈ V in O(NOpt) time.

Lemma 6 For each v ∈ V , there exists an algorithm that computes MR(v) in O(NOpt)

time if functions Fe
L(t), Fe

R(t), and Opt(t) are available for all e ∈ E.

Proof We show that it takes O(NOpt) time to obtain MR(vi ) for each vi ∈ V . Substi-
tuting (16) for (6), we have

R(vi , t) = (
Wi−1(t) + Wi (t) − Wn(t)

)
τvi + Fei−1

L (t) + Fei
R (t) − Opt(t).

By Proposition 1, Fei−1
L (t) + Fei

R (t) − Opt(t) is a piecewise polynomial function of
degree at most two with at most O(NOpt) pieces. Let Nvi be the number of pieces of
Fei−1
L (t) + Fei

R (t) −Opt(t) and T vi
j be the interval of the j-th piece (from the left) of

Fei−1
L (t) + Fei

R (t) −Opt(t). Thus, R(vi , t) is represented as a polynomial function of
degree at most two on t ∈ T vi

j for each T vi
j . For each integer j with 1 ≤ j ≤ Nvi , by

elementary calculation, we obtain the maximum value Gvi
j of R(vi , t) over t ∈ Tj in

O(1) time. By choosing the maximum values among Gvi
1 , . . . ,Gvi

Nvi
, we can obtain

MR(vi ) in O(Nvi ) = O(NOpt) time. 
�

3.2 Algorithm and time analysis

Finally, let us give an algorithm that finds a sink location that minimizes the maximal
regret, as well as an analysis of the running time of each step.

First,weobtain Fe
L(t) and Fe

R(t) for all e ∈ E andobtain functionOpt(t) as a prepro-
cess. Applying Lemmas 1–3, we take O(n2NF log n) time for these operations. Next,
we compute x∗,e = arg min{MR(x) | x ∈ e} for all e ∈ E in O(nNOptα(n) log n)

time by applying Lemma 5. Then, we also compute MR(v) for all v ∈ V in O(nNOpt)

time by applying Lemma 6. Finally, we find an optimal sink location x∗ in O(n) time
by evaluating MR(x) for x ∈ {x∗,e} ∪ V .

Because we have NOpt = O(nNF2α(n)), the bottleneck of our algorithm is
in computing x∗,e for all e ∈ E . Thus, we see that the algorithm runs in
O(n2NF2α(n)α(n) log n) time, which completes the proof of our main theorem
because NF = O(n2α(n)), and for the case with uniform edge capacity, NF = O(n).

4 Concluding remarks

MMR-ATSL addresses a situation where sink locations are decided under the uncer-
tainty that population changes by time. We have presented an O(n42α(n)α(n)2 log n)
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time algorithm for MMR-ATSL on dynamic flow path networks with parametric
weights. When all the edge capacities are uniform, MMR-ATSL can be solved in
O(n32α(n)α(n) log n) time.

MMR-ATSL on other networks as trees, grids or more general networks is still open.
Also, MMR-CTSL has not been solved for any network class. It is worth designing
algorithms for these problems in order to make an effective evacuation plan.
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