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Abstract
Let G be a connected graph and t ≥ 1 a (rational) constant. A t-spanner of G is a
spanning subgraph of G in which the distance between any pair of vertices is at most
t times its distance in G. We address two problems on spanners. The first one, known
as the minimum t-spanner problem (MinSt ), seeks in a connected graph a t-spanner
with the smallest possible number of edges. In the second one, called minimum cost
tree t-spanner problem (MCTSt ), the input graph has costs assigned to its edges and
seeks a t-spanner that is a tree with minimum cost. It is an optimization version of the
tree t-spanner problem (TreeSt ), a decision problem concerning the existence of a t-
spanner that is a tree.MinSt is known to beNP-hard for every t ≥ 2. On the other hand,
TreeSt admits a polynomial-time algorithm for t ≤ 2 and is NP-complete for t ≥ 4;
but its complexity for t = 3 remains open. We focus on the class of subcubic graphs.
First, we show that for such graphs MinS3 can be solved in polynomial time. These
results yield a practical polynomial algorithm for TreeS3 that is of a combinatorial
nature. We also show that MCTS2 can be solved in polynomial time. To obtain this
last result, we prove a complete linear characterization of the polytope defined by the
incidence vectors of the tree 2-spanners of a subcubic graph. A recent result showing
that MinS3 on graphs with maximum degree at most 5 is NP-hard, together with the
current result on subcubic graphs, leaves open only the complexity of MinS3 on graphs
with maximum degree 4.
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1 Introduction

Throughout this text, we consider that the input graph is always connected (even if
this is not stated explicitly). The distance between two vertices u and v in a graph G,
denoted by dG(u, v), is the minimum length of a path between u and v. For a (rational)
constant t ≥ 1, a t-spanner of a graph G is a spanning subgraph H of G in which

dH (u, v) ≤ t · dG(u, v), for all u, v ∈ V (G).

A synchronizer is a technique in distributed computing, proposed by Awerbuch
(1985), that transforms a synchronous algorithm into an asynchronous one. Motivated
by this work, Peleg and Ullman (1989) introduced the concept of spanner, and dis-
covered its relation with the efficiency of a synchronizer of a network. As a result,
they showed how to construct an optimal synchronizer for the hypercube. Since then,
spanners have raised attention, both from theoretical and practical point-of-view, by
its wide range of applicability. It has applications in areas such as distributed systems
and communication networks (synchronization, building succinct and efficient routing
tables (Peleg andUpfal 1989), distance oracles (Thorup andZwick 2005; Baswana and
Sen 2006), roadmap planning (Wang et al. 2015), computational geometry, robotics,
etc. The reader may refer to Ahmed et al. (2020) for a survey that gives an overview of
the results regarding many different variants of graph spanners (Euclidean, weighted,
on directed graphs, etc),mentioning applications and providing a list of open problems.

We consider here two problems regarding t-spanners. In the first one, theMinimum
t- spanner problem (MinSt ), we are given a graph and we wish to find a t-spanner
of this graph with the smallest possible number of edges. The second problem, called
Minimum cost tree t- spanner problem (MCTSt ), is a natural generalization of
the Tree t- spanner problem (TreeSt ). In TreeSt , we are interested in deciding
whether a graph admits a t-spanner that is a tree. InMCTSt , we are given a graph with
edge-costs and we wish to find a tree t-spanner of minimum total cost (if one exists).

In 1989, Peleg and Schäffer (1989) introduced MinSt and proved that MinS2 is
NP-hard. Later, Cai (1994) extended this result for every t ≥ 2. In 1997, Venkatesan
et al. (1997) improved further this result showing that MinSt is NP-hard for t ≥ 2
even if the graph is chordal. Searching for classes of graphs for which MinSt can be
solved efficiently, Cai and Keil (1994) studied graphs of bounded degree. Let �(G)

(or simply�, when the graph under consideration is clear from the context) denote the
maximum degree of a graph G. Cai and Keil designed a polynomial-time algorithm
forMinS2 on graphs with� ≤ 4. Moreover, they proved thatMinSt isNP-hard when
t ≥ 2 and � ≤ 9. Kobayashi (2018) showed that MinSt remains NP-hard on planar
graphs in the following cases: (a) t = 2 and � ≤ 8; and (b) 3 ≤ t ≤ 4 and � ≤ 6.
Recently, Gómez et al. (2023) proved that the maximum degree condition can be
slightly lowered: MinSt remains NP-hard on planar graphs when t = 2 and � ≤ 7,
when t = 3 and � ≤ 5, and when t ≥ 4 and � ≤ 4. Some of these results are
summarized in the next table.
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Regarding tree t-spanners, the following results are known. Cai and Corneil (1995)
showed a linear-time algorithm for TreeSt when t ≤ 2, and also showed that it
becomes NP-complete when t ≥ 4. The complexity status of TreeS3 has not been
established. For bounded-degree graphs, in contrast to MinSt , Fomin et al. (2011)
showed a polynomial-time algorithm for TreeSt . It is also known that TreeS3 admits
a polynomial-time algorithm on several classes of graphs such as planar graphs (Fekete
and Kremer 2001), convex graphs (Venkatesan et al. 1997), split graphs (Venkatesan
et al. 1997), line graphs (Couto et al. 2021), etc. We summarize some of these results
in Table 2. The minimization version of TreeSt , denoted here MCTSt , has not been
investigated in the literature. We present here a result for MCTS2.

In this text, we focus on subcubic graphs (those with maximum degree 3). Our
contributions to these problems are the following:

(1) A simple polynomial-time algorithm for MinS3;
(2) A simple practical algorithm for TreeS3;
(3) A polynomial-time algorithm for MCTS2.

To obtain the result (1), we designed an algorithm that is based on a technique
introduced by Cai and Keil (1994) forMinS2 on graphs of maximum degree 4. These
authors believed that such a technique would yield a polynomial-time algorithm for
MinS3 on subcubic graphs. The result shown here confirms this, but the proof turned
out to be quite involved, as many different graphs were obtained with this approach
and we had to characterize (the families of) these graphs. This was the hardest part
of our proof, but we were able to characterize which are the 11 small graphs and the
6 simple classes of graphs that we may obtain, and for each of them we could state
explicitly how to find a minimum 3-spanner.

Let us turn now our attention to tree spanners. We observe that our algorithm
for MinS3 also gives a solution for TreeS3. For this problem, Fomin et al. (2011)
proposed a linear-time algorithmonbounded-degree graphs based onCourcelle’s theo-
rem (Courcelle and Engelfriet 2012). Although its complexity is theoretically optimal,
it is not efficient in practice. Moreover, Papoutsakis (2018) also proposed a dynamic-
programming based polynomial-time algorithm; however, its implementation is quite
involved (see further comments on Sect. 3). Our contribution is an alternative efficient
(practical) polynomial-time algorithm for TreeS3 on subcubic graphs.

Recent works have investigated the problems related to sparse spanners from a prac-
tical point-of-view (Álvarez-Miranda and Sinnl 2019; Ahmed et al. 2019). Some linear
formulations have been proposed for TreeSt , however the experimental results were
not very promising. Motivated by this fact, we studied the polytope associated with
the incidence vectors of the tree 2-spanners of a graph. We obtained a complete linear
description of the polytope associated with these vectors, which in turn implies (3).

We conclude this section describing the organization of this text. In Sect. 2, we
introduce some concepts and the terminology that is used in the text. We define a
partition of the edges of a graph G, denoted Ct (G), which is the central idea used to
tackle MinS3 and MCTS2 on subcubic graphs. In Sect. 3, we focus on MinS3. This
section is devoted to characterizing the subgraphs that arise from the partition C3(G)

when G is a subcubic graph. From this characterization, we derive a polynomial-
time algorithm for MinS3. This result also implies a simple algorithm for TreeS3
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on this class of graphs. After that, we turn our attention to MCTS2 in Sect. 4. We
focus on the polytope associated with the feasible solutions of TreeS2, and show a
linear description of this polytope. This result implies a polynomial-time algorithm for
MCTS2 on subcubic graphs. To the best of our knowledge, this is a novel approach and
result. In Sect. 5, we mention some final remarks and possible directions for further
research.

A preliminary version of this work (Gómez et al. 2022) was presented at the 16th
International Conference and Workshops on Algorithms and Computation (walcom
2022).

2 Preliminaries

When we refer to a graph, say G, without specifying explicitly its vertex set and edge
set, these are supposed to be V (G) and E(G). The length of a path or cycle in a graph
is its number of edges. Moreover, if a path (resp. cycle) has length k, we say that it is
a k-path (resp. k-cycle). We use the notation degG(v) for the degree of a vertex v in a
graph G.

The following result gives an equivalent definition for t-spanner. It is very useful, as
it tells us that, a spanning subgraph H of a graph G is a t-spanner of G if the distance
condition in H holds for pairs of adjacent vertices in G (see also Cai and Corneil
(1995)).

Proposition 1 (Peleg and Schäffer (1989)) Let H be a spanning subgraph of a graph
G = (V , E). Then, H is a t-spanner of G if and only if for every edge uv ∈ E,
dH (u, v) ≤ t .

In what follows, we define a partition of the edges of a graph that helps us subdivide
MinSt (and TreeSt ) into (possibly) smaller subproblems. This idea was introduced
by Cai and Keil (1994) for the case of 2-spanners. This partition is motivated by the
following observation. Let G = (V , E) be a graph, and let H be a t-spanner of G.
Consider an edge e ∈ E � E(H). Then, there exists in H a path P linking the ends
of e such that |P| ≤ t . Thus, the edge e is contained in a cycle of length at most t + 1.
Let now L be the graph defined from G as follows.

V (L) = {ve : e ∈ E},
E(L) = {vev f : e, f ∈ E belong to a k-cycle in G, k ≤ t + 1}.

Finally, let us denote by Ct (G) the partition of E defined as follows. Two edges
e, f ∈ E belong to the same class of Ct (G) if and only if ve and v f belong to the same
connected component of L . Observe that, if an edge uv ∈ E does not belong to H ,
the edges of a k-path, k ≤ t , linking u and v in H belong to the class that contains uv

in Ct (G).
The key idea behind the algorithm of Cai and Keil (1994) for MinS2 on graphs of

maximum degree 4 is to characterize the graphs in C2(G). We follow this approach
and study the partition C3(G) on subcubic graphs. We show in Fig. 1 an example of
a graph G, its associated graph L , and the classes in C2(G). The vertices of L are
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Fig. 1 a A graph G; b the graph L (its vertices are shaded rectangles, and its edges are depicted by full
black edges); c the five classes in C2(G) (represented by five different types of edges) (Color figure online)

depicted by full squares, and its edges are depicted by (full) black edges. The classes
in C2(G) are represented by different types of edges. For simplicity, we consider each
class in Ct (G) as a subgraph of G.

The following result is very useful, since it reduces MinSt to finding a minimum
t-spanner for each graph in Ct (G).

Proposition 2 A subgraph S of a graph G is a t-spanner if and only if S ∩ H is a
t-spanner of H, for every H ∈ Ct (G).

Proof Let S be a subgraph of G. First, let us prove that if S is a t-spanner of G,
then S ∩ H is a t-spanner of H , for each H in Ct (G). Take H ∈ Ct (G) and uv ∈
E(H) � E(S). As uv /∈ E(S), there exists in S a path, say P , between u and v such
that |P| ≤ t . Note that P is also a path in H since P + e is a k-cycle with k ≤ t . Thus,
P is a path in S ∩ H , and therefore S ∩ H is a t-spanner of H .

Let us prove now that if S ∩ H is a t-spanner of H , for every H ∈ Ct (G), then S
is a t-spanner of G. Let uv ∈ E(G) � E(S). Since Ct (G) is a collection of subgraphs
that partitions E(G), there exists a subgraph H ∈ Ct (G) such that uv ∈ E(H). As
S ∩ H is a t-spanner of H , there exists a k-path, k ≤ t , between u and v in S ∩ H .
Therefore, S is a t-spanner of G.

Proposition 2 tells us that a t-spanner of a graph G is composed of t-spanners for
each subgraph H ∈ Ct (G). This approach is also valid for tree t-spanners, however
we have to carry out a final test: the union of the minimum t-spanners of each graph
in Ct (G) needs to be a tree. Finally, we note that the partition Ct (G) can be obtained
in polynomial time. This follows from the fact that determining whether two edges
belong to the same class (in Ct (G)) reduces to finding the length of a shortest cycle in
G containing these edges.

3 Minimum 3-spanner on subcubic graphs

In this section,we focus on 3-spanners. In particular,we are interested in characterizing
the graphs in C3(G), for any subcubic graph G. Throughout this section, we denote
by G = (V , E) a connected subcubic graph.
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Fig. 2 Graphs obtained after applying operation (1), (2), (3), or (4)

We follow a constructive approach to characterize the graphs in C3(G). More for-
mally, we define four operations and show that, for any graph H ∈ C3(G), there exists
a sequence of graphs, say H0, H1, . . . , Hn , such that H0 ∼= K2, Hn ∼= H and Hi+1 is
obtained by applying one of these operations to Hi , for i = 0, 1, . . . , n − 1.

Let Hi be a subcubic graph, and let u and v be distinct vertices of degree at most
two in Hi . The first three operations are the following.

(1) Add to Hi an edge linking u and v, if uv /∈ E(Hi ) and dHi (u, v) ≤ 3.
(2) Add to Hi a 2-path between u and v, if dHi (u, v) ≤ 2.
(3) Add to Hi a 3-path between u and v, if uv ∈ E(Hi ).

To state the last operation, first we introduce the following definition. Let uv and
xy be distinct edges in E(Hi ) such that u, v, x and y have degree two in Hi . Moreover,
suppose that ux, vy /∈ E(Hi ) or uy, vx /∈ E(Hi ). We call any of these pairs of edges
a matching between uv and xy.

(4) Add to Hi a matching between the edges uv and xy.

Note that, each operation increases the degree of at least two vertices in the graph.
Moreover, since H0 ∼= K2, then H1 is either a 3-cycle or a 4-cycle. Thus, δ(Hi ) ≥ 2,
for i = 1, . . . , n. (The notation δ(H) stands for the minimum degree of a graph H .) In
Fig. 2, we show examples of the graphs that we obtain after applying these operations.
We depict by solid vertices and wavy edges the vertices and edges that are added to
Hi , respectively.

The next result gives us a constructive characterization of the graphs in C3(G). With
this lemma at hand, we will be able to list the graphs in C3(G).

Lemma 3 Let H ∈ C3(G). Then, there exists a sequence of graphs H0, . . . , Hn such
that H0 ∼= K2, Hn ∼= H, and Hi+1 is obtained from Hi by applying one of the
operations (1), (2), (3) or (4).

Proof First, if H is a single edge there is nothing to prove, since H0 ∼= K2. So suppose
that H �= K2. Observe that H contains a cycle of length at most four by the definition
of C3(G). Let H ′ be a maximal subgraph of H for which such sequence of graphs
exists. As H contains a 3-cycle or 4-cycle, we have that H ′ �= K2, and therefore
δ(H ′) ≥ 2.

123



Journal of Combinatorial Optimization (2024) 48 :11 Page 9 of 21 11

Let us now suppose, by contradiction, that H ′ �= H . First, we show that there is a
cycleC of length atmost four, in H , such that E(C)∩E(H ′) �= ∅ and E(C)�E(H ′) �=
∅. To show the previous claim,we recall that C3(G) is obtained from a graph L , defined
from G, such that there exists a vertex ve ∈ V (L) for each edge e ∈ E(G). Moreover,
the edge vev f ∈ E(L) if e, f ∈ E(G) belong to a cycle in G of length at most four
(see Sect. 2). Consider now the connected component in L , say LH , that corresponds
to E(H). Since H ′ �= H and LH is connected, there exist edges e ∈ E(H)�E(H ′)
and f ∈ E(H ′) such that ve is adjacent to v f in LH . Then, by the definition of E(L),
there exists a cycle C in G of length at most four that contains e and f . Moreover,
E(C) ⊆ E(H). This implies that E(C) ∩ E(H ′) �= ∅ and E(C)�E(H ′) �= ∅. Let
C be one such cycle. We distinguish three cases:
Case 1: |E(C) ∩ E(H ′)| = 3

In this case, V (C) ⊆ V (H ′) and |C | = 4. Let C = 〈x, y, x ′, y′〉, such that xy′ /∈
E(H ′). Thus, degH ′(x) ≤ 2, degH ′(y′) ≤ 2 and dH ′(x, y′) ≤ 3. Therefore, if we apply
operation (1) on vertices x and y′, we obtain the graph H ′ ∪C , which contradicts the
maximality of H ′.
Case 2: |E(C) ∩ E(H ′)| = 2

First, suppose that |E(C) ∩ E(H ′)| is a matching. This implies that C is a 4-cycle.
Let C = 〈x, y, x ′, y′〉, such that xy and x ′y′ belong to H ′. As the edges xy′ and x ′y
do not belong to H ′, these edges are a matching of xy and x ′y′. Thus, if we apply
operation (4) on xy and x ′y′ we obtain the graph H ′ ∪ C , a contradiction.

Suppose now that E(H ′) ∩ E(C) is a 2-path, and consider that C = 〈x, y, x ′, y′〉.
Furthermore, suppose that the edges xy and yx ′ belong to H ′. We claim that the vertex
y′ does not belong to H ′. If this is not the case, as the edges xy′ and x ′y′ do not belong
to H ′ and �(H) ≤ 3, we have that degH ′(y′) ≤ 1. But this contradicts the fact that
δ(H ′) ≥ 2. Therefore, if we apply operation (2) on vertices x and x ′, we obtain H ′∪C ,
a contradiction.

On the other hand, if C is a 3-cycle, we have that V (C) ⊆ V (H ′). In this case, if
we apply operation (1), we also obtain a contradiction.
Case 3: |E(C) ∩ E(H ′)| = 1

Without loss of generality, suppose that |C | = 3 (the other case is analogous).
Let C = 〈x, y, z〉 such that xy ∈ H ′. Since �(H) ≤ 3 and the edges xz and yz do
not belong to E(H ′), we have that z /∈ V (H ′). As degH ′(x) ≤ 2 and degH ′(y) ≤ 2,
we can apply operation (3) to obtain the graph H ′ ∪ C , a contradiction.

Therefore, H ′ = H .

In what follows, we define some classes of graphs that are part of our characteriza-
tion of C3(G). The k-ladder graph, denoted by Lk , is the cartesian product of a k-path
with K2. That is, Lk is obtained from the union of two copies of a k-path by adding a
perfect matching between the corresponding vertices.We note that Lk has exactly four
vertices of degree two, say x1, x2, y1 and y2, such that x1y1, x2y2 belong to E(Lk)

(see Fig. 3a). We define now four graphs related to Lk . Let Mk (resp. Nk) be the graph
obtained from Lk by adding the edges x1y2 and x2y1 (resp. x1x2 and y1y2), for k ≥ 2.
On the other hand, T 1

k is the graph obtained from Lk by adding a 2-path between x1
and y1. Moreover, if we also add a 2-path between x2 and y2, we obtain the graph T 2

k .
Figure3 shows an example of those graphs for k = 2.
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Fig. 3 a L2; b M2; c N2; d T 1
2 ; e T 2

2

Fig. 4 a M2 − e; b N2 − e; c G1; d G2; e G3

We denote by Mk − e (resp. Nk − e) the graph obtained from Mk (resp. Nk) by
removing the edge x1y2 (resp. y1y2). We show an example of M2 − e and N2 − e in
Fig. 4. In this figure, we also show three graphs G1, G2 and G3 that are part of our
characterization.

Let F3 be the family that consists of the following graphs (see Fig. 5):

(a) K2 (e) K2,3 (i) G1 (m) Mk, k ≥ 2
(b) K3 ( f ) M2 − e ( j) G2 (n) Nk, k ≥ 2
(c) K4 − e (g) N2 − e (k) G3 (o) T 1

k , k ≥ 1
(d) K4 (h) N3 − e (l) Lk, k ≥ 1 (p) T 2

k , k ≥ 1

We show now the main result of this section.

Theorem 4 Let G be a connected subcubic graph. If H ∈ C3(G), then H ∈ F3.

Proof Let H ∈ C3(G). By Lemma 3, there is a sequence of graphs H0, . . . , Hn such
that

• H0 ∼= K2,
• Hn = H ,
• Hi+1 is obtained from Hi by applying one of the operations (1), (2), (3) or (4).

In what follows, we show that Hi ∈ F3, for i = 0, . . . , n. For this, if it is possible
to apply an operation to Hi , we will analyse each case. In particular, we will suppose
that H �= Hi , and consider each possibility for Hi+1. First, since H0 = K2 ∈ F3, the
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Fig. 5 In red are depicted minimum 3-spanners of some representative graphs in F3. The graphs depicted
in l, m and n are L2, M3 and N3, respectively. The graphs depicted in o, p, q and r are T 1

2 , T
2
2 , M2 and

N2, respectively (Color figure online)

graph H1 is the result of applying operation (2) or operation (3) to H0. We distinguish
these two cases.
Case 1: H1 ∼= K3

Note that we cannot apply operations (1) or (4) to H1. Thus, H2 is obtained by
applying either operation (2) or operation (3) to H1. In the first case, H2 ∼= K4 − e;
and in the second case, H2 ∼= T 1

1 .
Case 1.1: H2 ∼= K4 − e

In this case, H2 contains only two vertices of degree two. Since these vertices are
not adjacent, the graph H3 is obtained by applying operations (1) or (2) to H2. Thus,
either H3 ∼= K4 or H3 ∼= G1 (see Fig. 4). Since, in both cases H3 has at most one
vertex of degree two, we have that H = H3 ∈ F3.
Case 1.2: H2 ∼= T 1

1
Let a, b and c be the vertices of degree two in H2 such that the neighbors of a have

degree three (see Fig. 6 a). Note that H3 is obtained by applying (1), (2) or (3) to H2. In
case we apply operation (1), H3 is obtained by adding the edge ab or ac to H2. In both
cases, we have that H3 ∼= G1 (see Fig. 6b). Moreover, we have that H = H3 ∈ F3,
since it has only one vertex of degree two.

Suppose now that H3 is obtained by applying operation (2) to H2.We can apply this
operation on vertices a and b (or c), or on vertices b and c. In the first case, we have
that H3 ∼= N2 − e (see Fig. 6c). In the second case, we have that H3 ∼= T 2

1 . Finally, we
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Fig. 6 a H2 ∼= T 1
1 ; b H3 ∼= G1; and c H3 ∼= N2 − e

Fig. 7 a H3 ∼= N2; and b H3 ∼= G3

can only apply operation (3) on vertices b and c. In this case, H3 ∼= T 1
2 . We analyse

these three cases for H3.
Case 1.2.1: H3 ∼= N2 − e

In this case, H3 contains only two vertices of degree two. Note that, we can only
apply operation (1) or (2) to obtain H4. In the first case, we have H4 ∼= N2, and in the
second case, H4 ∼= G3. In either case H4 has at most one vertex of degree two, thus
H = H4 ∈ F3.
Case 1.2.2: H3 ∼= T 2

1
As in the previous case, H3 has only two vertices of degree two. By distance

constraints, we can only apply operation (1) to H3 on those vertices. Therefore, H4 ∼=
N2 (see Fig. 7a). As N2 is cubic, we have that H = H4 ∈ F3.
Case 1.2.3: H3 ∼= T 1

2
Let a, b and c be the three vertices of degree two in T 1

2 such that b is adjacent
to c. Note that, we can apply operations (1), (2)or (3) to H3. First, suppose that we
apply operation (1) to H3. By distance constraints, we can only apply this operation
on vertices a and b (or c). In either case, we have that H4 ∼= G3 (see Fig. 7b). As G3
has only one vertex of degree two, we have that H = H4 ∈ F3.

Suppose now that we apply (2) to H3. In this case, we have to apply this operation
on vertices b and c and, thus H4 ∼= T 2

2 . Observe that, we cannot apply any operation
to T 2

2 . Therefore, H = H4 ∈ F3.
Finally, suppose that we apply operation (3) to H3.We can apply this operation only

on vertices b and c; therefore, H4 ∼= T 1
3 . Furthermore, we can only apply operations (2)

and (3) to T 1
3 . Thus, by analogous arguments as before, H ∼= T 2

k , for k ≥ 3.
Case 2: H1 ∼= L1
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Fig. 8 a H3 ∼= G1; and b H3 ∼= M2 − e

In this case, we can apply any of the four operations to H1. First observe the
following

(i) if we apply operation (1), we have that H2 ∼= K4 − e (as in Case 1.1.).
(ii) if we apply operation (2) on adjacent vertices, we have that H2 ∼= T 1

1 (as in Case
1.2.).

(iii) if we apply operation (4), then H2 ∼= K4 (as H2 is cubic, we have that H = H2).

Since we have already considered those cases, let us suppose that H2 was obtained
by applying (2) on nonadjacent vertices, or by applying (3) to H1. In the first case, we
have H2 ∼= K2,3, and in the second case H2 ∼= L2. We distinguish these two cases.
Case 2.1: H2 ∼= K2,3

In this case, we can only apply operation (1) or (2) to H2. If we apply (1), we have
that H3 ∼= G1 (see Fig. 8a). Since G1 has just one vertex of degree two, we have
that H = H3. Otherwise, suppose that H3 was obtained by applying (2). In this case,
we have that H3 ∼= M2 − e. (see Fig. 8b). Observe that, if H �= H3, then we have
that H ∼= M2.
Case 2.2: H2 ∼= L2

In this case, we can apply any of the four operations to H2. First, if we apply (1),
we have that H3 ∼= M2 − e or H3 ∼= N2 − e. If H �= H3, then H ∈ {M2, N2,G3}.
Next, if we apply operation (4) to H2, we have that H ∼= M2 or H ∼= N2.

Suppose now that we apply operation (2) to H2. In this case, if we choose two
adjacent vertices, we have H3 ∼= T 1

2 (as in Case 1.2.3). Otherwise, we have H3 ∼= G2.
Finally, if we apply operation (3), we have that H3 ∼= L3. We distinguish these last
two cases.
Case 2.2.1: H3 ∼= G2

Consider that x , y and z are the vertices of degree two, in H3, as in Fig. 9a. Observe
that, we can only apply (1) or (2) to H3. First, suppose that we apply operation (1) to
obtain H4. Observe that

• if we apply (1) on the vertices y and z, we have H4 ∼= G3.
• Moreover, if we choose vertices x and y (or z), we also obtain H4 ∼= G3 (see
Fig. 9b).

Since G3 has only one vertex of degree two, we have that H = H4 ∈ F3.
Suppose that we apply (2) to H3. Observe that, if we apply this operation either

on x and y, or on y and z, we have H4 ∼= N3 − e. Both cases are depicted in Fig. 10.
In case H �= H3, we have that H ∼= N3 ∈ F3.
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Fig. 9 a H3 ∼= G2; and b H4 ∼= G3

Fig. 10 Adding a 2-path H3 between a x and y; and b y and z

Case 2.2.2: H3 ∼= L3
In this case, we can apply any of the four operations to H3. First, suppose that

we apply (1). Observe that, we can only apply this operation on vertices that are at
distance three in L3. Thus, H4 ∼= N3 − e. Moreover, if H �= H4, then H ∼= N3 ∈ F3.

Suppose now that we apply operation (4) to H3. Then, either H4 ∼= M3 or H4 ∼= N3.
Since M3 and N3 are cubic, we have that H = H4.

Finally, suppose that we apply (2) or (3) to H3. Note that, we can only apply
these operations on adjacent vertices of degree two. Thus, we have that H4 ∼= T 1

3
or H4 ∼= L4. We distinguish these last two cases.
Case 2.2.2.1: H4 ∼= T 1

3
By the same arguments given at the end of Case 1.2.3, we have that H ∼= T 2

k ∈ F3,
for k ≥ 3.
Case 2.2.2.2: H4 ∼= L4

First, observe that we cannot apply (1) to Lk , for k ≥ 4. If we apply (2) to H4,
we have that H4 ∼= T 1

4 . By using arguments similar to the previous case, we have
that H ∼= T 2

k , for k ≥ 4. If we apply (4) to H4, we have that H ∼= M4 or H ∼= N4.
To conclude, observe that, if we apply (3) to H4, we obtain H5 ∼= L5. Since this is
analogous to the case in which H4 ∼= L4, we have that H ∼= T 2

k , H
∼= Mk or H ∼= Nk ,

for k ≥ 5.
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Proposition 2 and Theorem 4 reduce MinS3 on subcubic graphs to the problem of
finding a minimum 3-spanner for each subgraph in F3. Figure5 shows a minimum
3-spanner (in solid edges) for each of these subgraphs.

We observe that most of the graphs inF3 admit a tree 3-spanner (which is clearly a
minimum 3-spanner). The only exceptions are Mk and Nk , for k ≥ 3. In what follows,
we show how to construct a tree 3-spanner of Lk . We will use this construction later
to obtain minimum 3-spanners for Mk and Nk .

Let x1, y1, x2 and y2 be the vertices of degree two in Lk , such that xi is adjacent
to yi , for i = 1, 2. Moreover, let P be the k-path between x1 and x2 in Lk . Finally,
let S be the tree obtained from P by linking every vertex v ∈ V (Lk) � V (P) to its
neighbor in P . Since the ends of any edge in Lk are at distance at most three, in S, this
is a tree 3-spanner of Lk . We show an example of this construction in Fig. 5l. Observe
that, we can obtain a tree 3-spanner for T 1

k and T 2
k in a similar way. For this, we add

the edges that link each vertex in V (T i
k )�V (Lk) to P . This construction is depicted

in Fig. 5o andp.
We show next how to obtain a 3-spanner of Mk and Nk , for k ≥ 3, with |V (Lk)|

edges. Recall that Mk and Nk arise from Lk . After that, we show that this construction
is optimal. Consider the tree 3-spanner S of Lk that was constructed above. Note that,
if we add the edge x1y2 (resp. x1x2) to S, we obtain a 3-spanner of Mk (resp. Nk),
since the distance between the vertices x2 and y1 (resp. y1 and y2) in the resulting
graph is three. In Fig. 5m and n, we show an example for the case k = 3. Also, we
note that for the case k = 2, the graphs M2 and N2 admit a tree 3-spanner (see Fig. 5q
and r).

In what follows, we show that any minimum 3-spanner of Mk and Nk , k ≥ 3, needs
at least |V (Lk)| edges. First, as Nk is the Cartesian product of a (k + 1)-cycle with
K2, a result obtained by Lin and Lin (2020) implies that Nk does not admit a tree
3-spanner for k ≥ 3, and therefore any 3-spanner of Nk must contain at least |V (Lk)|
edges. It remains now to prove that Mk does not admit a tree 3-spanner when k ≥ 3.

Lemma 5 If k ≥ 3, then the graph Mk does not admit a tree 3-spanner.

Proof Take k ≥ 3. We consider that Lk is a subgraph of Mk . In particular, V (Lk) =
V (Mk). Let x1, x2, y1 and y2 be the vertices of degree two, in Lk , such that x1y1 and
x2y2 are edges in Lk . Suppose by contradiction that Mk admits a tree 3-spanner, S.
Observe that E(S)∩{x1y2, y1x2} �= ∅. Otherwise, S is a subgraph of Lk . This implies
that the distance between x1 and y2 in S is at least k + 1, a contradiction, since k ≥ 3.

By symmetry, let us suppose that the edge x1y2 belongs to E(S), and consider the
forest S′ = S − x1y2. In what follows, we show that every pair of adjacent vertices
in L ′ = Lk − {x1y1, x2y2} belongs to the same connected component in S′. Since
L ′ is a spanning subgraph of Mk , this implies that S′ is also connected which is a
contradiction.

Let uv ∈ E(L ′). Suppose by contradiction that the path P linking u and v in S
contains the edge x1y2. Now, consider the cycle C = P + uv. Since x1y2 belongs to
P , then P ′ = C − x1y2 is a path between x1 and y2 in S such that |P| = |P ′|. To
conclude,we consider two cases. If P ′ is contained in Lk , then |P| = |P ′| ≥ k+1 ≥ 4,
a contradiction. Otherwise, P ′ contains the edge x2y1. But, this implies that P contains
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both x1y2 and x2y1. Since uv �= x1y1 and uv �= x2y2, we have that |P| ≥ 4 which
contradicts the fact that S is a 3-spanner of Mk .

Therefore, V (L ′) = V (Mk) induces a connected component in S′. But, this implies
that S contains a cycle, a contradiction.

Since the 3-spanners of Mk and Nk , k ≥ 3, that we constructed previously use
|V (Lk)| edges, we have the following result.

Corollary 6 Let S∗ be a minimum 3-spanner of Mk (or Nk). Then S∗ has |V (Lk)|
edges, for k ≥ 3.

We are now ready to show the main result of this section.

Theorem 7 MinS3 can be solved in polynomial time on subcubic graphs.

Proof LetG = (V , E) be a subcubic graph. First, we find C3(G). We have shown how
to find a minimum 3-spanner for each graph in F3. Thus, given H ∈ C3(G), we just
need to recognize which graph, in F3, it is isomorphic to. For the case |V (H)| ≤ 9,
this is done by a brute-force algorithm. Suppose now that |V (H)| ≥ 10. In this case,
the only graphs left are Lk, T 1

k , T 2
k , Mk and Nk , for k ≥ 4. Let d be the number of

vertices of degree two in H . If d = 4, then H ∼= Lk ; if d = 3, then H ∼= T 1
k ; if d = 2,

then H ∼= T 2
k . Finally, if d = 0, then H ∼= Mk or H ∼= Nk .

We distinguish between Mk and Nk as follows. Let E ′ be the set of edges in H that
belong to just one 4-cycle. In the case H ∼= Mk , the set E ′ induces a Hamiltonian
cycle of H . Otherwise, E ′ induces two disjoint (k + 1)-cycles.

To conclude this section,we comment on the implicationTheorem7has for TreeS3.
Fomin et al. (2011) showed that TreeSt can be solved in polynomial time on the class
of bounded-degree graphs. For this, they showed that if a graphG has a tree t-spanner,
then its treewidth is at most �(G)t . Thus, if G has maximum degree d, then TreeSt
can be solved in linear time, as follows:

(1) check whether G has treewidth at most dt ; and
(2) look for a tree t-spanner if (1) holds.

Bodlaender (1996) showed how to test (1) in linear time. Step (2) can be solved
in linear time via Courcelle’s theorem (Courcelle and Engelfriet 2012), since G has
bounded treewidth (by (1)) and the property of admitting a tree t-spanner is expressible
in monadic second order logic (Fomin et al. 2011). Although, this algorithm has the
best time complexity, it is quite inefficient in practice. The algorithm that tests (1)
has a very large constant factor, even for checking whether a graph has treewidth at
most 4. In our case, dt = 9, so its constant factor is too large for practical purposes.

Recently, Papoutsakis (2018) showed adynamic programming algorithm that solves
TreeSt in polynomial time for fixed t andmaximumdegree. Each state of this dynamic
programming saves a complete subgraph of the input graph. This makes its implemen-
tation quite involved and also memory inefficient.

We observe that, by Proposition 2, our approach on MinS3 gives an alternative
simple algorithm for TreeS3 on subcubic graphs. First, we find a minimum 3-spanner
for each H ∈ C3(G). Let T be the union of these minimum 3-spanners. Then, G
admits a 3-tree spanner if and only if T is a tree.
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Fig. 11 a K2; b K3; c K4 − e; and d K4

4 Polytope of the TREE 2-SPANNERS

Throughout this sectionG = (V , E) denotes a connected subcubic graph. Let F ⊆ E .
The vector χ F ∈ R

E denotes the incidence vector of the set F , in other words, the
binary vector whose nonzero entries correspond to the elements in F . For simplicity,
if H is a subgraph of G, we write χH instead of χ E(H). This section is devoted to the
study of the following polytope:

T2(G) := conv({χT ∈ R
E : T is a tree 2-spanner of G}),

where conv(X) denotes the convex hull of the vectors in X . Our aim is to find a set
of linear inequalities that define T2(G). By Proposition 2, we only need to describe
the set T2(H), for each H ∈ C2(G), and combine those inequalities. The set C2(G)

was characterized by Cai and Keil (1994) for graphs of maximum degree 4. When
restricted to subcubic graphs, their characterization yields the following result.

Lemma 8 (Cai and Keil 1994) Let G be a graph such that �(G) ≤ 3. If H ∈ C2(G),
then H is isomorphic to K2, K3, K4 − e, or K4.

The graphs in C2(G) are shown in Fig. 11. Our formulation consists mainly of
two sets of inequalities that are based on the following observations. In case H is a
complete graph, then any tree 2-spanner of H has diameter at most two. Thus, such
tree is a star, so any tree 2-spanner has no matching of size two. Consider now a graph
G that contains a 4-cycle C . Note that, no tree 2-spanner of G contains three edges in
G. Otherwise, such edges induce a 3-path between two vertices of C , which violates
the 2-spanner condition.

In what follows, we present our formulation. For this, consider the decision vari-
ables x ∈ R

E such that xe = 1 if and only if e belongs to the solution. Let P(G) be
the polytope defined by the following set of inequalities.

x(E(G)) = |V (G)| − 1,
x(E(H)) = |V (H)| − 1, ∀H ∈ C2(G),

x(F) ≤ 1, ∀F ⊆ E(H), F matching, H ∈ C2(G), H clique,
x(C) ≤ 2, ∀C ⊆ E(H), C is a 4-cycle, H ∈ C2(G),

xe ≤ 1, ∀e ∈ E,

xe ≥ 0, ∀e ∈ E .

We show now the main result of this section.
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Theorem 9 Let G = (V , E) be a connected subcubic graph. Then

T2(G) = P(G).

Proof First, we show that T2(G) ⊆ P(G). Let T be a tree 2-spanner of G, and let H
be a subgraph in C2(G). Consider that T H = H ∩ T . By Proposition 2, T H is a tree
2-spanner of H . Since T H is a tree, we have that χT (E(H)) = |V (H)| − 1. Now,
let C be a 4-cycle in H . Observe that χT (C) ≤ 3. We will show that χT (C) �= 3.
Suppose by contradiction that χT (C) = 3, and let uv ∈ E(C) be the unique edge that
is not in the support of χT . Since T is a tree, the unique path that links u and v, in T ,
is precisely C − uv. But, this implies that dT (u, v) = 3, which contradicts the fact
that T is a 2-spanner of G. Thus, χT (C) ≤ 2. Finally, if H is a clique, then T H has
diameter at most two, so it is a star. As all the edges in a star share a common vertex,
then χT (F) ≤ 1, for any matching F in H . Therefore, we have that T2(G) ⊆ P(G).

We show now that P(G) ⊆ T2(G). For this, it suffices to show that every vertex
of P(G) has integer coordinates. Let x∗ be a vertex of P(G).We say that an edge e ∈ E
is fractional if 0 < x∗

e < 1. Moreover, we say that an edge e is full if xe = 1. Let
e ∈ E , and let H ∈ C2(G) be the subgraph that contains e. To show that x∗

e = 0 or
x∗
e = 1, we distinguish four cases.

Case 1: H ∼= K2
In this case, E(H) = {e}. Then, x∗(E(H)) = x∗

e = 1.
Case 2: H ∼= K3

By contradiction, suppose that e is fractional. Since x∗(E(H)) = 2, we have
that x∗(E(H))− x∗

e > 1. This implies that there is another fractional edge f ∈ E(H).
Let

ε = min{x∗
e , x

∗
f , 1 − x∗

e , 1 − x∗
f }.

Consider the vectors x1 and x2 defined as follows:

x1k =
⎧
⎨

⎩

x∗
e − ε, if k = e,
x∗
f + ε, if k = f ,

x∗
k , otherwise.

x2k =
⎧
⎨

⎩

x∗
e + ε, if k = e,
x∗
f − ε, if k = f ,

x∗
k , otherwise.

Note that x1(E(H)) = x2(E(H)) = 2. Furthermore, by the definition of ε, all the
other inequalities are satisfied. Thus x1 and x2 belong to P(G). But this contradicts
the fact that x∗ is a vertex, since x∗ = 1

2 (x
1 + x2).

Case 3: H ∼= K4 − e
Let C be the 4-cycle in H . First, we show the following claim.

Claim 10 If C contains a fractional edge, then x∗(C) < 2.

Proof of Claim First, we will show that C has at most one fractional edge. Suppose by
contradiction that there exist edges f , g ∈ E(C) such that 0 < x∗

f , x
∗
g < 1. Let

ε = min{x∗
f , x

∗
g , 1 − x∗

f , 1 − x∗
g}.
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Define now vectors x1 and x2 as in Case 2. Then, x1(E(H)) = x2(E(H)) =
x∗(E(H)) and x1(C) = x2(C) = x∗(C). Thus, x1 and x2 belong to P(G). But
this contradicts the fact that x∗ is a vertex.

Therefore, the vector x∗ restricted to C contains at most one fractional edge. Now
suppose that C contains a fractional edge, say f . Since x∗(C) ≤ 2, there is at most
one full edge in E(C) − f . Therefore, x∗(C) < 2.

Since E(H) � E(C) contains a unique edge, the previous claim implies that C has
no fractional edge, otherwise we would have x∗(E(H)) < 3, a contradiction. Finally,
since x∗(E(H)) = 3 and x∗(C) ≤ 2, the unique edge in E(H)�E(C) is also integral.
Case 4: H ∼= K4

Let f be an edge of H . We will denote by f ′ the unique edge in H such that { f , f ′}
is a matching. In this case, we first show the following claim.

Claim 11 If x∗
f is fractional, then x∗

f ′ = 0.

Proof of Claim If x∗
f is fractional, then x

∗
f ′ < 1. Suppose by contradiction that x∗

f ′ > 0,

and let ε = min{x∗
f , x

∗
f ′ , 1−x∗

f , 1−x∗
f ′ }. Then, if we define vectors x1, x2 as inCase 2,

we have that x∗(E(H)) = x1(E(H)) = x2(E(H)), and also, for any 4-cycle C , we
have x∗(C) = x1(C) = x2(C). Finally, by the way we defined x1 and x2, we have
that x1(F) ≤ 1 and x2(F) ≤ 1, for any matching F in H . Therefore, both vectors x1

and x2 belong to P(G), a contradiction.

Consider that E(H) = {e, e′, f , f ′, g, g′}. As x∗ ∈ P(G), we have that x∗
e + x∗

e′ ≤
1, x∗

f + x∗
f ′ ≤ 1, and x∗

g + x∗
g′ ≤ 1. Since x∗(E(H)) = 3, all the previous inequalities

must be satisfied with equality. Therefore, the above claim implies that H has no
fractional edge.

Since each graph in C2(G) has constant size, the polytope P(G) consists ofO(|E |)
inequalities and, therefore, we can find an optimal solution of P(G) in polynomial
time on the size of the input graph G (Dantzig and Thapa 2003).

Suppose now that G has costs ce ∈ R, e ∈ E , assigned to its edges. Let us
consider theminimum cost tree t-spanner problem (MCTSt ) that seeks a tree t-spanner
of minimum total cost. We observe that, when measuring the distance between two
vertices u and v, we disregard the costs of the edges. So, dG(u, v) is the minimum
length of a path linking u and v in G.

Theorem 9 implies that an optimal solution of min{cx : x ∈ P(G)} induces a
tree 2-spanner of G that is an optimal solution for MCTS2. Therefore, we obtain the
following result.

Theorem 12 MCTS2 can be solved in polynomial time on subcubic graphs.

5 Concluding remarks

We showed a polynomial-time algorithm for MinS3 on subcubic graphs. This result
answers partially an open question regarding the complexity of MinSt on bounded-
degree graphs. This algorithm also yields an alternative algorithm for TreeS3 on this
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class of graphs. Gómez et al. (2023) have proved recently that MinS3 on (planar)
graphs of maximum degree at least 5 is an NP-hard problem. Thus, for bounded-
degree graphs, it remains only to establish the complexity of MinS3 on graphs with
maximum degree 4. Such a result would solve the unique open question for t = 3 (see
Table 1). We consider this a challenging and interesting problem.

We also investigated TreeSt from a polyhedral point-of-view. In particular, we
focused on the incidence vectors of the tree 2-spanners of a subcubic graph, and
studied the polytope defined by the convex hull of these vectors.We showed a complete
linear description of this polytope (of polynomial size). As a byproduct, we obtained a
polynomial-time algorithm forMCTS2 on subcubic graphs. As far as we know, this is
a novel approach and result for this problem. It was motivated by the results obtained
by Álvarez-Miranda and Sinnl (2019), and by Ahmed et al. (2019) on (mixed) integer
linear formulations for MinSt (and its variants). They are able to solve only small
instances in a reasonable amount of time. Thus, finding strong and tight inequalities
for the relaxed formulationsmay lead to approacheswith better performance.However,
it seems to be a hard and challenging problem.
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