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Abstract
The problem studied in this paper is elective surgery scheduling, with resource
constraints in each of the three following stages: preoperative, perioperative, and
postoperative stages. With the integrated availability of hospital beds in wards and
operating rooms, the aim is to determine operation start times of surgeries and allo-
cate the hospital beds to patients while getting patients treated as soon as possible.
This task is crucial in providing timely treatments for the patients while ensuring the
hospital’s resource utilization balance. For the problem, we first formulate it as mixed-
integer programming, which is NP-complete. Then, we propose several heuristics to
overcome the long computation time. To make the solution better, we also propose
improved algorithms. Finally, we conduct a series of numerical studies to illustrate the
efficiency of our proposed algorithms and examine the impact of the number of jobs,
beds, and surgery blocks on the performance measure. Computational experiments
showed the superior performance of our heuristics in makespan.

Keywords Surgery scheduling · Bed assignment · Operating room · Hospital bed ·
Parallel machine

1 Introduction

Hospitals are vital components of the healthcare sector worldwide, with the operat-
ing room (OR) as a critical hub for both costs and revenue (Nasiri and Rahvar 2017;
Denton et al. 2007). Enhancing OR efficiency, even slightly, can boost patient survival
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Fig. 1 The description of the procedure

rates, improve services, and enhance stakeholder satisfaction, including patients, sur-
geons, and OR staff (Macario et al. 1995; Hamid et al. 2019). This, in turn, contributes
to a hospital’s income. Therefore, optimizing OR efficiency is of utmost importance.
Additionally, hospital beds play a crucial role for patients, and a shortage of beds can
lead to delayed surgeries or premature patient discharge Lane et al. (2000). Inefficient
bed assignments further contribute to the suboptimal utilization of OR resources,
intensifying the challenges faced by healthcare facilities. Consequently, the joint
decision-making process regarding surgery scheduling and bed allocation emerges
as a pressing and intricate issue in healthcare administration.

Surgical patients are grouped into emergency, urgent, and elective classes Pham and
Klinkert (2008). Emergency cases must be performed within two hours of the decision
to operate, whereas urgent ones must be within a few hours Guerriero and Guido
(2011). Elective cases that occur frequently can be planned in advance and usually
performed to suit both patient and surgeon. Thus, hospitals can increase the efficiency
of the operating room by assigning these elective patients to the most appropriate
period. Our goal is to assist decision-makers with elective patient scheduling.

Specifically, in a typically surgical path, each patient goes through three stages: pre-
operation (surgery preparation), surgery, and recovery (Erdogan et al. 2011; Saremi
et al. 2013; Erdogan et al. 2015). In the first stage (preoperative stage), patients need
to be assigned to the hospital wards in advance. An OR nurse identifies and extracts
the patient’s charts and information, such as lab results and consent forms. This stage
includes different preparation procedures required for each type of surgery, such as
taking drugs and anesthetics, having blood tests, and waiting for the medicine to take
effect. The surgery stage (perioperative stage) includes anesthesia and operation. The
last stage (postoperative stage) accounts for the procedures and the time required
for the patient’s recovery. After surgery, most patients are taken to the postanesthetic
care unit (PACU), where they recover from anesthesia’s residual effects under PACU
nurses’ care. After their stay in PACU, inpatients usually return to their wards before
being discharged. Figure 1 represents the three stages of a surgical path. In this sense,
the hospital bed is an essential resource for elective patients. Most studies on elective
surgery scheduling problems in the literature focus on utilizing resources directly
related to surgery, such as physicians, nurses, and surgical equipment (Xiang et al.
2015; Behmanesh and Zandieh 2019; Yu et al. 2022). This paper solves the problem
of incorporating OR scheduling and bed assignment decisions.
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Some works consider preoperative activities (e.g., blood sampling and anesthetic
consult before surgery) and resources after surgery such as recovery, PACU, and ICU
beds into surgery scheduling problems (Guido and Conforti 2017; Behmanesh and
Zandieh 2019; Moosavi and Ebrahimnejad 2020; Makboul et al. 2022; Santos and
Marques 2022). The operating room scheduling problem are mainly discussed at the
operational level while the bed resources are mainly studied at the tactical level.
However, in practical applications, there is a need to simultaneously make tactical-
level decisions regarding operating room scheduling and bed resource allocation. The
latter involves determining specific admission times for patients and the beds to which
they will be assigned. If operational-level decision-making only focuses on operating
room planning issues, the utilization of bed resources may not have reached optimal
efficiency yet. Motivated by the disparity between reality and existing literature, this
paper explores the optimization problem of jointly making surgical scheduling and
bed allocation decisions at the operational level.

In this paper, we adopt the makespan, the completion time of the last work, to
measure coordinated utilization of hospital beds and operating rooms, which has
practical meaning. For example, during the outbreak of COVID-19, elective surg-
eries were delayed or temporarily halted to mitigate the risk of virus transmission and
put anti-virus activities first. Hospitals need to balance case priority, patients’ safety,
and precious healthcare resources such as surgeons, staff, personal protective equip-
ment (PPE), and other essential equipment (e.g., ventilators). According to Meredith
et al. (2020), a survey byMassachusetts General Hospital shows that, fromMay to July
2020, 31.7% of patients with breast cancer reported delayed experience in screening
or treatment. After massive delays of elective surgeries, it is highly urgent to recover
regular treatment for patients influenced by delays as soon as possible. In other words,
the accumulation of surgeries needs to be finished as quickly as possible. In this sense,
we optimize the makespan to maximize the coordinated utilization of hospital beds
and operating rooms that are responsive to actual needs.

We make two decisions to optimize the makespan, assigning the patients to each
bed and scheduling the surgery date for patients on each bed. Because this problem
involves parallelmachine scheduling problems, it isNP-complete and computationally
intractable to solve to optimal. Due to the difficulties of solving our studied schedul-
ing problem of elective operations with coordinated utilization of hospital beds and
operating rooms, we try to find heuristic solutions for practical concern. First, we
develop a mixed-integer programming formulation of the Pm|restw|Cmax problem.
Then, we propose five simple heuristics based on the Longest Processing Time (LPT)
rule, workload balance, and construct the composite index. Finally, we put forward
improved MIP-based heuristics with the solutions of the simple heuristics that we
proposed as initial solutions. The experimental results show that the heuristics are
practical and efficient.

We make the following contributions to the surgery scheduling literature. First,
compared with the current work on surgery scheduling, we extend the work by simul-
taneously considering the utilization of hospital beds and operating rooms. To the best
of our knowledge, we are the first to study the joint OR scheduling and bed assignment
decisions at the operational level. Second, from a methodological point of view, we
develop practical heuristics to achieve a near-optimal solution.
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This paper proceeds as follows. Section 2 reviews related works. Section 3 gives a
general problem statement and proposes a mixed-integer linear programming model
of the problem. Section 4 develops several heuristics to solve the original problem.
Section 5 evaluates the numerical performance of the proposed algorithmswith various
instances. Finally, Sect. 6 concludes the paper and discusses future studies.

2 Literature review

Given that our work combines different problems, including scheduling beds and
operation rooms, our study can relate to several literature streams. We present the
literature review in two parts: surgery scheduling and patient admission problems,
corresponding to the main issues involved.

Surgery scheduling is a classic problem for operation room scheduling that has
attracted wide attention in the literature. According to Beliën and Demeulemeester
(2007) and Hulshof et al. (2012), there are three-stage decisions involved in master
surgery planning: strategic, tactical, and operational. The location, size, and capacity
of operation rooms are decided strategically. This first stage is also called case-mix
planning since it determines which ailment’s capacity will be preserved. Several linear
programming models have been proposed for case-mix planning (e.g., Hughes and
Soliman 1985; Blake and Carter 2002), and Hof et al. (2017) provide the first literature
review focusing on case-mix planning problems. At the tactical level, the provider
mainly assigns surgery blocks, staff, and resources to physicians, which involves the
development of a master surgery schedule (MSS). This stage has a wide range of
approaches in the literature. Testi et al. (2007), Vanberkel et al. (2011), Mannino
et al. (2012), and more recently, Penn et al. (2017) use exact methods. At the same
time, heuristic approaches (Beliën and Demeulemeester 2007; Hosseini and Taaffe
2015; Marchesi and Pacheco 2016; Dellaert and Jeunet 2017) or simulation models
Cappanera et al. (2014) are alsoproposed.At theoperational level, the hospital arranges
specific interventions for each patient. We can further divide the operational level into
two main stages: the advanced scheduling of assigning patients to surgery blocks and
the allocation scheduling of sequencing the surgeries in surgery blocks.

Our problem can be located in the advanced scheduling stage at the operational
level. Inputs to the problem are data about departments, rooms, patients, and MSS
resulting from tactical planning, and the output is the assignment of patients to rooms,
OR slots, and admission days. As for this problem, some papers consider preopera-
tive, intraoperative, and postoperative stages similar to ours. For example, Xiang et al.
(2015) proposed an Ant Colony Optimization (ACO) method to efficiently solve the
problem based on the knowledge gained in the Flexible Job Shop Scheduling Problem
(FJSSP) by observing the similarities between operating room surgery scheduling,
and multi-resource constrained FJSSP in manufacturing. Guido and Conforti (2017)
proposed a multi-objective integer linear programming model to efficiently plan and
manage hospital operating room suites and exploit a novel hybrid genetic solution
approach. Belkhamsa et al. (2018) aimed to minimize the maximum end time of
the last activity in the postoperative stage and the total idle time in the operating
room and provided two meta-heuristics (Iterative Local Search and Hybrid Genetic
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Algorithm) to schedule surgeries. Behmanesh and Zandieh (2019) addressed the bi-
objective surgical case scheduling problemwith uncertain service times by developing
a novel bi-objective ant system (Fuzzy Pareto Envelope-based Selection Ant System).
Yu et al. (2022) developed an improved multi-objective imperialist competitive algo-
rithm (IMOICA) to optimize thewhole scheduling considering patients’ switching and
preparation time in different stages. Although they also incorporate the preoperative,
intraoperative, and postoperative stages in the model, they treat the resources in the
preoperative and postoperative stages separately, including nurses, recovery, PACU,
and ICU beds. Unlike them, we mainly consider one type of resource shared by both
preoperative and postoperative stages, the hospital beds. Each patient occupies a bed
throughout their entire hospital stay from the admission day to the discharging day.

The patient admission scheduling Problem (PASP) is well-reported in the research
literature. PAS assigns patients to beds to fulfill their medical concerns and personal
wishes as much as possible. This process can be carried out at three levels: strategic,
tactical, and operational Demeester et al. (2010), similar to surgery scheduling. At
the strategic level, the hospital wants to make long-term structural decisions to max-
imize organizational efficiency. They often use historical patient admissions data to
estimate future needs and determine the appropriate resources required (e.g., available
beds) (Harper 2002; Vissers et al. 2007; Chen et al. 2010). At the tactical level, there
are seasonal differences in demands and multiple available resources. The admission
policies are specified based on the number of necessary resources, the combination of
inpatients, and guidelines of operational planning (Chen et al. 2010; Holm et al. 2013;
Barz and Rajaram 2015). Most studies assume that the hospital has only one poten-
tial bottleneck. Some papers consider more than one constraining resource, including
operation rooms and beds. They decide whether to accept, postpone, or reject the
admission from a deterministic model (Adan and Vissers 2002; Vissers et al. 2005)
or random stream of non-emergency elective patient Barz and Rajaram (2015). Our
paper focuses on the acceptedpatients, assigns patients to different beds anddecides the
surgery day for each patient. Finally, the operational level decision defines scheduling
rules governing daily patient admission planning. The class PASP in the operational
level is a static offline problem that assumes deterministic demand requirements and
fixed admission dates and length-of-stay (Demeester et al. 2010; Bastos et al. 2019).
Ceschia and Schaerf (2011), Ceschia and Schaerf (2016) and Vancroonenburg et al.
(2012) propose dynamic problems in which admission and discharging dates are not
known in advance. Zhu et al. (2020) develop aMarkovDecision Process (MDP)model
to decide how many elective patients the hospital should admit each day to use both
operating room and inpatient bed capacity optimally. Our problem is similar to the
issues from the perspective of bed assignment, but we add decisions about surgery
scheduling.

Some studies have concurrently addressed the decision-making processes related
to surgery scheduling and bed allocation (Guido and Conforti 2017; Behmanesh
and Zandieh 2019; Moosavi and Ebrahimnejad 2020; Makboul et al. 2022; Santos
and Marques 2022). As an illustrative instance, Makboul et al. (2022) devised the
Master Surgical Schedule (MSS) within a one-week timeframe, taking into account
constraints within the operating theater (OT), patient preferences, and factors in the
availability of both intensive care unit (ICU) beds and post-surgery beds. The work of
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Moosavi and Ebrahimnejad (2020) delved into the operational room planning problem
at both tactical and operational levels, considering upstream and downstream units.
It is worth noting that they deal with the bed resource at the tactical level, and the
operating rooms scheduling at the operational level. In contrast, our research adopts
a distinct approach. In this paper, we explore the intertwined complexities associated
with surgery scheduling and bed allocation, addressing both dimensions within the
framework of operational decision-making.

Moreover, the combinatorial nature of our surgery scheduling problem makes it
computationally difficult to solve it optimally. Note that as an interesting comparison,
Xu et al. (2008) studied a parallel machine with periodic maintenance to minimize
the makespan, who also related their problem to combined Pm|Cmax with the Bin-
packing problem. There exist two significant differences between their work and ours.
In their study, maintenance represents periodic resource unavailability in terms of
resources. Therefore, they mainly deal with one resource, namely the machine. We
deal with two sorts of resources, hospital beds and operating rooms. Moreover, in their
problem, a bin denotes the time interval between consecutive maintenance, while in
ours, a bin denotes the time interval of the surgery block, and patients from different
bedswill be packed in one surgery block. The bin-packing decision of surgery schedul-
ing affects all beds and therefore is more complex. Zhong et al. (2014), Wang et al.
(2015), Su et al. (2017) model surgery scheduling as a deterministic parallel machine
with resource constraints and machine eligibility and develop heuristics to deal with
different objectives. We adopt similar methodologies to their studies, but the major
concerns and job characteristics are significantly different. They mainly focus on the
scheduling of the operating room. However, we study a surgery scheduling problem
with coordinated utilization of hospital beds and operating rooms, considering the bed
as a resource that lasts the entire surgical process.

3 Problem formulation

3.1 Problem description

This section describes our problem and proposes Mixed Integer Programming with
a deterministic daily-based discrete-time formulation. As described in Sect. 1, in a
typical surgical path, each patient goes through three stages: In the first stage (pre-
operative stage), patients need to be assigned to the hospital wards in advance for
preparation procedures. The surgery stage (perioperative stage) includes anesthesia
and operation. After surgery (postoperative stage), patients return to their beds for
recovery. In this study, we mainly focus on bed assignment and surgery scheduling at
the operational level within a certain department.We operate under the assumption that
the surgery blocks and the corresponding operating rooms can serve the patients under
consideration indiscriminately. Given the data about the available surgery blocks and
corresponding operating rooms from the tactical planning and the available number of
beds from the strategic planning, the decisions include the admission days, the assign-
ment of patients to beds and the allocation of operating room slots within a specific
department. The objective is to maximize the utilization of hospital beds and surgery
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Table 1 Processing times of 2
types

p(days) s(units) q(days)

Type 1 1 1 1

Type 2 2 2 2

rooms, measured by minimizing the makespan to treat the current patients as soon as
possible.

Following the three-field notation in scheduling theory, our problem can be cat-
egorized as Pm|res, tw|Cmax , where res indicates the resources have capacity
constraints. tw denotes the time window, indicating there are exogenous time inter-
vals when resources are available. The surgery resource, or surgery duration in our
problem is measured by time units, corresponding to OR slots, and is capacitated by
the length of the block or the regular working hours. Patients that receive surgeries in
the same day share the surgical resources of that day. The preoperative duration and
postoperative duration are measured by days that a patient stays in bed before and
after surgery.

The problem is modeled following assumptions often made in the literature (Jebali
et al. 2006; Testi and Tànfani 2009; Fei et al. 2010; Marques et al. 2014; Castro and
Marques 2015; Roshanaei et al. 2020):

• The preoperative, postoperative, and surgical durations are deterministic and can
be estimated by historical data.

• ORs and beds are homogeneous.
• ORs capacity is fixed.
• A hospital bed can be assigned with at most one patient at a day.
• A patient occupies a hospital bed during his/her stay duration.
• The patient will be admitted to a bed at the beginning of a day, and he/she will
leave at the end of a day once recovered from surgery.

3.2 An example of the objective

Traditional surgery room scheduling mainly focuses on maximizing the utilization of
the operating rooms, which is indeed an important and expensive resource. We argue
that bed is also a scarce resource featuring long time occupancy and prerequisite
of specific surgery. We use an example to illustrate the importance of coordinated
scheduling of beds and operating rooms.

Suppose one hospital department is facilitated with 1 operating room with 2 time
units of surgery capacity each day and 4 beds. There are 2 types of patients. Table 1
describes the processing time durations of the two types of patients, where p is the
pre-surgery time duration, s is the surgery duration, and q is the post-surgery time
duration. There are 8 patients waiting to be treated. Table 2 shows the type of each
patient.

To treat all of the 8 patients, 12 units of surgery resources are required. To make
full use of surgical resources, it is optimal to schedule the 8 surgeries in 6 full days. In
otherwords, any schedulewith 6-day surgery should be indifferent tomerelymaximize
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Table 2 Type of each patient Patient No 1 2 3 4 5 6 7 8

Type 2 2 2 2 1 1 1 1

Fig. 2 3 schedules with the same utilization of the operating room

operating room utilization. In Fig. 2, we display three schedules using Gantt charts.
The horizontal axis t represents the time horizon (days). t j , j = 1, . . . , 8 represent
the surgery day of each patient. p j + q j + 1, j = 1, . . . , 8 denote the total duration
that each patient stays in the hospital. The three schedules in Fig. 2 all satisfy this
optimal utilization of operation rooms. If we also consider bed utilization, the three
schedules are significantly different in performance. Since patients require different
pre-surgery tests, surgery durations and post-surgery recovery durations, there might
be idleness of beds due to the operation capacity constraints. Schedule 3 treats and
releases all patients on day 9 while others last longer. Thus, Schedule 3 makes better
use of beds. The difference in bed utilization is reflected by the different makespans.
However, due to the limited number of beds, an improper operating room schedule will
also impact the days scheduled to perform surgeries, and further impact the admission
and discharge schedules of patients, leading to variations in makespan. As a result, we
adopt makespan as the measure to reflect the coordinated utilization of hospital beds
and operating rooms. In general, the shorter the makespan is, the more balanced the
utilization of beds and operation rooms.

When the two types of resources, namely beds and operating rooms, are highly
unbalanced, one resource becomes a bottleneck, and the other is seldom fully utilized.
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Table 3 Notation

Notation Explanation

Parameters

I Set of patient types

J Set of patients

K Set of beds

T Set of time horizon (days)

p j Pre-surgery processing duration of patient j (days)

s j Surgery duration of patient j (units)

t j Surgery day that patient j is scheduled to receive operation

q j Post-surgery processing duration of patient j (days)

ct Surgery resource capacity at day t (units)

M A sufficient large number

Therefore, coordinated scheduling reduces to maximizing single resource utilization,
such as the well explored surgery scheduling in the literature.

To avoid trivial scenarios, we identify two settings where coordination fails to
improve the system, which our study will not address. The notations are listed in
Table 3. If a surgical team is assigned with periodic surgery block of length l, they
perform surgeries every other l day. We have the following results.

Proposition 1 When there are |J | patients with different p j , s j , q j , ∀ j ∈ J , |K | beds
and a periodic surgery cycle of length l and capacity c.

• If l ≥ argmax j p j + q j + 1, the beds cannot realize full utilization.
• If c ≥ argmax j |K |s j , the operating rooms cannot realize full utilization.

The insight behind the two scenarios is straightforward. Therefore we omit the
proof. For the rest analysis, we consider the setting when l < argmax j p j + q j + 1,
c

|K | < argmax j s j , and two types of resources are relatively balanced.

3.3 Mixed integer programming

We first define the decision variables of our studied problem and develop a Mixed
Integer Programming. To describe the programming, we supplement new notations in
Table 4.
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Table 4 New notations

Notation Explanation

Decision variable

xtjk =1, if patient j is admitted to bed k at day t , ∀ j ∈ J , k ∈ K , t ∈ T ; =0, otherwise

ytj =1, if patient j is performed surgery at day t , ∀ j ∈ J , t ∈ T ; =0, otherwise

C j Discharging day of patient j

Cmax Maximum discharging day of all patients in J

(P1) min Cmax (1)

s.t. Cmax ≥ C j , ∀ j ∈ J ; (2)
∑

t

∑

k

xtjk = 1, ∀ j ∈ J ; (3)

∑

j

x tjk ≤ 1, ∀k ∈ K , t ∈ T ; (4)

∑

i �= j

t+p j+q j∑

t ′=t

x t
′
ik ≤ M(1 − xtjk), ∀ j ∈ J , k ∈ K , t ∈ T ; (5)

∑

k

xtjk = y
t+p j
j , ∀ j ∈ J , t ∈ T ; (6)

∑

j

ytj s j ≤ ct , ∀t ∈ T ; (7)

C j ≥ t ytj + q j , ∀ j ∈ J , t ∈ T ; (8)

xtjk ∈ {0, 1}, ∀ j ∈ J , k ∈ K , t ∈ T ; (9)

ytj ∈ {0, 1}, ∀ j ∈ J , t ∈ T ; (10)

C j ≥ 0, ∀ j ∈ J (11)

Objective (1) is to minimize the makespan of the coordinated schedule of beds
and operating rooms, which can be interpreted as maximization of utilization. Con-
straints (2) explain that the makespan is the maximum discharging day of all patients.
Constraints (3) ensure that each patient will be allocated to one bed once in the time
horizon. Constraints (4) indicate that at any time, a bed can hold at most one patient.
Constraints (5) represent that a bed is occupied by a patient throughout the pre-surgery
time duration, surgery day, and post-surgery recovery duration. Constrains (6) imply
that the surgery will be operated after the patient undergoes a pre-surgery test. Con-
straints (7) restrict the number of surgeries performed in one day to below capacity,
the maximum working hours. Constraints (8) represent that a patient will leave the
hospital and release the bed he/she occupied after post-surgery recovery.

Lemma 1 This problem is NP-complete.
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Table 5 New notations for heuristics

Notation Explanation

rt Surgical resources that remained on the day t

Rk Release day of bed k, which means bed k can receive new patients on the day Rk
S j Surgery day of the patient j

αi Composition of populations of patients with type i

βi Composition of patients in terms of surgery duration, βi = αi si

γi Normalized percentage of resource consumption of each type, γi = βi∑
i βi

akt Forward time availability for bed k and surgery day t

bkt Afterward time availability for bed k and surgery day t

Proof We combine the bed occupancy and surgery scheduling in one model. Given
bed occupancy, Pm|Cmax for an arbitrary number of machines is NP-complete and
is a special case of our problem. Surgery scheduling in our setting is a generalized
Bin-packing problem that is also NP-complete. Our problem involves the interaction
of two types of decisions and therefore is NP-complete. �	

4 Heuristics

There are two major types of resources in our study, namely bed and operating room.
We need to coordinate the utilization of both resources in order to speed up throughput.
As explained in the previous section, the problem is NP-complete and time-consuming
to solve to optimal. Moreover, the solution obtained by the solver can be hard to
interpret in actual practice. Therefore, we introduce five heuristics: fast to achieve a
good feasible solution and the idea behind which is relatively intuitive. To describe
the heuristics, we supplement some new notations in Table 5.

Note that LPT is one of themost commonly adopted dispatching rules thatwhenever
amachine becomes available for assignment, assign the jobwith the largest processing
time among those jobs not yet assigned Braglia and Petroni (1999). LPT works well
in makespan minimization in parallel machine problem and has proven performance
bound ( 43 − 1

3m ) Michael (2018). A natural approach is to modify the LPT rule for
our study. A key difference in our problem is that there can be idleness between
consecutive patients in the same bed because the given surgical blocks are fixed. As
a result, a simple LPT rule does not guarantee a feasible schedule. As we have two
resources, in our heuristics, We focus on scheduling one resource and maintaining the
feasibility of the other along the path with of idea of LPT involved.

4.1 LPT-RES heuristic

Our first heuristic is a modified LPT heuristic. The idea of modification is to assign
patients to surgical resources instead of beds. For each surgical day, assign patients
with the longest stay duration to OR slots first until the surgical resource exhausts.
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Algorithm 1 LPT-RES Heuristic
Re-index patients in LPT order of p j + q j into unscheduled list Jc .
Initialize Rk = 0, ∀k ∈ K and rt = ct , ∀t ∈ T .
for Each surgical day t with surgical resource ct , do

Sort beds into set Kt in increasing Rk .
for k in Kt do

If Rk ≤ t , ct ≥ 0 , and Jc is not empty
for j in Jc do

If rt ≥ s j and Rk + p j ≤ t , set S j = t , Rk = t + q j + 1. Remove j from JC .
Otherwise, set j = j + 1

end for
end for

end for

First, we sort patients with the LPT rule of p j +q j . Then we consider each surgery
date to assign patients to a bed that is first available. As we keep track of bed release
dates, the bed is available to admit a patient for a specific surgery date only if there
is enough surgical resource for the patient, the interval between admission day and
surgery date is enough for preoperative tests. It is easy to see that the heuristic takes
O(|T ||K ||J |) time to complete the scheduling.

The computational investigation, which is illustrated in Sect. 5, shows the perfor-
mance of LPT is unstable. This probably results from the surgical resource assignment
being a generalized Bin-packing problem, also a NP-hard problem. The restriction of
surgical resources creates idleness and leads to poor utilization of both resources,
which is the primary reason prohibiting the LPT rule from performing effectively.

4.2 LPT-WB heuristic

When there are several types of patients, and the composition of different types is
relatively steady, it is convenient and practical to analyze a typical pattern to balance
workload with insight from a simple dispatching rule. We define some notations as
we describe the heuristic.

The types of patients and the percentage of different types are usually exogenous,
relatively steady in the short-term, and slowly evolving as time flows. Based on histor-
ical data, we use i to indicate type i where patients from the same type have the same
pi , qi and si . We assume the types are arranged in the decreasing order of the bed
durations. {αi }Ii=1 to denote the composition of populations of patients with different
types such that the proportion of type i patient is αi∑

i αi
. And {βi = αi si }Ii=1 roughly

represents composition of patients in terms of surgery duration. This is the average
operating room resource consumption of different types in a steady state. The basic
idea is that given the number of patients if we assign the same percentage of patients
of each type for each operation day, the workload should be overall balanced.

The typewith a shorter bedduration ismoreflexiblewith bedoccupancy considered,
as indicated by the LPT rule. We propose a protection level to provide priority for

types with longer bed duration. We define
{
γi = βi∑

i βi

}I

i=1
as the pattern of patients,

which represents the normalized percentage of resource consumption of each type.
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We introduce the cumulative threshold {CRi = ∑
i ′≤i γi ′ }Ii=1 for type i . The surgical

resources occupied by type i , denoted as Ai . When the cumulative surgical resources
occupied by types prior to i ,

∑
i ′≤i Ai ′ , exceeds the threshold CRi , we will not assign

the patient to balance workload of different types of patients.
If the decision is made on the rolling horizon, the pattern can be set steady in

the short term and gradually adjusted by observing patients arriving data in history.
If it is a single launch to get the patient pool cleared as soon as possible, patterns
are easily modified during implementation. After the pattern is identified, we need to
schedule a bed and operating room. At each time operating room is open for surgeries,
following the pattern, sorting beds concerning available accommodation time before
operation day, and assigning patients from type 0 to type I . Upon each assignment,
four conditions should be satisfied. (1) There are type i patients not scheduled yet. (2)
There is enough surgical resource for type i patients. (3) There exists an empty bed
available for accommodation type i . (4) Surgical resource occupied by type i under
the threshold CRi . The details are described as follows Algorithm 2. It is easy to see
that the algorithm takes O(|T ||K ||J |) time to complete the job assignment.

Algorithm 2 LPT-WB Heuristics
Let Jc be the unscheduled set of patients. I is the set of types.
Ni is the unassigned number of patients of type i . Set rt = ct , ∀t ∈ T .
for t in T , if rt ≥ 0 do

Ai = 0, ∀i ∈ I
Sort beds into set Kt in increasing Rk .
for k in K do

for i in I do
if all of the four conditions satisfied:
1) Ni > 0, 2) rt ≥ s j , 3) Rk + p j ≤ t , 4)

∑
i ′≤i Ai ′ < ctC Ri

Set S j = t , Rk = t + q j + 1, and Ai = Ai + si
Remove j from Jc . Ni = Ni − 1

end for
end for

end for

4.3 LPT-TW heuristic

In this section, we propose a three-stage heuristic to deal with our problem. Since
we mainly make two types of decisions, namely assignment, and schedule. Because
of the complexity of the problem, these two decisions are involved, and no apparent
structures are observed. A potential way of heuristic is to make sequential decisions
step by step. Vairaktarakis and Cai (2003) proposed several heuristics to assign jobs
to machines. We adopt the Heuristic LPT as our first step.

Heuristic LPT Vairaktarakis and Cai (2003)
Step 1. Let JC be a set of patients sorted by longest p j +q j , following the LPT Rule.
Step 2. Pick the first job in JC , and assign it to the first available bed.
Step 3. Go to Step 2 until all patients are assigned to beds.
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This heuristic assigns the patientswith the LPT rule in order to balance theworkload
for each bed. For the second stage, we propose a First-Fit-based heuristic to schedule
patients on each bed to occupy the operating room according to the given surgery block
on a certain time window. We use [t − akt , t + bkt ) to represent largest time periods
available for bed k if the patient on bed k is scheduled for surgery on day t . If patient
j leaves bed k at the end of period C j , we have Rk = C j + 1.

Heuristic First-Time Window
Initialize ct corresponding to given surgery blocks. Set rt = ct ,∀t = 1, . . . , T .
Step 4. For each bed k, set akt = t and bkt = T − t,∀t = 1, . . . , T .
Step 5. For j in Jk with type i , find the t j = min{t : rt ≥ s j , akt ≥ p j , bkt ≥ q j ,∀t =
1, . . . , T }.
Step 6. For t = 1, . . . , T , if t < t j , set bkt = max(min(t j − p j − t, bkt ), 0).
If t > t j , set akt = max(min(t − t j − q j − 1), akt ), 0). If t = t j , set akt = 0, bkt = 0.
Step 7. Set rt = rt − s j . Rk = t j + q j + 1, S j = t j , C j = t j + q j .
Step 8. Go to Step 5 until all patients in Jk is scheduled.
Step 9. Go to Step 4 until patients in all beds are scheduled.

akt and b
k
t aremainly used to characterize the forward and afterward time availability

for bed k and surgery date t . In otherwords, [t−akt , t+bkt ) is the timewindow available
of bed k for surgery in day t . For example, if there exists t with akt = 1, bkt = 3, then a
patient who needs 2-day preoperative test or 5-day average recovery day are not able
to receive surgery on day t if he/she is assigned to bed k. Step 4 initializes status and
assures that schedule of patients in bed k also follows LPT rule. Step 5 finds the first
surgery time window for patient j in bed k and settle the surgery date t j for patient j .
As a result, the time window [t j − p j , t j + q j + 1) is no longer available for bed k.
Step 6 updates the rest of time windows of bed k for each t . Step 7 updates the status
of surgical resources rt , release time of the bed k, surgery date and leaving date of
patient j . The rest of steps schedule all the patients by iterating these steps.

Due to resource capacity and availability, there might be a situation where a patient
j in bed k has to be delayed because of limited surgical resources or the long delay of
the precious patient in the same bed. Therefore, although in stage 1, we assign patients
tomaintain a relatively balancedworkload for each bed, some patients suffer from long
delays.We adopt an adjustment for further improvement of the schedule bymoving the
severely delayed patients to other beds. We track the last surgery date for each bed and
further define Smin = mink∈K {Sk : Sk ≥ S j ,∀ j ∈ Jk} and Smax = max{S j ,∀ j ∈ J }
as the minimum and maximum last surgery date.

Heuristic Tail Adjustment
Step 10. Find the set of late patients J L = { j : s j > Smin, and s j ≤ Smax }. Sort
patients with LLT (Latest Leaving Time).
Step 11. For patient j in J L , originally assigned to bed k0j , and scheduled to t

0
j find bed

k j and surgery date t j , where k j , t j = min{k, t : Smin ≤ t ≤ Smax , rt ≥ s j , akt ≥
p j , bkt ≥ q j ,∀t = 1, . . . , T ,∀k ∈ K }.
Step 12. If t j ≥ t0j , stop. Otherwise, remove j from Jk0j

and insert to Jk j . Remove j

from J L . Go to Step 6, 7, 10, 11 until that t j ≥ t0j ,∀ j ∈ J L .
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This heuristic is designed to balance the workload of the tailing part of the schedule
obtained fromHeuristic First-TimeWindow, namely, the interval begins fromwhen
the first bed completes all surgery for patients from an original assignment from
Heuristic LPT, till the last completion. In Step 10, for all the patients with surgery
scheduled in this interval (Smin, Smax ], starting from the last patient in late set J L ,
we try to reschedule his/her surgery date by moving to another bed. Step 11 find the
first available bed k j and surgery date t j for patient j . If the new operation day is
better than the original, we move the patient j to the new bed in Step 12. The statuses
are adjusted the same as in Step 6, 7. Repeat the steps till all potential improvements
for late patients are processed. Note that if the surgery day of the last patient in J L

cannot be improved, adjustment for other patients would not affect the makespan and
heuristic stops. Otherwise, we move on to reschedule immediate earlier patient.

In summary, the three-stage heuristic represents three types of decisions, namely
assignment, scheduling, and rescheduling. They together constitute the Algorithm
3, called LPT-TW Heuristic, as a whole. It is easy to see that this heuristic takes
O(|K ||J ||T |) time to complete the sequencing process. Following the idea of balanc-
ing workloads of different types of patients in Algorithm 2, we propose Algorithm
4, called LPT-TWT Heuristic. This heuristic is adding a threshold criterion to Algo-
rithm3when assigning patients that if the surgical resource occupied by type i exceeds
the threshold, we will not assign the patient this time to balance the workload of dif-
ferent types of patients. The calculation method of the threshold is the same as that
in Algorithm 2. This heuristic also takes O(|K ||J ||T |) time to complete the process
because the threshold criterion does not increase the time complexity.

4.4 Composite index heuristic

A composite dispatching rule is an efficient tool in developing scheduling heuristics.
The well-known ATC rule (Apparent Taridiness Cost Rule) was developed by Vep-
salainen and Morton (1987) to deal with weighted tardiness cost by constructing an
index combining WSPT (Weighted Shortes Processing Time) and LSR ( Least Slack
Remaining Processing Time) rule. Lee et al. (1997) propose the ATCS rule (Apparent
Tardiness Cost with Setups) to deal with weighted tardiness with sequence-dependent
setups. Su et al. (2017) further extended to the ATCF rule (Apparent Tardiness Cost
with Flexibility) for applications with machine eligibility. Following a similar idea to
combine different dispatching rules, we propose a Composite Index Heuristic for our
problem. Note that different from weighted tardiness, we consider makespan as the
objective. Therefore, the index is by nature significantly different from theirs. Specif-
ically, I j t is defined as a measure of the urgency of patient j at day t . It is a composite
index to measure the critical level of unscheduled patients whenever a bed is released
and available for the next patient. The job with a smaller index will be processed
earlier. Specifically,

I j t = I D jt ′( j)
p j + q j

mt ′( j)+p j

ct ′( j)+p j

(12)
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For how this index represents the urgency of patients at a specific time, the two
terms showcase three major features closely related to scheduling outcomes. The first
term favors patients with longer processing time and less idle time. p j + q j reflects
the total in-bed duration of patient j . In-bed duration in the denominator shares the
same idea of the LPT rule, indicating that patient who occupies the bed for a longer
duration will have a smaller index value. I D jt ′( j) = t ′( j)− t , where t ′( j) = min{t ′ :
s j ≤ ct ′+p j , t

′ ≥ t} and ct ′( j)+p j is the remaining surgical resource left in t ′( j) + p j

observed by provider at day t . The basic idea is to schedule each candidate patient to
the earliest time with enough surgical resources. There might be bed idleness if the
patient has towait awhile before admitted to the bed p j days earlier than operation day.
Moreover, less idleness leads to smaller I j t value. In the second term, ct ′( j)+p j is the
resources available at t ′( j)+ p j observed by provider at day t .mt ′( j)+p j is the number
of beds that might be able to occupy the surgical resource at t ′( j) + p j observed at
time t . Specifically, when a patient j is scheduled to a future admission in day t ′( j) on
bed k and a corresponding surgery day t ′( j) + p j , the remaining surgical resource at
that time is reduced by s j . Besides, the bed k is occupied from t ′( j) to t ′( j)+ p j +q j ,
during which for all time units with positive surgical resource, there will be one less

bed potential to consume the remaining resource. The term
ct ′( j)+p j
mt ′( j)+p j

measures the

remaining resource that needs consumption per bed for surgery date t ′( j) + p j . The
larger it is, the less likely the surgical resource is fully utilized at t ′( j) + p j . Then I j t
will be smaller. Therefore, the second term prioritizes the patient that leads to better
utilization of surgical resources. In summary, this composite index combines the idea
of Longest Processing Time, Minimum Idleness, and Largest Surgical Resource Per
Bed Resource. Based on these intuitions, we propose the Algorithm 5. The details
are as follows.

Algorithm 3 Composite Index Heuristic
Let Jc be the unscheduled set of jobs, and Jk be the set of jobs assigned to bed k.
Initialize Rk = 0, ∀k ∈ K , rt = ct and mt = |K |, ∀t ∈ T
while Jc �= ∅ do

Set k = argmin{Rk , ∀k ∈ K }, t = min{Rk , ∀k ∈ K }.
for Each job j in Jc , do

Calculate I D jt ′( j), I j t
end for
Choose the patient j∗ = argmin j I j t . Remove it from Jc and add it to Jk .
Update rt ′( j∗)+p j∗ = rt ′( j∗)+p j∗ − s j∗ , mt ′ = mt ′ − 1, ∀t ′ ∈ [t, t ′( j∗) + p j∗ + q j∗ + 1), and

Rk = t ′( j∗) + p j∗ + q j∗ + 1.
end while

We evaluate the measure I j t for each unscheduled patient when a bed is released.
A patient with the least I j t value will be selected to occupy the bed successively. The
status will be updated accordingly. Repeat the steps till all jobs are processed. It is easy
to see that Algorithm 5 takes O(|J |2|T ||K | log |K |) time to complete the sequencing
process.
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4.5 MIP-based fix-and-dive improvement

Early computational results show that the performance of these five heuristics is not
stable. The reason is that the coordinated schedule of the operating room and bed is a
combination of Pm|Cmax and Bin-packing problem, which is a challenging problem.
When the number of beds and that of surgical resources are balanced, the interaction
is more involved, and the results of open-loop heuristics become less efficient. It is
known that the mixed-integer problem in Sect. 2 is NP-hard, and preliminary results
show that when many patients reach 60, the model cannot be solved to optimal within
7200s. In order to balance performance and computation time, we develope the MIP-
based Fix-and-dive heuristics (Algorithm 6-9) to obtain further improvement. Steps
are introduced as follows. First, the solutions of the heuristics mentioned above,Algo-
rithm1-3 and 5, are treated as initial solutions ofAlgorithm 6-9 separately.We do not
propose an improved heuristic based onAlgorithm 4 because its idea is from the same
stream of Algorithm 3 and early computational results show that the performance of
Algorithm 3 is better than that of Algorithm 4. Then, we add the variables z jk to
represent the assignment of patient j to bed k of initial solutions. Note that we fix the
assignment of beds except for the ones with the longest completion time to improve
the schedule of the beds with the worst performance. Finally, we solve the following
mixed-integer programming (P2). Numerical results demonstrate that the MIP-based
heuristics achieve near-optimal solutions with reasonable computation time.

(P2) min Cmax

s.t.
∑

t

x tjk ≤ z jk, ∀ j ∈ J , k ∈ K ;

Cmax ≥ C j , ∀ j ∈ J ;
∑

t

∑

k

xtjk = 1, ∀ j ∈ J ;
∑

j

x tjk ≤ 1, ∀k ∈ K , t ∈ T ;

∑

i �= j

t+p j+q j∑

t ′=t

x t
′
ik ≤ M(1 − xtjk), ∀ j ∈ J , k ∈ K , t ∈ T ;

∑

k

xtjk = y
t+p j
j , ∀ j ∈ J , t ∈ T ;

∑

j

ytj s j ≤ ct , ∀t ∈ T ;

C j ≥ t ytj + q j , ∀ j ∈ J , t ∈ T ;
xtjk ∈ {0, 1}, ∀ j ∈ J , k ∈ K , t ∈ T ;
ytj ∈ {0, 1}, ∀ j ∈ J , t ∈ T ;
C j ≥ 0, ∀ j ∈ J .
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Algorithm 4MIP-based Fix-and-dive Heuristics
Initialize: Let w jk (∀k ∈ K , ∀ j ∈ J ) be solutions of Algorithm 1 (2, 3 and 5) for Algorithm 6-9
respectively. k∗ is the index of bed with the longest completion time.
for k ∈ K do

If k = k∗, z jk = 1,∀ j ∈ J .
Otherwise, z jk = w jk , ∀ j ∈ J .

end for
Solve the mixed-integer programming (P2) with z jk .

5 Numerical results

In this section, we conduct a series of experiments to examine themodel’s performance
and heuristics that we proposed. The mixed-integer program is coded by Python and
is solved by Gurobi with a time limit of 7200s. The heuristics are coded by Python.
All of the experiments are conducted using a PC with a 2.5GHz CPU.

The setting of our experiments is designed as follows. We assume three types of
patients to represent patients with different diseases or severity. Patients of different
types have a relatively steady population and different pre-surgery, surgery, and post-
surgery timeduration requirements.Because themore severe disease or the larger-scale
operation often leads to longer surgical duration and length of the hospital stay. We set
up three types of patients as follows. Type 1 patient with themost severe disease has the
most extended time requirement with a 5-day pretest, 7-day recovery, and three-time
units in surgery. Type 2 patient needs three days, five days, and two-time units before,
after, and during surgery, respectively. Type 3 has a minor requirement with one day
before and after surgery and one time unit during surgery. The proportion of the three
types of patients is 1 : 3 : 6. Moreover, we fix the working hour of a physician or
one medical team in a surgical block as ten-time units and assume one block a day is
available. Multiple blocks a day can be equivalent to one block with longer working
hours.As is often the case, a physician and his/her teamwill be assigned in several fixed
blocks a week according to tactical level planning, which usually lasts weeks or even
months. The patients accepted by different physicians will be scheduled separately.
Our numerical study mainly examines the influence of the number of patients, the
frequency of operation date, and the number of beds. The number of patients J is
selected from [20, 40, 60, 80, 100], patient type is randomly generated according to
the proportion. The weekly surgical frequency (i.e., the number of days the operating
room is open per week) F varies from 1 to 5. The number of beds K belongs to
[10, 15, 20].

5.1 Comparison of heuristics andMILP

This section compares the performance of MILP proposed in Sect. 3 and heuristics
described in Sect. 4. We mainly focus on two kinds of performance measures. The
first measure is the gap in makespan between heuristic solutions and optimal solutions
solved byMILP. Specifically, Gap = (Ch

max − C∗
max )/C

∗
max . The second performance
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measure is the computation time (CPU) of different methods. The A-Gap means the
average gap between heuristic results and MILP solutions, and W-Gap denotes the
worst gap of the two solutions.

Table 6 displays the numerical results for small-size instances. All simple heuristics
performs pretty well in terms of the average gap. Among the five heuristics, the LWBH
and LTWTH have relatively large average gaps and worst gaps, which demonstrates
the less steady performance. The performance of LRESH is in middle status. CIH
performs slightly better than LTWH, which is the best.

Table 7 displays the computation time of MILP and simple heuristics. All five
heuristics are fast to solve. Note that MILP can solve most small-size cases efficiently
while it can be relatively time-consuming for certain instances even when patients
reach 40. In view of the reasonable computation time and satisfactory performance of
simple heuristics for small-size instances, we do not explore the MIP-based heuristics
in the small tests.

For medium and large instances, we compare both simple heuristics and MIP-
based heuristics with optimal solutions solved by MILP. From Table 8, CIH has the
best overall performance for these five heuristics in that the average gap is within 10%,
and it has themost negligible variance as parameter changes. LTWHand LTWTHhave
more significant average gaps thanCIHbut are also relatively stable inW-Gap. LRESH
is quite unstable, and LWBH performs worst. They can obtain near-optimal solutions
when surgery frequency is small and perform relatively poorly when frequency gets
larger. Furthermore, there are common trends that all five heuristics share.Whenwe fix
other parameters, the performance improves as the number of patients increases, which
perhaps results from the fact that the number of beds is relatively large compared to
the number of patients. The more patients there are, the more risk pooling is involved.
For another, the ratio of the number of beds and surgery frequency reflects the change
of performance. In our experiment setting, 5 is a critical ratio. When the ratio is far
from the critical ratio, one of the two resources is scarce, and the heuristics perform
better. When the ratio is near critical, the performance is worse when the bed and
surgical resources are relatively balanced.

From Tables 8, 9, and 10, the MIP-based heuristics perform much better than the
open-loop heuristics at the cost of longer computation time, described in Fig. 3. Almost
all of the performance gaps are under 10%. Computation times are significantly small
compared with MILP and grows as number of patients increases. Although we fix the
assignment for most beds, as the number of patients increases, the quantities of free
assignments still increase.

To sum up, the heuristics we proposed are practical. For hospitals, simple heuristics
can be used to get a good solution quickly for small-scale problems.When the problem
is large-scale or simple heuristics effect is not good, the manager can use the improved
algorithm to get a good scheme reasonably.

5.2 Parameter sensitivity

This section analyzes the influence of parameters on the objective, specifically the
frequency of surgery and the number of beds.

123



75 Page 20 of 29 Journal of Combinatorial Optimization (2024) 47 :75

Ta
bl
e
6

Pe
rf
or
m
an
ce

ga
ps

of
si
m
pl
e
he
ur
is
tic
s
fo
r
sm

al
l-
si
ze
d
in
st
an
ce
s

In
st
an
ce

L
R
E
SH

LW
B
H

LT
W
H

LT
W
T
H

C
IH

J
K

F
A
-G

ap
W
-G

ap
A
-G

ap
W
-G

ap
A
-G

ap
W
-G

ap
A
-G

ap
W
-G

ap
A
-G

ap
W
-G

ap

20
10

2
0.
04

0
0.
20

0
0.
10

0
0.
20

0
0.
04

0
0.
20

0
0.
26

6
0.
46

7
0.
06

0
0.
40

0

20
15

2
0.
00

0
0.
00

0
0.
08

0
0.
20

0
0.
00

0
0.
00

0
0.
10

0
0.
20

0
0.
00

0
0.
00

0

20
20

2
0.
00

0
0.
00

0
0.
08

0
0.
20

0
0.
08

0
0.
20

0
0.
08

0
0.
20

0
0.
00

0
0.
00

0

20
10

3
0.
10

3
0.
14

3
0.
17

6
0.
40

0
0.
00

7
0.
07

1
0.
14

6
0.
31

3
0.
05

4
0.
14

3

20
15

3
0.
14

1
0.
14

3
0.
14

1
0.
14

3
0.
00

0
0.
00

0
0.
10

0
0.
28

6
0.
04

3
0.
14

3

20
10

4
0.
07

8
0.
13

3
0.
13

5
0.
50

0
0.
00

0
0.
00

0
0.
13

4
0.
21

4
0.
09

9
0.
28

6

20
15

4
0.
07

8
0.
13

3
0.
07

8
0.
13

3
0.
00

0
0.
00

0
0.
05

7
0.
21

4
0.
02

9
0.
07

1

20
20

3
0.
00

0
0.
00

0
0.
05

7
0.
14

3
0.
05

7
0.
14

3
0.
08

6
0.
14

3
0.
00

0
0.
00

0

20
20

4
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
00

0
0.
04

3
0.
07

1
0.
00

0
0.
00

0

40
10

2
0.
17

5
0.
31

6
0.
19

1
0.
44

0
0.
13

2
0.
28

0
0.
17

4
0.
44

0
0.
13

8
0.
28

0

40
15

2
0.
00

0
0.
00

0
0.
15

6
0.
31

6
0.
04

0
0.
10

5
0.
17

1
0.
31

6
0.
05

8
0.
21

1

40
20

2
0.
00

0
0.
00

0
0.
15

6
0.
31

6
0.
18

4
0.
31

6
0.
16

6
0.
31

6
0.
00

0
0.
00

0

40
10

3
0.
13

6
0.
45

5
0.
34

5
0.
42

9
0.
08

3
0.
18

2
0.
11

2
0.
18

2
0.
12

2
0.
20

8

40
15

3
0.
16

8
0.
56

3
0.
41

7
0.
56

3
0.
09

2
0.
18

8
0.
24

9
0.
35

3
0.
10

9
0.
26

3

40
20

3
0.
00

0
0.
00

0
0.
21

1
0.
31

3
0.
24

9
0.
40

0
0.
29

7
0.
40

0
0.
00

0
0.
00

0

40
10

4
0.
14

3
0.
29

2
0.
20

4
0.
40

9
0.
07

0
0.
15

8
0.
10

7
0.
26

3
0.
12

5
0.
26

3

40
15

4
0.
42

9
0.
50

0
0.
42

3
0.
50

0
0.
08

0
0.
20

0
0.
23

0
0.
41

2
0.
20

5
0.
33

3

40
20

4
0.
38

9
0.
50

0
0.
41

6
0.
50

0
0.
14

1
0.
21

4
0.
19

8
0.
29

4
0.
00

6
0.
05

9

0.
10

4
0.
18

7
0.
07

0
0.
15

1
0.
05

8

123



Journal of Combinatorial Optimization (2024) 47 :75 Page 21 of 29 75

Table 7 CPU time of MILP and simple heuristics for small-sized instances

Instance MILP LRESH LWBH LTWH LTWTH CIH
J K F

20 10 2 20 0.01 0.02 0.02 0.01 0.01

20 15 2 31 0.01 0.03 0.02 0.02 0.02

20 20 2 42 0.01 0.04 0.02 0.01 0.01

20 10 3 25 0.01 0.03 0.02 0.01 0.02

20 15 3 37 0.01 0.04 0.03 0.02 0.02

20 10 4 29 0.01 0.06 0.03 0.02 0.02

20 15 4 43 0.01 0.09 0.04 0.03 0.03

20 20 3 52 0.01 0.05 0.04 0.01 0.02

20 20 4 38 0.01 0.10 0.05 0.02 0.02

40 10 2 78 0.03 0.03 0.02 0.01 0.02

40 15 2 115 0.03 0.04 0.03 0.01 0.02

40 20 2 149 0.03 0.05 0.03 0.01 0.02

40 10 3 342 0.03 0.04 0.03 0.02 0.02

40 15 3 144 0.03 0.05 0.03 0.03 0.03

40 20 3 188 0.03 0.06 0.04 0.02 0.04

40 10 4 4582 0.03 0.07 0.03 0.03 0.03

40 15 4 176 0.03 0.09 0.04 0.03 0.04

40 20 4 235 0.03 0.11 0.05 0.03 0.05

Fig. 3 Statistical results of compared constructive heuristics for medium-and-large-sized instances with
A-GAP and CPU

Figure 4 displays the impact of the number of beds upon Cmax with other param-
eters fixed. Figure 5 indicates the impact of the surgery frequency upon Cmax with
other parameters fixed. Note that we do not cover all the parameters in our numeri-
cal study because too few or too many resources compared to the other is trivial, as
explained in Sect. 3. For the sensitivity analysis, however, whenwe expand the range of
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Table 8 Performance gaps of simple heuristics for medium-and-large-sized instances

Instance LRESH LWBH LTWH LTWTH CIH
J K F A-Gap W-Gap A-Gap W-Gap A-Gap W-Gap A-Gap W-Gap A-Gap W-Gap

60 10 2 0.191 0.243 0.138 0.219 0.135 0.219 0.136 0.243 0.155 0.219

60 15 2 0.000 0.000 0.075 0.182 0.055 0.167 0.079 0.182 0.016 0.100

60 20 2 0.000 0.000 0.075 0.182 0.074 0.167 0.124 0.200 0.016 0.100

60 10 3 0.213 0.394 0.268 0.333 0.131 0.188 0.131 0.188 0.110 0.152

60 15 3 0.145 0.455 0.383 0.458 0.190 0.292 0.236 0.409 0.172 0.208

60 20 3 0.018 0.091 0.116 0.250 0.223 0.273 0.236 0.273 0.036 0.091

60 10 4 0.105 0.226 0.181 0.310 0.076 0.125 0.076 0.125 0.111 0.188

60 15 4 0.181 0.273 0.257 0.591 0.120 0.250 0.131 0.250 0.163 0.333

60 20 4 0.444 0.563 0.487 0.563 0.272 0.333 0.370 0.412 0.106 0.167

80 10 2 0.153 0.205 0.109 0.152 0.112 0.150 0.129 0.213 0.126 0.167

80 15 2 0.000 0.000 0.031 0.075 0.054 0.100 0.059 0.150 0.000 0.000

80 20 2 0.000 0.000 0.031 0.075 0.069 0.150 0.078 0.150 0.010 0.100

80 10 3 0.198 0.262 0.169 0.225 0.122 0.209 0.113 0.156 0.098 0.175

80 15 3 0.195 0.355 0.328 0.400 0.159 0.241 0.201 0.258 0.155 0.200

80 20 3 0.012 0.115 0.049 0.129 0.164 0.231 0.187 0.231 0.039 0.115

80 10 4 0.046 0.079 0.131 0.238 0.046 0.154 0.059 0.154 0.056 0.154

80 15 4 0.139 0.267 0.205 0.357 0.094 0.192 0.093 0.172 0.109 0.192

80 20 4 0.334 0.455 0.349 0.455 0.161 0.318 0.224 0.318 0.095 0.136

100 10 2 0.085 0.125 0.085 0.125 0.120 0.224 0.110 0.224 0.115 0.176

100 15 2 0.000 0.000 0.004 0.039 0.024 0.043 0.033 0.056 0.023 0.085

100 20 2 0.000 0.000 0.004 0.039 0.063 0.128 0.076 0.128 0.029 0.085

100 10 3 0.176 0.260 0.137 0.175 0.139 0.180 0.140 0.180 0.093 0.135

100 15 3 0.208 0.361 0.273 0.361 0.164 0.250 0.152 0.216 0.141 0.194

100 20 3 0.018 0.091 0.029 0.091 0.115 0.182 0.162 0.273 0.035 0.091

100 10 4 0.036 0.073 0.052 0.093 0.030 0.056 0.031 0.054 0.023 0.060

100 15 4 0.103 0.182 0.165 0.250 0.087 0.154 0.074 0.152 0.093 0.182

100 20 4 0.321 0.385 0.307 0.385 0.172 0.250 0.188 0.267 0.089 0.154

0.123 0.164 0.117 0.134 0.082

parameters, we can figure out the trend, take Fig. 4 as an example, that when surgery
frequency is fixed, as the number of beds increases, Cmax will decrease rapidly at
first, then slow down and finally stabilize at a certain level. Because when the beds
are much more abundant than the surgical resource, the latter resource becomes a
bottleneck and finally determines the whole system’s performance. On this condition,
an increase in the surgery frequency would improve the utilization of beds and further
lower the Cmax. Figure 5 shows similar results. This also provides some insights into
medical management. The hospital should determine appropriate resources required
by considering coordination utilization of hospital beds and operating rooms. If the
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Table 9 Performance gaps of MIP-based heuristics for medium-and-large-sized instances

Instance LRESH-FD LWB-FD LTW-FD CIH-FD
J K F A-Gap W-Gap A-Gap W-Gap A-Gap W-Gap A-Gap W-Gap

60 10 2 0.096 0.156 0.032 0.067 0.093 0.182 0.027 0.067

60 15 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

60 20 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

60 10 3 0.035 0.111 0.035 0.111 0.035 0.111 0.050 0.111

60 15 3 0.051 0.130 0.055 0.130 0.150 0.208 0.052 0.091

60 20 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

60 10 4 0.046 0.094 0.022 0.094 0.081 0.207 0.019 0.125

60 15 4 0.070 0.136 0.041 0.120 0.074 0.222 0.062 0.167

60 20 4 0.009 0.063 0.068 0.167 0.034 0.222 0.011 0.056

80 10 2 0.127 0.159 0.059 0.109 0.070 0.150 0.030 0.050

80 15 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

80 20 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

80 10 3 0.042 0.093 0.062 0.111 0.106 0.200 0.028 0.093

80 15 3 0.069 0.161 0.067 0.138 0.125 0.161 0.093 0.161

80 20 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

80 10 4 0.040 0.105 0.061 0.105 0.086 0.184 0.019 0.071

80 15 4 0.055 0.192 0.084 0.219 0.129 0.250 0.046 0.107

80 20 4 0.004 0.045 0.080 0.167 0.111 0.208 0.017 0.087

100 10 2 0.134 0.176 0.058 0.121 0.078 0.176 0.013 0.039

100 15 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

100 20 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

100 10 3 0.045 0.080 0.049 0.080 0.122 0.185 0.033 0.080

100 15 3 0.067 0.132 0.032 0.111 0.091 0.132 0.055 0.111

100 20 3 0.000 0.000 0.000 0.000 0.022 0.111 0.000 0.000

100 10 4 0.014 0.054 0.042 0.125 0.066 0.125 0.003 0.060

100 15 4 0.114 0.167 0.084 0.167 0.096 0.216 0.037 0.083

100 20 4 0.000 0.077 0.087 0.241 0.131 0.310 0.000 0.067

0.038 0.038 0.063 0.022

manager only focuses on one resource, it will result in redundancy andwaste of another
resource.

Another interesting result is that the point that slope begins to slow down in coinci-
dence with the ratio of beds and frequency, as we mentioned in numerical results. This
indicates that when the two resources are relatively balanced, we need to pay more
attention to the coordinated utilization of beds and operating rooms, highlighting our
study’s importance.
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Table 10 CPU time of MILP and all of heuristics for medium-and-large-sized instances

Instance MILP LRESH LWB LTW LTWP CIH LRESH LWB LTW CIH
J K F FD FD FD FD

60 10 2 242 0.03 0.04 0.02 0.02 0.07 97 104 167 125

60 15 2 198 0.04 0.05 0.02 0.02 0.07 223 235 149 180

60 20 2 269 0.04 0.05 0.03 0.02 0.07 296 311 196 245

60 10 3 2794 0.04 0.05 0.03 0.03 0.07 98 107 164 129

60 15 3 1389 0.04 0.07 0.03 0.04 0.07 142 238 236 184

60 20 3 338 0.05 0.07 0.04 0.05 0.07 297 312 196 247

60 10 4 7200 0.04 0.08 0.03 0.04 0.07 103 205 206 143

60 15 4 5891 0.05 0.07 0.05 0.06 0.07 147 255 245 196

60 20 4 3677 0.06 0.12 0.05 0.07 0.07 300 319 209 254

80 10 2 2957 0.05 0.05 0.02 0.03 0.12 190 304 374 222

80 15 2 378 0.05 0.06 0.03 0.03 0.12 397 417 402 324

80 20 2 499 0.06 0.07 0.04 0.04 0.13 554 336 541 660

80 10 3 5477 0.05 0.06 0.03 0.04 0.11 192 290 172 221

80 15 3 2671 0.06 0.07 0.05 0.05 0.12 255 261 410 327

80 20 3 633 0.07 0.08 0.03 0.05 0.12 557 556 536 698

80 10 4 7200 0.06 0.10 0.04 0.05 0.11 202 316 307 253

80 15 4 7200 0.07 0.08 0.05 0.06 0.11 265 267 414 336

80 20 4 5720 0.08 0.14 0.07 0.09 0.12 578 537 557 723

100 10 2 3137 0.07 0.07 0.03 0.03 0.18 273 432 471 516

100 15 2 1376 0.07 0.08 0.04 0.04 0.19 635 406 624 744

100 20 2 2031 0.08 0.09 0.05 0.06 0.22 560 569 820 1097

100 10 3 7200 0.07 0.09 0.04 0.05 0.18 438 431 434 537

100 15 3 4780 0.08 0.12 0.05 0.06 0.18 655 654 621 759

100 20 3 1626 0.09 0.10 0.04 0.06 0.19 828 836 822 989

100 10 4 7200 0.07 0.11 0.05 0.06 0.18 323 508 563 593

100 15 4 7200 0.08 0.13 0.06 0.07 0.17 652 688 642 819

100 20 4 7200 0.10 0.15 0.09 0.09 0.17 882 548 846 1013

5.3 Managerial insight

Traditional Operating Room Scheduling has historically been centered on maxi-
mizing the utilization of the operating room, a valuable and costly resource within the
hospital infrastructure. However, we contend that the significance of hospital beds,
often overlooked in this traditional paradigm, should be considered. Hospital beds
represent a dual-faceted, scarce resource characterized by prolonged occupancy and
serving as a prerequisite for multiple surgical procedures. The timely admission of
patients and the effective utilization of hospital beds play a pivotal role in the success
of surgical interventions.

123



Journal of Combinatorial Optimization (2024) 47 :75 Page 25 of 29 75

Fig. 4 Cmax with different number of beds

Fig. 5 Cmax with different surgery frequency

When formulating an optimal resource allocation strategy, hospital managers must
consider the coordinated utilization of hospital beds and operating rooms. A dispro-
portionate focus on one resource over the other may result in redundancy and wastage,
potentially leading to an imbalance in resource allocation. Such an imbalance could
deplete operating room resources while underutilizing hospital bed resources, com-
promising the healthcare system’s overall operational efficiency. Hence, we emphasize
adopting a comprehensive and coordinated approach to resource utilization, ensuring
the optimal use of operating rooms and hospital beds.

Furthermore, in scenarios with relative equilibrium between hospital bed and oper-
ating room utilization, our research argues for heightened attention to the coordinated
utilization of these resources. This perspective underscores the critical importance
of our study, particularly in high-ranking hospitals in first-tier cities. These hospitals
often have inadequate medical resources due to prolonged patient waiting lists. In
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such a context, optimizing the utilization of hospital beds and operating rooms not
only enhances overall efficiency but also more effectively meets the needs of patients.
Implementing a coordinated resource utilization strategy becomes particularly urgent
in alleviating the strain on healthcare services in environments with scarce medical
resources, thereby upholding the stability and quality of healthcare services.

6 Conclusion and future studies

In this paper, we explore the joint surgery scheduling and bed assignment to improve
the utilization of both resources. We show that the joint decision is of practical impor-
tance. A mixed-integer model is developed to minimize the maximum completion
time. We apply the classic LPT rule, workload balance, composite index and so on
to propose heuristics (LRESH, LWBH, LTWH, LTWTH and CIH) dealing with the
coordinated scheduling of hospital beds and operating rooms. They perform well in
small-size instances and are unstable for large-size instances. Furthermore, we pro-
pose improved algorithms, called LRESH-FD, LWBH-FD, LTWH-FD, and CIH-FD.
We structured a way to simplify the problem and got near-optimal solutions even for
large-size instances.

The contributions of this work are two-fold. First, patient scheduling is a vital
planning activity that hospital managers must consider. Besides, resources, including
operating rooms and hospital beds, are critical in health care. In this sense, we jointly
study the surgery scheduling and bed assignment problem. Second, solutions that
efficiently leads to near optimal results can benefit the planning department. From this
perspective, we develop practical heuristics, and computational experiments show that
our proposed algorithms perform well in computational time and solution quality.

Our work can be extended from several aspects. First, the optimization model and
the solution approach developed in this studymay be the basis for further developments
in a more effective and efficient surgery system by considering different objectives
and constraints. Second, no-shows, service delays, and resource availability are widely
witnessed in practice. Thus, it is meaningful to consider the problem with a dynamic
version in real-world situations.
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