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Abstract

In this paper, we discuss scheduling problems with m identical machines and n jobs
where each job has to be assigned to some machine. The objective is to minimize
the weighted makespan of jobs, i.e., the maximum weighted completion time of jobs.
This scheduling problem is a generalization of minimizing the makespan on parallel
machine scheduling problem. We present a (2— %)—approximation algorithm and aran-
domized efficient polynomial time approximation scheme (EPTAS) for the problem.
We also design a randomized fully polynomial time approximation scheme (FPTAS)
for the special case when the number of machines is fixed.

Keywords Scheduling - Weighted makespan - Approximation algorithm - Efficient
polynomial time approximation scheme - Fully polynomial time approximation
scheme

1 Introduction

We consider a scheduling model with m identical machines M = {M{, M, ..., M,,}
and n jobs J = {Ji, J2, ..., Jy}. Each job has a processing time p; and a weight
w; and each job has to be assigned to some machine. The objective is to minimize
the maximum weighted completion time of jobs. Let C; be the completion time of
job J;. For a parameter p € R, the L,-norm of the job weighted completion time

vector (w;Cq, ..., w,Cy,) can be defined as (Z’}zl(ijj)p)%. When p = 1, itis
the classical total weighted completion time problem and can go back to the work of
Smith (1956). For minimizing the weighted completion time, Sahni (1976) gave a fully
polynomial time approximation scheme (FPTAS) for this problem on identical parallel
machine setting with a fixed m. Kawaguchi and Kyan (1986) proved that list schedul-
ing in order of nonincreasing order of w;/p; is an approximation algorithm with an
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approximation ratio of %(1 + +/2) for this problem when m is not fixed. Skutella and
Woeginger (2000) designed a polynomial time approximation scheme (PTAS) for this
problem when m is not fixed. For jobs with release date setting, Phillips et al. (1998)
showed that a given preemptive schedule on single machine can produce a nonpre-
emptive schedule while increasing the total weighted completion time by at most a
factor of 2. Afrati et al. (1999) proposed a PTAS for minimizing weighted completion
time with release dates on identical parallel machines. For more general setting with
unrelated parallel machines, i.e. the job J; has a processing time p;; on machine M;,
Skutella (2001) designed a 3/2-approximation algorithm based on the convex pro-
gramming relaxation. Bansal et al. (2016) proposed the first (3/2 — ¢)-approximation
algorithm for this problem, for some constant ¢ = 10~/ > 0 and they introduced a
novel rounding scheme yielding strong negative correlation for the first time. Li (2020)
used strong negative correlation as a black box and improved this approximation ratio
to (3/2 — 1/6000) based on the simpler time-indexed linear programming relaxation.
Im and Shadloo (2020) via iterative fair contention-resolution techniques achieve a
significantly stronger negative correlation and improved approximation ratio to 1.448.
Baveja et al. (2023) improved the value of the negative correlation of Bansal et al.
(2016) from 1/108 to 1/27, thus further improved the constant ¢ in the algorithms
of Bansal et al. (2016) for this problem. When p = 400, it is the maximum value
of w;C;. For minimizing the weighted makespan (the maximum weighted comple-
tion time), Feng and Yuan (2007) first introduced the weighted makespan W Cpax on
a single-machine scheduling problem. Li (2015) studied the online single machine
scheduling problem to minimize the weighted makespan W Cp,ax in which jobs arrive
over time. For the general online problem in Li (2015), Chai et al. (2018) provided
two on-line algorithms with the best-possible competitive ratio 2. Recently, Lu et al.
(2021) studied the single machine scheduling problem with rejection to minimize the
weighted makespan. They showed that this problem was NP-hard and proposed an
FPTAS for this problem.

When the weight of jobs is equal to 1, minimizing the weighted makespan on
parallel machines is exactly minimizing the makespan. This is one of the most clas-
sical scheduling problems on parallel machines, Graham (1966), Graham (1969)
provided the first approximation algorithm. For earlier approximation schemes for
makespan minimization on parallel machines, see Hochbaum and Shmoys (1987),
Hochbaum (1997), Alon et al. (1998). The efficient polynomial time approximation
scheme (EPTAS) for scheduling on identical parallel machines with the asymptotic
running time was presented by Jansen et al. (2020). Recently, Kones and Levin (2019)
devised a unified framework for designing EPTAS for general makespan minimization
on parallel machines.

A p-approximation algorithm for a minimization problem is a polynomial time
algorithm that always finds a feasible solution with an objective value of at most
p times the optimal value. The infimum value of p for which an algorithm is a p-
approximation is called the approximation ratio or the performance guarantee of the
algorithm. A PTAS for a given problem is a family of approximation algorithms such
that the family has a (1 + ¢)-approximation algorithm for any ¢ > 0. An EPTAS is a
PTAS whose time complexity is upper bounded by a value of f (%) -poly(n) where f is
some computable (not necessarily polynomial) function and poly(n) is a polynomial
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of the length of the (binary) encoding of the input. An FPTAS is an EPTAS which
satisfies that f must be a polynomial in %

Motivated by the study in Lu et al. (2021). In this paper, we first present a (2 — %)—
approximation algorithm for the weighted makespan scheduling problem on identical
parallel machines. Then, we develop a randomized EPTAS for this problem and we
also design arandomized FPTAS for the special case when m is fixed. The remainder of
this paper is organized as follows. In Sect. 2, we describe the definition of the weighted
makespan scheduling problem and some preliminaries that will be used throughout
the paper. In Sect. 3, we present a (2 — %)-approximation algorithm for the problem.
In Sect. 4, we present the approximation schemes for the problem with a constant
type of weight. In Sect. 5, we present the randomized approximation schemes for this
problem. We present some conclusions and possible future research in the last section.

2 Problem formulation and preliminaries

In this paper, we consider the scheduling problem with m identical machines M =
{M, M3, ..., My} and n jobs J = {J1, J2,..., Jy}. Each job has a processing
time p; and a weight w;. Without loss of generality, we assume that all p; and w;
values are positive integers. A schedule is an assignment of n jobs to m machines,
i.e. find a schedule o : J — M. Furthermore, let C ; be the completion time of
Jj. Let Cax = max{C,|J; € J} and WCpax = max{w;C;|J; € J} denote the
makespan and weighted makespan (the maximum weighted completion time) of jobs,
respectively. The objective is to minimize the weighted makespan of the jobs. Using the
general notation for scheduling problems, our problem can be denoted by P||W Cpax
and let P, ||W Cnax denote the special case when m is fixed. When m = 1, Li (2015)
showed that the LW (Largest Weight first) rule yields an optimal schedule, i.e. if some
job processing finished or the machine is idle, then schedule the job with the largest
weight.

Clearly, our problem is NP-hard, since it is a general case of minimizing the
makespan. We assume that 7' is a set of some jobs. Let p(J') = Z,/_ej/ p;j be
the total processing time of 7'. Let w; > wy > --- > w; be the t different job
weights for job J; € J,let J' = {J; € Jlw; = w,}, where J' is the jobs with
weight w;. Then, we have a lower bound for our problem in the following:

p(J")

WCax = wy

, foreachr=1,...,1. (D)

We demonstrate an example to explain our problem. We are given an instance
I for P||WCpax with two machines and four jobs: J; = (wi, p1) = (2, 1),
Jro = (w2, p2) = (2,3), J3 = (w3, p3) = (3,2), Jy = (w4, pg) = (4,1). We
can construct an optimal solution that assigns J4 followed by J> to the first machine
and J3 followed by J; to the second machine. The value of the objective function is
W Cmax = w2C> = 8. In this paper, let N and Ny be the set of positive and nonnegative
integers, respectively. Let 0* and O PT be an optimal schedule and corresponding
objective value of o*, respectively.
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3A(2- %)-approximation algorithm

In this section, we provide a (2 — %)—approximation algorithm for problem P||W Cax.-
Algorithm A,

Step 1: Sort all jobs such that w; > wy > --- > wy,.

Step 2: If a machine becomes idle, assign jobs to the machine according to the LS

algorithm.

Let I be the original instance. Let o be the schedule obtained from algorithm A;

for instance I, and OUT be the corresponding objective values of o. We have the

following theorem.

Theorem3.1 OUT < (2— 1)OPT.

Proof For any job J;, let C; and C;.‘ be the completion time of J; in o and o*,
respectively. Also, let Ciyax = max; C; and Ci, . = max; C be the makespan of o
and o*, respectively. Let job J. be the last job assigned to the maximum load machine.

Clearly, we have

Yo pj = pe Yio1pi

1 Yioipj
Cmaxf—‘f‘PcS—‘i‘(l_—)Pcf—’ll d
m m m m

1 1
+(1—— pi<(Q2—)CE ..
( m)maxjpj_( m) max

In the schedule o, let J; be the job such that w;C; = OUT. Without loss of gen-
erality, we suppose that all jobs start before S;, where S; is the starting time of
job J;. Otherwise, it can be deleted from /. Let the new instance be [ I we have
OUT = OUT' and OPT > OPT!, where OUT! and OPT! be the value of
schedule obtained from algorithm A and optimal solution for instance I', respec-
tively. That is, OUT/OPT < OUT'/OPT!, it dose not decreasing the value of
OUT/OPT. See Fig.1 for a visualization, where the shadow rectangle represents
the set of jobs whose starting time after S;. Thus, we can suppose that w; < w; for
any job J;, since every job starts before S;. Therefore, we have

max —

1 1 1
OUT = wiC; < wiCpax < 2— —)wChpx < 2 — —)wpCr < 22— —)OPT,
m m m

where w;x is the weight of the job with largest completion time in schedule o *. This
completes the proof of Theorem 3.1. O

4 Approximation schemes for a constant type of weight

In many real cases, some parameter may only constant types. For example, in natural
scenarios, many machines are of the same type. Gehrke et al. (2018) consider the
scheduling on unrelated machines of few different types. In this problem, each job
Jj on machine M; has a processing time p;;. For the case where the number K of
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Fig.1 A visualization for instance I and I’

machine types is constant, i.e. the machine i # i’ of the same type k satisfy p;; = pi/;,
they presented a PTAS for this problem. Subsequently, Jansen and Maack (2019)
presented an EPTAS for scheduling on unrelated machines of few different types.
For the case K = 2, Imreh (2003) designed greedy algorithms with approximation
rates 2 + (m; — 1)/m> and 4 — 2/m, Bleuse et al. (2015) presented an algorithm
with approximation rate 4/3 + 3/m2, where m; is the number of machines for type
i = 1, 2. Moreover, Raravi and Nélis (2012) designed a PTAS for the case K = 2. In
this section, we will develop an EPTAS and FPTAS for P||W Cpax and Py, ||W Cmax
such that jobs with a constant type of weight, respectively.

We can assume that w; < 1foralljobs J; € 7, since the weight of all the jobs can
be divided by the maximum weight value. In this section, we consider all jobs with a
constant type of weight. Let 0 < § < 1 be a real constant and A € N be a constant.
Without loss of generality, we assume that all jobs of weights w; be the form 8" with
h e {0,1,..., A}ininstance I of problem P||W Cpax and Pm||W Cpax. Let y be any

arbitrary small constant with 0 < y < I, and let y = fﬁ—fs such that % is an integer.

The main idea of our approximation schemes for a constant type of weight is as
follows. First, we round the processing time of each job and glue the small jobs in
original instance / and the rounded instance is [.Then, all the jobs with the same weight
and rounded processing time are contained in the same job type. By the construction
of I the number of different job types is a constant. Finally, we can determine an
optimal solution to instance [. Based on the optimal solution to I, we construct a
feasible solution to the original instance /. We can show that the ratio of the value of
the constructed feasible solution for the original problem to the value of the optimal
solution for the original problem is (1 + y).

4.1 EPTAS

In our EPTAS, we first apply algorithm A; to obtain a solution with value OUT. By
Theorem 3.1, we have OPT < OUT < (2 — %)OPT < 20PT or equivalently
OUT/2 < OPT < OUT.Let L = OUT, then L is an upper bound of OPT.
As a result, we have t* < SLAWC,* < (SLAOPT < 5%L in which t*, WC;+ are
the corresponding makespan and weighted completion time values with respect to
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o*, respectively. Let f = 5% and it is also a constant. Hence, we may assume that
pj < fL,forj=1,...,n

Let Jo = {J; € Jlpj < y fL} be the set of small jobs and 7 \ Jy be the set of
big jobs. Furthermore, we divide the big jobs in 7\ J into « subsets 71, J>, - .., Jk
such that

A

Y and J;

K =

)92

={J; e TIWfL+ (k= DP*fL < p; < PFL+kP*fL}, fork =1,2,... k.

Based on the instance /, we construct a new instance I. For each job J; € Jo, we
construct a job set Jy, which contains

ijejo Pj
vfL

small job with processing time y f L. For each job J; € Ji(k = 1,2,...,k), we
construct a job J i € J such that

pj
PAfL

pi=1 192 fL.

By the construction of i, we have % +k—-1) < L <

STFL = % + k. Thus, we have

P
PAfL

pi=1T 192 fL=pfL+kp?fL

for job J ;€ jk, since % is an integer.
Let J = Uzzojk andn = |j | be the new job set and corresponding the number of

jobs in g, respectively. By the definition of J; € Ji(k =1,2, ..., «), we also have

pi < Pj <pi+ 7P fL<(+7P)pj,
where the last inequality follows from p; > 9 fL for each job J; € Ji.
In the following, we will partition all of the small jobs into A + 1 subsets
S0, S1, ..., SA (S0, S1,...,8A), whgre the jobs in S, (S;) have the same weight
wp(h =0,1,..., A) forinstance I (I).

Lemma4.1 Let OIAfT and O PT denote the optimal objective values for the corre-
sponding instance I and I. Then the following holds

OPT < OPT +(A+ 1)y fL.
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Proof Let 6 denote the optimal solution to instance [. Tt suffices to show that there
exists a feasible solution ¢’ such that OPT’ < (1 + )?)Oi’T, where O PT' is the
objective value of feasible solution o’. Notice that replace every big job J j by its
corresponding job J; in /I, this cannot increase the machine completion time.

Let 3’,-, 1 denote the total processing time of the type 4 small jobs that are processed
on machine M; in 6. Consider a small job set S, without loss of generality, we can
assume that on each machine, the corresponding jobs are processed consecutively in
schedule 6. Fori =1, 2, ..., m, we schedule the jobs in [y on machine M; until the
total processing time of the jobs just exceeds 3‘,‘, 1. Finally, we schedule the remaining
jobs on any machine, and for the jobs assigned to the same machine we sequence them
in an order of decreasing weights. This completes the construction of solution ¢’ and
it is easy to verify that o’ is a feasible solution.

By the construction of solution ¢’, the completion time of each job on machine
M;(i =1,...,m)in o’ will not exceed the completion time of each job on machine
M; in & at most (A + 1) - p fL. In solution o/, we assume that J; with weight wy,
for some fixed £ is the job such that w;C; = OPT’ and processed on machine
M;. Recall that the last scheduled job in some subset J has the maximal weighted
makespan among all jobs in the subset. Thus, in optimal solution & of new instance
I, we can assume that job Jjs has a similar weight wy, and is last processed in subset

S5, on machine M;. Thus, we have

OPT' < w;(Cj/(6)+ (A+ 1P fL)
< OPT + max "(A+1)pfL < OPT +(A+ 1)y fL.
0<h<A

By the construction of ¢ and the above assumptions, job J; has the same weight as
Jj and the completion time of job J; will not exceed the completion time of job J;: at
most (A + 1)y f L, which means that the first inequality holds. The second mequahty
follows from the fact that O PT is the weighted makespan in 6. This completes the
proof. O

Lemma4.2 Let OPT and OPT denote the optimal objective values for the corre-
sponding instance I and I, respectively. We have

OPT < (14+9)OPT + (A+ 1)y fL.

Proof Let o* denote the optimal solution to instance /. Next we construct a new
solution ¢ and the corresponding objective value is OPT. Replace every big job J;
by its corresponding big job J ;. This may increase every machine completion time
by a factor of at most (1 + ). Next, let S;; denote the total size of small jobs of
weight wy, that are processed on machine M; in schedule o *. We schedule [ 1 jobs

with length y f L and weight w;, on machine M; for instance I. Finally, for the jobs
assigned to the same machine, we sequence them in an order of decreasing weights.
And it can accommodate all jobs in instance I.

By the construction of solution &, the completion time of the each job on machine
M;(i =1,...,m)iné will not exceed the completion time of the each job on machine
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M; in o* by a factor of (1 + ) and an amount of (A + 1) -  f L. In solution &, we
assume that J; with weight wy, for some fix 4 be the job such that w;C; = O PT and
processed on machine i. Recall that the last scheduled job in some subset 7 has the
maximal weighted makespan among all jobs in the subset. Then, in optimal solution
o™ of original instance /, we can assume that the job J; with similar weight wy, and
last processed in subset S;, on machine M;. Thus, we have

OPT <wj(1+P)Cj(c*) + (A+ DY fL)
(1+7)0OPT + Jmax S"A+1DPFL<A+79)OPT + (A + 1)y fL.

IA

By the construction of 6 and the above assumptions, job J; has the same weight as
Jj» and the completion time of job J; will not exceed the completion time of job J
by a factor of (1 + p) and a amount of (A + 1) -  f L, which means that the first
inequality holds. The second inequality follows from fact that O PT is the weighted
makespan in o *. This completes the proof. O

Lemma4.3 Let T be thg total number of different types of jobs, then T < (1 4+ A) -

(1 + k), where k = ly_—zy

We index the (1 4+ A)-(k + 1) jobtypesas 1,2,..., (1 4+ A) - (k + 1). We assume
that the (1 + A) - (k + 1) job types are indexed in a non-increasing order of job
weights. The job in each type are sorted in any order, since the jobs in each type
have the same processing time and weight. We refer vectorn = (ng,0, 70,1, - .-, A )
represented the input jobs, where n, ; denotes the number of jobs of weight wy, and size
PfL+kp?fL,forh=0,...,Aandk =0, ..., k. Note that Zﬁ:o Y ko Mhk < n.
An assignment to a machine is a vector u = (u0,0, 40,1, - - -, UA ) Where up i is
the number of jobs with weight 8" and size § fL + kp? f L that are assigned to the
machine. The completion time of the machine is given by C(u) = Y3t o Sk, up -
(9 fL+kp? fL). Let f denote the optimal makespan value for the corresponding new
instance I. Since t* < fOPT < fL and the construction of instance I , we have
i< fOPT <(1+79)fL + (A + )7 f2L, which satisfies that

A«
Cwy =Y "> uni-PfL+kP>fL) < (1 +P)fL+(A+DPfL,
h=0 k=0

implying that

Ak 1
ZZuh,kler;Jr(AJrl)f-

h=0 k=0

Denote by U the set of vectors u with C(u) < (1+7) fL+(A+1)p f2L. For a vector
u € U, each entry uy, x is bounded by a number that only depends on the constants y
and is thus independent of the input. Therefore, the set |U| < (% +14+A+A)NT
is of constant size.
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,,,,,

denote the contribution to the objective function of a machine that is scheduled accord-
ing to u. Since the weighted makespan is determined by the last job of the subset that
have the same weight.

We can now formulate the problem of finding an optimal schedule as an integer lin-
ear program with a constant number of variables. For each vector u € U we introduce
a variable x, which denotes the number of machines that are assigned jobs according
to u. An optimal schedule is then given by the following program:

min z

s.t. qu =m

uelU

E Xy-u=n

uelU

Yu <xu <m-y VueU
zZ> yu-g(a) VueU
xy €{0,1,...,m} YueU
yu € {0, 1} YueU.

The O-1 variables y, indicates whether the assignment u is used (y, = 1) or not
(yu = 0). In case the assignment u is used, then the term y, - g(u) contributes to
the objective function. Since the number of variables of this integer linear program is
2|U| + 1. Therefore, the above integer linear program can be solved optimally within
time

1
0(1U|?1YD 10g%M p) = 0g()n).

A
where |U| = 0((% + Af y#?7), f and A are three constants. It has been shown by
Lenstra (1983) that an integer linear program in constant dimension can be solved in
polynomial time, whose running time is exponential in the dimension of the program
but polynomial in the logarithms of the coefficients, where g(%) is an exponential

function of 1.
Based on Lemma 4.1 and Lemma 4.2, we can obtain a feasible schedule o with
objective value OUT,, is at most (1 + y)OPT,i.e.

Lemma4.4 OUT, < (1+y)OPT.

A A-
Recall that = fA—+V5. Hence,

OUT, < OPT + (A+ 1)y fL
<(+7P)OPT +(A+DPfL+(A+DPfL
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= +y)oPrT,

where the last inequality follows from L < 20 PT and f = SLA

We now consider the time complexity of P||W Cpax in our EPTAS. We first need
to apply our O(nlogn) algorithm A; to determine the value of L. It only takes O (n)
time to construct instances /. An optimal solution for instance I can be found within
time O (g( 5 )n), by solving the above integer program. Based on the optimal solution

to I, solution o is easily generated in O (n log n) time. Therefore, the overall running
timeis O (n logn + g(%)n), where g(%) is an exponential function of % We thus have
the following theorem.

Theorem 4.5 There exists an EPTAS with running time O (nlogn + g(%)n)for prob-

lem P||W Cmax with a constant type of weight, where g(%) is an exponential function

1
Of ;
4.2 FPTAS when m is fixed

In the following we present an efficient FPTASAfor P, ||W Cpax. Following from the
fact that the processing time of each job in J is no less than y fL and C(u) <
(14 P)fL + (A + 1)p 2L, we have the following lemma.

Lemma 4.6 The number of jobs in J is at most
R 1
_r-(§+1~|—(1~|—A)f)m.

We now develop a different exact algorithm to solve problem instance I. We present
a dynamic programming algorithm for P, ||W Cpax as follows.

Sort all jobs such that wy > --- > w,. Let f;(1, ..., t,;) be the minimum W Cpax
value when (1) the jobs in consideration are fl, cey J i and (2) the makespan of the
jobs assigned to M; is exactly ;. Itis clear thatt; = 0, p fL, p fL+p>fL,...,(1+
PIFL+ (A+ D f2L.

If ] is selected to be processed by machine M;, then we have the makespan of
Ji, . JJ ist; — pj. Thus, we have

f(tl» 1tm) = max{f'—l(tlv s tio1 b _ﬁ'vtl'-‘rl? ""tm)9 w; tl}
J J J J

We have the following dynamic programming DP:
Boundary condition:

wi py, if ; = py for some i and t; = O for all j # i;
filty,...,ty) =3 +o0, fty=6=---=t,=0;
+ 00, otherwise.
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The recursive function:

max{fi_1(tt — pj, ... . tm), Wj - 11};
fit, ..., ty) = min max{fj_1(t1, 22 = Pj, ..o tm), W -2}
max{fi_1(ti, ..., tm — Dj), W) - tm}.
The Optimal Value:

min{ffl(tlv M) tm)}”i € {Oa ?flﬂ );fL
+P2fL, . A+ fL+(A+DPfALYi=1, ..., m).
We now consider the time complexity of our FPTAS. We first need to apply our
O(nlogn) algorithn} A1 to determine the value of L. ItAonly takes O(n) time to

construct instances /. An optimal solution for instance / by using algorithm DP,
whose running time is

o(a (1 5
=0(t-<%+(A+l)f>m(l+M> )

‘};2
=0 —1
- }’)2m+3 ’
1—

where m, A, f are three constants, T < (1 + A)(1 +«) and x = —ZV Based on the

>

optimal solution to I, solution ¢ is easily generated in O (nlogn) time. Therefore,
the overall running time is O (n logn + #) We thus have the following theorem.

Theorem 4.7 There exists an FPTAS with running time O (nlog n+ #)forproblem
P ||W Cax with a constant type of weight.

5 The randomized polynomial time approximation schemes

The randomized approximation schemes for P||WCpax and Py, ||WCpax will be
shown in this section. The randomized approximation schemes use analysis meth-
ods that are based on ideas from Skutella and Woeginger (2000). However, we use
some novel lower bounds on the optimal solution value of our problem. Our random-
ized approximation schemes are divided into three steps. The first step is to divide the
job set according to the weight value of w ;. The second step is to find the correspond-
ing approximate schemes for the subsets of the job divided in the previous step. In the
third step, we glue the approximate solution obtained in the second step to a feasible
solution to the original problem.
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Fig.2 A visualization of the weight distribution withI" =4, ¢ =3

For the sake of approximation ratio analysis, we can assume that w; < 1 for all
jobs J; € J, since the weight of all the jobs can be divided by the maximum weight
value. In the following analysis, if we use Theorem 4.5, we obtain the EPTAS for
P||W Cpnax with a constant type of weight, and if we use Theorem 4.7, we obtain the
FPTAS for P, ||W Cmnax With a constant type of weight. Thus, we only consider the
results of randomized EPTAS for P||W Cax and the results of randomized FPTAS
for Py, ||W Cmax Which can be analogously and simply obtained.

5.1 The randomized approximation scheme

Our randomized approximation scheme is divided into the following steps.

(I) Let I" be a positive integer and let y = % We will select I' too large such
that y is small. We divide the job set 7 as follows: First, let 7" := {J; € Tyt <
wj < yh_l}, for h € N. Then, pick g of {1,2,...,I'} uniformly at random, set
Wog=1{1,2,...,9 — 1},and for s € N:

Wig={6—-1-T+gq,....s - T = 1+g}

for s € No, let Jy.g = Unew, , J".

For fixed ¢, the number of nonempty subsets J; 4, s € Ny is at most n. We only
consider those subsets in this randomized approximation scheme. A visualization of
the weight distribution is shown in Fig. 2.

(IT) For any nonempty sets of jobs J 4, the ratio of minimum weight to maximum
weight is bounded by y!. Thus, we can assume that the weights are in the [y p, p]
range, where arbitrary p > 0. Note that by rescaling the weights of jobs we can restrict
to the case p = 1. Then, we choose the constant 0 < § < 1 arbitrarily close to 1,
which leads to % arbitrary small. This is similar to the case that discussed in Section
4, we can round up the weights of all the jobs to the form §” in job set Js,q where h is
an integer and bounded by a constant, since I', y, § are constants and it will increase
the value of the objective function by an arbitrary small factor of % Thus, we can
compute a polynomial time approximation scheme according to Theorems 4.5 and let
the objective value of the approximation scheme is OU Ty ;. Let OU Ty 4 denotes the
value of an optimal schedule for J; 4. The scheduling produced by the second step is
called the (job) subset scheduling.

(IIT) These schedules of job subsets are glued in the algorithm’s final step. We first
randomly and uniformly permute the machines in each job subset schedule and then
gluing those schedules. Since there could be a situation in which each subset of jobs
in J; 4 only contains one job, which is always scheduled to process on machine 1 in
the corresponding job subset schedule and gluing the schedules will lead to only one
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machine processing job. Finally, the probability that two jobs from different subsets
will be processed on the same machine in this randomly generated schedule is equal
1
to —-.
m

5.2 The analysis of the randomized approximation scheme

Note that the objective value of the randomized approximation scheme schedule is
equal to some job’s weighted completion time in the subset schedule plus the extra
loss caused by the delay of this job in the gluing step. The value of some job’s weighted
completion time is less than or equal to the weighted makespan of the same job subset
in the subset schedule. Additionally, the weighted makespan in this subset schedule
is less than or equal to the maximum weighted makespan in all job subset schedules.
Finally, we can show that the value of the maximum weighted makespan value of
the job subset schedule cannot exceeded the optimal schedule value, and we will also
show that the job delays in the gluing step are too small to ignore.

Lemma5.1 Foreachq € {1,...,I'} we have
h
OPT = max OUT, 5, and 0PT = y 2T
s€eNy m

Proof Take an optimal schedule of job set 7 and denote the completion time of job J;
asC ;‘ For each subset J; 4, this optimal subset schedule can be viewed as processed on
m machines starting at time 0. However, the completion time C* of all jobs J; € J; 4
in the optimal schedule also defines a feasible schedule for job subset Js ;. This yields
OPT = maxseny. /e, WjC; = maxsen, OUT g« Thus, OPT is not less than
optimal schedule of value for each subset J 4. For the second lower bound, if we
round the weights of jobs J; € J k down to w = yk, for k € N, it will decrease the
value of an optimal schedule. The result then follows from (1). O

Without loss of generality, we assume job J; € J * achieves the weighted makespan
in the schedule of the randomized approximation scheme, for some fixed k € N. Let
E[W Cpax] be the expected value of the schedule in the randomized approximation
scheme. We have the following lemma.

Lemma 5.2 The expected value of the schedule in randomized approximation scheme
is

E[WCmax] S E[max OUTs,q] + wj]jéjk Zmln

L—(— @
s€No h<k

{ k—h } pIJ"
r m

Proof We first keep ¢ fixed and analyze the conditional expectation E4[W Ciax] when

some job J; € J * achieves the weighted makespan in the schedule of the randomized

approximation scheme. Recall that the value of some job’s weighted completion time

in the subset schedule is less than or equal to the weighted makespan of the same

job subset. Additionally, the weighted makespan in the subset schedule is less than
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or equal to the maximum weighted makespan in all job subset schedules. Thus, this
conditional expectation is less than or equal to the value of the job subset schedule
max,eN, OUTy 4 plus the expected loss caused by the delayed job J; in the gluing
step.

For fixed g, we next analyze the expected delay of some job J; € J. Let J; €
Jk c Jt,q be the corresponding job subset for J; such thatr € Ng and k € W, . The
machines are permuted uniformly at random in the gluing step. Thus, the expected
loss of job J; delay is equal to the average load produced by the previous set of jobs,
ie., U;;(l) Js,q» that completed on the machine that job J; processed. We know that the

expected loss of job delay is %‘7}') if indices A and k fall in different subset W , for
s € Np. The expected loss of job delay is O if indices 4 and k fall in the same subset
Wy, 4 for s € No.

Since we chose ¢ uniformly at random, then the expected value of job delay loss
is equal to the probability that indices / and k lie in different subset W; , for s € No.
By the random choice of g, this probability is equal to % fork —h <T anditis 1
for k — h > T". Thus, we have

k—h h
EWW Cax] < Elmax OUTy g) 4w, 3 min1, _}1’(7)

h<k

]

Theorem 5.3 Fora given0 <y < 1, let T = [%1. Then, the expected value of the
randomized approximation scheme schedule is

E[WCnax] = (14+y)OPT.

Proof Without loss of generality, we also assume that job J; € J k" achieves the
weighted makespan in the randomized approximation scheme schedule, for some
fixed k € N. Based on Theorem 4.5, we have OU T ; < (1 + y) - OUT; 45 for each
q, where OUT; 4, and OUT; 44 are the computed weighted makespan value using
Theorem 4.5 and the optimal value in subset J; 4, respectively. Based on Lemma 5.1,
we have maxgen, OUT; g« < OPT. Thus

Emax OUT; ;] < (1+y)-OPT.
SENQ

In the last part of (2), we sum 4 for a fixed k. Note that for k € N, we have

, k—1
Wjjegk =V

For fixed k € N, we divide h(h < k) into two partial sums Sum| + Sumy. The first
partial Sum is h = k — 1 and it is bounded by

1 h
m
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The second partial Sum, is k > h + 2. In this case we simply set min{l, %} to 1
and it is bounded by

h
Sumy < ) A P h o Y ytorr <Y _opr.
m 1—y
h=<k—=2 heN

We sum these two partial sums, i.e. Sum| + Sumy, then the expected value of the
randomized approximation scheme schedule is

o k—h p(T"
EIW Cax] = Elmax OUT; g1+ wj e qn ) min{l, ——=} = —

m
h<k

<({+2y+ IL)OPT <(1+¢)OPT.
-V
The second inequality follows from y = % and " = (%1. O

6 Conclusion

In this paper, we consider problem P ||W Cpax. We firstdesigna (2— %)-approximation
algorithm for this problem. Then, we design an EPTAS and an FPTAS for the problem
with a constant type of weight. Finally, based on the above approximation schemes,
we propose a randomized EPTAS for the problem, and a randomized FPTAS for the
special case when m is fixed. Moreover, it is also interesting to consider the online or
semi-online versions of this problem. Finally, we will consider designing an EPTAS
for this problem in the future.
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