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Abstract
A (k, g)-graph is a k-regular graph of girth g. Given k ≥ 2 and g ≥ 3, (k, g)-graphs
of infinitely many orders are known to exist and the problem of finding a (k, g)-graph
of the smallest possible order is known as the Cage Problem. The aim of our paper
is to develop systematic (programmable) ways for lowering the orders of existing
(k, g)-graphs, while preserving their regularity and girth. Such methods, in analogy
with the previously used excision, may have the potential for constructing smaller
(k, g)-graphs from current smallest examples—record holders—some of which have
not been improved in years. In addition, we consider constructions that preserve the
regularity, the girth and the order of the considered graphs, but alter the graphs enough
to possibly make them suitable for the application of our order decreasing methods.
We include a detailed discussion of several specific parameter cases for which several
non-isomorphic smallest examples are known to exist, and address the question of
the distance between these non-isomorphic examples based on the number of changes
required to move from one example to another.
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1 Basic concepts

In accordance with the survey paper (Exoo and Jajcay 2008), a k-regular graph G of
girth g will be referred to as a (k, g)-graph. If the order of such graph is the smallest
possible for a given pair k and g, we call it a (k, g)-cage and denote its order by
n(k, g). In the 1960’s, Erdős and Sachs (1963) and Sachs (1963) proved the existence
of infinitely many (k, g)-graphs for all parameter pairs k ≥ 2 and g ≥ 3. Nevertheless,
the order of (k, g)-cages has been determined only for a very limited set of parameters
(Exoo and Jajcay 2008).

The best known universal lower bound on the order of (k, g)-graphs (and therefore
also for the order n(k, g) of (k, g)-cages) is theMoore bound:

n(k, g) ≥ M(k, g) =
{
1 + k + k(k − 1) + · · · + k(k − 1)(g−3)/2, if g is odd,

2(1 + (k − 1) + · · · + (k − 1)(g−2)/2), if g is even.

(1)

Graphs whose orders equal the Moore bound are called Moore graphs, and exist
only for very limited sets of parameter pairs. They are known to exist if and only if

• k = 2 and g ≥ 3: cycles;
• g = 3 and k ≥ 2: complete graphs;
• g = 4 and k ≥ 2: complete bipartite graphs;
• g = 5 and k = 2, 3, 7: the 5-cycle, the Petersen graph, the Hoffman-Singleton
graph;

• g = 6, 8 or 12: symmetric generalized n-gons;

with the existence of the (57, 5)-graph of order matching the Moore bound still
unresolved (Bannai and Ito 1973; Damerell 1973; Exoo and Jajcay 2008).

Outside the above cases, the obvious lower bound for the order of a (k, g)-cage is
the value of the Moore bound plus one, M(k, g)+ 1, when k is even, and the value of
the Moore bound plus two, M(k, g) + 2, when k is odd.

The difference between the order of a (k, g)-graph G and the correspondingMoore
boundM(k, g) is called the excess ofG. It is almost universally believed that the excess
of the majority of cages is significantly bigger than 2. No unified opinion appears to
exist on whether the excess of cages can be arbitrarily large.

The focus of our paper is on constructive upper bounds on the orders n(k, g). Since
the order of any (k, g)-graph G provides such upper bound, any construction resulting
in small (k, g)-graphs is of interest, and the smallest currently known (k, g)-graphs
are collected in Exoo and Jajcay (2008), where they are referred to as record holders.
Consulting (Exoo and Jajcay 2008), it is easy to observe that the difference between
M(k, g) and the order of the smallest known (k, g)-graph grows rather quickly (with
regard to both k and g). Even for such relatively small case as (3, 11), the Moore
bound is M(3, 11) = 94 while the actual order of the cage is n(3, 11) = 112 (which
yields the excess of e = 18). Comparing the orders of trivalent records holders of
girth ≥ 11 with the corresponding Moore bounds reveals a very quick growth of the
corresponding excesses. At the same time, some of the orders of the record holding
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graphs have not changed for a number of years (most notoriously the case (3, 13)), and
thus even decreasing their orders by 1 or 2would bring in a long-awaited improvement.

In Exoo and Jajcay (2008), methods for removing vertices from existing (k, g)-
graphs are generally called excisions, and methods proposed in our paper also fall
into this category. The main difference between our methods and the previously used
excision methods lies in that, based on the properties of the vertices to be removed
from the original graph, we only remove vertices when we positively know that the
resulting graph will have the very same parameters as the original. In comparison,
the usual ways of applying excisions rely on trying many different choices of sets of
vertices to be removed, subsequently checking the properties of the resulting graphs,
and keeping only those choices that result in a new graph with the same parameters as
the original (if such choices are found). Even though the methods we propose result
in removing at most two vertices at a time, they may be repeatedly applied to different
parts of the starter graph. In addition, they may produce results in extreme cases where
even removing a single vertex would result in finding a new record holder. Studying
this type of excisions also contributes to our understanding of cages, which are by
definition graphs whose orders cannot be lowered by any type of excision without
simultaneously changing their parameters. In addition, as pointed out by one of our
referees, techniques presented in our paper could (and should) also be considered
when constructing graphs that can be viewed as generalizations of cages, namely,
minimal graphs of prescribed girth and possessing vertices of two distinct degrees
(called biregular cages (Boben et al. 2015; Exoo and Jajcay 2016; Araujo-Pardo et al.
2016)) or minimal edge-girth-regular graphs which are minimal k-regular graphs in
which each edge is contained in the same number of girth cycles (Jajcay et al. 2018;
Zavrtanik Drglin et al. 2021).

The main motivation for the present paper is Jajcay and Raiman (2021) that
addressed the opposing problem of increasing the number of vertices in a given (k, g)-
graph without changing the parameters (k, g). The paper introduced several methods
for enlarging small (k, g)-graphs. In the present paper we propose to reverse these
techniques and introduce methods for shrinking known (k, g)-graphs. In essence, we
propose to look for patterns that may be ‘the result of vertices added’, and reverse the
operation by removing them.

In the next paragraph, we choose to include just one of the results from Jajcay and
Raiman (2021); meant to serve as an example. However, all vertex removal techniques
presented in our paper can be viewed as reversals of additions from Jajcay and Raiman
(2021).

Theorem 1.1 (Jajcay and Raiman (2021)) Let G be a (3, g)-graph of order n. If G
contains at least two edges of distance at least g − 3, then there exists a (3, g)-graph
G ′ of order n + 2.

Repeated applications of the construction used in the proof of Theorem 1.1 lead to
the following result:

Theorem 1.2 (Raiman (2018))Let G be a (3, g)-graph. If G is of order at least 132
g− 4

3 ,
then there exists a (3, g)-graph of any greater even order.
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2 Constructions decreasing the orders of existing (k,g)-graphs

In this section, we present techniques for removing vertices and edges from (k, g)-
graphswhile preserving their degree k ≥ 3 and girth g ≥ 5 (the remaining possibilities
(2, g), (k, 3), (k, 4) were covered in Jajcay and Raiman (2021)).

Construction 2.1 Let G be a (2k + 1)-regular graph of order n. Construct the graph
G\{u, v} by removing two adjacent vertices u, v together with all their incident edges.
In the graph G\{u, v}, divide the former neighbors of u into k pairs and divide the
former neighbors of v into k pairs, and subsequently join the paired vertices by new
edges.

It is easy to see that Construction 2.1 results in a graph G ′ which is still (2k +
1)-regular and of order n − 2.

Theorem 2.2 Let k ≥ 1, g ≥ 5, and let G be a (2k + 1, g)-graph of order n. Suppose
that G contains two adjacent vertices u and v having the property that the neighbors
u1, u2, . . . , u2k of u different from v, can be divided into pairs ui , ui+k , 1 ≤ i ≤ k,
which are not contained together in any g-cycle of G, and the neighbors v1, v2, . . . , v2k
of v different from u, can also be divided into pairs vi , vi+k , 1 ≤ i ≤ k, not contained
together in any g-cycle.

Then, applying Construction 2.1 to G, the vertices u and v, and the pairs of vertices
ui , ui+k , vi , vi+k , 1 ≤ i ≤ k, results in G ′ that is (2k + 1)-regular of girth g′ ≥ g and
order n − 2.

Proof Let G ′ be the graph obtained from G by removing the vertices u and v and
their incident edges and introducing the edges {ui , ui+k}, {vi , vi+k}, 1 ≤ i ≤ k. Since
the pairs ui , ui+k , vi , vi+k are not contained in shared g-cycles in G, their distance
in G\{u, v} is at least (g − 1): Should their distance be shorter, G would contain a
path joining ui , ui+k (resp. vi , vi+k) not containing the edges {ui , u}, {u, ui+k} (resp.
{vi , v}, {v, vi+k}), while attaching this path to these edges would result in a cycle of
length strictly smaller than (g − 1)+ 2 = g + 1 in G; contradicting the choice of the
pairs ui , ui+k (vi , vi+k). This observation implies that any cycle in G ′ containing at
least one of the edges {ui , ui+k} {vi , vi+k}, 1 ≤ i ≤ k, is of length at least g (using
essentially the same argument as above while replacing the ‘new’ edge by the 2-path
{ui , u}, {u, ui+k} or {vi , v}, {v, vi+k}). Furthermore, any cycle in G ′ not containing
at least one of the edges {ui , ui+k}, {vi , vi+k}, 1 ≤ i ≤ k, consists entirely of edges
from G, and hence is of length at least g. Thus G ′ contains two fewer vertices than G,
has no cycles of length less than g and all the vertices of G ′ are of degree (2k + 1).
The assertion of the theorem follows. ��
Example 2.3 Wedemonstrate the construction fromTheorem2.2 in Fig. 1 starting from
a (3, 5)-graph G of order 12. It contains two vertices u, v whose neighbors u1, u2 and
v1, v2 are not contained in any 5-cycle in G. Removing the vertices u, v and their
incident edges and connecting the neighbors u1, u2 of u and the neighbors v1, v2 of
v results in the Petersen graph. Since we know that the Petersen graph is the smallest
possible (3, 5)-graph, we stand no chance of another vertex removal (i.e., Petersen
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Fig. 1 The (3, 5)-graph at the
top can be reduced to the
Petersen graph by deleting a pair
of antipodal vertices, and joining
pairs of vertices that were
adjacent to the deleted vertices

cannot possibly contain a pair of adjacent vertices whose neighbors are not contained
in a 5-cycle.) In fact, even without referring to the fact that a Moore graph is a smallest
(k, g)-graph, it is easy to see that any two neighbors of a vertex in a Moore graph of
odd girth must be contained in a shared g-cycle.

In our next construction, we consider the case of even degree.
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Construction 2.4 Let G be a 2k-regular graph of order n. Construct the graph G\{u}
by removing a vertex u and its incident edges. In the graph G\{u}, divide the former
neighbors of u into k pairs and subsequently join the paired vertices by new edges.

Once again, it is easy to see that this process results in a graph G ′′ which is (2k)-
regular of order n − 1. We use Construction 2.4 in an analogous way to Theorem 2.2.

Theorem 2.5 Let k ≥ 2, g ≥ 5, and let G be a (2k, g)-graph of order n. Suppose
that G contains a vertex u which has the property that we can divide the neighbors
u1, u2, . . . , u2k of u into pairs ui , ui+k , 1 ≤ i ≤ k, which are not contained together in
any cycle of length g. Then, applying Construction 2.4 to G, u, and the pairs ui , ui+k ,
1 ≤ i ≤ k, results in a (2k, g′)-graph G ′′ of girth g′ ≥ g and order n − 1.

Proof Along the lines of the previous proof, no cycle containing any of the edges
{ui , ui+k} in G ′′ can be of length shorter than g. The cycles in G ′′ not containing any
of the edges {ui , ui+k} consist of edges from G and as such are of length at least g.
This yields that G ′′ is of girth at least g. We already know that G ′′ is 2k-regular and
contains one less vertex than G. ��
Example 2.6 This time, we start with a (4, 5)-graph G of order 20 pictured on the left
side of Fig. 2. It contains a vertex u whose four neighbors can be divided into the pairs
u1, u3 and u2, u4 which are not contained in a shared 5-cycle. Removing u and its
incident edges and introducing the edges {u1, u3} and {u2, u4} results in the Robertson
graph; the smallest possible (4, 5)-graph.

3 Constructions that do not decrease the orders of the graphs

As already observed in Sect. 1, the methods discussed in the previous section fall into
the general class of excisions (Exoo and Jajcay 2008). Excisions are used to remove
vertices and edges from existing (k, g)-graphs. More precisely, if G is a (k, g)-graph
and H is a subgraph of G with degree set {1, k}, removing the vertices of H whose
degree is k together with their adjacent edges leaves a subgraph of G containing
vertices of degree k and k − 1. In the case k = 3, one can suppress the resulting
vertices of degree 2. For larger values of k, the final step involves pairing the degree
(k−1) vertices and joining them with edges. The goal of excision is to find subgraphs
H whose removal leaves a graph whose girth is at least g−1 (Exoo and Jajcay 2008).
This method has been essential for finding the (3, 11)-cage and a number of records
listed in Exoo and Jajcay (2008).

The vertex removal methods presented in our paper are excisions of the one-vertex
K1 or one-edge K2 from a (k, g)-graph G with the additional conditions guaranteeing
that the resulting graph is still a (k, g)-graph. Just like all excisions, our methods
cannot (successfully) be applied just to any (k, g)-graph. For example, they cannot be
successful when attempted on cages. Moreover, even when considering a (k, g)-graph
whose order is larger than the order of the corresponding record holder, the graph
still may not contain a subgraph required by one of our theorems. For example, our
methods cannot be applied to the Möbius-Cantor graph, a (3, 6)-graph of order 16,
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Fig. 2 Reducing a (4, 5)-graph
of order 20 to a (4, 5)-graph of
order 19. In both graphs, the
apparently isolated red, blue, and
green vertices are adjacent to all
vertices of the same color on the
12-cycle (Color figure online)

even thoughwe know a (3, 6)-graph of order 14 exists. Similarly, there is awell-known
gap in the series of orders between the (3, 8)-graphs of order 30 and 34, which means
that our methods cannot be applied to a (3, 8)-graph of order 34.

We have tested all the known record graphs listed in the tables presented in Exoo
and Jajcay (2008) with the aim of finding a subtree that could be excised and no such
case has been found for subtrees of orders up to 12 vertices. Thus, Constructions 2.1
and 2.4 cannot be applied to any of the known record holders from Exoo and Jajcay
(2008). Even though this might be viewed as a failure, it is important to note that the
record holders from Exoo and Jajcay (2008) are generally not unique with respect to
their degree, girth and order. Thus, even though Constructions 2.1 and 2.4 fail when
applied to the listed record holders, they may still be successful when applied to other
graphs with the same parameters. One way to obtain families of such graphs is to alter
the record holders in a way that does not change their degree, girth, and their order.

Our next construction is an example of one such construction. We denote the
distance between the vertices u and v in G by dG(u, v).
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Construction 3.1 Let k ≥ 3, g ≥ 5, and let G be a (k, g)-graph of order n. Let u be
a vertex of G with neighbors u1, u2, and let v,w be a pair of adjacent vertices which
are not neighbors of u. Denote the graph obtained from G by removing the edges
{u, u1}, {u, u2}, {v,w}, and introducing the edges {u1, u2}, {u, v}, {u, w} by G ′′′.

Construction 3.1 yields the following result.

Theorem 3.2 Let k ≥ 3, g ≥ 5, and let G be a (k, g)-graph of order n. Suppose that
G contains vertices u, v and w such that dG(u, v), dG(u, w) ≥ g − 1 and u has two
neighbors u1 and u2 which are not contained in any g-cycle of G. Then, applying
Construction 3.1 to G and the vertices u, u1, u2, v, w results in a (k, g)-graph G ′′′ of
order n.

Proof It is easy to see that G ′′′ is a k-regular graph of order n again. Let H be the
auxiliary graph obtained from G by removing the edges {u, u1}, {u, u2}, {v,w} and
adding the edge {u1, u2} and let C be a cycle in this graph. If C does contain the edge
{u1, u2}, the length ofC is at least g as otherwise replacing {u1, u2}with {u, u1}, {u, u2}
in C would result in a cycle of length smaller than g + 1 in G; which contradicts the
choice of u, u1 and u2. If C does not contain the edge {u1, u2}, it is a cycle from G
and as such is of length at least g. Hence, the girth of the auxiliary graph H is at
least g. Next, consider the length of the cycles in G ′′′. Cycles not containing either
of the edges {u, v}, {u, w} are cycles in H and are therefore of length at least g.
Any cycle containing exactly one of the edges {u, v}, {u, w} must be of length at
least g as otherwise there would exist a path in G (the part of the cycle obtained by
removing the ‘new’ edge) of length at most g − 2; a contradiction with the condition
dG(u, v), dG(u, w) ≥ g − 1. Finally, should there exist a cycle containing both edges
{u, v}, {u, w} of length less than g, G ′′′ would have to contain a path between v and
w of length less than g − 2 not using the edges {u, v}, {u, w} (and, of course, neither
the edge {v,w} that has been removed). Note that this path cannot include the vertices
u1, u2 because their distance from both v and w in G is at least g − 2, and hence they
cannot lie on a path of length g − 2 connecting these two vertices not using the edges
{u, v}, {u, w}. Thus, should there exist a cycle containing both edges {u, v}, {u, w} of
length less than g, G ′′′ would have to contain a path between v and w of length less
than g − 2 not using the new edges {u, v}, {u, w}, {u1, u2}, i.e., consisting entirely of
edges from G different from the edge {v,w}. This path, however, together with the
edge {v,w} would form a cycle of length less than g in G. We conclude that the girth
of G ′′′ is at least g. ��

ApplyingConstruction 3.1 repeatedly to the record holdersmay result in new (k, g)-
graphs of the same order to which one could possibly apply Construction 2.1 or 2.4
and thereby obtain a (k, g)-graph of order smaller than the original record holder.

Just like we pointed out in Example 2.3, any two neighbors of a vertex in an odd
girth Moore graph are contained in a shared g-cycle. Thus, Construction 3.1 cannot
be applied to an odd girth Moore graph even though it does not decrease its order.
Interestingly, even though this observation cannot be used to prove the uniqueness
of odd girth Moore graphs, all odd girth Moore graphs are known to be unique with
regard to their degree and girth. This is, however, not the case for Moore graphs of
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Fig. 3 The two cubic
(3, 5)-graphs of order 12 are
shown above. Their distance is 4
as can be seen by adding either
the red edges and omitting the
green edges, or vice versa (Color
figure online)

girths 6, 8 or 12; whose existence is tied to the existence of generalized polygons.
We will briefly return to this observation at the end of our article where we discuss
computational experiments.

4 Distance between graphs

The graph G ′′′ discussed in the previous section is obtained from the original graph
G by removing and adding some edges (while keeping the number of vertices
unchanged). Even though it is obvious that removing or adding even a single edge
may result in a graph with radically different properties (consider, for example, the
cycle), it still feels meaningful to view graphs which can be obtained one from the
other via the removal and/or addition of just a few edges as ‘similar’ or ‘close’. This
is the idea behind the definition of the distance between graphs based on the minimal
total number of edges removed and/or added that we consider next.

Two graphs G1 and G2 of order n are said to be of distance d if it is possible
to remove d1 and add d2 edges to G1 so that d = d1 + d2, the resulting graph is
isomorphic to G2, and d is the smallest total number of edges to be removed and
added to G1 with the resulting graph isomorphic to G2 (see, for example, Fig. 3).

It is not hard to observe that the above distance is well defined for any pair of
graphs of the same order. Also, it satisfies all three of the usual properties of a metric.
The distance of G from itself is indeed 0, and the distance from G1 to G2 is the
same as the distance from G2 to G1. Finally, the distance between graphs satisfies
the triangle inequality. Namely, for any three graphs G1,G2 and G3 of order n, the
distance between G1 and G2 cannot exceed the sum of distances between G1 and G3
and between G3 and G2. This is due to the fact that one can obtain G2 from G1 by
first making G1 into G3 and then making G3 into G2. We feel obliged to point out
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that this is not the only way to define distance between a pair of graphs. Alternative
definitions can be found, for example, in Goddard and Swart (1996).

Employing our definition, we quickly see that the distance between G and G ′′′
discussed in the previous section is at most 3 + 3 = 6, as G ′′′ is obtained from G
by deleting 3 edges and introducing 3 new edges. We stress that this distance is at
most 6, since it is conceivable that there might exist (other) d1 edges in G which can
be removed and d2 edges that can be added so that d1 + d2 < 6 and the resulting
graph is also isomorphic to G ′′′. Even more extremely, G ′′′ itself might turn out to be
isomorphic G, in which case the distance between G and G ′′′ is by definition 0. Note
that the distance between two graphs of the same order and size (number of edges)
must be even, and thus, the distance between G and G ′′′ may be one of the numbers
0, 2, 4 or 6.

Even though the distance between graphs defined above feels natural, determining
the distance between two given graphs is computationally at least as hard as determin-
ing whether the two graphs are isomorphic. Clearly, given an instance of two graphs
G1 and G2 of equal orders and sizes m1 and m2, respectively, their distance is at most
m1 +m2 and it can be determined by considering all subsets of the edge set E(G1) of
size k1 ≤ m1 and all subsets of the set of non-edges of G1 of size k2 ≤ m2 satisfying
the property m1 − k1 + k2 = m2. For each such pair of subsets, one can remove the
selected edges and add the selected non-edges, and check whether the resulting graph
is isomorphic to G2. This approach, if applied with no further refinements, is clearly
exponential in m1 +m2, and since isomorphism checking is not known to be linear in
the size of the considered graphs, even certificate verification is not obviously polyno-
mial, i.e., we do not know how to check effectivelywhether a given subset of edges and
a subset of non-edges to be removed and added to G1 results in a graph isomorphic
to G2. This makes the general problem of calculating graph distances extremely time
consuming.

5 Distances between cages

Recall that we have introduced the concept of graph distance to examine the possibil-
ities to produce and use large families of (k, g)-graphs with the aim of finding those
that admit application of order decreasing excisions. In this section, we investigate
the concept of distance applied specifically to cages. All the ‘definite’ claims made
in this section are based on extensive computer calculations, i.e., if we claim that the
distance between two specific graphs is a specific number, we have verified that there
is no smaller number of edge removals and additions that would produce one of the
graphs from the other.

Before considering the specific examples, let us make an easy observation. The
distance between two non-isomorphic k-regular graphs of the same order must be at
least 4. This is a consequence of the fact that removing a single edge in a k-regular
graph yields a unique pair of vertices of degree k−1, which are in turn the only vertices
one could add an edge to if the resulting graph is to be k-regular again; resulting in the
same graph again. Thus, to obtain two non-isomorphic k-regular graphs, one needs to
remove at least two edges and replace them with at least two non-edges.
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Example 5.1 When considering cubic graphs, girth 9 is the smallest girth for which
there exists more than one (3, 9)-cage. Somewhat surprisingly, there are altogether 18
different (3, 9)-cages; all of themof order 58 (Coolsaet et al. 2023).Moreover, since the
orders of their automorphism groups range from 1 to 24, the structures of these cages
are necessarily quite different. It is therefore interesting to determine how far apart
are these graphs when it comes to applying methods similar to Construction 3.1. Note
that no two graphs among the (3, 9)-cages are connected via Construction 3.1, i.e.,
there is no pair among these graphs where one of the graphs is obtained by removing
and adding three edges to the other as described in Construction 3.1.

In view of our remark preceding this example, the minimum distance between any
two of these cages is at least 4, and the closest pair among all (3, 9)-cages is indeed
of distance 4. The first cage contains four vertices u1, u2, u3, u4 that form a path of
length 3 with edges {u1, u2}, {u2, u3}, and {u3, u4}. Deleting the edges {u1, u2} and
{u3, u4}, and adding edges {u1, u3} and {u2, u4} produces the second cage. There is
also another pair at distance 4 that uses two paths of length 3 of distance 3 apart. To
mention just one more possible switch, there is a 6-cycle switch between one pair of
graphs; with each graph containing three alternating disjoint edges of such 6-cycle.
Thus, there exist two (3, 9)-cages of distance 6.

Table 1 included at the end of this section contains the distances between all eighteen
(3, 9)-cages. The graphs are numbered as in Coolsaet et al. (2023).

Clearly, any switch between two graphs in the table might be viewed as a potential
candidate for another construction preserving the degree k, girth g, and the order of
a (k, g)-graph; along the same lines as those we explored with respect to Construc-
tion 3.1. This is just one more reason why we find investigating the distances between
existing cages worthwhile.

To put all the distances listed in the table in perspective, let us observe that the
total number of edges in the (3, 9)-cages is 58·3

2 = 87. Thus the furthest pairs we have
found require the removal and replacement of more than a third of all the edges (30
out of 87).

Example 5.2 For comparison, there are three (3, 10)-cages of order 70 and size 105.
Their distances are 6, 12 and 18; quite small when compared to the previous example.

Example 5.3 As our last example, consider the four (5, 5)-cages of order 30 and size
75. Their distances range from 10 to 30, and all triangle inequalities are strict.

6 Concluding remarks

All the above computational experiments proceeded by selecting edges to be removed
and added, and checking whether the resulting graph still had the same girth. Finding
sufficient conditions similar to those included in Theorem 3.2 that would guarantee
that these transformations preserve both the degree and the girth is certainly not hard:
the distances between vertices should be g − 1 after the first set of edges is removed.
Unfortunately, saying something deeper is probably very hard; possibly pertaining to
using graph automorphisms.
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We tried all possible replacements like the two mentioned in the previous section
(the 4-path and the 6-cycle replacement), and the programs tried many many millions
of them. In relatively small cases (up to the (3, 13) case at 270 vertices which is the
first unsettled case for cubic graphs) we tried all possible moves of these types of
up to approximately 20 edges – 10 edges deleted and 10 edges added – and we also
tried many random moves that were larger. The programs worked by removing edges,
computing a new distance matrix, and then looking for replacement edges that did not
violate the girth or degree; updating the distance matrix as new edges were added.

We also did this in the context of finding smaller cage candidates: starting with an
incomplete graph (satisfying the girth conditions, but short a few edges) for which
no edges could be added, then applying one of these replacement moves and trying
to increase the number of edges. In case of the (3,13)-cage search, we got a list of
about 25 million moves, many of which were 4-path and 6-cycle moves (millions
of them), and others were larger, but often multiples of these; for example, double
6-cycle moves, where neither 6-cycle move worked alone. There were also 8-cycle
moves (with alternate edges of the cycle deleted and added), 10-cycle moves, and
unions of cycles.

One interesting question might be to find the distances among the incidence graphs
for some of the projective planes (cases where there is more than one plane, e.g., orders
8 and 9; the (9, 6)- and (10, 6)-cages). Geometric versions of this might be known
in the context of adding and deleting lines from the plane, however, looking at this
problem from the perspective of removing and adding edges in the incidence graphs
may lead to further insights, and potentially even to constructions of new projective
planes.
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