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Abstract
LetG be a graphwith vertex set V and a subset D ⊆ V . D is a total dominating set ofG
if every vertex in V is adjacent to a vertex in D. D is a restrained dominating set ofG if
every vertex in V \D is adjacent to a vertex in D and another vertex in V \D. D is a total
restrained dominating set if D is both a total dominating set and a restrained dominat-
ing set. The minimum cardinality of total dominating sets (resp. restrained dominating
sets, total restrained dominating sets) ofG is called the total domination number (resp.
restrained domination number, total restrained domination number) of G, denoted by
γt (G) (resp. γr (G), γtr (G)). The MINIMUM TOTAL RESTRAINED DOMINATION (MTRD)
problem for a graph G is to find a total restrained dominating set of minimum car-
dinality of G. The TOTAL RESTRAINED DOMINATION DECISION (TRDD) problem is the
decision version of the MTRD problem. In this paper, firstly, we show that the TRDD
problem is NP-complete for undirected path graphs, circle graphs, S-CB graphs and
C-CB graphs, respectively, and that, for a S-CB graph or C-CB graph with n vertices,
the MTRD problem cannot be approximated within a factor of (1 − ε)lnn for any
ε > 0 unless N P ⊆ DT IME(nO(loglogn)). Secondly, for a graph G, we prove that
the problem of decidingwhether γr (G) = γtr (G) is NP-hard evenwhenG is restricted
to planar graphs with maximum degree at most 4, and that the problem of deciding
whether γt (G) = γtr (G) is NP-hard even when G is restricted to planar bipartite
graphs with maximum degree at most 5. Thirdly, we show that the MTRD problem is
APX-complete for bipartite graphswithmaximumdegree atmost 4. Finally, we design
a linear-time algorithm for solving the MTRD problem for generalized series–parallel
graphs.
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1 Introduction

Domination is a well-researched topic in graph theory, the literature on this subject is
well described in two books by Haynes et al. (1998a, b). And numerous researchers
have thoroughly investigated the variations of domination in graphs.

Let G be a graph with vertex set V and edge set E . For vertex v ∈ V , the open
neighborhood NG(v) of v is the set {u ∈ V |uv ∈ E}, its cardinality |NG(v)| is called
the degree of v, and the closed neighborhood of v is the set NG [v] = N (v) ∪ {v}.
Moreover, when no confusion can arise, NG(v) and NG [v] are simplified by N (v) and
N [v], respectively. The maximum degree of G will be denoted by �(G). A leaf of
G is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf. For a subset
D ⊆ V . D is a total dominating set (TDS), introduced by Cockayne et al. (1980), of
G if every vertex in V is adjacent to a vertex in D. D is a restrained dominating set
(RDS), introduced by Domke et al. (1999), of G if every vertex in V \ D is adjacent
to a vertex in D and another vertex in V \ D. D is a total restrained dominating set
(TRDS), introduced byMa et al. (2005), ofG if every vertex in V is adjacent to a vertex
in D and every vertex in V \ D is adjacent to a vertex in V \ D. Obviously, a TRDS
is exactly both a TDS and a RDS. By the definitions we easily get two observations:

Observation 1.1 Each RDS in graph G includes all its leaf vertices.

Observation 1.2 Each TRDS in graph G contains all its leaf vertices and support
vertices.

Theminimum cardinality of total dominating sets (resp. restrained dominating sets,
total restrained dominating sets) of G is called the total domination number (resp.
restrained domination number, total restrained domination number) of G, denoted by
γt (G) (resp. γr (G), γtr (G)). The MINIMUM TOTAL RESTRAINED DOMINATION (MTRD)
problem (resp. the MINIMUM TOTAL DOMINATION (MTD) problem) for a graph G is to
find a TRDS (resp. a TDS) of minimum cardinality of G. Given a positive integer k
and a graph G, the TOTAL RESTRAINED DOMINATION DECISION (TRDD) problem (resp.
the TOTAL DOMINATION DECISION (TDD) problem) is to decide whether G has a TRDS
(resp. a TDS) of cardinality at most k. For detail research on total domination, see a
survey (Henning 2009).

Obviously, for a graph G with no isolated vertices, γtr (G) ≥ γt (G) and γtr (G) ≥
γr (G). Raczek and Cyman (2008) characterized the trees T with γtr (T ) = γt (T ) and
Raczek (2007) characterized the trees T with γtr (T ) = γr (T ). Ma et al. (2005) proved
that for bipartite graphs and chordal graphs, the TRDD problem is NP-complete. Chen
et al. (2012) also proved that the TRDD problem is NP-complete for planar graphs
and split graphs, respectively.

G is called an undirected path graph (circle graph) if there exists direct mapping
between V and a family of paths of a tree (a set of chords of a circle) such that two
vertices are adjacent if and only if the corresponding paths (chords) intersect. It is well
known that undirected path graph is a subclass of chordal graphs.

A comb is a tree obtained from a path P (called backbone) by joining a pendant leaf
(called a tooth) to each vertex of P . A star is defined as a treewith at most one non-leaf.
A bipartite graph G with bipartition (X ,Y ) (roles of X and Y can be exchanged) is
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called tree-convex, if there exists a tree T with vertex set X such that for every vertex
y ∈ Y , the neighborhood of y induces a subtree of T . When T is a comb (resp. a
star), then G is called comb-convex (resp. star-convex) bipartite graph. We abbreviate
the two bipartite graphs above as C-CB graph and S-CB graph, respectively. Bao
and Zhang (2012) demonstrated that the construction of the associated tree T can be
completed in linear time, and tree-convex bipartite graphs can be efficiently identified
in linear time.

As mentioned in Ma et al. (2005), an application of total restrained domination
is that of guards and inmates. Each vertex in the TRDS represents a guard and each
vertex not in theTRDS represents a inmate. For supervise inmates and ensure the safety
of guards, each prisoner and each guard must be seen by some guards; However, to
safeguard the rights of inmates, it is necessary to ensure that each innate is observed
by another inmate; To ensure the lowest possible cost, it is preferable to deploy the
fewest number of guards feasible.

The present paper is organized as follows. In Sect. 2, we prove that the TRDD
problem is NP-complete for undirected path graphs, circle graphs, S-CB graphs and
C-CB graphs, respectively, and that, for a S-CB graph or C-CB graph with n vertices,
the MTRD problem cannot be approximated within a factor of (1 − ε)lnn for any
ε > 0 unless N P ⊆ DT IME(nO(loglogn)). Next, for a graph G, we prove that the
problem of deciding whether γr (G) = γtr (G) is NP-hard even when G is restricted
to planar graphs with maximum degree at most 4, and that the problem of deciding
whether γt (G) = γtr (G) is NP-hard even when G is restricted to planar bipartite
graphs with maximum degree at most 5. Finally, we show that the MTRD problem is
APX-complete for bipartite graphs with maximum degree at most 4. In Sect. 3, we
design a linear-time algorithm for solving this problem for generalized series–parallel
graphs.

2 Hardness results

In this section, we firstly show that the TRDD problem is NP-complete for undirected
path graphs, circle graphs, S-CB graphs and C-CB graphs, respectively. Secondly,
we discuss the lower bounds of approximation ratio for the MTRD problem in S-
CB graphs and C-CB graphs, and the upper bound of approximation ratio for the
MTRD problem in general graphs. Thirdly, we show that for a planar graph G with
�(G) ≤ 4, it is NP-hard to decide whether γr (G) = γtr (G), and that it is NP-hard to
decide whether γt (G) = γtr (G), even if G is a planar bipartite graph with �(G) ≤ 5.
Finally, we show that the MTRD problem is APX-complete for bipartite graphs with
maximum degree at most 4.

2.1 NP-completeness for the TRDD problem

To establish the NP-completeness of a problem P , it is enough to show that P belongs
to the class NP and that a knownNP-complete problem is reducible to P in polynomial
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Fig. 1 Illustrations for Theorem 2.1: G and G1 constructed from G

time. Here, We use the TDD problem, which is already known to be NP-complete for
undirected path graphs (Laskar et al. 1984), circle graphs (Keil 1993), respectively.

Now we present a reduction from the TDD problem to the TRDD problem as fol-
lows. LetG = (V , E) be a graphwith V = {v1, v2, . . . , vn}, without isolated vertices,
we construct a new graph G1 = (V1, E1), where V1 = V ∪ {ai , bi , ci , di , ei , fi |1 ≤
i ≤ n} and E1 = E ∪ {vi ai , aibi , bi ci , ci di , ai ei , ei fi | 1 ≤ i ≤ n} (see Fig. 1).
Theorem 2.1 Let G and G1 be graphs defined as above. Then G has a TDS of size at
most k if and only if G1 has a TRDS of size at most k + 4n.

Proof Sufficiency. Let D be a TDS of G with |D| ≤ k. It is obvious that D1 =
D ∪ {ci , di , fi , ei |1 ≤ i ≤ n} is a TRDS of G1 with |D1| ≤ k + 4n.

Necessity. Let D′ be a TRDS with |D′| ≤ k + 4n in G1 such that |D′ ∩ {ai , bi |1 ≤
i ≤ n}| is as small as possible. For 1 ≤ i ≤ n, since di , fi are leaves of G1,
{ci , di , fi , ei } ⊆ D′ by Observation 1.2. By the choice and definition of D′, either
{ai , bi } ⊆ D′ or {ai , bi } ∩ D′ = ∅. But we have

Claim. D′ ∩ {ai , bi } = ∅ for 1 ≤ i ≤ n.
Let I = {i |ai , bi ∈ D′} and D′′ = D′ ∪ ⋃

i∈I {vi , vi ′ }\
⋃

i∈I {ai , bi }, where vi ′ ∈
NG1(vi ) ∩ V . Now we show that D′′ is a TRDS of G1. For any 1 ≤ i ≤ n, ai
is adjacent to ei ∈ D′′ and bi is adjacent to ci ∈ D′′. Consider any vi ∈ V . If
i ∈ I , then there is vi ′ ∈ NG1(vi ) ∩ V such that vi ′ ∈ D′′. Otherwise i /∈ I , then
there is v j ∈ NG1(vi ) ∩ V ∩ D′. By the construction of D′′, v j ∈ D′′. Any vertex
vi ∈ V \D′′ is adjacent to ai /∈ D′′. Thus D′′ is a TRDS of G1 with |D′′| ≤ |D′| and
D′′ ∩ {ai , bi |1 ≤ i ≤ n} = ∅, a contradiction with the choice of D′.

From Claim and {ci , di , fi , ei } ⊆ D′ for 1 ≤ i ≤ n, it follows immediately that
D′ ∩ V is a TDS with |D′ ∩ V | ≤ k in G. 
�

From definitions of undirected path graphs and circle graphs, the following lemma
emerges.

123



Journal of Combinatorial Optimization (2023) 46 :28 Page 5 of 20 28

Lemma 2.1 Assume that G1 is constructed from a graph G as above, shown in Fig.1.
If G is an undirected path graph or circle graph, then so is G1.

Clearly, the TRDD problem is in NP for undirected path graphs and circle graphs,
respectively. Combined with Theorem 2.1 and Lemma 2.1, the following theorem
emerges, the following theorem emerges.

Theorem 2.2 The TRDD problem is NP-complete for undirected path graphs and
circle graphs, respectively.

2.2 Lower bounds on the approximation ratio

To obtain a lower bound, we give an approximation preserving reduction from the
MINIMUM SET COVER problem.

MINIMUM SET COVER (MSC) problem: Let U be any non-empty set and S be a col-
lection of (non-empty) subsets of U such that ∪S∈S S = U (and (U ,S) is called a set
system). A subcollection S ′ ⊆ S is called a set cover (SC) ofU , if every element ofU
belongs to at least one element of S ′, i.e., ∪S∈S ′ S = U . The MSC problem is finding
the smallest SC for a given set system (U ,S). The SET COVER DECISION problem is to
decide whether U has a SC of cardinality at most k, for a given positive integer k and
a set system (U ,S).

A lower bound of the approximation ratio for the MSC problem has been
investigated in Feige (1998).

Theorem 2.3 (Feige 1998) The MSC problem for the input instance (U ,S) does
not admit a (1 − ε)ln|U |-approximation algorithm for any ε > 0 unless N P ⊆
DT IME(|U |O(loglog|U |)). Furthermore, this inapproximability result holds for the
case when the size of the input collection S is no more than the size of the base set U.

Now, we show that a hardness result for the MTRD problem in S-CB graphs. First,
the characterization of S-CB graphs was given as follows.

Lemma 2.2 (Pandey and Panda 2019) Let G = (X ,Y , E) be a bipartite graph. G is
a S-CB graph if, and only if, there is a vertex v in X, and every vertex in Y is either a
pendant leaf or a neighbor of v.

Theorem 2.4 The MTRD problem for a S-CB graph G with n vertices does not
admit a (1 − ε)lnn-approximation algorithm for any ε > 0 unless N P ⊆
DT IME(nO(loglogn)).

Proof It is sufficient to reduce the MSC problem to the MTRD problem. Let the set
system (U ,S), where U = {u1, u2, . . . , u p} and S = {S1, S2, . . . , Sm}, m ≤ p be
an instance of the MSC problem. We construct the bipartite graph G = (X ,Y , E) as
follows.

1. For ui ∈ U , add a vertex xi in X ; add an additional vertex xp+1 in X ; for S j ∈ S,
add two vertices y j,1, y j,2 in Y .
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Fig. 2 a the S-CB graph and b the C-CB graph constructed from a set system (U ,S), where
U = {u1, u2, u3, u4}, and S = {{u1, u2}, {u2, u3}, {u3, u4}}; (c) the corresponding star and (d) the
corresponding comb, respectively

2. For ui ∈ S j , add edges xi y j,1, xi y j,2 in E ; add {xp+1y j,1, xp+1y j,2|1 ≤ j ≤ m}
in E .

Clearly, in polynomial time, G can be constructed. By the construction of G, xp+1 is
a neighbor of every vertex in Y and further G is a S-CB graph with n = p + 2m + 1
vertices by Lemma 2.2. See Fig. 2a for an example. Then we have

Construction �: Let D be a TRDS of G defined as above. Construct a SC S ′ of U
from D, where S ′ = {S j |y j,1 or y j,2 ∈ D ∩ Y , 1 ≤ j ≤ m} with |S ′| ≤ |U | − 1.

First, we show that S ′ is a SC, i.e., for any 1 ≤ i ≤ p, there exists S j ∈ S ′ such
that ui ∈ S j . By the definition of D, there exists a neighbor y of xi such that y ∈ D.
Since G is bipartite, y = y j,1 or y j,2 for some 1 ≤ j ≤ m, further ui ∈ S j by the
definition ofG and S j ∈ S ′ by the definition ofS ′. Therefore,S ′ is a SC ofU . Note that
|S ′| ≤ |D∩Y |. Thenwe show that |S ′| ≤ |D|−1. Since D is a TRDSof bipartite graph
G = (X ,Y , E), D∩ X �= ∅. Thus |S ′| ≤ |D∩Y | ≤ |D∩ X |+|D∩Y |−1 = |D|−1.

Claim. For a positive integer k, U has a SC of size at most k if and only if G has a
TRDS of size at most k + 1.

Let S ′ be a SC ofU and |S ′| ≤ k. Obviously, the set D = {xp+1, y j,1|S j ∈ S ′} is a
TRDS ofG and |D| ≤ k+1. Conversely, it can be obtained directly fromConstruction
�.

By Claim, if OPTsc is a MSC of U and OPTtrd is a minimum TRDS of G, then
|OPTtrd | = |OPTsc| + 1. Suppose to the contrary that there exists a polynomial
time algorithm, say Algorithm A, to approximate the MTRD problem within a ratio
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of (1− ε)lnn for S-CB graphs with n vertices. Then Algorithm 1 (defined as follows)
constructs a solution for the MSC problem.

Algorithm 1 APPROX-TOTAL-RESTRAINED-DOM-SET(G)

Input: An instance (U ,S).
Output: A SC S ′ of U .

Construct a bipartite graph G = (X , Y , E) from set system (U ,S) as above.
Calculate a TRDS D for graph G by Algorithm A.
Construct a SC S ′ of U by using Construction � from D.
return S ′

Since each step of Algorithm 1 can be accomplished within polynomial time,
Algorithm 1 can be computed in polynomial time. Let l be a positive integer such
that 1

l < ε. If |OPTsc| ≤ l, then OPTsc can be computed in polynomial time.
Next we assume that |OPTsc| > l. If S ′ is a SC of U computed by Algorithm 1,
then |S ′| < |D| ≤ ((1 − ε)lnn)|OPTtrd | = ((1 − ε)lnn)(|OPTsc| + 1) = ((1 −
ε)lnn)(1+ 1

|OPTsc| )|OPTsc| < ((1−ε)lnn)(1+ 1
l )|OPTsc| < ((1−ε2)lnn)|OPTsc|.

Since m ≤ p, we have n = p + 2m + 1 ≤ 4p. Then

|S ′| < ((1 − ε2)lnn)|OPTsc| ≤ ((1 − ε2)ln(4p))

|OPTsc| = (1 − ε2)

(

1 + ln4

lnp

)

(lnp)|OPTsc|.

For sufficiently large p(= |U |), the term 1+ ln4
lnp can be bounded by 1+ ε2. Now we

have

|S ′| < (1 − ε2)

(

1 + ln4

lnp

)

(lnp)|OPTsc| ≤ (1 − ε′)(ln|U |)|OPTsc|,

where ε′ = ε4.
By Theorem 2.3, if the MSC problem can be approximated within (1 − ε′)ln|U |,

then N P ⊆ DT IME(|U |O(loglog|U |)). It follows that if the MTRD problem can be
approximated within(1 − ε)lnn for any ε > 0, then N P ⊆ DT IME(nO(loglogn)).
Hence, the MTRD problem cannot be approximated within (1 − ε)lnn unless N P ⊆
DT IME(nO(loglogn)). 
�
Theorem 2.5 (Karp 1972). The SET COVER DECISION problem is NP-complete.

Clearly, the TRDD problem is in NP for S-CB graphs. Combined Theorem 2.5 with
Claim in Theorem 2.4, we get

Theorem 2.6 The TRDD problem is NP-complete for S-CB graphs.

Next, we show that the hardness result for the MTRD problem in C-CB graphs by
giving the similar proof as in Theorem 2.4, but the construction of the bipartite graph
is different.

Given a set system (U ,S), whereU = {u1, u2, . . . , u p} andS = {S1, S2, . . . , Sm},
m ≤ p, we construct a C-CB graph H = (X ,Y , E) in the following way:
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1. Forui ∈ U , add twovertices xi,1 and xi,2 in X and a vertex y′
i inY ; for S j ∈ S, add a

vertex y j in Y ; Denote by Xk = {xi,k |1 ≤ i ≤ p}, k = 1, 2, Y ′ = {y′
i |1 ≤ i ≤ p}.

2. Add the edge xi,1y′
i , 1 ≤ i ≤ p;

3. If ui ∈ S j , then we add the edge xi,1y j , 1 ≤ j ≤ m;
4. Form a complete bipartite graph between X2 and Y . Note that H can be

constructed in polynomial time. Figure2b shows the construction of the C-
CB graph H from the set system (U ,S), where U = {u1, u2, u3, u4}, and
S = {{u1, u2}, {u2, u3}, {u3, u4}}. It is easy to see that H is a C-CB graph if
X2 is taken as the backbone and X1 is taken as the teeth of the comb. Next,
we give a construction. Construction ��: Let D be a TRDS of H defined
as above, f a mapping from D ∩ Y ′ to S such that, for y′

i ∈ D ∩ Y ′ with
1 ≤ i ≤ p, ui ∈ f (y′

i ). Construct a SC |S ′| ≤ |U | − 1 of U from D by
S ′ = {S j |y j ∈ D, 1 ≤ j ≤ m} ∪ { f (y′

i ) ∈ S|y′
i ∈ D, 1 ≤ i ≤ p}.

Firstly, we show that S ′ is a SC, i.e., for any 1 ≤ i ≤ p, there exists S j ∈ S ′
such that ui ∈ S j . By the definition of D, there exists a neighbor y of xi,1 such
that y ∈ D. Since H is bipartite, either y = y j for some 1 ≤ j ≤ m, or y = y′

i .
If y = y j , then ui ∈ S j by the definition of H and (ui ∈)S j ∈ S ′ by the
definition of S ′. Otherwise, y = y′

i . Then ui ∈ f (y′
i ) by the definition of f and

(ui ∈) f (y′
i ) ∈ S ′ by the definition of S ′. Therefore, S ′ is a SC ofU . Secondly, we

show that |S ′| ≤ |D| − 1. Since D is a TRDS of bipartite graph H = (X ,Y , E),
D ∩ X �= ∅. Thus |S ′| ≤ |D ∩ Y | ≤ |D ∩ X | + |D ∩ Y | − 1 = |D| − 1.

Lemma 2.3 Let (U ,S) be a set system and H the bipartite graph associated with it,
defined as above. Then (U ,S) has a SC of size at most k if and only if H has a TRDS
of size at most k+1. In particular, the size of aMSC of U equals the size of a minimum
TRDS of H minus 1.

Proof Let S ′ be a SC ofU with |S ′| = k. Evidently, the set D = {x1,2}∪{y j |S j ∈ S ′}
is a TRDS of H with |D| = k + 1. Conversely, it can be obtained directly from
Construction ��. 
�

Clearly, the TRDD problem is in NP for C-CB graphs. Combined Theorem 2.5
with Lemma 2.3, we get

Theorem 2.7 The TRDD problem is NP-complete for C-CB graphs.

Similar to Theorem 2.4 and its proof, we have

Theorem 2.8 The MTRD problem for a C-CB graph G with n vertices does not
admit a (1 − ε) lnn-approximation algorithm for any ε > 0 unless N P ⊆
DT IME(nO(loglogn)).

2.3 Upper bound on the approximation ratio

Let G = (V , E) be a graph of maximum degree � with no isolated vertices, D be a
minimum TRDS of G. Since for any v ∈ D has a neighbor in D by the definition of
TRDS, and V = ∪v∈DNG(v), we have |V | = | ∪v∈D NG(v)| ≤ ∑

v∈D |NG(v)| =∑
v∈D dG(v) ≤ ∑

v∈D � = � · |D|. So |V | ≤ � · |D|. It follows that (take the full
vertex set as a TRDS).
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Theorem 2.9 For any graph G = (V , E) with �(G) = �, the minimum TRDS can
be approximated within an approximation ratio of �.

2.4 Hardness results on �r(G) = �tr(G) (resp. �t(G) = �tr(G)) problems for a
graph G

It is evident that, for a graphG without isolated vertices, γr (G) ≤ γtr (G) and γt (G) ≤
γtr (G). A natural question arises: for which graphs does the respective equality hold?
Raczek (2007) characterized the trees T with γr (T ) = γtr (T ) and Raczek and Cyman
(2008) characterized the trees T with γt (T ) = γtr (T ), respectively. In this section,
we show that it is NP-hard to decide whether γr (G) = γtr (G) holds for planar graphs
G with �(G) ≤ 4 and whether γt (G) = γtr (G) holds for planar bipartite graphs G
with �(G) ≤ 5, respectively. Here we use the following NP-complete problem, due
to Dahlhaus et al. (1994), as the reduction.

PLANAR EXACTLY 3-BOUNDED 3-SAT problem: A formula � with variable set X and
clause set C such that, firstly, each variable has exactly three literals with one of them
occurring in two clauses and the other in one, and each clause in the disjunction of
either two or three literals; secondly, the bipartite graph B with bipartition (X ,C),
obtained by connecting an edge between x ∈ X and c ∈ C if c contains one of the
literals x and x , is planar. Notice that �(B) ≤ 3. The PLANAR EXACTLY 3-BOUNDED

3-SAT is the problem of deciding whether a given Boolean formula satisfied the above
conditions is satisfiable.

Theorem 2.10 For a given planar graph G with �(G) ≤ 4, it is NP-hard to decide
whether γtr (G) = γr (G).

Proof We reduce from the PLANAR EXACTLY 3-BOUNDED 3-SAT problem. Consider a
set of clauses C = {c1, c2, . . . , cp} with variables X = {x1, x2, . . . , xn}, as the input
for the PLANAR EXACTLY 3-BOUNDED 3-SAT problem, say, B the planar bipartite graph
associated with it, now we construct a graph G = (V , E). For any variable xi , we
introduce a triangleGxi with two distinguished literal vertices xi and xi , for any clause
c j ∈ C , we denoted by Gcj the graph described in Fig. 3 (left). Finally, for xi ∈ c j
(resp. xi ∈ c j ), we add the edge xia j (resp. xia j ). See Fig. 3 (right) for an example.
In fact, G is obtained from planar B mainly by splitting each of vertices of degree
3 corresponding to variables into two vertices connecting an edge. Clearly, G is also
planar and �(G) ≤ 4.

Claim. C is satisfiable if and only if γtr (G) = γr (G).
First we show that γr (G) = n+5p. Let D be a RDS of G. Then |D∩V (Gxi )| ≥ 1

for 1 ≤ i ≤ n. For 1 ≤ j ≤ p, {e j , k j } ⊆ D by Observation 1.1, |D ∩ N [m j ]| ≥ 1,
|D∩N [g j ]| ≥ 1 and |D∩N [b j ]| ≥ 1 by the definition of D. Note that N [m j ], N [g j ]
and N [b j ] are pairwise disjoint. Thus |D∩V (Gcj )| ≥ 5. Therefore, γr (G) ≥ n+5p.
Moreover, {xi , a j , d j , e j , k j , l j |1 ≤ i ≤ n, 1 ≤ j ≤ p} is a RDS of G. Therefore,
γr (G) = n + 5p.

Now, assuming that � is satisfiable. Given a satisfying truth assignment of �, next
we will prove there exist a TRDS D ofG with |D| = n+5p. For 1 ≤ i ≤ n, we add xi
to D, if xi evaluate to true, or xi , otherwise. For 1 ≤ j ≤ p, we add {a j , d j , e j , k j , l j }
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Fig. 3 Gc j and G constructed from a formula � = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x2)

to D. Clearly, |D| = n+5p. Next we show that D is a TRDS ofG. By the construction
of D, it is obvious that D is a dominating set and for any v ∈ V \ D, v has a neighbor
in V \D. It is sufficient to show that for any v ∈ D, v has a neighbor in D. Obviously,
d j is adjacent to e j , l j is adjacent to k j for 1 ≤ j ≤ p and each literal vertex whose
corresponding literal evaluates to true is adjacent to one of a j for 1 ≤ j ≤ p. Since
� is satisfiable, each a j has a neighbor that is a literal vertex whose corresponding
literal is true, thus a j is adjacent to a vertex in D.

Conversely, let’s assume that γtr (G) = γr (G)(= n + 5p) and let T be a TRDS of
size n+5p in G. Similar to the proof above of γr (G) = n+5p, we have |Gxi ∩ T | =
1 and |T ∩ Gcj | = 5. By Observation 1.2, {d j , e j , l j , k j } ⊆ T . If b j ∈ T , then
|T ∩N [b j ]| ≥ 2, a contradiction with |Gcj ∩T | = 5. If b j /∈ T , f j ∈ T , then h j ∈ T ,
otherwise h j is an isolated vertex in V \ T . Thus |Gcj ∩ T | ≥ 6, a contradiction with
|Gcj ∩ T | = 5. So a j ∈ T . Thus T ∩ V (Gcj ) = {a j , d j , e j , l j , k j }.

For 1 ≤ i ≤ n, obviously, T contains exactly one of xi and xi in V (Gxi ). We
establish a truth assignment for � in the following manner: set xi to true if xi ∈ T
and to false if xi ∈ T . Since each a j belongs to T and b j /∈ T , by the definition of
T , a j has a neighbor that is a literal vertex in T , and the corresponding literal is true.
Consequently, � satisfies all clauses. 
�
Theorem 2.11 For a given planar bipartite graph G with �(G) ≤ 5, it is NP-hard to
decide whether γtr (G) = γt (G).

Proof We reduce from the PLANAR EXACTLY 3-BOUNDED 3-SAT problem. Consider a set
of clauses C = {c1, c2, . . . , cp} with variables X = {x1, x2, . . . , xn}, as the input for
thePLANAREXACTLY 3-BOUNDED 3-SAT problem, nowweconstruct a graphG = (V , E).
For any variable xi , we introduce a Gxi with two special vertices xi and xi , see Fig. 4
(left). For any clause c j ∈ C , we introduce a Gcj described in Fig. 4 (right). If literal
xi (resp. xi ) in c j , then we add the edge xi u1j (resp. xiu

1
j ) in G. By simple analysis,

we get G is planar bipartite graph and �(G) ≤ 5.
Claim 1. γt (G) = 4n + 5p.
Let D be a TDS of G. By simple analysis, for each Gcj , we have the sub-

graph induced by {v1j , v2j , . . . , v9j } (resp. by {u1j , u2j , . . . , u7j }) contains at least three
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Fig. 4 Illustration for Theorem 2.11

(resp. two) vertices in D, thus |D ∩ V (Gcj )| ≥ 5; for each Gxi , we have the sub-
graphs induced by {ri , xi , qi , zi } and by {xi , ti , si , wi } both contain at least two
vertices in D, thus |D ∩ V (Gxi )| ≥ 4. Then, γt (G) ≥ 4n + 5p. Moreover,
{xi , zi , wi , xi , u2j , u

3
j , v

1
j , v

5
j , v

9
j |1 ≤ i ≤ n, 1 ≤ j ≤ p} of size 4n + 5p is a T DS of

G. Therefore γt (G) ≤ 4n + 5p, then γt (G) = 4n + 5p.
Next, we show
Claim 2. � is satisfiable if and only if γtr (G) = γt (G).
Suppose that � is satisfiable. Given a satisfying truth assignment of �, next we

construct a TRDS D of size 4n + 5p of G. In each Gxi , we add {xi , wi , qi , ri } to D,
if xi evaluates to true, and add {xi , zi , si , ti } to D, otherwise. In each Gcj , we add
{u2j , u3j , v1j , v5j , v9j } to D. Clearly, |D| = 4n + 5p. Now we show that D is a TRDS of

G. Obviously, any v ∈ V has a neighbor in D, every vertex in V \(D∪{u1j |1 ≤ j ≤ p})
has a neighbor in V \ D. It is sufficient to prove that u1j , 1 ≤ j ≤ p, is adjacent to a

vertex in V \ D. Since � is satisfiable, each u1j has a neighbor that is a literal vertex

whose corresponding literal is true, which is not in D by the definition of D, thus u1j
is adjacent to a vertex in V \ D.

Conversely, let’s assume that γtr (G) = γt (G) and let T be aTRDSof size 4n+5p in
G. By the similar analysis as above, we have |T ∩V (Gxi )| = 4 and |T ∩V (Gcj )| = 5.

Fact 1. In each Gxi , T contains exactly one of xi and xi .
In Gxi , since yi is totally dominated by T , either xi ∈ T or xi ∈ T . If both of them

are in T , then yi ∈ T . Thus the remained one vertex in T ∩ V (Gxi ) can not dominate
qi and si simultaneously, a contradiction.

Fact 2. In each Gcj , u
1
j /∈ T , u2j ∈ T .

Similar to the proof of Claim 1, |T ∩ {u1j , u2j , . . . , u7j }| = 2. Then u1j /∈ T by the

definition of T . If u2j /∈ T , then, by the definition of T , T ∩{u1j , u2j , . . . , u7j } = {u3j , u4j }
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or {u3j , u6j }. Assume that T ∩ {u1j , u2j , . . . , u7j } = {u3j , u4j }. To dominate u7j , then

v5j ∈ T . By simple analysis, we have T ∩ {v1j , v2j , . . . , v9j } = {v1j , v5j , v9j }. Then u5j is
isolated in V \ T , a contradiction with the definition of T . Therefore u2j ∈ T .

We establish a truth assignment for � by Fact 1 in the following manner: set xi
to be true if xi /∈ T , to be false otherwise. By Fact 2 and the definition of T , u1j is
adjacent to a literal vertex which is not in T such that the corresponding literal is true.
Consequently, � satisfies all clauses. 
�

2.5 APX-completeness

In this section we will prove the APX-completeness of the MTRD problem P for
bipartite graphs with maximum degree at most 4. We need to prove that both P is in
APX, that is, P can be approximated within a constant ratio, and P is APX-hard. To
show the problem P is APX-hard, it is sufficient to show that there is an L-reduction
from an APX-complete problem to P . We first recall the notation of L-reduction as
follows.

L-reduction ( Papadimitriou and Yannakakis 1991): Consider two NP-optimization
problems F and G, along with a polynomial-time transformation f which maps
instances from F and G. We can categorize f as an L-reduction if there are posi-
tive constants α and β, such that the following condition holds for every instance x of
F ,

1. optG( f (x)) ≤ α · optF (x),
2. For every feasible solution y of f (x) with objective value c2, in polynomial time

one can find a solution y′ of x with objective value c1 such that |optF (x) − c1| ≤
β · |optG( f (x)) − c2|.
Next we define the MINIMUM VERTEX COVER (MVC) problem. Given a graph G =
(V , E), a set S ⊆ V of G is called a vertex cover (VC) of G if for every edge
uv ∈ E , either u ∈ S or v ∈ S. The MVC problem is to find a VC of G with
minimum cardinality.

Theorem 2.12 The MTRD problem is APX-complete for bipartite graphs with
maximum degree at most 4.

Proof By Theorem 2.9, the MTRD problem is in APX for bipartite graphs with
maximum degree 4. The MVC problem for graphs with maximum degree at most 3 is
APX-complete (Papadimitriou andYannakakis 1991). Next, we use theMVCproblem
for graphs with maximum degree at most 3 to L-reduction the MTRD problem for
bipartite graphs with maximum degree at most 4. Given a graph G = (V , E) with
�(G) ≤ 3, where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, next we construct
a graph G∗ = (V ′, E ′) (see Fig. 5 for an example):

1. For each edge ei = uv inG,wefirst subdivide the edgeby introducing an additional
vertex qi (called subdividing vertex corresponding to ei ), connecting qi and u, v,
respectively; then we introduce three additional vertices ri , si , ti and add the edges
qiri , ri si , si ti .
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Fig. 5 Illustrations for the construction of G∗ from G in the proof of Theorem 2.12

Fig. 6 Illustrations for the proof of Claim in Theorem 2.12. Vertices in Q are indicated as triangles, vertices
in D (resp. D′′) are indicated by solid vertices in (a) (resp. (b))

2. For each vertex vi in G, take two additional vertices oi , pi and add the edges vi oi ,
oi pi . Obviously, G∗ is bipartite and �(G∗) ≤ 4. For the sake of simplicity, we
denote by O = {oi |1 ≤ i ≤ n}, P = {pi |1 ≤ i ≤ n}, R = {ri |1 ≤ i ≤ m} and
Q = {qi |1 ≤ i ≤ m}, T = {ti |1 ≤ i ≤ m}, S = {si |1 ≤ i ≤ m}.

Claim. Let D be any TRDS of G∗. There exists a TRDS D′ with |D′| ≤ |D| such that
(Q ∪ R) ∩ D′ = ∅. Furthermore, if C∗ is a MVC of G and D∗ is a minimum TRDS
of G∗, then |D∗| = |C∗| + 2n + 2m.

First, O ∪ P ∪ S ∪ T ⊆ D by Observation 1.2. If (Q ∪ R) ∩ D = ∅, then we can
choose D′ = D, we have finished. Otherwise we can construct another TRDS D′′
from D such that |(Q ∪ R) ∩ D′′| < |(Q ∪ R) ∩ D|. Then we can continue to carry
out the process repeatedly until we find D′.

Suppose there exists some 1 ≤ i ≤ m such that {qi , ri } ∩ D �= ∅ with qi ∈ Q
corresponding to the edge v jvk in G. If qi ∈ D, then ri ∈ D. Otherwise ri is isolated
in V (G∗)\D, a contradiction with the definition of D. Next, we will break down the
discussion into two cases.

Case 1. {qi , ri } ⊆ D.
If either v j or vk is in D, then, by the fact that {o j , ok} ⊆ D, D′′ = D\{qi , ri } is

as desired. Otherwise D′′ = D \ {qi } is as desired.
Case 2. qi /∈ D and ri ∈ D.
If either v j or vk is in D, then D′′ = D\{ri } is as desired. Suppose {v j , vk}∩D = ∅

in the following. Let L = {l|ql ∈ NG∗(v j ), ql /∈ D, rl ∈ D}. Note that i ∈ L . Then
D′′ = D ∪ {v j }\{rl |l ∈ L} is as desired (see Fig. 6 for the illustration).
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If C∗ is a MVC of G, then C∗ ∪ O ∪ P ∪ S ∪ T is a TRDS of G∗. Hence |D∗| ≤
|C∗| + 2n + 2m. Conversely, by the former part of Claim, we can assume that D∗ is
a minimum TRDS of G∗ such that D∗ ∩ (Q ∪ R) = ∅. Then for any vertex qi ∈ Q,
it is dominated by some v j in D∗, which is an end of ei in G by the definition of G∗.
Thus D∗\(O ∪ P ∪ S ∪ T ) is a VC of G. Therefore, |C∗| ≤ |D∗| − 2n − 2m.

Finally, we prove that the previously introduced construction leads to an L-
reduction. Let D∗ be a minimum TRDS of G∗ and C∗ be a VC of G with the
smallest cardinality. Since �(G) ≤ 3, m ≤ 3

2n and n ≤ 4|C | for any VC C .
Hence |D∗| = |C∗| + 2n + 2m ≤ 21|C∗|. Moreover, given a TRDS D of G∗,
there exists a TRDS D′ in G∗ with |D′| ≤ |D| such that D′ ∩ (Q ∪ R) = ∅ by Claim.
Then C = D′\(O ∪ P ∪ S ∪ T ) is a VC of G by the same discuss above. Thus,
|C | − |C∗| = (|D′| − 2n − 2m) − |C∗| ≤ |D| − (2n + 2m + |C∗|) = |D| − |D∗|.
Therefore f is an L-reduction with α = 21, β = 1. 
�

3 A linear-time algorithm for generalized series–parallel graphs

In this section we study generalized series–parallel graphs, including outerplanar
graphs and trees (Korneyenko 1994).

Generalized series–parallel (GSP) graphs with two distinct vertices u and v, called
its left and right terminals respectively, and denoted byG(u; v), are defined recursively
as follows.
(1)A graphwith only two vertices, denoted as u and v, connected by an edge represents
a fundamental GSP graph with u and v as its terminals, and
(2) For two GSP graphs G1(u1; v1) and G2(u2; v2), performing any of the three
operations below results in a GSP graph:

Series-1 (S1) composition: sticking v1 and u2 while designating u1 and v2 as the
left and right terminals, respectively, of the newly generated graph;

Series-2 (S2) composition: sticking v1 and u2 (still named as v1) while designating
u1 and v1 as the left and right terminals, respectively, of the newly generated graph;

Parallel (P) composition: sticking u1 and u2 (denoted by u1), v1 and v2 (denoted
by v1), respectively, while designating u1 and v1 as the left and right terminals, respec-
tively, of the newly generated graph. We assume that this composition will not result
in multiple edges.

For any GSP graph G, we introduce the definition of a parse tree PT (G). A
parse tree PT (G) is a rooted binary tree where every non-leaf vertex serves as a
representation of a subgraph within G:

(1) Each leaf of PT (G) exactly represents an edge in G;
(2) Each internal node u has a label l(u) either S1, S2 or P , meaning that the subgraph

represented by the node is constructed from two subgraphs represented by its two
children by l(u) composition;

(3) The root represents G itself.

The structure of any GSP graph G can be succinctly represented by its PT (G). There
are algorithms, with linear time complexity, to determine if a graph G is GSP and to
construct a PT (G) (Eppstein 1992; Ho et al. 1999). And note that parse trees of a
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Fig. 7 A GSP graph (left), and one of its parse trees (right)

GSP graph are possibly not unique. An example for a GSP graph and one of its parse
tree is shown in Fig. 7. In what follows, by using the structure of a parse tree, we will
design an algorithm (linear-time) to solve the MTRD problem on GSP graphs.

First, for a GSP graph G = G(u; v) and i, j ∈ {1, 2, . . . , 5}, we define a subset,
denoted by Ti j (G), of vertex set V (G) such that:

(1) N (w) ∩ Ti j (G) �= ∅ for every w ∈ V (G)\{u, v}.
(2) N (w) ∩ (V (G) \ Ti j (G)) �= ∅ for every w ∈ V (G) \ ({u, v} ∪ Ti j (G)).
(3) u ∈ T1 j and N (u) ∩ T1 j �= ∅. (resp. v ∈ Ti1 and N (v) ∩ Ti1 �= ∅).
(4) u ∈ T2 j and N (u) ∩ T2 j = ∅. (resp. v ∈ Ti2 and N (v) ∩ Ti2 = ∅).
(5) u /∈ T3 j , N (u) ∩ T3 j �= ∅ and N (u) ∩ (V (G) \ T3 j ) �= ∅. (resp. v /∈ Ti3,

N (v) ∩ Ti3 �= ∅ and N (v) ∩ (V (G)\Ti3) �= ∅).
(6) u /∈ T4 j , N (u) ∩ T4 j �= ∅ and N (u) ∩ (V (G) \ T4 j ) = ∅. (resp. v /∈ Ti4,

N (v) ∩ Ti4 �= ∅ and N (v) ∩ (V (G)\Ti4) = ∅).
(7) u /∈ T5 j , N (u) ∩ T5 j = ∅ and N (u) ∩ (V (G) \ T5 j ) �= ∅. (resp. v /∈ Ti5,

N (v) ∩ Ti5 = ∅ and N (v) ∩ (V (G)\Ti3) �= ∅). Let MTi j (G) be a minimum
cardinality Ti j (G) and mi j (G) = |MTi j (G)|. Note that Ti j (G) may not exist for
some i, j . If Ti j (G) does not exist, denoted by 	, where we let S ∪ 	 = 	 for
any set S, then mi j (G) is infinity by convention. For example, m11(K2) = 2,
m24(K2) = 1, m42(K2) = 1, m55(K2) = 0, mi j (K2) = ∞ otherwise.

Let F1, . . . , Fs be subsets of V (G). Define min{Ft |1 ≤ t ≤ s} be a set which has
minimum cardinality among all {Ft |1 ≤ t ≤ s}, that is, |min{Ft |1 ≤ t ≤ s}| =
min1≤t≤s |Ft |. Obviously, min{MTi j (G)|i, j ∈ {1, 3}} is a minimum TRDS of G.
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Lemma 3.1 Let G(u1; v2) be a GSP graph obtained by applying a S1 composition to
GSP graphs G1(u1; v1) and G2(u2; v2). Then, for i, j ∈ {1, 2, 3, 4, 5}, the set

Si j = min

{
MTip(G1) ∪ MTqj (G2), p, q ∈ {1, 2}, pq �= 4;
MTip(G1) ∪ MTqj (G2), p, q ∈ {3, 4, 5}, pq �= 16, pq �= 25.

is a MTi j (G). Here v1 in G1 and u2 in G2 are considered as the same vertex.

Proof In the following, we just show the statement holds for the case of i = 1, j = 1,
the other cases can be proven in similar ways. It is obvious that S11 defined in Lemma
3.1 is a T11(G). So |S11| ≥ m11(G). All that needs to be proven is that, for any chosen
MT11(G), |S11| ≤ |MT11(G)|. We divide MT11(G) into two cases to discuss.

Case 1. v1 ∈ MT11(G).
Then by the definition of MT11(G), either NG1(v1)∩ MT11(G) �= ∅ or NG2(u2)∩

MT11(G) �= ∅, if, NG1(v1) ∩ MT11(G) �= ∅. Obviously, G1 ∩ MT11(G) is a
T11(G1), further |MT11(G1)| ≤ |G1 ∩ MT11(G)|. If NG2(u2) ∩ MT11(G) �= ∅,
then G2 ∩ MT11(G) is a T11(G2), further |MT11(G2)| ≤ |G2 ∩ MT11(G)|. Thus
|MT11(G1) ∪ MT11(G2)| ≤ |(G1 ∩ MT11(G)) ∪ (G2 ∩ MT11(G))| = |MT11(G)|.
Note that MT11(G1) ∩ MT11(G2) = (G1 ∩ MT11(G)) ∩ (G2 ∩ MT11(G)). If
NG2(u2) ∩ MT11(G) = ∅, then G2 ∩ MT11(G) is a T21(G2) by the definition. Simi-
larly, we have |MT11(G1) ∪ MT21(G2)| ≤ |MT11(G)|. If NG1(v1) ∩ MT11(G) = ∅,
then NG2(u2) ∩ MT11(G) �= ∅, we can get |MT12(G1) ∪ MT11(G2)| ≤ |MT11(G)|.

Case 2. v1 /∈ MT11(G).
Subcase 2.1. NG1(v1) ∩ MT11(G) �= ∅ and NG1(v1) \ MT11(G) �= ∅.
Obviously, G1 ∩ MT11(G) is a T13(G1). If NG2(u2) ∩ MT11(G) = ∅, then G2 ∩

MT11(G) is a T51(G2). Thus, |MT13(G1) ∪ MT51(G2)| ≤ |MT11(G)|. Note that
T13(G1) ∩ T51(G2) = (G1 ∩ MT11(G)) ∩ (G2 ∩ MT11(G)) = ∅. If NG2(u2) ⊆
MT11(G), then G2 ∩ MT11(G) is a T41(G2). Thus, |MT13(G1) ∪ MT41(G2)| ≤
|MT13(G)|. Otherwise,G2∩MT11(G) is a T31(G2). Thus, |MT13(G1)∪MT31(G2)| ≤
|MT13(G)|.

Subcase 2.2. NG1(v1) ⊆ MT11(G).
Obviously,G1∩MT11(G) is a T14(G1) and NG2(u2)\MT11(G) �= ∅. If NG2(u2)∩

MT11(G) = ∅, then G2 ∩ MT11(G) is a T51(G2). Thus |MT14(G1) ∪ MT51(G2)| ≤
|MT11(G)|. Otherwise,G2∩MT11(G) is a T31(G2). Thus |MT14(G1)∪MT31(G2)| ≤
|MT11(G)|.

Subcase 2.3. NG1(v1) ∩ MT11(G) = ∅.
Obviously,G1∩MT11(G) is a T15(G1) and NG2(u2)∩MT11(G) �= ∅. If NG2(u2) ⊆

MT11(G), then G2 ∩ MT11(G) is a T41(G2). Thus |MT15(G1) ∪ MT41(G2)| ≤
|MT11(G)|. Otherwise,G2∩MT11(G) is a T31(G2). Thus |MT15(G1)∪MT31(G2)| ≤
|MT11(G)|. 
�
Lemma 3.2 LetG = G(u1; v1)be aGSPgraphobtained by applying a S2 composition
to GSP graphs G1(u1; v1) and G2(u2; v2). Then, for any i ∈ {1, 2, 3, 4, 5}, t ∈ {1, 3},
q ∈ {2, 4, 5}, the sets

Si1 = min

{
MTis(G1) ∪ MT1t (G2), s ∈ {1, 2};
MTi1(G1) ∪ MT2t (G2),
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Siq = min{MTiq(G1) ∪ MTqt (G2)};

Si3 = min

⎧
⎪⎪⎨

⎪⎪⎩

MTi3(G1) ∪ MTst (G2), s ∈ {3, 4, 5};
MTip(G1) ∪ MT3t (G2), p ∈ {3, 4, 5};
MTi4(G1) ∪ MT5t (G2),

MTi5(G1) ∪ MT4t (G2).

are MTi1(G), MTiq(G), MTi3(G), respectively. Here v1 in G1 and u2 in G2 are
considered as the same vertex.

Proof In the following, we just show the statement holds for the case of i = 1,
j = 1, and i = 1, j = 3, the other cases can be proven in similar ways. It is
obvious that S11 and S13 defined in Lemma 3.2 is a T11(G), T13(G), respectively. So
|S11| ≥ m11(G), |S13| ≥ m13(G). All that needs to be proven is that, for any chosen
MT11(G), |S11| ≤ |MT11(G)|, for any chosen MT13(G), |S13| ≤ |MT13(G)|. First
we show that |S11| ≤ |MT11(G)|. By the definition of MT11(G), v1 ∈ MT11(G), and
either NG1(v1) ∩ MT11(G) �= ∅ or NG2(u2) ∩ MT11(G) �= ∅. We divide MT11(G)

into two cases to discuss.
Case 1. v2 ∈ MT11(G).
Subcase 1.1. NG1(v1) ∩ MT11(G) �= ∅.
If NG2(u2)∩MT11(G) �= ∅, obviously,G1∩MT11(G) is a T11(G1),G2∩MT11(G)

is a T11(G2). Thus |MT11(G1)∪MT11(G2)| ≤ |MT11(G)|. Otherwise,G1∩MT11(G)

is a T11(G1), G2 ∩ MT11(G) is a T21(G2). Thus |MT11(G1) ∪ MT21(G2)| ≤
|MT11(G)|.

Subcase 1.2. NG1(v1) ∩ MT11(G) = ∅.
By the definition of MT11(G), NG2(u2) ∩ MT11(G) �= ∅, then G1 ∩ MT11(G) is a

T12(G1), G2 ∩ MT11(G) is a T11(G2). Thus |MT12(G1)∪ MT11(G2)| ≤ |MT11(G)|.
Case 2. v2 /∈ MT11(G).
The proof is similar toCase 1, thuswehave |MT11(G1)∪MT13(G2)| ≤ |MT11(G)|,

|MT11(G1) ∪ MT23(G2)| ≤ |MT11(G)|, |MT12(G1) ∪ MT13(G2)| ≤ |MT11(G)|.
Next we show that |S13| ≤ |MT13(G)|. By the definition of MT13(G), v1 /∈

MT13(G), and either NG1(v1) ∩ MT13(G) �= ∅ or NG2(u2) ∩ MT13(G) �= ∅. Next,
we divide MT13(G) into two cases to discuss.

Case 1. v2 ∈ MT13(G).
Subcase 1.1. NG1(v1) ∩ MT13(G) �= ∅.
Subsubcase 1.1.1. NG2(u2) ∩ MT13(G) �= ∅.
If NG1(v1) \ MT13(G) �= ∅ and NG2(u2) \ MT13(G) �= ∅. Obviously, G1 ∩

MT13(G) is a T13(G1),G2∩MT13(G) is a T31(G2). Thus |MT13(G1)∪MT31(G2)| ≤
|MT13(G)|. If NG1(v1)\MT13(G) �= ∅ and NG2(u2)\MT13(G) = ∅. Obviously,G1∩
MT13(G) is a T13(G1),G2∩MT13(G) is a T41(G2). Thus |MT13(G1)∪MT41(G2)| ≤
|MT13(G)|. If NG1(v1)\MT13(G) = ∅ and NG2(u2)\MT13(G) �= ∅. Obviously,G1∩
MT13(G) is a T14(G1),G2∩MT13(G) is a T31(G2). Thus |MT14(G1)∪MT31(G2)| ≤
|MT13(G)|.

Subsubcase 1.1.2. NG2(u2) ∩ MT13(G) = ∅.
If NG1(v1)\MT13(G) �= ∅, Obviously,G1∩MT13(G) is a T13(G1),G2∩MT13(G)

is a T51(G2). Thus |MT13(G1)∪MT51(G2)| ≤ |MT13(G)|. Otherwise,G1∩MT13(G)
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is a T14(G1), G2 ∩ MT13(G) is a T51(G2). Thus |MT14(G1) ∪ MT51(G2)| ≤
|MT13(G)|.

Subcase 1.2. NG1(v1) ∩ MT13(G) = ∅.
By the definition of MT13(G), NG2(u2)∩MT13(G) �= ∅. If NG2(u2)\MT13(G) �=

∅. Obviously, G1 ∩ MT13(G) is a T15(G1), G2 ∩ MT13(G) is a T31(G2). Thus
|MT15(G1) ∪ MT31(G2)| ≤ |MT13(G)|. If NG2(u2) \ MT13(G) = ∅. Obviously,
G1 ∩ MT13(G) is a T15(G1), G2 ∩ MT13(G) is a T41(G2). Thus |MT15(G1) ∪
MT41(G2)| ≤ |MT13(G)|.

Case 2. v2 /∈ MT13(G).
The proof is similar toCase 1, thuswe have |MT13(G1)∪MT33(G2)| ≤ |MT13(G)|,

|MT13(G1) ∪MT43(G2)| ≤ |MT13(G)|, |MT14(G1) ∪ MT33(G2)| ≤ |MT13(G)|,
|MT13(G1) ∪ MT53(G2)| ≤ |MT13(G)|, |MT14(G1) ∪ MT53(G2)| ≤ |MT13(G)|,
|MT15(G1) ∪ MT33(G2)| ≤ |MT13(G)|, |MT15(G1) ∪ MT43(G2)| ≤ |MT13(G)|. 
�
Lemma 3.3 Let G(u1; v2) be a GSP graph obtained by applying a P composition to
GSP graphs G1(u1; v1) and G2(u2; v2). Then, for any i, j ∈ {2, 4, 5}, the sets

S11 = min{MTsx (G1) ∪ MTty(G2)|s, t, x, y ∈ {1, 2}, st �= 4, xy �= 4};
S1 j = min{MTsj (G1) ∪ MTt j (G2)|s, t ∈ {1, 2}, st �= 4};
S13 = min{MTsp(G1) ∪ MTtq(G2)|s, t ∈ {1, 2}, p, q ∈ {3, 4, 5}, st �= 4, pq �=

16, 25};
Si1 = min{MTis(G1) ∪ MTit (G2)|s, t ∈ {1, 2}, st �= 4};
Si j = MTi j (G1) ∪ MTi j (G2);
Si3 = min{MTip(G1) ∪ MTiq(G2)|p, q ∈ {3, 4, 5}, pq �= 16, 25};
S31 = min{MTps(G1) ∪ MTqt (G2)|s, t ∈ {1, 2}, p, q ∈ {3, 4, 5}, st �= 4, pq �=

16, 25};
S3 j = min{MTpj (G1) ∪ MTqj (G2)|p, q ∈ {3, 4, 5}, pq �= 16, 25};
S33 = min{MTpm(G1) ∪ MTqn(G2)|p, q,m, n ∈ {3, 4, 5}, pq,mn �= 16, 25}.

are MT11(G), MT1 j (G), MT13(G), MTi1(G), MTi j (G),MTi3(G), MT31(G),
MT3 j (G), MT33(G), respectively. Here u1 in G1 and u2 in G2 are considered as
the same vertex, v1 in G1 and v2 in G2 are considered as the same vertex.

Based on Lemmas 3.1-3.3, an algorithm for finding a minimum TRDS of GSP
graphs is designed by using dynamic programming technique.

Theorem 3.1 Algorithm 2 produces a minimum TRDS of a GSP graph in linear-time.

Proof The correctness of Algorithm 2 comes directly from Lemmas 3.1–3.3. Next,
we analyze the time complexity. PT (G) can be constructed in linear-time in Eppstein
(1992); Ho et al. (1999); Hopcroft and Tarjan (1973). And since PT (G) has O(|E |)
leaves, the initialization of lines 1–3 of Algorithm 2 takes O(|E |) time. The iteration
in lines 4–15 of Algorithm 2 is O(|E |), because PT (G) is a binary tree with O(|E |)
nodes and the calculation of each iteration in lines 4–15 requires a constant time.
Therefore, the time complexity of Algorithm 2 is linear-time. 
�
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Algorithm 2 TOTAL-RESTRAINED-DOM-GSP(G)

Require: A GSP graph G.
Ensure: A minimum TRDS D of G.

Construct a parse tree PT (G) of G with root r , each non-leaf node is labelled by S1, S2 or P , mark all leaves;
1: for each leaf K2(u; v) of PT (G) do
2: MT11(K2) = {u, v}; MT24(K2) = {u}; MT42(K2) = {v}; MT55(K2) = ∅; Others are 	 .
3: end for
4: while there are still unmarked nodes in PT (G) do
5: Select an unmarked node w in PT (G) with marked children; Define Gw as the corresponding subgraph of node w;
6: if l(w) = S1 then
7: Compute all MTi j (Gw) for 1 ≤ i, j ≤ 5 by Lemma 3.1;
8: end if
9: if l(w) = S2 then
10: Compute all MTi j (Gw) for 1 ≤ i, j ≤ 5 by Lemma 3.2;
11: end if
12: if l(w) = P then
13: Compute all MTi j (Gw) for 1 ≤ i, j ≤ 5 by Lemma 3.3;
14: end if

Mark w;
15: end while
16: return D = min{MTi j (Gr )|i, j ∈ {1, 3}}
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