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Abstract
Machine learning algorithms play an important role in a variety of important decision-
making processes, including targeted advertisement displays, home loan approvals,
and criminal behavior predictions. Given the far-reaching impact of these algorithms,
it is crucial that they operate fairly, free from bias or prejudice towards certain groups
in the population. Ensuring impartiality in these algorithms is essential for promoting
equality and avoiding discrimination. To this endwe introduce a unified framework for
randomized subset selection that incorporates group fairness constraints. Our problem
involves a global utility function and a set of group utility functions for each group,
here a group refers to a group of individuals (e.g., people) sharing the same attributes
(e.g., gender). Our aim is to generate a distribution across feasible subsets, specifying
the selection probability of each feasible set, to maximize the global utility function
while meeting a predetermined quota for each group utility function in expectation.
Note that theremay not necessarily be any direct connections between the global utility
function and each group utility function. We demonstrate that this framework unifies
and generalizes many significant applications in machine learning and operations
research. Our algorithmic results either improves the best known result or provide the
first approximation algorithms for new applications.
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1 Introduction

The increasing use of machine learning algorithms in decision-making has raised con-
cerns about the possibility of biases and discrimination. However, various efforts are
being made to develop fair algorithms that ensure equitable outcomes for individuals
or groups, even in sensitive domains. These efforts involve creating techniques for
classification (Zafar et al. 2017), ranking (Celis et al. 2017), clustering (Chierichetti
et al. 2017), bandit learning (Joseph et al. 2016), voting (Celis et al. 2018), college
admission (Abdulkadiroğlu 2005), matching (Chierichetti et al. 2019), influence max-
imization (Tsang et al. 2019), and diverse data summarization (El Halabi et al. 2020).

Various concepts of fairness have been proposed in the literature, including indi-
vidual fairness, group fairness, and subgroup fairness. These concepts intend to
tackle discrimination and bias in algorithmic decision-making, particularly in sen-
sitive domains like employment, housing, and criminal justice. However, there is no
universal measure of fairness since it often depends on the context and can be affected
by various factors such as the decision-making process’s objectives and the sensitive
attribute in question. In this paper, we propose a general group fairness notation that
unifies many notations from previous works. We assume there are m groups defined
by a set of shared attributes like race, gender, or age. To assess the appropriateness of
a particular solution set S for a specific group t ∈ [m], we introduce m group utility
functions g1, g2, . . . , gm : 2V → R≥ 0. Each group utility function gt (S) evaluates
the utility that group t derives from the solution set S. For instance, in committee
selection (Celis et al. 2018), gt (S) corresponds to the number of candidates chosen
from group t in the solution set S. Given a set of feasible subsets F , let x ∈ [0, 1]F
represent a distribution over solution sets inF , where xS is the probability of choosing
S ∈ F . A distribution x is deemed fair if

∑
S ∈ FxSgt (S) ≥ αt ,∀t ∈ [m], meaning

the expected utility from each group t ∈ [m] is lower bounded by αt . This enables the
consideration of each group’s representation in the final outcome, promoting diversity
and preventing under-representation of any particular group.

In addition, there is a global utility function f : 2V → R≥0. The expected (global)
utility of a distribution x can be computed as

∑
S∈F xS f (S). Our goal is to find a

distribution x that maximizes
∑

S∈F xS f (S) while ensuring that
∑

S∈F xSgt (S) ≥
αt ,∀t ∈ [m]. A formal definition of this problem is listed in P.0. We show that this
formulation brings together and extends numerous noteworthy applications in both
machine learning and operations research. We next summarize the main contributions
of this paper.

– We develop a polynomial-time algorithmic framework for P.0 based on ellipsoid
method.

– Onemain algorithmic finding (as formally presented in Theorem 1) is that suppose
that for all z ∈ R

m≥0, there exists a polynomial-time algorithm that returns a set
A ∈ F such that

∀S ∈ F , f (A) +
∑

t∈[m]
gt (A) · zt ≥ ρ · f (S) + μ ·

∑

t∈[m]
gt (S) · zt ,
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for some ρ,μ ∈ [0, 1]. Then there is a polynomial-time (ρ, μ)-approximation
algorithm for P.0. Here, the ρ represents the approximation ratio, while the μ

indicates that the solution may violate the fairness constraint by at most a factor
of μ. Hence, solving P.0 is reduced to finding an approximation algorithm for
a combinatorial subset selection problem. We utilize this result to tackle various
applications such as fairness-aware submodularmaximization, sequential submod-
ular maximization with group constraints, and assortment planning with market
share constraints. Our approach outperforms existing methods for some of these
applications, while for others, we introduce novel applications and develop the
first approximation algorithms.

– Notably, when f is non-negative monotone and submodular, and gt is a modular
function, our approach gives a feasible and optimal (1 − 1/e, 1)-approximation
solution.

– We explore extensions to other commonly used fairness metrics and propose effec-
tive algorithms for solving them. In the first extension, we introduce additional
upper bounds βt on the expected utility of each group t ∈ [m]. Specifi-
cally, we require that αt ≤ ∑

S∈F xS · gt (S) ≤ βt ,∀t ∈ [m]. In the second
extension, we explore another frequently used measure of fairness that aims
to achieve parity in pairwise utility between groups. The degree of fairness
is defined by a parameter γ . Specifically, we require that for any two groups
t, t ′ ∈ [m], the difference between their expected utilities does not exceed γ , i.e.,∑

S∈F xS · gt (S) − ∑
S∈F xS · gt ′(S) ≤ γ,∀t, t ′ ∈ [m].

Additional Related Work. Over the years, there has been a significant effort to
develop fair algorithms across various fields to address the issue of biased decision-
making. In the domain of influence maximization and classification, researchers have
been actively developing fair algorithms (Tsang et al. 2019; Zafar et al. 2017). Sim-
ilarly, in voting systems, the focus has been on ensuring that election outcomes are
a fair representation of the preferences of voters, leading to the development of fair
algorithms (Celis et al. 2018). The field of bandit learning, which involves making
sequential decisions based on uncertain information, has also seen a growing interest
in the development of fair algorithms to address the issue of bias (Joseph et al. 2016).
Additionally, the field of data summarization has seen an increasing focus on the
development of fair algorithms (Celis et al. 2018) to provide a balanced representation
of data and avoid biased decision-making.

The choice of fairness metric in previous studies depends on the context and type
of bias being addressed, resulting in a range of optimization problems and fair algo-
rithms customized to the particular demands of each application. We adopt a general
group utility function to assess the solution’s utility from each group’s perspective.
Our framework is general enough to encompass numerous existing fairness nota-
tions, including the 80%-rule (Biddle 2017), statistical parity (Dwork et al. 2012), and
proportional representation (Monroe 1995).While most previous research on fairness-
aware algorithm design (such as Celis et al. 2018; Yuan and Tang 2023; Wang et al.
2021; Mehrotra and Celis 2021) aims to find a deterministic solution set, our goal is to
compute a randomized solution that can meet the group fairness constraints on aver-
age. This approach offers more flexibility in attaining group fairness. Our framework
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is general enough to encompass various existing studies on achieving group fairness
through randomization, such as those examined in Asadpour et al. (2022), Chen et al.
(2022), Tang et al. (2023).

2 Preliminaries and problem statement

We consider a set of n items V and m groups. There is a global utility function
f : 2V → R≥0 and m group utility functions g1, g2, . . . , gm : 2V → R≥0. Given
a subset of items S ⊆ V , we use gt (S) to assess the utility of S from each group
t’s perspective. There is a required minimum expectation of utility from each group,
represented by α ∈ R

m≥0, which acts as fairness constraints. This formulation enables
us to design fair algorithms that take into account the preferences of each group,
ensuring that the decision-making process is unbiased and leads to fair outcomes for
all groups. Note that there may not be any connections between f and gt . A common
way to define gt , as elaborated on in Sect. 4.1, is by counting the number of items
selected from group t .

Suppose F contains all feasible subsets. For example, if there exists a constraint
that limits the selection of items to k, then F can be defined as {S ⊆ V | |S| ≤ k}.
The objective of our problem, denoted as P.0, is to find a distribution x ∈ [0, 1]F over
F that maximizes the expected global utility, while also ensuring that the minimum
expected utility from each group is met to comply with the fairness constraints. Here
the decision variable xS ∈ [0, 1] specifies the selection probability of each feasible
subset S ∈ F . A formal definition of P.0 is listed in below.

P.0 maxx∈[0,1]F
∑

S∈F xS f (S)

subject to:

{∑
S∈F xS · gt (S) ≥ αt , ∀t ∈ [m].

∑
S∈F xS ≤ 1.

This LP has m + 1 constraints, excluding the standard constraints of xS ≥ 0 for all
S ∈ F . However, the number of variables in the LP problem is equivalent to the size
of F , which can become exponential in n. Due to this, conventional LP solvers are
unable to solve this LP problem efficiently.

3 Approximation algorithm for P.0

Before presenting our algorithm, we first introduce a combinatorial optimization prob-
lem called FairMax. A solution to this problem serves as a subroutine of our final
algorithm.
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Definition 1 (FairMax) Given functions f and g1, g2, . . . , gm , a vector z ∈ R
m≥0 and

a set of feasible subsets F , FairMax(z,F) aims to

max
S∈F

⎛

⎝ f (S) +
∑

t∈[m]
gt (S) · zt

⎞

⎠ . (1)

I.e., FairMax(z,F) seeks to find the feasible subset S ∈ F that maximizes f (S)+∑
t∈[m] gt (S) · zt .
We next present the main theorem of this paper. A solution y ∈ [0, 1]F is said

to achieve a (a, b)-approximation for P.0 if it satisfies the following conditions:∑
S∈F yS ≤ 1,

∑
S∈F yS f (S) ≥ a×OPT , where OPT denotes the optimal solution

of P.0, and
∑

S∈F ySgt (S) ≥ b × αt ,∀t ∈ [m]. Here, the a represents the approxi-
mation ratio, while the b indicates that the solution may violate the fairness constraint
by at most a factor of μ. The following theorem establishes a connection between
FairMax(z,F) and P.0.

Theorem 1 Suppose that for all z ∈ R
m≥0, there exists a polynomial-time algorithm

that returns a set A ∈ F such that

∀S ∈ F , f (A) +
∑

t∈[m]
gt (A) · zt ≥ ρ · f (S) + μ ·

∑

t∈[m]
gt (S) · zt ,

for some ρ,μ ∈ [0, 1]. Then there exists a polynomial-time (ρ, μ)-approximation
algorithm for P.0.

To prove this theorem, it suffices to present a polynomial (ρ, μ)-approximation
algorithm for P.0, using a polynomial-time approximation algorithm for Fair-
Max(z,F) as a subroutine. To this end, we will investigate a relaxed form of P.0,
which we refer to as RP.0.

RP.0 maxx∈[0,1]F
∑

S∈F xS f (S)

subject to:

{∑
S∈F xS · gt (S) ≥ μαt , ∀t ∈ [m].

∑
S∈F xS ≤ 1.

RP.0 is obtained by loosening the fairness constraint αt in P.0 by a factor of μ ∈
[0, 1], where μ is defined in Theorem 1. By solving RP.0, we can obtain a solution
that is approximately feasible for P.0. Given the assumptions made in Theorem 1, in
the following, we will focus on finding a solution for RP.0 and show that this solution
constitutes a bicriteria (ρ, μ)-approximation solution for the original problem P.0.

Note that the number of variables in RP.0 is equal to the number of elements in F ,
which can become very large when n is substantial. This results in standard LP solvers
being unable to efficiently solve this LP problem. To address this challenge, we turn
to the dual problem of RP.0 and use the ellipsoid algorithm (Grötschel et al. 1981) to
solve it.
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The dual problem of RP.0 (labeled as Dual of RP.0) involves assigning a weight
zt ∈ R≥0 to each group t and introducing an additional variable, w ∈ R≥0.

Dual of RP.0 minz∈Rm≥0,w∈R≥0

∑
t∈[m] −μαt zt + w

subject to: w ≥ f (S) + ∑
t∈[m] gt (S) · zt ,∀S ∈ F .

Observe that the number of constraints in Dual of RP.0might be exponential in n. At
a high level, we aim to simplify this problem by reducing the number of constraints
to a polynomial amount, without significantly altering the optimal solution.

We will now formally present our algorithm for Dual of RP.0 which involves a
series of iterations known as the ellipsoid algorithm. During each iteration, the ellip-
soid algorithm is used to determine whether the current solution is feasible or not by
approximately solving an instance of FairMax. This problem acts as a test of feasi-
bility and serves as a separation oracle, which helps to determine whether the current
solution is located inside or outside the feasible region of the problem being solved.
Let C(L) denote the set of (z ∈ R

m≥0, w ∈ R≥0) satisfying that

∑

t∈[m]
−μαt zt + w ≤ L,

w ≥ f (S) +
∑

t∈[m]
gt (S) · zt , ∀S ∈ F .

It is easy to verify that L is achievable with respect to Dual of RP.0 if and only if
C(L) is non-empty. To find the minimum value of L such that C(L) is non-empty, we
use a binary search algorithm.

For a given L and (z, w), we first evaluate the inequality
∑

t∈[m] −μαt zt +w ≤ L .
If the inequality holds, the algorithm runs a subroutine A to solve FairMax(z,F).
Specifically, A aims to find the feasible subset S ∈ F that maximizes f (S) +∑

t∈[m] gt (S) · zt . Let A denote the set returned by A.

– If the condition f (A) + ∑
t∈[m] gt (A) · zt ≤ w holds, we mark C(L) as a non-

empty set (note that even in this case, C(L) might still be empty because A is only
an approximate solution of FairMax(z,F). However, as we will demonstrate
later, this will not significantly impact our final solution). In such a scenario, we
conclude that L is achievable and proceed to try a smaller value of L .

– If f (A) + ∑
t∈[m] gt (A) · zt > w, this means that (z, w) /∈ C(L), and hence,

A is a separating hyperplane. To continue the optimization process, we search
for a smaller ellipsoid with a center that satisfies this constraint. We repeat this
process until we either find a feasible solution in C(L), in which case we attempt
a smaller L , or until the volume of the bounding ellipsoid becomes so small that it
is considered empty with respect to C(L). In the latter case, we conclude that the
current objective is unattainable and will therefore try a larger L .

For a detailed understanding of the individual steps required to run ellipsoid with
separation oracles and attain (multiplicative and additive) approximate guarantees,
we recommend referring to Chapter 2 of Bubeck (2015). After obtaining the results

123



Journal of Combinatorial Optimization (2023) 45 :102 Page 7 of 22 102

from the above ellipsoid methods, the subsequent procedures will encompass two
primary steps. Firstly, an upper bound for the optimal solution ofP.0will be calculated.
Following that, a (ρ, μ)-approximation solution for P.0 will be computed.

Establishing an upper bound on the optimal solution of P.0. Define L∗ to be the
smallest value of L for which C(L) is marked as non-empty by our algorithm. We
next show that the optimal solution of P.0 is at most L∗/ρ. To avoid trivial cases, let
us assume that ρ > 0.

Because C(L∗) is marked as non-empty, there exists a (z∗, w∗) such that

∑

t∈[m]
−μαt z

∗
t + w∗ ≤ L∗ (2)

and

f (A) +
∑

t∈[m]
gt (A) · z∗t ≤ w∗. (3)

Given the assumption made regarding A as stated in Theorem 1, we have

∀S ∈ F , f (A) +
∑

t∈[m]
gt (A) · z∗t ≥ ρ · f (S) + μ ·

∑

t∈[m]
gt (S) · z∗t . (4)

Because ρ > 0, it follows that

∀S ∈ F , f (S) + μ

ρ
·

∑

t∈[m]
gt (S) · z∗t ≤ ( f (A) +

∑

t∈[m]
gt (A) · z∗t )/ρ ≤ w∗/ρ (5)

where the first inequality follows from (4) and the second inequality is by inequality
(3).

Consider the dual of P.0 (labeled as Dual of P.0), inequality (5) implies that (
μ
ρ

·
z∗, 1

ρ
· w∗) is a feasible solution of Dual of P.0.

Dual of P.0 minz∈Rm≥0,w∈R≥0
−αt zt + w

subject to: w ≥ f (S) + ∑
t∈[m] gt (S) · zt ,∀S ∈ F .

Plugging (
μ
ρ

· z∗, 1
ρ

· w∗) into the objective function of Dual of P.0, we can infer
that the value of Dual of P.0 is at most

∑
t∈[m] −μαt z∗t /ρ + w∗/ρ ≤ L∗/ρ where

the inequality is by (2). By strong duality, the value of P.0 is at most L∗/ρ. Hence, by
finding a solution toRP.0with a value of L∗, we can achieve an (ρ, μ)-approximation
for the original problem P.0.

Finding a solution to RP.0 with a value of L∗ − ε. Suppose L∗ − ε is the largest
value of L for which the algorithm identifies that C(L) is empty. Here, ε denotes
the precision of the binary search. We next focus on finding a solution to RP.0 with
a value of L∗ − ε. To this end we can utilize only the feasible subsets from F that
correspond to the separating hyperplanes obtained by the separation oracle. To achieve
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this, we define a subset of F , denoted as F ′, which contains all the feasible subsets
for which the dual constraint is violated during the implementation of the ellipsoid
algorithm on C(L∗ − ε). The size of F ′ is polynomial since the dual constraints are
violated for only a polynomial number of feasible subsets. We can use the feasible
subsets in F ′ to construct a polynomial sized dual linear program of RP.0 (labeled as
Poly-sized Dual of P.0).

Poly-zied Dual of RP.0 minz∈Rm≥0,w∈R≥0

∑
t∈[m] −μαt zt + w

subject to: w ≥ f (S) + ∑
t∈[m] gt (S) · zt ,∀S ∈ F ′.

Theobjective ofPoly-sized Dual of RP.0 is tomaximize the dual objective function
subject to the constraints defined by the feasible subsets in F ′. Because C(L∗ − ε)

is empty, the value of Poly-sized Dual of RP.0 at least L∗ − ε. Hence, the optimal
solution to the dual ofPoly-sized Dual of RP.0 (labeled as Poly-sized RP.0) is at least
L∗ − ε.

Poly-sized RP.0
max

x∈[0,1]F ′
∑

S∈F ′ xS f (S)

subject to:

{∑
S∈F ′ xS · gt (S) ≥ μαt , ∀t ∈ [m].

∑
S∈F ′ xS ≤ 1.

It is important to note that the size of Poly-sized RP.0 is polynomial, since
F ′ contains only a polynomial number of feasible subsets. Thus, we can solve
Poly-sized RP.0 efficiently and obtain a solution with a value of L∗ − ε. This solution
is a (ρ, μ)-approximation (with additive error ε) for P.0.

4 Applications

This section covers a range of applications for our framework, some ofwhich yield bet-
ter results than previously knownmethods. In other cases, we present new applications
and provide the first approximation algorithms for them.

4.1 Submodular maximization with group fairness constraints

In this problem, we make the assumption that the global utility function f and m
group utility functions g1, g2, . . . , gm are submodular.1. This problem setting is gen-
eral enough to cover a wide range of optimization problems that can be modeled
using submodular global utility functions. Examples of such applications include data
summarization (El Halabi et al. 2020), influence maximization (Kempe and Mahdian
2008), and information retrieval (Yue and Guestrin 2011). It is worth noting that this

1 A function h : 2V → R is considered submodular if, for any sets X and Y that are subsets of V with
X ⊆ Y and any item e ∈ V \Y , the following inequality holds: h(X ∪ {e})− h(X) ≥ h(Y ∪ {e})− h(Y ). It
is considered monotone if, for any set X ⊆ V and any item e ∈ V \ X , it holds that h(X ∪ {e}) − h(X) ≥ 0
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scenario encompasses submodularmaximization under submodular coverage (Ohsaka
andMatsuoka 2021) as a special case. Their objective is to maximize a monotone sub-
modular function subject to a lower quota constraint on a single submodular group
utility function. However, their focus is on finding a deterministic solution set, whereas
our approach provides greater flexibility in achieving group fairness. Next, we dis-
cuss the rationale behind assuming that the group utility function is submodular. In
many prior works (El Halabi et al. 2020; Celis et al. 2018), the concept of balance with
respect to a sensitive attribute (such as race or gender) has been a widely used criterion
for evaluating the solution obtained by fairness-aware optimization algorithms. This
notion of balance typically involves ensuring that the solution does not significantly
disadvantage any particular group with respect to the sensitive attribute, while also
achieving good performance on the global objective f . We next provide a specific
example in this context. Consider a set V of n items (such as people), where each
item is associated with a sensitive attribute. Let V1, . . . , Vm denote the m groups of
items with the same attribute. We define a solution x ∈ [0, 1]F , which encodes the
selection probability of each set from F , to be fair if the expected number of selected
items from each group Vt is at least αt , where αt often set proportional to the fraction
of items of Vt in the entire set V . In this case, we define gt (S) = |S ∩ Vt | for each
t ∈ [m]. It is easy to verify that gt is a monotone and submodular function.

Recall that solving P.0 is reduced to solving FairMax(z,F) (Definition 1). Here
the objective of FairMax(z,F) is to maxS∈F ( f (S)+∑

t∈[m] gt (S) · zt ). Fortunately,
if f and gt are submodular functions, f (S) + ∑

t∈[m] gt (S) · zt is also a submodular
function by the fact that a linear combination of submodular functions is still sub-
modular. If we assume that the family F is defined based on cardinality constraints,
specifically as F = {S ⊆ V | |S| ≤ k} for a positive integer k, then the problem of
FairMax(z,F) can be reduced tomaximizing a submodular functionwhile satisfying
a cardinality constraint. According toNemhauser et al. (1978), if the objective function
is non-negative, monotone and submodular, then an optimal (1− 1/e)-approximation
algorithm exists for this problem, that is, ρ = μ = 1 − 1/e. On the other hand, if
the objective function is non-monotone (in addition to non-negative and submodular),
then an approximation of 0.385 is possible (Buchbinder and Feldman 2019), that is,
ρ = μ = 0.385. This, together Theorem 1, implies the following proposition.

Proposition 1 If f and gt are non-negative monotone submodular functions, andF =
{S ⊆ V | |S| ≤ k} for a positive integer k, then there exists an optimal (1 − 1/e, 1 −
1/e)-approximation algorithm for P.0. If f and gt are non-negative non-monotone
submodular functions, there exists a (0.385, 0.385)-approximation algorithm for P.0.

4.1.1 Improved results for monotone submodular f andmodular gt

We next investigate an important special case of this application where we make the
assumption that the global utility function f is non-negative monotone and submodu-
lar;m group utility functions g1, g2, . . . , gm are modular functions. It is easy to verify
that the example previously discussed, wherein gt (S) = |S ∩ Vt |, satisfies the proper-
ties of a modular group utility function. We show that there exists a feasible optimal
(1 − 1/e)-approximation algorithm for this special case.
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Observe that if f is non-negative monotone and submodular, gt is a modular func-
tion (hence

∑
t∈[m] gt (·)·zt is also amodular function), andF = {S ⊆ V | |S| ≤ k} for

a positive integer k, then Sviridenko et al. (2017) presented a randomized polynomial-
time algorithm that produces a set A ∈ F such that for every S ∈ F , it holds that

f (A) +
∑

t∈[m]
gt (A) · zt ≥ (1 − 1/e) f (S) +

∑

t∈[m]
gt (S) · zt . (6)

That is, ρ = 1 − 1/e and μ = 1. Substituting these values into Theorem 1, we have
the following proposition. Note that μ = 1 indicates that our solution strictly satisfies
all fairness constraints.

Proposition 2 If the global utility function f is a non-negative monotone submodular
function; m group utility functions g1, g2, . . . , gm are modular functions; F = {S ⊆
V | |S| ≤ k} for a positive integer k, then there exists a feasible (1 − 1/e, 1)-
approximation algorithm for P.0.

Note that the above resultmaybe subject to a small additive error due to the omission
of a similar error present in the original result (Inequality (6)) presented in Sviridenko
et al. (2017), which has been left out for simplicity.

4.2 Sequential submodular maximization

This problem was first studied in Asadpour et al. (2022) where the objective is to
determine the optimal ordering of a set of items to maximize a linear combination of
various submodular functions. This variant of submodular maximization arises from
the scenario where a platform displays a list of products to a user. The user examines
the first l items in the list, where l is randomly selected from a given distribution and the
user’s decision to purchase an item from the set depends on a choicemodel, resulting in
the platform’s goal of maximizing the engagement of the shopper, which is defined as
the probability of purchase. Formally, we are given monotone submodular functions
h1, . . . , hn : 2V → R≥0 and ht1, . . . , h

t
n : 2V → R≥0 for each group t ∈ [m],

nonnegative coefficients λ1, . . . , λn and λt1, . . . , λ
t
n for each group t ∈ [m]. By abuse

of notation, let S be a permutation over items in V and let S[l] represent the first l items
in S. Define the global utility function as f (S) = ∑

l∈[n] λl hl(S[l]). In the context of
product ranking, λl represents the fraction of users with patience level l, while hl
corresponds to the aggregate purchase probability function of users with patience
level l. Similarly, the group utility function is defined as gt (S) = ∑

l∈[n] λtl h
t
l (S[l]) for

each group of users t ∈ [m], where λtl should be interpreted as the fraction of users
with patience level l in group t . Despite f and gt being defined over permutations
instead of sets, it is easy to verify that Theorem 1 remains valid. In particular, suppose
for all z ∈ R

m≥0, there exists a polynomial-time algorithm that returns a permutation
A ∈ F such that

∀S ∈ F , f (A) +
∑

t∈[m]
gt (A) · zt ≥ ρ · f (S) + μ ·

∑

t∈[m]
gt (S) · zt ,
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for some ρ,μ ∈ [0, 1]. Here F is the set of all possible permutations over items
in V . Then there exists a polynomial-time (ρ, μ)-approximation algorithm for the
sequential submodular maximization problem.

Observe that in this case, the objective function of FairMax(z,F) can be written
as

f (S) +
∑

t∈[m]
gt (S) · zt =

∑

l∈[n]
λl hl(S[l]) +

∑

t∈[m]

⎛

⎝
∑

l∈[n]
λtl h

t
l (S[l]) · zt

⎞

⎠ (7)

=
∑

l∈[n]
λl hl(S[l]) +

∑

l∈[n]

⎛

⎝
∑

t∈[m]
λtl h

t
l (S[l]) · zt

⎞

⎠ (8)

=
∑

l∈[n]

⎛

⎝λl hl(S[l]) +
∑

t∈[m]
λtl h

t
l (S[l]) · zt

⎞

⎠ . (9)

If hl and htl are both monotone and submodular for all l ∈ [n] and t ∈ [m], then
λl hl(·) + ∑

t∈[m] ztλtl h
t
l (·) is also monotone and submodular for all l ∈ [n] by the

fact that a linear combination of monotone submodular functions is still monotone
and submodular. According to the analysis presented in Theorem 1 of Asadpour et al.
(2022), if λl hl(·) + ∑

t∈[m] ztλtl h
t
l (·) is monotone and submodular for all l ∈ [n], the

problem of identifying a permutation S that maximizes the right-hand side of Eq. (7)
can be transformed into a submodular maximization problem subject to a (laminar)
matroid constraint.Hence, there exists a (1−1/e)-approximation algorithm (Calinescu
et al. 2007) for FairMax(z,F), that is, ρ = μ = 1−1/e. Using Theorem 1,we obtain
a (1 − 1/e, 1 − 1/e)-approximation algorithm for P.0. Note that the current state-of-
the-art result (Asadpour et al. 2022) provides a bi-criteria ((1 − 1/e)2, (1 − 1/e)2)-
approximation for P.0. Our proposed framework offers significant improvements over
their results in both approximation ratio and feasibility.

Proposition 3 There exists an optimal (1 − 1/e, 1 − 1/e)-approximation algorithm
for sequential submodular maximization.

4.3 Random assortment planning with groupmarket share constraints

The third application concerns assortment planning, which is a problem that is widely
recognized within the operations research community. Assortment planning with
group market share constraints aims to identify the best possible combination of prod-
ucts to present to customers while ensuring that a minimummarket share requirement
of each group is met. Existing studies on this problem focus on finding a deterministic
solution that meets a minimum market share of a single group. We extend this study
to consider a randomized setting with multiple groups. Formally, this problem takes
a set V of n products as input, which is divided into m (possibly non-disjoint) groups
denoted by V1, V2, . . . , Vm . Under the well-known multinomial logit (MNL) model,
each product i ∈ V has a preference weight νi and let ν0 denote the preference for
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no purchase. Let ri denote the revenue of selling a product i ∈ V . Given an assort-
ment S ⊆ V , the purchase probability of any product i ∈ S is νi

ν0+∑
i∈S νi

. Hence the

expected revenue of offering S is f (S) =
∑

i∈S ri νi
ν0+∑

i∈S νi
and the resulting market share of

group t ∈ [m] is gt (S) =
∑

i∈S∩Vt νi

ν0+∑
i∈S νi

. Assume F is comprised of all possible subsets

of V , the goal of P.0 is to compute the selection probability xS of each assortment of
products S ⊆ V such that the expected revenue

∑
S∈F xS f (S) is maximized while the

expected market share is at least
∑

S∈F xSgt (S) ≥ αt for each group t ∈ [m]. To solve
this problem, we consider its corresponding FairMax(z,F), whose objective is to
find a S ⊆ V that maximizes f (S)+∑

t∈[m] gt (S) · zt for a given vector z ∈ R
m≥0. By

the definitions of f and gt , the objective function of FairMax(z,F) can be written
as

f (S) +
∑

t∈[m]
gt (S) · zt =

∑
i∈S riνi

ν0 + ∑
i∈S νi

+
∑

t∈[m]

∑
i∈S∩Vt νi

ν0 + ∑
i∈S νi

· zt (10)

=
∑

i∈S(ri + ∑
t∈[m] zt · 1i∈Vt )νi

ν0 + ∑
i∈S νi

, (11)

where 1i∈Vt ∈ {0, 1} is an indicator variable such that 1i∈Vt = 1 if and only if i ∈ Vt .
Hence, the goal of FairMax(z,F) is to

max
S⊆V

∑
i∈S(ri + ∑

t∈[m] zt · 1i∈Vt )νi
ν0 + ∑

i∈S νi
. (12)

This problem can be viewed as an unconstrained assortment planning problem,
where each product i ∈ V has a revenue of (ri + ∑

t∈[m] zt · 1i∈Vt ) and a preference
weight of νi , and the preference weight of no purchase is ν0. According to Talluri
and Van Ryzin (2004), the optimal solution for this problem is a revenue-ordered
assortment. In other words, the assortment that maximizes revenue consists of the
l products with the highest revenues (ri + ∑

t∈[m] zt · 1i∈Vt ), where l ∈ [n]. As a
result, FairMax(z,F) (problem (12)) can be solved optimally in polynomial time by
examining at most n potential assortments. Thus, the combination of Theorem 1 and
the ability to solve FairMax(z,F) optimally in polynomial time (i.e., ρ = μ = 1)
implies that an optimal solution for P.0 exists.

Proposition 4 There exists an optimal and feasible algorithm for assortment planning
with group market share constraints.

5 Discussion on other variants of fairness notations

In this section, we examine two additional notations of fairness that are frequently
employed in the literature.
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5.1 Incorporating fairness upper bound constraintsˇt

One natural way to extend the fairness notation we introduced in P.0 would be to
impose further upper bounds βt on the expected utility of every group. Formally,

P.A maxx∈[0,1]F
∑

S∈F xS f (S)

subject to:

{
αt ≤ ∑

S∈F xS · gt (S) ≤ βt , ∀t ∈ [m].
∑

S∈F xS ≤ 1.

This general formulation can be seen in several previous studies on fairness-aware
optimization, such as Celis et al. (2018), El Halabi et al. (2020). Fortunately, we can
still use ellipsoid method to solve P.A to obtain a bicriteria algorithm. As we will see
later, the following problem of FairMax serves as a separation oracle, which helps to
determine whether the current solution is located inside or outside the feasible region
of the problem being solved.

Definition 2 (FairMax) Given functions f and g1, g2, . . . , gm , two vectors z ∈ R
m≥0

and u ∈ R
m≥0, and a set of feasible subsets F , FairMax(z, u,F) aims to

max
S∈F

( f (S) +
∑

t∈[m]
gt (S) · (zt − ut )). (13)

Unlike the objective function in (1), the coefficient of gt in the above utility function
might take on negative values. The next theorem builds a connection between Fair-
Max(z, u,F) and P.A. Here we extend the definition of (a, b)-approximation such
that a solution y ∈ R

m≥0 is said to achieve a (a, b)-approximation for P.A if it satisfies
the following conditions:

∑
S∈F yS ≤ 1,

∑
S∈F yS f (S) ≥ a × OPT , where OPT

denotes the optimal solution of P.A, and βt ≥ ∑
S∈F ySgt (S) ≥ b × αt ,∀t ∈ [m].

The proof of the following theorem is moved to appendix.

Theorem 2 Assuming for all z ∈ R
m≥0 and u ∈ R

m≥0, there exists a polynomial-time
algorithm that returns a set A ∈ F such that

∀S ∈ F , f (A) +
∑

t∈[m]
gt (A) · zt ≥ ρ · f (S) + μ ·

∑

t∈[m]
gt (S) · (zt − ut ),

for some ρ,μ ∈ [0, 1]. Then there exists a polynomial-time (ρ, μ)-approximation
algorithm for P.A.

Observe that if f is non-negative monotone and submodular, gt is a modular func-
tion (hence

∑
t∈[m] gt (·) · (zt − ut ) is also a modular function), and F = {S ⊆ V |

|S| ≤ k} for a positive integer k, then Sviridenko et al. (2017) presented a randomized
polynomial-time algorithm that produces a set A ∈ F such that for every S ∈ F , it
holds that

f (A) +
∑

t∈[m]
gt (A) · (zt − ut ) ≥ (1 − 1/e) f (S) +

∑

t∈[m]
gt (S) · (zt − ut ). (14)
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The following proposition follows immediately from Theorem 2 and inequality
(14). Note that this result recovers the findings from Tang et al. (2023).

Proposition 5 If the global utility function f is a non-negative monotone submodular
function; m group utility functions g1, g2, . . . , gm are modular functions; F = {S ⊆
V | |S| ≤ k} for a positive integer k, then there exists a feasible (1 − 1/e, 1)-
approximation algorithm for P.A.

For the casewhen f is non-negative non-monotone and submodular, gt is amodular
function, and F = {S ⊆ V | |S| ≤ k} for a positive integer k, Qi (2022) presented an
algorithm for FairMax that achieves ρ = te−t

t+e−t −ε andμ = t
t+e−t for every constant

t ∈ [0, 1]. This, togetherwith Theorem2, indicates a ( te−t

t+e−t −ε, t
t+e−t )-approximation

algorithm for P.A.

5.2 Pairwise fairness

We will now explore another frequently utilized notation of fairness, which relies on
achieving parity in pairwise utility between groups. This type of notation has been
employed in diverse scenarios, such as recommendation systems (Beutel et al. 2019),
assortment planning (Chen et al. 2022), ranking and regression models (Narasimhan
et al. 2020), and predictive risk scores (Kallus and Zhou 2019). Under this notion,
it is expected that groups will experience comparable levels of utility. The extent of
fairness is determined by a parameter γ . Specifically, we require that for every two
groups t, t ′ ∈ [m], the difference between their expected utilities is at most γ , i.e.,∑

S∈F xS · gt (S) − ∑
S∈F xS · gt ′(S) ≤ γ,∀t, t ′ ∈ [m]. This problem is formally

defined in P.B. Our algorithmic findings extend to an even more general version of
this problem by introducing a distinct γ for each pair of groups. For the sake of
simplicity, we do not elaborate on it here.

P.B maxx∈[0,1]F
∑

S∈F xS f (S)

subject to:

{∑
S∈F xS · gt (S) − ∑

S∈F xS · gt ′ (S) ≤ γ,∀t, t ′ ∈ [m].
∑

S∈F xS ≤ 1.

In contrast to our approach for other fairness notations, we do not transform the
original problem into a relaxed form for this particular case. Instead, we solve the dual
of P.B directly. The dual of P.B is presented in Dual of P.B.

Dual of P.B minz∈Rm×m
≥0 ,w∈R≥0

γ
∑

t,t ′∈[m] zt,t ′ + w

subject to: w ≥ f (S) + ∑
t,t ′∈[m](gt ′ (S) − gt (S))zt,t ′ ,∀S ∈ F .

To solve Dual of P.B using ellipsoid method, we define its separation oracle in
FairMax.
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Definition 3 (FairMax) Given functions f and g1, g2, . . . , gm , a matrix z ∈ R
m×m
≥0

and a set of feasible subsets F , FairMax(z,F) aims to

max
S∈F

( f (S) +
∑

t,t ′∈[m]
(gt ′(S) − gt (S))zt,t ′). (15)

The next theorem builds a connection between FairMax(z,F) andP.B. In contrast
to our results for other fairness notations, where we can only anticipate a bicriteria
solution, we show that solving FairMax(z,F) approximately leads to a feasible
solution for P.B. The proof of the following theorem is moved to appendix.

Theorem 3 Suppose that for all z ∈ R
m×m
≥0 , there exists a polynomial-time algorithm

that returns a set A ∈ F such that

∀S ∈ F , f (A) +
∑

t,t ′∈[m]
(gt ′(A) − gt (A))zt,t ′ ≥ ρ · f (S)

+μ ·
∑

t,t ′∈[m]
(gt ′(S) − gt (S))zt,t ′ ,

for some ρ,μ ∈ [0, 1]. Then there exists a feasible ρ-approximation algorithm for
P.B.

It should be noted that the above performance bound does not depend onμ. Observe
that if f is non-negative monotone and submodular, gt is a modular function for
all t ∈ [m] (hence

∑
t,t ′∈[m](gt ′(·) − gt (·))zt,t ′ is also a modular function for all

t, t ′ ∈ [m]), and F = {S ⊆ V | |S| ≤ k} for a positive integer k, then Sviridenko
et al. (2017) presented a randomized polynomial-time algorithm that produces a set
A ∈ F such that, ∀S ∈ F ,

f (A) +
∑

t,t ′∈[m]
(gt ′(A) − gt (A))zt,t ′ ≥ (1 − 1/e) f (S)

+
∑

t,t ′∈[m]
(gt ′(S) − gt (S))zt,t ′ . (16)

The following proposition follows immediately from Theorem 3 and inequality
(16).

Proposition 6 If the global utility function f is a non-negative monotone submodu-
lar function; m group utility functions g1, g2, . . . , gm are modular functions; F =
{S ⊆ V | |S| ≤ k} for a positive integer k, then there exists a feasible (1 − 1/e)-
approximation algorithm for P.B.

Remark A recent work by Chen et al. (2022) proposed an ellipsoid-based method for
the assortment planning problem that includes pairwise fairness constraints. In page 14
ofChen et al. (2022) (theOctober 28th, 2022 version), they discussed the casewhere all
items have uniform revenues. They showed that for this special case, their separation

123



102 Page 16 of 22 Journal of Combinatorial Optimization (2023) 45 :102

oracle is tomaximize the summation of a non-negativemonotone submodular function
and a (not necessarily positive) modular function. They claimed that this objective
function is a non-monotone submodular function and suggested using the continuous
double greedy algorithm proposed in Buchbinder et al. (2014) to obtain a [1/e +
0.004, 1/2]-approximation solution. However, it should be noted that the algorithm
proposed by Buchbinder et al. (2014) only applies when the objective function is non-
negative. Unfortunately, in general, the sum of a non-negative monotone submodular
function and a (not necessarily positive) modular function can yield a negative value,
rendering (Buchbinder et al. 2014)’s algorithm inapplicable. On the other hand, our
separation oracle in Definition 3 also has an objective function in this format, but using
Sviridenko et al. (2017)’s algorithm as a subroutine to solve it leads to a (1 − 1/e)-
approximation solution of our original problem. It is easy to verify that our framework
(i.e., employing Sviridenko et al. 2017’s algorithm to solve the separation oracle) can
be applied to the problem examined by Chen et al. (2022) to obtain a (1 − 1/e)-
approximation solution by conducting an analogous analysis to Theorem 3.

6 Conclusion

In this paper, we introduce a general group fairness notation that unifies many nota-
tions used in previous works. We formulate the problem of finding a distribution over
solution sets that maximizes global utility while satisfying fairness constraints. We
develop a polynomial-time algorithmic framework based on the ellipsoid method to
solve this problem.We also develop an optimal (1−1/e)-approximation algorithm for
a special case of our problem, where f is monotone and submodular, and gt is a mod-
ular function. This solution satisfies all fairness constraints strictly. Our work shows
that this formulation brings together and extends numerous noteworthy applications
in both machine learning and operations research.
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7 Appendix

7.1 Proof of Theorem 2

To prove this theorem, it suffices to present a polynomial (ρ, μ)-approximation
algorithm for P.A, using a polynomial-time approximation algorithm for Fair-
Max(z, u,F) as a subroutine. We first introduce a relaxed form of P.A in RP.A
where the lower bound constraint is replaced with μαt .
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RP.A maxx∈[0,1]F
∑

S∈F xS f (S)

subject to:

{
μαt ≤ ∑

S∈F xS · gt (S) ≤ βt , ∀t ∈ [m].
∑

S∈F xS ≤ 1.

The dual of RP.A is listed in Dual of RP.A.

Dual of RP.A minz∈Rm≥0,u∈Rm≥0,w∈R≥0

∑
t∈[m](βt ut − μαt zt ) + w

subject to: w ≥ f (S) + ∑
t∈[m] gt (S) · (zt − ut ), ∀S ∈ F .

Let C(L) denote the set of (z ∈ R
m≥0, u ∈ R

m≥0, w ∈ R≥0) satisfying that

∑

t∈[m]
(βt ut − μαt zt ) + w ≤ L,

w ≥ f (S) +
∑

t∈[m]
gt (S) · (zt − ut ), ∀S ∈ F .

It is easy to verify that L is achievable with respect to Dual of RP.A if and only if
C(L) is non-empty. To find the minimum value of L such that C(L) is non-empty, we
use a binary search algorithm.

For a given L and (z, u, w), we first evaluate the inequality
∑

t∈[m](βt ut −
μαt zt ) + w ≤ L . If the inequality holds, the algorithm runs a subroutine A to
solve FairMax(z, u,F). Assuming thatA is aμ-approximation algorithm for Fair-
Max(z, u,F), let A denote the set returned by A.

– If the condition f (A) + ∑
t∈[m] gt (A) · (zt − ut ) ≤ w holds, we mark C(L) as a

non-empty set. In such a scenario, we proceed to try a smaller value of L .
– If f (A)+∑

t∈[m] gt (A) · (zt −ut ) · zt > w, this means that (z, u, w) /∈ C(L), and
hence, A is a separating hyperplane.We search for a smaller ellipsoid with a center
that satisfies this constraint. We repeat this process until we either find a feasible
solution in C(L), in which case we attempt a smaller L , or until the volume of the
bounding ellipsoid becomes so small that it is considered empty with respect to
C(L). In the latter case, we conclude that the current objective is unattainable and
will therefore try a larger L .

Define L∗ to be the smallest value of L for which C(L) is marked as non-empty
by our algorithm. We next show that the optimal solution of P.A is at most L∗/ρ. To
avoid trivial cases, let us assume that ρ > 0.

Because C(L∗) is marked as non-empty, there exists a (z∗, u∗, w∗) such that

∑

t∈[m]
(βt u

∗
t − μαt z

∗
t ) + w∗ ≤ L∗ (17)

and

f (A) +
∑

t∈[m]
gt (A) · (z∗t − u∗

t ) ≤ w∗. (18)
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By the assumption made regarding A in Theorem 2, we have ∀S ∈ F ,

f (A) +
∑

t∈[m]
gt (A) · z∗t ≥ ρ · f (S) + μ ·

∑

t∈[m]
gt (S) · (z∗t − u∗

t ). (19)

It follows that ∀S ∈ F ,

f (S) + μ

ρ
·

∑

t∈[m]
gt (S) · (z∗t − u∗

t )

≤ ( f (A) +
∑

t∈[m]
gt (A) · (z∗t − u∗

t ))/ρ ≤ w∗/ρ (20)

where the first inequality follows from (19) and the second inequality is by inequality
(18).

Consider the dual of P.A (labeled as Dual of P.A), inequality (20) implies that
(
μ
ρ

· z∗, μ
ρ

· u∗, 1
ρ

· w∗) is a feasible solution of Dual of P.A.

Dual of P.A minz∈Rm≥0,u∈Rm≥0,w∈R≥0

∑
t∈[m](βt ut − αt zt ) + w

subject to: w ≥ f (S) + ∑
t∈[m] gt (S) · (zt − ut ), ∀S ∈ F .

Plugging (
μ
ρ

· z∗, μ
ρ

· u∗, 1
ρ

·w∗) into the objective function of Dual of P.A, we can
infer that the value of Dual of P.A is at most

μ

ρ
·

∑

t∈[m]
(βt u

∗
t − αt z

∗
t ) + w∗/ρ ≤

∑

t∈[m]
(βt u

∗
t /ρ − μαt z

∗
t /ρ)

+w∗/ρ ≤ L∗/ρ (21)

where the first inequality is by the observations that βt u∗
t /ρ ≥ 0 and μ ∈ [0, 1],

and the second inequality is by (17). By strong duality, the value of P.A is at most
L∗/ρ. Hence, by finding a solution to RP.A with a value of L∗, we can achieve an
(ρ, μ)-approximation for the original problem P.A.

Suppose L∗−ε is the largest value of L for which the algorithm identifies thatC(L)

is empty. Here, ε denotes the precision of the binary search. We next focus on finding
a solution to RP.A with a value of L∗ − ε. Define F ′ as the set that contains all the
feasible subsets for which the dual constraint is violated during the implementation
of the ellipsoid algorithm on C(L∗ − ε). We use F ′ to construct a polynomial sized
dual linear program of RP.A (labeled as Poly-sized Dual of P.A).

Poly-sizsed Dual of RP.A minz∈Rm≥0,u∈Rm≥0,w∈R≥0

∑
t∈[m](βt ut − μαt zt ) + w

subject to: w ≥ f (S) + ∑
t∈[m] gt (S) · (zt − ut ), ∀S ∈ F ′.

Because C(L∗ − ε) is empty, the value of Poly-sized Dual of RP.A at least L∗ −
ε. Hence, the optimal solution to the dual of Poly-sized Dual of RP.A (labeled as
Poly-sized RP.A) is at least L∗ − ε.
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Poly-sized RP.A max
x∈[0,1]F ′

∑
S∈F ′ xS f (S)

subject to:

{
μαt ≤ ∑

S∈F ′ xS · gt (S) ≤ βt , ∀t ∈ [m].
∑

S∈F ′ xS ≤ 1.

Solving Poly-sized RP.A obtains a solution with a value of L∗ − ε. This solution
is a (ρ, μ)-approximation (with additive error ε) for P.A.

7.2 Proof of Theorem 3

To prove this theorem, it suffices to present a feasible ρ-approximation algorithm
for P.B, using a polynomial-time approximation algorithm for FairMax(z,F) as a
subroutine. Let C(L) denote the set of (z ∈ R

m×m
≥0 , w ∈ R≥0) satisfying that

γ
∑

t,t ′∈[m]
zt,t ′ + w ≤ L,

w ≥ f (S) +
∑

t,t ′∈[m]
(gt ′(S) − gt (S))zt,t ′ ,∀S ∈ F .

It is easy to verify that L is achievable with respect to Dual of P.B if and only if
C(L) is non-empty. To find the minimum value of L such that C(L) is non-empty, we
use a binary search algorithm.

For a given L and (z, w), we first evaluate the inequality γ
∑

t,t ′∈[m] zt,t ′ +w ≤ L .
If the inequality holds, the algorithm runs a subroutine A to solve FairMax(z,F).
Let A denote the set returned by A.

– If the condition f (A) + ∑
t,t ′∈[m](gt ′(A) − gt (A))zt,t ′ ≤ w holds, we mark C(L)

as a non-empty set. In such a scenario, we proceed to try a smaller value of L .
– If f (A)+∑

t,t ′∈[m](gt ′(A)− gt (A))zt,t ′ > w, this means that (z, w) /∈ C(L), and
hence, A is a separating hyperplane.We search for a smaller ellipsoid with a center
that satisfies this constraint. We repeat this process until we either find a feasible
solution in C(L), in which case we attempt a smaller L , or until the volume of the
bounding ellipsoid becomes so small that it is considered empty with respect to
C(L). In the latter case, we conclude that the current objective is unattainable and
will therefore try a larger L .

Define L∗ to be the smallest value of L for which C(L) is marked as non-empty
by our algorithm. We next show that the optimal solution of P.B is at most L∗/ρ. To
avoid trivial cases, let us assume that ρ > 0.

Because C(L∗) is marked as non-empty, there exists a (z∗, w∗) such that

γ
∑

t,t ′∈[m]
z∗t,t ′ + w∗ ≤ L∗ (22)
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and

f (A) +
∑

t,t ′∈[m]
(gt ′(A) − gt (A))z∗t,t ′ ≤ w∗. (23)

By the assumption made regarding A in Theorem 3, we have ∀S ∈ F ,

f (A) +
∑

t,t ′∈[m]
(gt ′(A) − gt (A))z∗t,t ′

≥ ρ · f (S) + μ ·
∑

t,t ′∈[m]
(gt ′(S) − gt (S))z∗t,t ′ . (24)

It follows that ∀S ∈ F ,

f (S) + μ

ρ
·

∑

t,t ′∈[m]
(gt ′(S) − gt (S))z∗t,t ′

≤ ( f (A) +
∑

t,t ′∈[m]
(gt ′(A) − gt (A))z∗t,t ′)/ρ ≤ w∗/ρ (25)

where the first inequality follows from (24) and the second inequality is by inequality
(23).

Inequality (25) implies that (μ
ρ

· z∗, 1
ρ

· w∗) is feasible for Dual of P.B.

Dual of P.B minz∈Rm×m
≥0 ,w∈R≥0

γ
∑

t,t ′∈[m] zt,t ′ + w

subject to: w ≥ f (S) + ∑
t,t ′∈[m](gt ′ (S) − gt (S))zt,t ′ ,∀S ∈ F .

Plugging (
μ
ρ

· z∗, 1
ρ

· w∗) into the objective function of Dual of P.B, we can infer
that the value of Dual of P.B is at most

μγ
∑

t,t ′∈[m]
(z∗t,t ′/ρ) + w∗/ρ ≤ γ

∑

t,t ′∈[m]
(z∗t,t ′/ρ) + w∗/ρ ≤ L∗/ρ (26)

where the first inequality is by the observations that γ ≥ 0, z∗t,t ′/ρ ≥ 0, μ ∈ [0, 1],
and the second inequality is by (22). By strong duality, the value of P.B is at most
L∗/ρ. Hence, by finding a solution to P.B with a value of L∗, we can achieve a
ρ-approximation for P.B.

Suppose L∗ − ε is the largest value of L for which the algorithm identifies that
C(L) is empty. Define F ′ as the set that contains all the feasible subsets for which
the dual constraint is violated during the implementation of the ellipsoid algorithm
on C(L∗ − ε). We use F ′ to construct a polynomial sized dual linear program of P.B
(labeled as Poly-sized Dual of P.B).

Poly-sized Dual of P.B minz∈Rm×m ,w∈R≥0
γ

∑
t,t ′∈[m] zt,t ′ + w

subject to: w ≥ f (S) + ∑
t,t ′∈[m](gt ′ (S) − gt (S))zt,t ′ ,∀S ∈ F ′.

123



Journal of Combinatorial Optimization (2023) 45 :102 Page 21 of 22 102

Because C(L∗ − ε) is empty, the value of Poly-sized Dual of P.B at least L∗ − ε.
Hence, the optimal solution to the dual of Poly-sized Dual of P.B (labeled as
Poly-sized P.B) is at least L∗ − ε.

Poly-sized P.B max
x∈[0,1]F ′

∑
S∈F xS f (S)

subject to:

{∑
S∈F ′ xS · gt (S) − ∑

S∈F ′ xS · gt ′ (S) ≤ γ, ∀t, t ′ ∈ [m].
∑

S∈F ′ xS ≤ 1.

Solving Poly-sized P.B obtains a solution with a value of L∗ − ε. This solution is
a feasible ρ-approximation (with additive error ε) for P.B.
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Abdulkadiroğlu A (2005) College admissions with affirmative action. Int J Game Theory 33:535–549
AsadpourA,NiazadehR,SaberiA, ShameliA (2022)Sequential submodularmaximization and applications

to ranking an assortment of products. Oper Res
Beutel A, Chen J, Doshi T, Qian H,Wei L,WuY, Heldt L, Zhao Z, Hong L, Chi EH et al. (2019): Fairness in

recommendation ranking through pairwise comparisons. In: Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery and data mining. pp 2212–2220

Biddle D (2017) Adverse impact and test validation: a practitioner’s guide to valid and defensible employ-
ment testing. Routledge, London

Bubeck S et al (2015) Convex optimization: algorithms and complexity. Found Trends® Mach Learn 8(3–
4):231–357

Buchbinder N, Feldman M (2019) Constrained submodular maximization via a nonsymmetric technique.
Math Oper Res 44(3):988–1005

Buchbinder N, Feldman M, Naor J, Schwartz R (2014) Submodular maximization with cardinality con-
straints. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms.
SIAM, pp 1433–1452

Calinescu G, Chekuri C, Pál M, Vondrák J (2007) Maximizing a submodular set function subject to a
matroid constraint. In: International conference on integer programming and combinatorial optimiza-
tion. Springer, pp 182–196

Celis E, Keswani V, Straszak D, Deshpande A, Kathuria T, Vishnoi N (2018) Fair and diverse DPP-based
data summarization. In: International conference on machine learning. PMLR, pp 716–725

Celis LE, Huang L, Vishnoi NK (2018) Multiwinner voting with fairness constraints. In: Proceedings of
the 27th international joint conference on artificial intelligence. pp 144–151

Celis LE, Straszak D, Vishnoi NK (2017) Ranking with fairness constraints. arXiv:1704.06840
Chen Q, Golrezaei N, Susan F, Baskoro E (2022) Fair assortment planning. arXiv:2208.07341
Chierichetti F, Kumar R, Lattanzi S, Vassilvitskii S (2017) Fair clustering through fairlets. Adv Neural Inf

Process Syst 30
Chierichetti F, Kumar R, Lattanzi S, Vassilvtiskii S (2019) Matroids, matchings, and fairness. In: The 22nd

international conference on artificial intelligence and statistics. PMLR, pp 2212–2220
Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R (2012) Fairness through awareness. In: Proceedings of

the 3rd innovations in theoretical computer science conference
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