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Abstract
Recent advances in wireless sensor networks (WSNs) allow directional antennas to
be used instead of omni-directional antennas. However, the problem of maintain-
ing (symmetric) connectivity in directional wireless sensor networks is significantly
harder. Contributing to this field of research, in this paper, we study two problems in
WSNs equipped with k directional antennas (3 ≤ k ≤ 4). The first problem, called
antenna orientation (AO) is that given a set S of nodes equipped with omni-directional
antennas of unit range, the goal is to replace omni-directional antennas by directional
antennas with beam-width θ ≥ 0 and to find away to orient them such that the required
range to yield a symmetric connected communication graph (SCCG) is minimized.

For this problem, we propose an O(n log n) time algorithm yielding r = 2sin
(
180◦

k

)
.

The second problem, called antenna orientation and power assignment (AOPA) is to
determine for each node u an orientation of its antennas and a range ru in order to
induce an SCCG such that the total power assignment

∑
u rβ

u is minimized, where
β is a distant-power gradient. We show that our solution for the AO problem also
induces an O(1)-approximation algorithm for the AOPA problem. Simulation results
demonstrate that our algorithms have better performance than previous approaches,
especially in case k = 3.
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1 Introduction

Wireless sensor networks (WSNs) have received significant attention of many
researchers due to their vast applications in various areas. As the amount of battery
equipped with each node is limited, reducing energy consumption is one of the most
studied problems concerningWSNs. One of the main approaches to resolve this prob-
lem is topology control, especially in omni-directional WSNs (Kirousis et al. 2000;
Li et al. 2001; Calinescu et al. 2003; Ye and Zhang 2004; Lloyd et al. 2005; Calinescu
and Wan 2006; Lloyd et al. 2006; Caragiannis et al. 2006; Wang et al. 2010). Besides
topology control, appropriate power assignments can be exploited to obtain wireless
networks that are fault-tolerant and have low interference (Lam et al. 2011).

In contrast to a low-gain omni-directional antenna, a high-gain directional antenna
has a limited broadcast region defined by a range r and a beam-width θ . Replacing
omni-directional antennas by directional ones can bring some noticeable advantages,
such as reduced energy consumption, minimized interference and increased communi-
cation security (seeAschner et al. 2012; Kranakis et al. 2015 and references therein). A
natural way to reduce energy usage of a directional wireless sensor network (DWSN)
is to reduce the power range of the antennas. However, a very low range may cause
the communication graph to be disconnected. Therefore, the AO problem whose goal
is to find a way to orient the antennas with a smallest possible range is an interesting
problem to investigate.

Formally, we consider a Directional Wireless Sensor Network (DWSN) as a set
S of nodes in the plane. Let k, 3 ≤ k ≤ 4, be an integer, and θ , 0 ≤ θ ≤ 360◦, a
beam-width angle. Each sensor u in a DWSN is equipped with k directional antennas
having a beam-width θ and a transmission range r(u). The broadcasting region of an
antenna of u is defined by a sector centering at u with radius r(u) and beam-width θ

and the orientation of the bisector of θ (in case of θ = 0, the sector and its bisector are
degenerated to a segment). Two nodes u and v are said to be symmetrically connected
if these two conditions are both satisfied: (1) u lies inside the broadcasting region of
one of k antennas of v and vice versa, and (2) the Euclidean distance between u and
v is no greater than min(r(u), r(v)).

1.1 Our results

We obtain the following results for beam-width θ = 0, however, these results also
hold for any angle θ ≥ 0.

1. In Dobrev et al. (2012), the authors present an elegant algorithm that yields state-of-

the-art results for the required range r = 2sin
(
180◦
k+1

)
to induce a strongly connected

communication graph for a DWSN spanned by a unit disk graph (UDG). Our main
technical result is to modify this approach in order to yield an SCCG where the

required range is r = 2sin
(
180◦

k

)
.

Similar to many typical approaches in constructing a geometric spanning tree,
Dobrev et al. first use a minimum spanning tree (MST) with maximum degree 5 as
a backbone. They then choose an arbitrary node to root the tree and added nodes to
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the communication graph according to their levels in the MST in such a way that
the outdegree of newly-added nodes is at most 1. In the proof of their results, they
demonstrate the existence of pairs of children of a node (in a rooted MST) such

that their distances are bounded by 2sin
(
180◦
k+1

)
. Note that the range obtained by

Dobrev et al., and also throughout this paper, is computed after normalizing the
maximum edge length of the MST to 1.

We follow the same approach. To adapt this approach for symmetric connec-
tivity, we try to guarantee that the maximum degree of a newly-added node is 2 for
both k = 3 and k = 4. For the case k = 4, we obtain the desired range using a
subtle orientation. However, the problem ismuchmore involved for k = 3. Inspired
by the study of Biniaz (2020), we exploit the grandchildren (if exist) of a node to
establish symmetric connectivity between this node and their children as well as
their grandchildren.

2. We prove that our solution for theAOproblem also induces an O(1)-approximation
algorithm for the AOPA problem. Using the method presented in Aschner et al.
(2013) and Tran and Huynh (2020), we obtain the bound kmax ≤ 4, where kmax is
the maximum number of times that an edge is used to estimate the range of a node
in the induced communication graph. This result implies that the approximation
ratio obtained for the AOPA problem for k = 3 and k = 4 is 4 × rβ

k , where rk is

the required range in our solution for the AO problem, which is 2sin
(
180◦

k

)
.

Comparison of our algorithm with the algorithm by Biniaz (2020): Our algorithms
achieve the same theoretical results as Biniaz’s for the AO problem using a different
approach, i.e., our algorithms are top-downwhereas Biniaz’s are bottom-up. Although
sharing the same theoretical performance guarantee, simulation results show that our
algorithms outperform previous approaches in practice. Ourminimum required ranges
for theAOproblemare nearly optimal. Finally,we also investigate theAOPAproblems,
which is not considered in Biniaz (2020).

Theorem 1 Given a set of nodes S in the plane, each node is equipped with k directional
antennas, 3 ≤ k ≤ 4, with beam-width θ ≥ 0. Then there always exists an orientation
of these antennas so that the communication graph G of S is symmetric connected

and the maximum range assignment for each node is 2sin
(
180◦

k

)
.

Theorem 2 Given a set of nodes S in the plane, each node is equipped with k directional
antennas, 3 ≤ k ≤ 4, with beam-width θ ≥ 0. Let Cost(AO P AS) be the total power
assignment of an orientation algorithm for the set of nodes S and O PT (AO P AS) be
the optimal total power assignment over all orientation algorithms for S, then

Cost(AO P AS) ≤ 4 × 2sin

(
180◦

k

)β

× Costβ(T ),

whereβ is the distant-power gradient, T is an MST of S and Costβ(T ) := ∑
e∈T |e|β ≤

O PT (AO P AS).
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1.2 Related work

1.2.1 Related work on strong connectivity

In Caragiannis et al. (2008), the authors initiated the line of research in DWSNs. In that
paper, the authors proved that if each node in DWSN is equipped with one directional
antenna having beam-width θ ≥ 288◦ (8π/5), the problem of maintaining a strongly
connected communication graph is solvable in polynomial time. Bhattacharya et al.
(2009) addressed the problem of minimizing the sum of transmission angle over all
antennas of one node to ensure that the communication graph is strongly connected
given a fixed transmission range r . Dobrev et al. (2012) gave an elegant algorithm

to achieve a communication graph that requires a range of 2sin
(
180◦
k+1

)
to maintain

strong connectivity.

1.2.2 Related work on symmetric connectivity

In regard to symmetric connectivity,when θ ≥ 0, theAOproblem forDWSNs is equiv-
alent to the Euclidean Degree-Bounded Bottleneck Spanning Tree problem. Andersen
and Ras (2016) showed that the problem is NP-Hard for k = 3 by a reduction from the
Hamiltonian path problem for grid graphs with maximum degree 3. For k = 4, while
the approximation ratio is reduced to

√
3 (Andersen and Ras 2016; Tran and Huynh

2020) and then to
√
2 (Biniaz 2020 and Theorem 3), its NP hardness still remains

open.
In case θ > 0, when k = 1, multiple research papers have been presented. Carmi

et al. (2011) showed that a DWSN where each antenna has beam-width θ ≥ 60◦
always admits an SCCG. In Aschner et al. (2013), the authors proposed an orientation
such that the induced SCCG requires a range of 14

√
2 and a hop-distance of 8 when

θ = 90◦. Later, Tran et al. (2017a) gave an algorithm yielding an SCCGwith required
range of 9 but hop-distance is unbounded. When θ = 120◦, Aschner and Katz (2017)
presented a 6-hop spanner where the bottleneck range is at most 7. Moreover, if our
objective is to optimize only one of these two measures, a better constant can be
achieved (i.e. a 3-hop spanner or an SCCG with required range 5).

When k ≥ 2, very few studies can be found in the literature. When k = 2, Tran
et al. (2017b) were the first researchers who studied this case. In that paper, the authors
proposed an algorithm yielding an SCCG where the required range is 4 and 5 for
θ = 60◦ and θ = 45◦, respectively. In case 3 ≤ k ≤ 4 and θ > 0, to the best of our
knowledge, no study has been found.

In this paper, our focus is to investigate the antenna orientation (AO) and the antenna
orientation and power assignment (AOPA) problems for DWSNs in which each node
is equipped with 3 ≤ k ≤ 4 antennas with beam-width θ ≥ 0. Our algorithms
are a significant improvement over Tran’s algorithms presented in Tran and Huynh
(2020) (for the conference version, see Tran and Huynh 2018) in terms of both the
minimum required range and the total power assignment. Our approach is top-down
whereas Tran et al.’s algorithms are bottom-up. For the AOPA problem, the NP-
hardness was obtained by Tran and Huynh (2020) for k = 3 and k = 4, while the
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NP-hardness result for the problem in case k = 2 can be easily derived from the
Hamiltonian Path problem in grid graphs (Papadimitriou and Vazirani 1984).

2 Preliminaries

In this section, we recall some properties of Euclidean Minimum Spanning Trees
(MSTs) and include some definitions and notations using in the rest of the paper. Let
M ST5 be the MST where the maximum degree of each vertex is 5. It is well known
that a set S of points in the plane admits an M ST5T such that (see Monma and Suri
1992):

1. The minimum angle among nodes with a common parent is at least 60◦,
2. For any point u and any edge {u, v} of T , the disk D(v; d(u, v)) does not contain

a point w �= v which is also a neighbor of u in T .

An M ST5 of a set of points can be constructed from an arbitrary MST by using
Wu et al.’s technique in Wu et al. (2006) in polynomial time.

Definition 1 Given a graph G and a node u in G, degG(u) denotes the degree of u in
G.

Definition 2 Given two pairs (a, b) and (c, d), we say that they are separated if a, b,
c and d are four distinct nodes.

Definition 3 Given an MST T with height h, we define an l-node, 1 ≤ l ≤ h, as a
node of T whose level from root node is l where the level of the root node is 0.

For the sake of simplicity, we introduce here some conventions used in this paper.
First, given two nodes u and v in a DWSN, the terms “add edge uv", “connect u to v”
and “orient one antenna of u to v and orient one antenna of v to u" are all equivalent.
Second, unless specially stated, ∠(uvw) denotes the convex angle formed by the two
segments uv and vw. Third, any MST mentioned in this work is an M ST5. Finally,
neighbors of a node are listed in clockwise order.

3 Algorithm for the AO problemwhen k = 4

In this section we derive the algorithm for the AO problem.

Definition 4 Let u and v be two consecutive neighbors of a node p in a tree.We say that
u and v are angle-close (or a-close for short) if∠(upv) ≤ 90◦, and angle-far (or a-far
for short) otherwise. It is obvious that u and v are a-close implies that d(u, v) ≤ √

2.

Lemma 1 Let s be a node that has 5 neighbors in an MST. Then there does not exist
any 3 consecutive sectors that are a-far. In other words, there exist two separated
pairs of neighbors of s that are a-close (see Fig.1).

Proof The proof is by contradiction. Assume that s has 3 consecutive a-far pairs. Then
the sum of the angles formed by them are larger 270◦, thus the sum of two remaining
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Fig. 1 Illustration of Lemma 1.
(u1, u5) and (u3, u4) are two
separated a-close pairs

Fig. 2 Base case for k = 4

sectors are smaller than 90◦. However, every sector is at least 60◦, or the sum of these
two sectors is larger than 120◦ > 90◦, which is contradiction. �	
Theorem 3 Given a set S of nodes in the plane, each node is equipped with 4 directional
antennas with beam-width θ ≥ 0. Let T be the MST spanning the U DG of S. Then
there always exists an orientation of these antennas so that the communication graph
G of S is symmetric connected and the maximum power range assignment for each
node is

√
2. Moreover, for each leaf node u in T , degG(u) ≤ 2 and if degG(u) = 2, u

is directly connected with its parent (in T ) in the communication graph G.

Proof The proof is by induction on the height h of T . First, we do the base case for
h ≤ 1. If h = 0, the result is trivial. If h = 1, let s be the root of T , then 1 ≤ deg(s) ≤ 5.
We have two cases:

1. deg(s) < 5. In this case, we just connect s to its neighbors. It is obvious that the
communication graph is symmetric connected.

2. deg(s) = 5. Let u1, u2, . . . , u5 be five neighbors of s. By Lemma 1, there must
exists one pair of s’s neighbors that are a-close. W.l.o.g., let u1 and u5 be a-close.
We can add the edges su1, su2, su3, su4 and u1u5 to G as in Fig. 2. Observe that
the longest edge is u1u5 and by Definition 4, the length of this edge is at most

√
2.

Thus, this orientation satisfies Theorem 3.

We now prove the induction step. To this end, let T be an MST with height h ≥ 2,
we remove all h-nodes of T to produce a tree T ′ whose height is h − 1. The tree T ′
is still an MST and by the induction hypothesis, there exists an orientation yielding a
communication graph G ′ that satisfies Theorem 3. Now let G = G ′, we add all of the
h-nodes back and connect them to G. As our orientation is applied to (h − 1)-nodes
independently, let u in T ′ be an arbitrary (h − 1)-node. We describe the process of
connecting u’s children to u in G. Let d be the number of neighbors of u that are the
h-nodes added in this step, 0 ≤ d ≤ 4. We have three cases:

1. d ≤ 2. Since u has at least 2 remaining free antennas, we can freely connect u to
its children. It is obvious that the orientation satisfies Theorem 3.
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Fig. 3 Case k = 4, d = 3, node u = u1 is connected with two nodes in T ′ and a v1, v2 are a-close, b
v0, v1 are a-close

2. d = 3. We have two subcases:

(a) Node u is connected with one node in T ′. In Fig. 2, u may be one of the nodes
u2, u3, u4, u5. Let u be for instance u5. To maintain symmetric connectivity,
we just connect u5 to its children.

(b) Node u is connected with two nodes in T ′. One of these two nodes must be
the parent s of u in T ′ (and T also). In Fig. 2, node u is u1 is in this case. Let
v0 = s, v1, v2 and v3 be the neighbors of u1 in T . By the pigeonhole principle,
there must exist one a-close pair of consecutive vi . If v0 is not a-close with
any other vi then, W.l.o.g., let’s assume that v1 and v2 are a-close, we add the
edges u1v1, u1v3 and v1v2 as in Fig. 3a. Otherwise, assume that v0 and v1 are
a-close, we remove the edge v0u1 and add the edges v0v1, u1v1, u1v2 and u1v3
to G (see Fig. 3b).

3. d = 4. Then we have two subcases:

(a) Node u is connected with one node in T ′. As in Fig. 2, u is one of the nodes
u2, u3, u4, u5 in this case. W.l.o.g. let u be u5. Let v1, v2, v3 and v4 be the
children of u5 in T , by Lemma 1 and W.l.o.g., assume that v1 and v2 are
a-close, we connect u5 with v1, v3 and v4, and connect v1 with v2 as in Fig. 4.

(b) Node u is connected with two nodes in T ′. One of these two nodes must be
the parent s of u in T . In Fig. 2, node u1 is u in this case. Let v0 = s, v1, v2, v3
and v4 be five neighbors of u1 in T . There are 2 cases:
i. v1, v2 and v3, v4 are a-close. We add the edges v1v2, v3v4, u1v1 and u1v3

to G as in Fig. 5a.
ii. v0 is a-close with either v1 or v4. W.l.o.g., let v0 be a-close to v4. By

Lemma 1, there is another pair that are a-close and separated with (v0, v4).
Suppose that v1 and v2 are a-close.We remove edge u1v0, and then connect
v0 with v4, v1 with v2, u1 with v1, u1 with v3 and u1 with v4 (see Fig. 5b).

�	

4 Algorithm for the AO problemwhen k = 3

In this section, we present the algorithm for the AO problem when k = 3. We first
define the closeness of nodes by the distance between them instead of by the angle.
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Fig. 4 Case k = 4, d = 4, node
u = u5 is connected with one
node in T ′ and v1, v2 are a-close

Fig. 5 Case k = 4, d = 4, node u = u1 is connected with two nodes in T ′ and a v1, v2 and v3, v4 are
a-close, b v1, v2 and v0, v4 are a-close

Definition 5 Letu andv be twonodes in anMST.We say thatu andv aredistance-close
(or d-close for short) if the distance between them is at most

√
3, and distance-far (or

d-far for short) otherwise. It is easy to see that if u and v are two d-far consecutive
neighbors of p, then ∠(upv) > 120◦.

Lemma 2 Let s be any node in an MST. The following statements hold:

(1) If deg(s) = 3, then at least two consecutive neighbors of s are d-close.
(2) If deg(s) = 4, then there exist two separated pairs of neighbors of s that are both

d-close.
(3) If deg(s) = 5, then all consecutive neighbors of s are d-close.

Proof (1) If deg(s) = 3, then the smallest angle is at most 120◦, hence two neighbors
of s defining this angle are d-close.

(2) If deg(s) = 4, then there is at most one angle larger than 120◦, because if there
are two angles larger than 120◦, then the sum of these four angles must be larger
than 2 · 120◦ + 2 · 60◦ = 360◦, which is impossible. Thus, there must exist two
nonadjacent angles smaller than 120◦, and the pairs of neighbors defining these
angles are d-close.

(3) If deg(s) = 5, then the largest angle is at most 120◦, hence all consecutive neigh-
bors of s are d-close.

�	
Claim (Biniaz 2020) Let u and v be two neighbors in an MST, p and q be a child of u
and v, respectively. Assume that both p and q lie on the same half plane defined by the
line through uv. If∠(puv)+∠(qvu) ≤ 210◦, then |pq| ≤ √

3·max{|pu|, |uv|, |vq|}.
The following claim is a summarized version of Lemma 2.8 in Dobrev et al. (2012).
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Claim (Dobrev et al. 2012) Let u, v andw be three consecutive children with parent p
in an MST such that ∠(upv) + ∠(vpw) ≤ 180◦. The following statements hold true:

(1) If deg(v) = 3 and the only two children of v are d-far, then at least one of them is
d-close to either u or w.

(2) If deg(v) ≥ 4, then at least one child of v is d-close to either u or w.

Lemma 3 Let p and q be two neighbors in an MST, having degree 5 and degree 4,
respectively. Let v0, v1, v2, v3 = q and v4 be the 5 neighbors of p, and w0 = p, w1, w2
and w3 be the 4 neighbors of q. Then only one of the following five cases can occur:

(1) w1, v2 and w3, v4 are both d-close.
(2) If w1, v2 are d-far and w1, w2 are d-close, then w3, v4 are d-close.
(3) If w1, v2 and w1, w2 are both d-far, then w2, v4 and w3, v0 are both d-close.
(4) If w3, v4 are d-far and w3, w2 are d-close, then w1, v2 are d-close.
(5) If w3, v4 and w3, w2 are both d-far, then w2, v2 and w1, v1 are both d-close.

Proof (1) If w1, v2 and w3, v4 are d-close, we are done.
(2) If w1, v2 are d-far, since ∠(v2w0v3) + ∠(v3w0v4) ≤ 180◦, by Claim 4, w3, v4

must be d-close. (Notice that w1 and w3 are obviously far, thus we can ignore w2
and apply case 1 of Claim 4).

(3) If w1, v2 are d-far, we first prove the claim that w1 and v2 are on the same side of
the line v3w0.

Claim Let p and q be two neighbors in an MST, having degree 5 and degree 4,
respectively. Let v0, v1, v2, v3 = q and v4 be the 5 neighbors of p, andw0 = p, w1, w2
and w3 be the 4 neighbors of q. If w1, w2 are d-far, then w2 and v4 lie on the same
half plane defined by the line through v3w0.

Proof Place a 2-dimensional Cartesian coordinate system on the plane such that v3 is
the origin O of the system andw0 is on the horizontal axe Ox . Suppose thatw0 is on the
right of v3. Since we list the neighbors of p in clockwise order, v4 must be above Ox .
As w1, w2 are d-far, clockwise the angle ∠(w0v3w2) = ∠(w0v3w1) + ∠(w1v3w2) is
> 60◦ + 120◦ = 180◦. Thus w2 is above Ox . Therefore w2 and v4 are on the same
half plane defined by the line v3w0. �	

Since w1, v2 are d-far and w1, v2 are on the same half plane defined by the line
v3w0, by Claim 4, ∠(w1v3w0) + ∠(v3w0v2) > 210◦. In addition, if w1, w2 are d-far,
∠(w2v3w1) > 120◦. Therefore, ∠(w2v3w0)+∠(v4w0v3) = [360◦ − (∠(w2v3w1)+
∠(w1v3w0))] + [360◦ − (∠(v3w0v2) + ∠(v2w0v1) + ∠(v1w0v0) + ∠(v0w0v4))] ≤
2 · 360◦ − ∠(w2v3w1) − (∠(w1v3w0) + ∠(v3w0v2)) − 3 · 60◦ < 2 · 360◦ − 120◦ −
210◦ −3 · 60◦ = 210◦. Hence by Claim 4 and Claim 4, w2, v4 are d-close (see Fig. 6).
Analogously, one can prove that w3, v0 are d-close.

(4) This case can be shown as case (2) by relabeling.
(5) This case can be shown as case (3) by relabeling.

�	
Lemma 4 Let p and q be two neighbors in an MST, each be of degree 5. Let
v0, v1, v2, v3 = q and v4 be the 5 neighbors of p and w0 = p, w1, w2, w3 and
w4 be the 5 neighbors of q. Then only one of following three cases can to occur.
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Fig. 6 Illustration of Lemma 3,
case (3)

Fig. 7 Illustration of Lemma 4,
case (2)

(1) w1, v2 and w4, v4 are both d-close.
(2) If w1, v2 are d-far, then w4, v0 and w3, v4 are both d-close.
(3) If w4, v4 are d-far, then w1, v1 and w2, v2 are both d-close.

Proof It is easy to see that w1, w2, v1 and v2 are on the same side of the line v3w0.
The same holds for the nodes w3, w4, v0, v4.

(1) If w1, v2 and w4, v4 are d-close, we are done.
(2) If w1, v2 are d-far then by Claim 4, ∠(w1v3w0) + ∠(v3w0v2) > 210◦. Thus,

∠(w3v3w0)+∠(v4w0v3) = [360◦−(∠(w3v3w2)+∠(w2v3w1)+∠(w1v3w0))]+
[360◦ − (∠(v3w0v2) + ∠(v2w0v1) + ∠(v1w0v0) + ∠(v0w0v4))] ≤ 2 · 360◦ −
(∠(w1v3w0) + ∠(v3w0v2)) − 5 · 60◦ < 2 · 360◦ − 210◦ − 5 · 60◦ = 210◦. Hence
by Claim 4,w3, v4 are d-close (see Fig. 7). Analogously, one can prove thatw4, v0
are d-close.

(3) If w4, v4 are d-far, after a suitable relabelling, we can obtain the previous case.
Therefore, the proof is complete.

�	

Theorem 4 Given a set of nodes S in the plane, each node is equipped with 3 directional
antennas with beam-width θ ≥ 0. Let T be the MST spanning the U DG of S. Then
there always exists an orientation of these antennas so that the communication graph
G of S is symmetric connected and the maximum range assignment for each node is√
3. Moreover, for each leaf node u in T , degG(u) ≤ 2 and if degG(u) = 2, u is

connected with its parent in T in the communication graph G.
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Fig. 8 Base case for k = 3

Proof The proof is by induction on the height h of T . First, we do the base case for
h ≤ 1. If h = 0, the result is trivial. If h = 1, let s be the root of the tree. Then
1 ≤ deg(s) ≤ 5. We have three cases:

1. deg(s) < 4. We just connect s with its neighbors. Observe that this communication
graph is symmetric connected.

2. deg(s) = 4. Let u1, u2, . . . , u4 be four neighbors of s. By Lemma 2, there must
exist one pair of neighbors that are d-close. W.l.o.g., let u1 and u2 be d-close. We
add the edges u1u2, su1, su3 and su4 to G. Observe that the longest edge is u1u2
and by Definition 5, the length of this edge is at most

√
3. Thus this orientation

satisfies Theorem 4.
3. deg(s) = 5. Let u1, u2, . . . , u5 be five neighbors of s. By Lemma 2, all consecutive

neighbors of s are d-close. Therefore, we can add the edges u1u5, u3u4, su1, su2
and su3 to G (see Fig. 8). Observe that the longest edge is either u1u5 or u3u4 and
by Definition 5, the lengths of these edges are at most

√
3. Thus this orientation

satisfies Theorem 4.

We now prove the induction step. Given a tree T with height h ≥ 2, we remove
all (h − 1)-nodes and h-nodes of T to produce a tree T ′ whose height is h − 2. The
tree T ′ is still an MST and by the induction hypothesis, there exists an orientation
yielding a communication graph G ′ satisfied Theorem 4. Letting G = G ′ we add back
all of these (h − 1)-nodes and some h-nodes (if needed) to T and connect them to G,
and finally, connect all remaining h-nodes to G. Since the orientation is independent
between the (h −2)-nodes in T ′, we only describe the process for a fixed (h −2)-node
u. First, we describe the process of connecting u’s children (which are (h − 1)-nodes
of T ) to G. Let d be the number of neighbors of u that are the (h − 1)-nodes added in
this step, 0 ≤ d ≤ 4. We have four cases:

1. d ≤ 1. Let v be the only child of u (if exists). Since u has at least 1 remaining
free antenna, we can always add edge uv to G. It is obvious that the orientation
satisfies Theorem 4.

2. d = 2. Then we have two subcases:

(a) If u is connected with one node in T ′, we just add the edges between u and its
two children to G.

(b) If u is connected with two nodes in T ′ then one of these two nodes must be
the parent s of u in T . As in Fig. 8, node u is u1 is in this case. Let v0 = s, v1
and v2 be the neighbors of u1 in T . By Lemma 2, there must exist one d-close
pair of consecutive vi . If v1, v2 are d-close, we add the edges u1v1 and v1v2 to
G as in Fig. 9a. Otherwise, assume that v0 and v1 are d-close, we remove the
edge v0u1 and add the edges v0v1, u1v1 and u1v2 to G as in Fig. 9b.

3. d = 3. Now we have two subcases:
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Fig. 9 Case k = 3, d = 2, u = u1

Fig. 10 Case k = 3, d = 3. a u = u5, b u = u1

(a) Node u is connected with one node in T ′. In Fig. 8, node u is u5 is in this case.
Let v1, v2 and v3 be the children of u = u5 in T . By Lemma 2, there must exist
two separated d-close pairs of consecutive vi . W.l.o.g., suppose that v1, v2 are
d-close, we add the edges v1v2, u5v1 and u5v3 to G (see Fig. 10a).

(b) If u is connected with two nodes in T ′, then one of these two nodes must be the
parent s of u in T . In Fig. 8, node u is u1 is in this case. Let v0 = s, v1, v2 and
v3 be the neighbors of u1 in T . By Lemma 2, there must exist two separated
d-close pairs of consecutive vi ’s. W.l.o.g., suppose that v0, v1 and v2, v3 are
d-close, we remove edge v0u1 and add the edges v0v1, u1v1, u1v2 and v2v3 to
G (see Fig. 10b).

4. d = 4. We have two subcases:

(a) Node u is connected with one node in T ′. In Fig. 8, node u is u5 is in this case.
Let v1, v2, v3 and v4 be the children of u5 in T . By Lemma 2, every pair of
consecutive neighbors of u5 are d-close. We add the edges v1v2, v3v4, u5v1
and u5v3 to G as in Fig. 11.

(b) If u is connected with two nodes in T ′, then one of these two nodes must be the
parent s of u in T . In Fig. 8, node u is u1 is in this case. Let v0 = s, v1, v2, v3
and v4 be the neighbors of u1 in T . This is the most involved case. To handle
it, our method is to make use of the children of v3. We separate this case into
four subcases corresponding to the degree of v3.
i. deg(v3) ≤ 2. Letw be the only child of v3, if exists. We remove edge u1v0

and add the edges v0v1, u1v1, u1v2, v2v3, v3v4 and v3w (see Fig. 12).
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ii. deg(v3) = 3. Let w0 = u1, w1 and w2 be the three neighbors of v3. We
consider two subcases.
A. w1, w2 are d-close.We can remove edge u1v0 and add the edges v0v1,

u1v1, u1v4, v3v4, v3w1, v3v2 and w1w2 (see Fig. 13a).
B. w1, w2 are d-far. Since∠(v2w0v3)+∠(v3w0v4) ≤ 180◦, by Claim 4,

either w1, v2 or w2, v4 are d-close. W.l.o.g., suppose that w1, v2 are
d-close, we can remove edge u1v0 and add the edges v0v1, u1v1, u1v4,
v3v4, v3w1, v3w2 and w1v2 (see Fig. 13b).

iii. deg(v3) = 4. Let w0 = u1, w1, w2 and w3 be the four neighbors of v3.
We have five subcases corresponding to the five cases of Lemma 3.
A. w1, v2 and w3, v4 are both d-close. In this case, we can remove edge

u1v0 and add the edges v0v1, u1v1, u1v4, w3v4, v3w3, v3w1, v3w2
and w1v2 (see Fig. 14a).

B. w1, v2 are d-far and w1, w2 are d-close whereas w3, v4 are d-close.
To handle this case, we do the same as the previous case, but replacing
the last two edges by v3v2 and w1w2.

C. w1, v2 and w1, w2 are both d-far. By Lemma 3, w2, v4 and w3, v0 are
d-close.We can remove edge u1v0 and add the edges u1v2, u1v4, v1v2,
v3w1, v3w2, v3w3, w3v0 and w2v4 to obtain a symmetric connected
graph (see Fig. 14b).

D. w3, v4 are d-far and w3, w2 are d-close whereas w1, v2 are d-close.
After a suitable relabeling, the graph will turn to case 4(b)iiiB.

E. w3, v4 and w3, w2 are both d-far whereas w2, v2 and w1, v1 are both
d-close. After a suitable relabeling, this subcase is similar to sub-
case 4(b)iiiC.

iv. deg(v3) = 5. Let w0 = u1, w1, w2, w3 and w4 be four neighbors of v3.
We have three subcases corresponding to the three cases of Lemma 4.
Notice that by Lemma 2, all pairs wi , w(i+1) mod 5 are d-close.
A. w1, v2 and w4, v4 are both d-close. In this case, we can remove edge

u1v0 and add the edges v0v1, u1v1, u1v4, w1v2, v3w1, v3w3, v3w4,
w2w3 and w4v4 (see Fig. 15a).

B. w1, v2 are d-far whereas w4, v0 and w3, v4 are both d-close. We can
remove edge u1v0 and add the edges u1v2, u1v4, v1v2, v3w2, v3w3,
v3w4, w1w2, w3v4 and w4v0 to obtain a symmetric connected graph
(see Fig. 15b).

C. w4, v4 are d-far whereas w1, v1 and w2, v2 are both d-close. After a
suitable relabeling, this case is the same as case 4(b)ivB.

Finally, we connect all of the remaining h-nodes of T to G by considering each
group of nodes that have a common parent. Observe that this scenario is similar to
that of the (h −1)-nodes, except the fact that the last three subcases of Case 4b cannot
occur (because an h-node does not have any children). Thus, we can treat these nodes
as the (h − 1)-nodes when connecting them to G. Therefore, the proof of Theorem 4
is complete. �	

Combining Theorems 3 and 4, we conclude the Proof of Theorem 1.
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Fig. 11 Case k = 3, d = 4,
u = u5 is connected with one
node in previous step

Fig. 12 Case k = 3, d = 4,
u = u1 is connected with two
nodes in previous step and v3
has only one child

Fig. 13 Case k = 3, d = 4, u = u1 is connected with two nodes in previous step and v3 has two children.
a w1, w2 are d-close, b w1, w2 are d-far

Fig. 14 Case k = 3, d = 4, u = u1 is connected with two nodes in previous step and v3 has three children.
a w1, v2 and w3, v4 are both d-close, b w1, v2 are d-far and w1, w2 are d-close whereas w3, v4 are d-close

Remark 1 Themost complicatedpart in subcases 4(b)iiiC, 4(b)iiiE, 4(b)ivBand4(b)ivC
is to maintain the connection between s and u1, since it is the only connection between
the nodes v’s and w’s with the remaining nodes of the network. Fortunately, this
is achieved by the 5-hop path sw3v3w2v4u1 as in Fig. 14b and sw4v3w3v4u1 as in
Fig. 15b.
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Fig. 15 Case k = 3, d = 4, u = u1 is connected with two nodes in previous step and v3 has four children.
a w1, v2 and w4, v4 are both d-close, b w1, v2 are d-far whereas w4, v0 and w3, v4 are both d-close

Algorithm 1:Antenna orientation to yield a SCCG for k ∈ {3, 4} antennas where
the range bounded by 2sin

(
180◦

k

)

Input: Set S of points in the plane spanned by a UDG, number of antennas k = ∈ {3, 4}
Output: SCCG G with max degree k and range bounded by 2sin

(
180◦

k

)

1 Construct an M ST5 T spanning the UDG of S;
2 Let s be any leaf of T and u be its neighbor in T ;
3 Root T at s and let G be {(s, u)};
4 if k = 4 then FourAntennas(G, T , u, s) else ThreeAntennas(G, T , u, s) return G

Remark 2 Notice that one of the key ideas of these two algorithms is to force a leaf
node to have as few connections as possible, and if such as leaf node is added and has
degree 2, then it must connect directly with its parent. This gives us a flexible edge
that can be replaced later if necessary.

5 Main algorithm

In this section, we present Algorithm 1 that yields a SCCG for k, 3 ≤ k ≤ 4, antennas

and the range is bounded by 2sin
(
180◦

k

)
. The algorithm calls the recursive Procedure

FourAntennas and ThreeAntennas for k = 3 and k = 4, respectively. In order to
enhance readability, we describe the process of connecting node v3 and its children in
Case 4b when k = 3 in the procedure ConnectBridgeNode. Notice that the addition
operation in the index of a neighbor of a node is done modulo the number of neighbors
of this node.

Runtime Analysis: It is easy to see that Procedure FourAntennas and ThreeAnten-
nas run in O(n). The time to construct a Euclidean MST with max degree 5 spanning
the UDG of a set of points S is O(nlogn). Thus, the time complexity of Algorithm 1
is O(nlogn). The correctness of the algorithm follows from Theorem 1.
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Procedure: FourAntennas(G, T , u, s)
1 Let d ← degT (u) − 1;
2 Let v0 = s, v1, . . . , vd be the neighbors of u ∈ T in clockwise order;
3 if d ≤ 4 − degG (u) then // Case 1 and 2a
4 Add to G edge (u, vi ) for each vi such that i > 0;
5 else if d = 3 then // Case 2b
6 Let vi , vi+1 be two a-close neighbors of u;
7 Let j ← max(i, i + 1);
8 if i = 0 or i = d then
9 G ← G \ {(u, v0)} ∪ {(u, vi+2), (u, vi+3)};

10 G ← G ∪ {(vi , vi+1), (u, v j )};
11 else
12 G ← G ∪ {(vi , vi+1)};
13 Add to G edge (u, v j ) for each v j such that j /∈ {0, i + 1};
14 else if d = 4 then
15 if degG (u) = 1 then // Case 3a
16 Let vi , vi+1 be two consecutive a-close neighbors of u such that i �= 0 and i + 1 �= 0;
17 G ← G ∪ {(vi , vi+1)};
18 Add to G edge (u, v j ) for each v j such that j /∈ {0, i + 1};
19 else // Case 3b
20 if v1, v2 and v3, v4 are a-close then
21 G ← G ∪ {(v1, v2), (v3, v4), (u, v1), (u, v3)};
22 else
23 Let vi be the node a-close with v0;
24 Let v j , v j+1 be two a-close neighbors of u separated with (v0, vi );
25 G ← G \ {(u, v0)} ∪ {(v0, vi ), (v j , v j+1)};
26 Add to G edge (u, vt ) for each vt such that t /∈ {0, j + 1};

27 for i ← 1 to d do
28 if degT (vi ) > 1 then FourAntennas(G, T , vi , u)

6 Antenna orientation and power assignment (AOPA)

Let S be a set of nodes in the plane such that each node is equipped with k directional
antennas with beam-width θ ≥ 0 (k = 3 or k = 4). Let r(u) be the range assigned
to a node u in S. The goal of the AO P A problem is to find a range assignment for
every node u in S such that (i) there exists a way to orient the antennas of the nodes
in order to yield a symmetric connected communication graph, and (ii)

∑
u∈P r(u)β

is minimized, where β ≥ 1 is the distance-power gradient (in a WSN, typically,
2 ≤ β ≤ 5).

In this section, we show that our antenna orientation algorithms for both k = 3
and k = 4 also yield O(1)-approximation algorithms for the AOPA problem. Let T
be an MST with maximum degree 5 spanning S and G be the communication graph
obtained by one of the two algorithms above. We define that an edge in T is used to
estimate length of an edge in G as below.

Definition 6 Let pc be an edge between a node p and its child c in an MST T . Let u
and v be two nodes connected directly in the communication graph G (u and/or v may
coincide with p and/or c). If |pc| ≤ rk · |uv|, then we say that edge pc can be used
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Procedure: ThreeAntennas(G, T , u, s)
1 Let d ← degT (u) − 1;
2 Let V = {v0 = s, v1, . . . , vd } be the set of neighbors of u ∈ T in clockwise order;
3 if d ≤ 3 − degG (u) then // Case 1 and 2a
4 Add to G edge (u, vi ) for each vi such that i > 0;
5 else if d = 2 then // Case 2b
6 Let vi , vi+1 be two d-close neighbors of u;
7 Let j ← max(i, i + 1);
8 if i = 0 or i = d then
9 G ← G \ {(u, v0)} ∪ {(u, v3− j )};

10 G ← G ∪ {(vi , vi+1), (u, v j )};
11 else if d = 3 then
12 if degG (u) = 1 then // Case 3a
13 Let vi , vi+1 be two consecutive d-close neighbors of u such that i /∈ {0, d};
14 G ← G ∪ {(vi , vi+1)};
15 Add to G edge (u, v j ) for each v j such that j /∈ {0, i + 1};
16 else // Case 3b
17 Let i ← 3, j ← 1;
18 if v0, v1 and v2, v3 are d-close then
19 i ← 1, j ← 3;

20 G ← G \ {(u, v0)};
21 G ← G ∪ {(v0, vi ), (u, vi ), (u, v2), (v2, v j )};
22 else if d = 4 then
23 if degG (u) = 1 then // Case 4a
24 for i ∈ {1, 3} do G ← G ∪ {(vi , vi+1), (u, vi )}
25 else // Case 4b
26 ConnectBridgeNode(G, T , V , u);
27 Let already-connected-v3 ← T rue;

28 for i ← 1 to d do
29 if i = 3 and already-connected-v3 then
30 foreach child w in T of v3 do
31 if degT (w) > 1 then ThreeAntennas(G, T , w, v3)

32 else if degT (vi ) > 1 then
33 ThreeAntennas(G, T , vi , u);

to estimate the length of edge uv, where 3 ≤ k ≤ 4 denotes the number of antennas

equipped with a node in the WSN and rk = 2sin
(
180◦

k

)
.

We say that an edge ē in T is used to estimate the power assigned to a node u if it
is used to estimate length of the longest edge in G incident to u.

We first show how to estimate the total power in terms of a givenMST T (of degree
5) spanning S. Let r(u) denote the range assigned to node u. Let ē denote the edge in
T that is used to estimate the power assigned to u. The power P(u) assigned to u can
be bounded by P(u) ≤ (rk × |ē|)β .
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Procedure: ConnectBridgeNode(G, T , V , u)

1 Let d ← degT (v3);
2 Let w0 = v3, w1, . . . , wd−1 be the neighbors of v3 ∈ T in clockwise order;
3 G ← G \ {(u, v0)};
4 if d ≤ 2 then // Case 4(b)i
5 G ← G ∪ {(v0, v1), (u, v1), (u, v2), (v2, v3), (v3, v4)};
6 if d = 2 then G ← G ∪ {(v3, w1)}
7 else if d = 3 then // Case 4(b)ii
8 G ← G ∪ {(v0, v1), (u, v1), (u, v4), (v3, v4), (v3, w1)};
9 if w1, w2 are d-close then // Case 4(b)iiA

10 G ← G ∪ {(v3, v2), (w1, w2)};
11 else // Case 4(b)iiB
12 if w1, v2 are d-close then G ← G ∪ {(v3, w2), (w1, v2)} else

G ← G ∪ {(v3, v2), (w2, v4)}
13 else if d = 4 then // Case 4(b)iii
14 // Case 4(b)iiiA and Fig. 14(a)
15 if w1, v2 and w3, v4 are d-close then
16 G ← G ∪ {(v0, v1), (u, v1), (u, v4), (v3, v4),

(w1, v2), (v3, w3), (v3, w1), (v3, w2)};
17 // Case 4(b)iiiB and 4(b)iiiD
18 else if (w1, v2 are d-far and w1, w2 are d-close) or w3, v4 are d-far and w3, w2 are d-close)

then
19 if w3, v4 are d-far and w3, w2 are d-close then swap(w1, w3), swap(v2, v4)

G ← G ∪ {(v0, v1), (u, v1), (u, v4), (v3, v4),

(w1, v2), (v3, w3), (v3, v2), (w1, w2)};
20 // Case 4(b)iiiC, 4(b)iiiE and Fig. 14(b)
21 else
22 if w3, v4 and w3, w2 are d-far then swap(v0, v1), swap(v2, v4), swap(w1, w3)

G ← G ∪ {(u, v2), (u, v4), (v1, v2), (v3, w1),

(v3, w2), (v3, w3), (w3, v0), (w2, v4)};
23 else if d = 5 then // Case 4(b)iv
24 // Case 4(b)ivA and Fig. 15(a)
25 if w1, v2 and w4, v4 are d-close then
26 G ← G ∪
27 {(v0, v1), (u, v1), (u, v4), (w1, v2),

(v3, w1), (v3, w3), (v3, w4), (w2, w3), (w4, v4)};
28 // Case 4(b)ivB, 4(b)ivC and Fig. 15(b)
29 else
30 if w4, v4 are d-far then swap(v0, v1), swap(v2, v4), swap(w1, w4), swap(w2, w3)

G ← G ∪
31 {(u, v2), (u, v4), (v1, v2), (v3, w2),

(v3, w3), (v3, w4), (w1, w2), (w3, v4), (w4, v0)};

Let Cost(AO P AS) be the total power assignment of an orientation algorithm for
the set of nodes S. We can bound this value by

Cost(AO P AS) =
∑
u∈S

P(u) ≤
∑
e∈T

ke × (rk × |e|)β,
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where ke is the number of times an edge e in T is used to estimate the power assigned
to a node in S. Let kmax be the maximum number of times that an edge is used to
estimate power of a node in S. We have:

Cost(AO P AS) ≤ kmax ×
∑
e∈T

(rk × |e|)β

≤ kmax × rβ
k

∑
e∈T

|e|β

≤ kmax × rβ
k × Costβ(T ).

In the following we say that u connects with v if u connects directly with v. We also
say u disconnects with v if the edge uv is removed from the communication graph G,
unless otherwise stated. An edge of G is said to be long if it is not an edge in T , and
short otherwise. We refer to “step i” in the following proof as the i-th time that the
Procedure FourAntennas or ThreeAntennas is recursively called.

First we have some observations about our two algorithms.

Observation 1 A long edge is never removed.

Observation 2 If a short edge su, where s is parent of u in T , is removed from G at
step i (i.e., the i − th recursive call of Procedure ThreeAntennas or FourAntennas),
then this edge must have been added to G at step i − 1 (i ≥ 2) and degree of u in G
at step i − 1 must be 2.

Observation 3 If a short edge su is removed from G at step i , then at the end of both
algorithms, u must connect directly (in G) with another child u′ of s, and s must
connect directly (in G) with a child v of u.

6.1 Case k = 4

For this case we have an additional observation concerning our algorithm for k = 4.

Observation 4 If a parent s never connects with its child u in G, then u must connect
with s via another child u′ of s.

Theorem 5 Let e be an edge between a parent s and a child u in T . According to the
algorithm in Sect.3, the number of times that e is used to estimate power of a node in
G is at most 4.

Proof We separate the proof into three cases corresponding to the status of the edge
su in G.

– If s connects with u at step i , and this connection still remains till the end the
algorithm, then e = su is used to estimate the length of at most two edges su and
uu′, where u′ is another child of s, hence e is used to estimate power of at most
three nodes: s, u and u′ (see Fig. 2 where u = u1 and u′ = u5).
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– If s connects with u at step i , and s disconnects with u at step i +1 (Observation 2),
then according to Observation 3, e = su is used to estimate length of at most two
edges sv and uu′, where u′ is another child of s and v is a child of u, hence e is
used to estimate power of at most four nodes: s, u, u′ and v (see Figs. 3b and 5b; in
Fig. 3b, u = u1, u′ = u5 and v = v1 and in Fig. 5b, u = u1, u′ = u5 and v = v4).

– If s never connects with u in G, then u must connect with s via another child u′ of
s (Observation 4). Hence e = su is used to estimate the length of at most one edge
uu′ or in other words, the power of two nodes u and u′ (see Figs. 2 and 4 where
u = u5 and u′ = u1).

�	
Corollary 1 The algorithm for k = 4 in Sect.3 yields a communication graph G with

a total power assignment that satisfies Cost(AO P AS) ≤ 4 × √
2
β × Costβ(T ).

6.2 Case k = 3

In this subsection, we define a bridge node to be a node having the role of node v3 in
the algorithm for k = 3 in Sect. 4. Notice that a bridge node never connects with its
parent in the communication graph G. Additionally, we see that Observation 4 still
holds for the algorithm for k = 3 if u is not a bridge node.

Theorem 6 Let e be an edge between a parent s and a child u in T . According to the
algorithm in Sect.4, the number of times that e is used to estimate the power of a node
in G is at most 4.

Proof Similar to case k = 4, we separate the proof into three cases corresponding to
the status of edge su in G.

– If s connects with u at step i , and this connection still remains till the end of the
algorithm, then e = su is used to estimate the length of at most two edges su and
uu′, where u′ is another child of s, hence e is used to estimate the power of at most
three nodes: s, u and u′ (see Fig. 8 where u = u1 and u′ = u5).

– If s connects with u at step i , and then disconnected with u at step i + 1 (Obser-
vation 2), then according to Observation 3, e = su is used to estimate the length
of at most two edges sv and uu′, where u′ is another child of s and v is a child of
u, hence e is used to estimate the power of at most four nodes: s, u, u′ and v (see
Figs. 9b, 10b and 11 where, u = u1, u′ = u5 and v = v1).

– If s never connects with u in G, and u is not a bridge node, then u must connect
with s via another child u′ of s, hence e = su is used to estimate the length of at
most one edge uu′ or in other words, the power of two nodes u and u′ (see Figs. 8
and 10 where u = u5 and u′ = u1).

– If u is a bridge node, we claim that edge e = su is used to estimate power of at
most four nodes.

To prove the claim, it is easy to see that the edge between a bridge node v and its
parent u can only be used to estimate the power of nodes participating in connecting
children of u and the children of v to G. Therefore analyzing ke for e = u1v3 in four
the subcases of case 4b in the proof of Theorem 4 is sufficient to prove the claim.
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1. deg(v3) ≤ 2. In this case, e can be used to estimate the length of at most two edges
v3v2 and v3v4, or the power of three nodes v2, v3 and v4 (see Fig. 12).

2. deg(v3) = 3. Let w0 = u1, w1 and w2 be the three neighbors of v3. We have two
subcases.

(a) w1, w2 are d-close. In this case, e can be used to estimate the length of at
most two edges v3v2 and v3v4, or the power of three nodes v2, v3 and v4 (see
Fig. 13a).

(b) w1, w2 are d-far. In this case, e can be used to estimate the length of at most
two edges v3v4 and w1v2, or the power of four nodes v3, v4, w1 and v2 (see
Fig. 13b).

3. deg(v3) = 4. Let w0 = u1, w1, w2 and w3 be the four neighbors of v3. Now we
have five subcases corresponding to the five cases of Lemma 3.

(a) w1, v2 andw3, v4 are both d-close. In this case, e can be used to estimate length
of at most two edges w3v4 and w1v2, or power of four nodes w3, v4, w1 and
v2 (see Fig. 14a).

(b) w1, v2 are d-far and w1, w2 are d-close whereas w3, v4 are d-close. In this
case, e can be used to estimate the length of at most two edges w3v4 and v3v2,
or the power of four nodes w3, v4, v3 and v2.

(c) w1, v2 and w1, w2 are both d-far. In this case, e can be used to estimate the
length of at most two edges w2v4 and w3v0, or the power of four nodes w2,
v4, w3 and v0 (see Fig. 14b).

(d) w3, v4 are d-far and w3, w2 are d-close whereas w1, v2 are d-close. This case
is analogous to Case 3b.

(e) w3, v4 and w3, w2 are both d-far whereas w2, v2 and w1, v1 are both d-close.
This case is analogous to Case 3c.

4. deg(v3) = 5. Let w0 = u1, w1, w2, w3 and w4 be four neighbors of v3. Now we
have three sub cases corresponding to three cases of Lemma 4.

(a) w1, v2 andw4, v4 are both d-close. In this case, e can be used to estimate length
of at most two edges w4v4 and w1v2, or power of four nodes w4, v4, w1 and
v2 (see Fig. 15a).

(b) w1, v2 are d-far whereas w4, v0 and w3, v4 are both d-close. In this case, e can
be used to estimate length of at most two edges w3v4 and w4v0, or power of
four nodes w3, v4, w4 and v0 (see Fig. 15b).

(c) w4, v4 are d-far whereas w1, v1 and w2, v2 are both d-close. This case is anal-
ogous to case 4b.

This concludes the proof of the claimandhence the proof ofTheorem6 is complete.

�	
Corollary 2 The algorithm for k = 3 in Sect.4 yields a communication graph G with

a total power assignment that satisfies Cost(AO P AS) ≤ 4 × √
3
β × Costβ(T ).

Combining Corollaries 1 and 2, we conclude the proof of Theorem 2.
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Table 1 Average ratio of required range and length of the longest MST edge

Method Spsrse Medium Dense

k = 3 Tran and Huynh (2020) 1.340 1.283 1.284

Biniaz (2020) 1.075 1.058 1.058

Ours 1.002 1.002 1.001

k = 4 Tran and Huynh (2020) 1.002 1.002 1.002

Biniaz (2020) 1.000 1.000 1.000

Ours 1.000 1.000 1.000

Best results in the comparison are given in bold

Remark 3 Although our bound for kmax is greater than the one obtained by Tran et al.,
the required range obtained by our algorithms is smaller. In particular, if β ≥ 2, our
approximation ratio for the AOPA problems is better.

7 Simulation

In this section, we perform simulation over 5000 instances of sparse, medium, and
dense WSNs of 100 nodes in the plane of size 1000× 1000. A UDG spanning a WSN
is considered to be sparse, medium, or dense if the number of its edges is less than
4n, in the range of [4n, n2/4), or at least n2/4, respectively, where n is the number
of nodes. For every instance, we run Tran et al.’s algorithms (Tran and Huynh 2020),
Biniaz’s algorithms (Biniaz 2020) and our algorithms to yield a symmetric connected
communication graph for k = 3 and k = 4. We then get the ratio of the required range
over the length of the longest MST edge. Tables1 and 2 show the simulation results.

The simulation results show that our algorithms perform better than Tran et al.’s in
both metrics, especially in case k = 3, which is expected as the theoretical analysis
shows. The reason is that our algorithms try to maintain the structure of the MST as
much as possible by exploiting more geometric properties of a Euclidean MST. The
shortcut edges are chosen more carefully to replace the original edges of the MST in
order to save the communication cost. In Table1, the required ranges of our algorithms
are nearly equal to the lengths of the longestMST edges that are also the optimal ranges
to induce symmetric connected communication graphs when using omni-directional
antennas. In other words, our algorithms provide nearly optimal required ranges in
order to establish SCCG for DWSNs. In addition, Table2 shows that the results of
our algorithms are closer to the optimal ones than those obtained by the algorithms
in Biniaz (2020) for the AOPA problems. In case k = 3, even when β is close to
6, our algorithm still achieves a sub-2 ratio, in contrast with other methods. Another
observation is that all algorithms perform almost the same for different types of density
of input graphs, which shows that these algorithms have density robustness property.
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Table 2 Average ratio of total
power assignment and
Costβ(M ST )

β k Method Sparse Medium Dense

2 3 Tran and Huynh 1.925 1.93 1.925

Biniaz 1.646 1.653 1.653

Ours 1.4 1.407 1.408

4 Tran and Huynh 1.4 1.41 1.41

Biniaz 1.396 1.404 1.404

Ours 1.391 1.4 1.4

3 3 Tran and Huynh 2.588 2.585 2.571

Biniaz 1.917 1.922 1.922

Ours 1.526 1.543 1.541

4 Tran and Huynh 1.527 1.545 1.543

Biniaz 1.52 1.537 1.536

Ours 1.514 1.532 1.53

4 3 Tran and Huynh 3.518 3.481 3.447

Biniaz 2.174 2.168 2.165

Ours 1.624 1.648 1.645

4 Tran and Huynh 1.626 1.65 1.647

Biniaz 1.615 1.639 1.637

Ours 1.608 1.632 1.63

5 3 Tran and Huynh 4.878 4.754 4.683

Biniaz 2.43 2.4 2.392

Ours 1.701 1.728 1.725

4 Tran and Huynh 1.703 1.73 1.728

Biniaz 1.688 1.716 1.714

Ours 1.681 1.709 1.707

6 3 Tran and Huynh 6.927 6.625 6.483

Biniaz 2.699 2.631 2.615

Ours 1.762 1.79 1.788

4 Tran and Huynh 1.764 1.792 1.79

Biniaz 1.745 1.775 1.773

Ours 1.737 1.768 1.766

Best results in the comparison are given in bold

8 Conclusion

In this paper, we have proposed algorithms which, when given a set of sensor nodes
in the plane equipped with 3 or 4 directional antennas having beam-width θ ≥ 0,
produce orientations such that the induced communication graphs are symmetric con-

nected and the required ranges are at most 2sin
(
180◦

k

)
. We also prove that not only

do our algorithms improve on the required transmission ranges, they also give smaller
total power assignments than in Tran and Huynh (2020). The results demonstrate that
ourmethod outperforms previous approaches in both theoretical and empirical aspects.
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To conclude this work, we point out that there are several interesting open problems for
further research such as (1) maintaining symmetric connectivity for DWSNs whose
nodes are equipped with more than 2 antennas having a positive transmission angle
θ > 0, (2) constructing fault-tolerant symmetric connected communication networks,
and (3) investigating connectivity and interference for DWSNs in more realistic inter-
ference models such as SINR.
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