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Abstract
In this paper, we consider the clustered path travelling salesman problem. In this
problem, we are given a complete graph G = (V , E) with an edge weight function
w satisfying the triangle inequality. In addition, the vertex set V is partitioned into
clusters V1, . . . , Vk and s, t are two given vertices of G with s ∈ V1 and t ∈ Vk . The
objective of the problem is to find a minimum Hamiltonian path of G from s to t ,
where all vertices of each cluster are visited consecutively. In this paper, we deal with
the case that the start-vertex and the end-vertex of the path on each cluster are both
specified, and for it we provide a polynomial-time approximation algorithm.

Keywords Travelling salesman problem · Stacker crane problem · Path · Cluster

1 Introduction

The travelling salesman problem (TSP) is a best-known combinatorial optimization
problem. In this problem, we are given a complete graph G = (V , E) with an edge
weight function satisfying the triangle inequality. The task of the TSP is to find a min-
imum Hamiltonian cycle. This problem is NP-hard and has multitudes of applications
(Bland and Shallcross 1989; Christofides 1976).

Meanwhile, TSP has quite a lot variants (Grötschel and Holland 1991; Plante et al.
1987). Among these variants there is an important one called the path travelling sales-
man problem (PTSP), whose task is to find a minimum Hamiltonian path. For the
PTSP, Hoogeveen (1991) presented a 5

3 -approximation algorithm. An et al. (2015)

improved this result and gave a 1+√
5

2 -approximation algorithm. Recently, Zenklusen
(2019) developed the best known 3

2 -approximation algorithm. For more work on this
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problem, one can see (Gottschalk and Vygen 2018; Sebő and van Zuylen 2016; Traub
and Vygen 2019).

In the TSP, the delivery locations are supposed to have the same degree of urgencies,
that is, all vertices can be visited in any order. However, in a number of real-world
routing applications, different levels of priorities at the delivery locations need to be
taken into account (Jacobson et al. 2012; Yang and Feng 2013; Zhu et al. 2019).
Locations requiring the same level of urgency can be put in a common cluster and
different clusters have distinct priorities. Such a problem is called the ordered cluster
travelling salesman problem. Anily et al. (1999) designed an approximation algorithm
for the ordered cluster travelling salesman problem with a performance guarantee of
5
3 . Since visiting in the specified order can lead to an inefficient route in terms of
traveling cost, a more relaxed version is considered where delivery locations within
the same cluster must be visited consecutively but there is no priority associated to a
cluster. This leads to the fact that we can visit clusters in any order and this variant
of TSP is called the clustered travelling salesman problem (CTSP). To be formal, in
the CTSP, we are given an undirected complete graph G = (V , E) with the vertex
set V being partitioned into clusters V1, · · · , Vk , and the goal is to find a minimum
Hamiltonian cycle of G, where all vertices of each cluster are visited consecutively.
Note that if k = 1, the CTSP is exactly the TSP. So in the following we assume
k ≥ 2. Chisman (1975) first introduced the CTSP and gave some applications about
it. Arkin et al. (1994) developed the first approximation algorithm for the CTSP with
a performance guarantee of 7

2 . Guttmann-Beck et al. (2000) designed approximation
algorithms for several cases of the CTSP by decomposing them into the PTSP together
with the stacker crane problem, or the PTSP together with the rural postman problem.
Then, Kawasaki and Takazawa (2020) improved the approximation ratios by applying
the approximation algorithm for the PTSP given by Zenklusen (2019). Applications
and other related work for the CTSP can be found in Gendreau et al. (1996); Jongens
and Volgenant (1985).

Motivated by the work of Guttmann-Beck et al. (2000), Frederickson et al. (1978)
and Kawasaki and Takazawa (2020), we study the clustered path travelling salesman
problem (CPTSP). In the CPTSP, we are given a complete graph G = (V , E) with
an edge weight function w satisfying the triangle inequality. The vertex set V is
partitioned into clusters V1, · · · , Vk and s, t are two given vertices of G with s ∈ V1
and t ∈ Vk . The goal is to find aminimumHamiltonian path ofG from s to t , where all
vertices of each cluster are visited consecutively. Obviously, s is the start-vertex of the
Hamiltonian path and t is the end-vertex of the Hamiltonian path. We assume s ∈ V1
and t ∈ Vk , so V1 and Vk are the first and the last clusters to be visited respectively. For
other k−2 clusters, we visit them in any order. The case that the visiting order of these
k−2 clusters is also given was studied by Anily et al. (1999). Note that a Hamiltonian
path of the CPTSP induces a Hamiltonian path on each cluster. For simplicity, we
assume that the start-vertex and the end-vertex of the induced Hamiltonian path on
each cluster are both specified. In this paper, we design an approximation algorithm
with an approximation ratio 8

3 for the CPTSP by decomposing it into the path travelling
salesman problem and the path version of the stacker crane problem.

The paper is organized as follows. In Sect. 2, we give some definitions and results.
In Sect. 3, by modifying the algorithms for the stacker crane problem given in Fred-
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erickson et al. (1978), we design two algorithms for the path stacker crane problem.
Based on these two algorithms, we design an algorithm for the clustered path travel-
ling salesman problem and analyze its approximation ratio in Sect. 4. In Sect. 5, we
provide several future research problems.

2 Preliminaries

In this section, we introduce some terminology, concepts and related results.
A graph G is a pair (V , E) where V is a set of objects called vertices and E is a set

of edges. Each edge is a pair {u, v} of vertices u, v ∈ V . We call {u, v} the undirected
edge. The degree of a vertex is the number of edges incident on the vertex. A vertex is
of even degree if the degree is an even number, and is of odd degree otherwise. If an
undirected edge {u, v} is associated with a direction, a directed edge (arc) is obtained
and we denote it by (u, v) if the direction is from u to v and (v, u) otherwise. Vertices
u and v are called the tail and the head of the arc (u, v), respectively. A directed graph
has a set of vertices and a set of directed edges. In a directed graph, the out-degree
(in-degree) of a vertex is the number of directed edges directed out of (into) the vertex.
Amixed graph is a triple (V , E, D)where V is a set of vertices, E is a set of undirected
edges and D is a set of directed edges. A mixed multigraph is a graph, possibly with
parallel edges, each of which is either undirected or directed. In a mixed (multi)graph,
the degree of a vertex is the number of edges and arcs incident on the vertex.

A walk in a graph G from vertex v1 to vl is a sequence (v1, {v1, v2}, v2, {v2, v3},
v3, · · · , vl−1, {vl−1, vl}, vl), in which all vi ′s are vertices and {vi−1, vi } ∈ E for
i = 2, 3, · · · , l. We call v1, vl the start-vertex and the end-vertex of the walk.
A path is a walk with no repeated vertices, a trail is a walk with no repeated
edges, and an Eulerian trail is a walk passing through every edge exactly once.
If an Eulerian trail is closed (the start-vertex is the same as the end-vertex), it
is called an Eulerian tour. A Hamiltonian path/cycle of G is a path/cycle visiting
every vertex of G exactly once. A directed walk in a directed graph is a sequence
(v1, (v1, v2), v2, (v2, v3), v3, · · · , vl−1, (vl−1, vl), vl), a directed path is a directed
walk with no repeated vertices, a directed trail is a directed walk with no repeated
arcs, and a directed Eulerian trail is a directed walk passing through every arc exactly
once.

In the stacker crane problem (SCP), we are given a mixed multigraph G ′ =
(V ′, E ′, D), where V ′ = {si , ti | i ∈ [k]}, (V ′, E ′) is an undirected complete graph
with an edge weight function w satisfying the triangle inequality, and D = {(si , ti ) |
i ∈ [k]}. The objective is to find a minimum Hamiltonian cycle that traverses each arc
(si , ti ) in the specified direction from si to ti , where we identify the weight of the arc
(si , ti ) with that of the corresponding edge {si , ti }.

If the objective “Hamiltonian cycle" is substituted by “Hamiltonian path" in the
definition of the SCP, we get the path version of the stacker crane problem, and we
call it the path stacker crane problem (PSCP).

The following results are important for the discussion in Sects. 3 and 4.

Lemma 1 Diestel (2017) A connected (multi)graph has a directed Eulerian trail if and
only if it has either 0 or 2 vertices of odd degree.
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By a simple deduction, we get the following result similar to that in Hong et al. (2014).

Lemma 2 A connected directed (multi)graph has a directed Eulerian trail whenever
either of the following two conditions holds. (i) each vertex has the same in-degree
and out-degree. (ii) the in-degree of one vertex is equal to the out-degree of this vertex
plus one, the out-degree of another vertex is equal to the in-degree of this vertex plus
one, and the out-degree of other vertices is equal to the in-degree of them.

Lemma 3 Kawasaki and Takazawa (2020) For the PTSP with u1 and u2 being the
two given endpoints, there exists a polynomial-time approximation algorithm that
finds Hamiltonian paths S1 and S2 from u1 to u2 such that w(S1) ≤ 2OPT ′ −
w{u1, u2}, w(S2) ≤ 3

2OPT ′, where OPT ′ denotes the weight of an optimal solution
of the problem.

3 Approximation algorithms for the PSCP

In this section, we give two polynomial-time algorithms for the PSCP which will be
used when we design the algorithm for the CPTSP in next section.

In the PSCP, we are given a mixed multigraph G ′ = (V ′, E ′, D), where V ′ =
{si , ti | i ∈ [k]}, (V ′, E ′) is an undirected complete graphwith an edgeweight function
w satisfying the triangle inequality, and D = {(si , ti ) | i ∈ [k]}. The objective is to
find a minimum Hamiltonian path from s1 to tk that traverses each arc (si , ti ) in the
specified direction from si to ti . The first algorithm for the PSCP is as follows.

Algorithm 1
Input: A mixed multigraph G′ = (V ′, E ′, D), where V ′ = {si , ti | i ∈ [k]}, (V ′, E ′) is an undirected
complete graph, and D = {(si , ti ) | i ∈ [k]}. An edge weight functionw : E ′ → R+ satisfying the triangle
inequality.
Output: Path PPSCP1.
Begin
Step 1: Find a minimum bipartite matching between the head set T = {t1, t2, · · · , tk−1} and the tail set
S = {s2, s3, · · · , sk }.
Step 2: Initialize E1 to be empty. For each edge included in the above matching, associate a direction with
it, going from T to S, and insert it into E1. (This results in m ≥ 1 disjoint connected components, each of
which consists of edges with the associated directions in the matching and arcs in D, and we denote these
m disjoint connected components by Ri , i ∈ [m].)
Step 3: Condense each Ri into a single vertex ni . Define

d{ni , n j } = min{w{u, v} | u ∈ Ri
′, v ∈ R j

′},

where Ri
′ represents the set of all vertices in Ri , except for s1 and tk .

Step 4: Find a minimum spanning tree for the vertices in {ni | i ∈ [m]}, where the minimum is with
respect to the distance function d defined at Step 3.
Step 5: To begin with, make two copies of each edge in the spanning tree. Then, associate one direction
with one copy, and the opposite direction with the other. At last, insert these edges with the associated
directions into E1. (This results in a directed graph G′

1 = (V ′, E1
⋃

D).)
Step 6: Find a directed Eulerian trail from s1 to tk in G′

1.
Step 7: Using the triangle inequality, we get a Hamiltonian path PPSCP1 from s1 to tk traversing each arc
(si , ti ) in the specified direction from si to ti .
End
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Example 1 Assume G ′ = (V ′, E ′, D) with (V ′, E ′) being an undirected complete
graph,V ′ = {si , ti | i ∈ [4]}, and D = {(si , ti ) | i ∈ [4]}. Theweight of edges is as fol-
lows: w{s1, t1} = 1.6, w{s1, t2} = 1.5, w{s1, t3} = 1.4, w{s1, t4} = 1.3, w{s1, s2} =
1.2, w{s1, s3} = 1.5, w{s1, s4} = 1.4, w{s2, t1} = 1.5, w{s2, t2} = 1.9, w{s2, t3} =
1.8, w{s2, t4} = 1.6, w{s2, s3} = 1.1, w{s2, s4} = 1.2, w{s3, t1} = 1.6, w{s3, t2} =
1.9, w{s3, t3} = 1.8, w{s3, t4} = 1.7, w{s3, s4} = 2, w{s4, t1} = 1.5, w{s4, t2} =
1.7, w{s4, t3} = 2, w{s4, t4} = 1.7, w{t1, t2} = 1.2, w{t1, t3} = 1.7, w{t1, t4} =
1.2, w{t2, t3} = 1.8, w{t2, t4} = 1.3, w{t3, t4} = 1.4.

At the beginning of our algorithm, there are four arcs, {(si , ti ) | i ∈ [4]},
T = {t1, t2, t3}, and S = {s2, s3, s4} (seeing Fig. 1a). Find a minimum bipar-
tite matching between T and S. By Step 2 in Algorithm 1, we get two con-
nected components (seeing Fig. 1b). Condense each connected component into a
single vertex, and by using the distance function d, we find a minimum span-
ning tree for vertices n1, n2, i.e., the edge {s2, s3} (seeing Fig. 1c). Make two
copies of the edge {s2, s3} with opposite directions: one is (s2, s3) and the
other is (s3, s2). Then we find a directed Eulerian trail (s1, (s1, t1), t1, (t1, s2), s2,
(s2, s3), s3, (s3, t3), t3, (t3, s3), s3, (s3, s2), s2, (s2, t2), t2, (t2, s4), s4, (s4, t4), t4) in the
graph G ′

1 with vertex set V ′ = {si , ti | i ∈ [4]} and directed edge set
{(s1, t1), (t1, s2), (s2, s3), (s3, t3), (t3, s3), (s3, s2), (s2, t2), (t2, s4), (s4, t4)}
(seeing Fig. 1d). Using the triangle inequality, we get a path (s1, (s1, t1), t1, (t1, s3), s3,
(s3, t3), t3, (t3, s2), s2, (s2, t2), t2, (t2, s4), s4, (s4, t4), t4) (seeing Fig. 1e).

Lemma 4 Algorithm 1 outputs a Hamiltonian path PPSCP1 with weight at most
3OPT ′′ −2U, where OPT ′′ denotes the weight of an optimal solution of the problem
and U = ∑k

i=1w(si , ti ).

We first show that PPSCP1 is a Hamiltonian path from s1 to tk that traverses each arc
(si , ti ) in the specified direction from si to ti . According to the directions of the edges
of the bipartite matching at Step 2, we know that, except for s1 and tk , the in-degree
and out-degree of each vertex in these connected components are equal. The edges
of the spanning tree created at Step 4 connect these disjoint connected components
produced at Step 2 into one. Since at Step 5 for each edge of the spanning tree, we
add two edges with opposite directions into E1, the in-degree and out-degree of each
vertex are still equal, except for s1 and tk . Step 1 and Step 3 of the algorithm guarantee
that s1 and tk are the only two vertices with odd degree. For specific, the in-degree of
s1(tk) is 0(1) and the out-degree of s1(tk) is 1(0). At Step 6, by Lemma 2, we get the
Eulerian trail from s1 to tk in the directed graph G ′

1 = (V ′, E1
⋃

D). At Step 7, using
the triangle inequality, we get a desired Hamiltonian path.

In the following, we consider the weight of PPSCP1. Since an optimal path of this
problem contains a bipartitematching between T and S and all arcs in D, its weight can
not be smaller than that of the minimum bipartite matching obtained at Step 1 and the
arcs in D. For convenience, we denote the weight of the minimum bipartite matching
by M . Then M + U ≤ OPT ′′. Since the edges with the associated directions in the
optimal path, except for the arcs in D, can connect these disjoint connected components
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Fig. 1 Algorithm 1 applied to a graph

into one and the spanning tree created at Step 4 also connects these disjoint connected
components into one, the weight of the minimum spanning tree at Step 4 must be no
greater than OPT ′′ − U . Therefore, the weight of the directed Eulerian trail at Step
6 is at most M + U + 2(OPT ′′ − U ), and then is at most 3OPT ′′ − 2U . Using the
triangle inequality, we get the weight of the path PPSCP1 is at most the weight of the
directed Eulerian trail, as desired.

The following is the second algorithm for the PSCP.
The following is an example to show the process of Algorithm 2.

Example 2 Assume G ′′ = (V ′′, E ′′, D) with (V ′′, E ′′) being an undirected com-
plete graph, V ′′ = {si , ti | i ∈ [4]}, and D = {(si , ti ) | i ∈ [4]}. The
weight of edges is as follows: w{s1, t1} = 2.2, w{s1, t2} = 1.2, w{s1, t3} =
1.3, w{s1, t4} = 1.2, w{s1, s2} = 1.4, w{s1, s3} = 1.6, w{s1, s4} = 1.7, w{s2, t1} =
1.5, w{s2, t2} = 1.5, w{s2, t3} = 1.4, w{s2, t4} = 1.4, w{s2, s3} = 1.3, w{s2, s4} =
1.2, w{s3, t1} = 2, w{s3, t2} = 1, w{s3, t3} = 1.8, w{s3, t4} = 2, w{s3, s4} =
2.4, w{s4, t1} = 1.8, w{s4, t2} = 1.5, w{s4, t3} = 1.8, w{s4, t4} = 2.5, w{t1, t2} =
1.4, w{t1, t3} = 2.6, w{t1, t4} = 1.7, w{t2, t3} = 2.2, w{t2, t4} = 2, w{t3, t4} =
2.1. With a similar discussion with Example 1, we get a desired Hamiltonian
path (s1, (s1, t1), t1, (t1, s3), s3, (s3, t3), t3, (t3, s2), s2, (s2, t2), t2, (t2, s4), s4, (s4, t4),
t4 (seeing Fig. 2).
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Algorithm 2
Input: A mixed multigraph G′ = (V ′, E ′, D), where V ′ = {si , ti | i ∈ [k]}, (V ′, E ′) is an undirected
complete graph and D = {(si , ti ) | i ∈ [k]}. An edge weight function w : E ′ → R+ satisfying the triangle
inequality.
Output: Path PPSCP2.
Begin
Step 1: Condense arc (si , ti ) into a vertex ni for each i ∈ [k]. For each pair i, j with i, j ∈ [k], define

d{ni , n j } =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{w{si , s j }, w{si , t j }, w{ti , s j }, w{ti , t j }}, if s1, tk /∈ {si , s j , ti , t j },
min{w{ti , s j }, w{ti , t j }}, if s1 = si ,

min{w{si , t j }, w{ti , t j }}, if s1 = s j ,

min{w{si , t j }, w{si , s j }}, if tk = ti ,

min{w{ti , s j }, w{si , s j }}, if tk = t j ,

w{ti , s j }, if s1 = si , tk = t j ,

w{si , t j }, if s1 = s j , tk = ti .

.
Step 2: Find a minimum spanning tree for the vertices in {ni | i ∈ [k]}, where the minimum is with respect
to the distance function d defined at Step 1.
Step 3: Initialize E1 to be empty. Insert all edges in the above spanning tree into E1. Replace the vertex
ni with the arc (si , ti ) for each i ∈ [k]. (This results in a mixed graph with vertex set V ′, undirected edge
set E1 and directed edge set D.)
Step 4: Identify vertices with odd degree in the mixed graph obtained at Step 3. Then find a minimum
perfect matching for all these vertices with odd degree, except for s1 and tk .
Step 5: Insert all edges in the above matching into E1. (This also results in a mixed graph with vertex set
V ′, undirected edge set E1 and directed edge set D.)
Step 6: Find an Eulerian trail from s1 to tk in the base graph of mixed graph obtained at Step 5, i.e.,

ignoring the directions of the arcs in D.
Step 7: Associate each edge in E1 with the direction of the Eulerian trail. For each arc in D that is

incorrectly traversed, add two directed edges to E1, both with direction opposite to that of the arc. (This
results in a directed graph G′

2 = (V ′, E1
⋃

D).)
Step 8: Find a directed Eulerian trail from s1 to tk in G′

2.
Step 9: Using the triangle inequality, we get a Hamiltonian path PPSCP2 from s1 to tk traversing each arc
(si , ti ) in the specified direction from si to ti .
End

Lemma 5 Algorithm 2 outputs a Hamiltonian path PPSCP2 with weight at most
2OPT ′′ +2U, where OPT ′′ denotes the weight of an optimal solution of the problem
and U = ∑k

i=1w(si , ti ).

With a similar discussion with Lemma 4, after completion of Step 5, all vertices
are of even degree, except for s1 and tk . The degrees of s1 and tk are both 1. This is
obtained by the definition of d at Step 1 and by ignoring these two odd degree vertices
s1 and tk at Step 4. According to Lemma 1, we find an Eulerian trail from s1 to tk in
the base graph of mixed graph obtained at Step 5. Step 7 shows how to augment the
mixed graph to allow the Eulerian trail to traverse arcs in D in the proper direction.
Similarly, the definition of d at Step 1 and omission of these two odd degree vertices
s1 and tk at Step 4 ensure that (s1, t1) and (sk, tk) are correctly traversed. When there
exists an arc in D that is incorrectly traversed, add two directed edges to E1, both with
direction opposite to that of the arc, the in-degree and out-degree of each vertex are
equal, except for s1 and tk . The in-degree of s1(tk) is 0(1) and the out-degree of s1(tk)
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Fig. 2 Algorithm 2 applied to a graph

is 1(0). Then we get the directed Eulerian trail from s1 to tk traversing each arc (si , ti )
in the specified direction from si to ti in the directed graph G ′

2 = (V ′, E1
⋃

D). At
Step 9, using the triangle inequality, we get a desired Hamiltonian path.

In the following, we consider the weight of PPSCP2. Since the edges with the asso-
ciated directions in the optimal path, except for the arcs in D, can connect the vertices
in {ni | i ∈ [k]}, the weight of the spanning tree at Step 2 is at most OPT ′′ −U . Then
the weight of the mixed graph obtained at Step 3 is at most OPT ′′. So the minimum
perfect matching weight on these vertices of odd degree , except for s1 and tk , is at
most OPT ′′. Therefore the weight of the mixed graph obtained at Step 5 is at most
2OPT ′′, and so the weight of the Eulerian trail at Step 6 is at most 2OPT ′′. Note
that the weight of all directed edges added at Step 7 is at most 2U . Then the weight of
the directed Eulerian trail at Step 8 is at most 2OPT ′′ + 2U . Also using the triangle
inequality, we get the weight of the Hamiltonian path PPSCP2 is at most 2OPT ′′ +2U ,
as desired.

Remark 1 The outputs of the above two algorithms both have weight related to the
weightU of the arcs in D. Each of Algorithm 1 and Algorithm 2 is run, and the value
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U relative to OPT ′′ will determine which algorithm we will choose. For specific, if
U ≥ 1

4OPT ′′, we will choose Algorithm 1. Otherwise, choose the other one instead.

Lemma 6 The time complexity of Algorithm 1 and Algorithm 2 is
O(max{∣∣V ′∣∣3 ,

∣
∣E ′∣∣ log log

∣
∣V ′∣∣}) and O(max{∣∣V ′∣∣2 ∣

∣E ′∣∣ ,
∣
∣E ′∣∣ log log

∣
∣V ′∣∣}), where

V ′ is the set of vertices of a given mixed graph and E ′ is the set of undirected edges.

The running time of Algorithm 1 depends on the running time of finding the min-
imum bipartite matching and the minimum spanning tree. According to Grinman
(2015), the running time of the Hungarian algorithm for finding the minimum bipar-
tite matching is O(

∣
∣V ′∣∣3). According to Yao (1975), the running time of the minimum

spanning tree algorithm is O(
∣
∣E ′∣∣ log log

∣
∣V ′∣∣).

The running time of Algorithm 2 depends on the running time of finding the mini-
mum perfect matching and the minimum spanning tree. There is a Blossom algorithm
for computing minimum perfect matching by Edmonds (1965). The running time of
the Blossom algorithm for finding the minimum perfect matching is O(

∣
∣V ′∣∣2 ∣

∣E ′∣∣).

4 Approximation algorithm for the CPTSP

In this section, we first design an approximation algorithm for the CPTSP, then we
analyze its approximation ratio.

Recall that in the CPTSP, the start-vertex and end-vertex are both specified for each
cluster. In order to apply the algorithms designed in Sect. 3 for the PSCP problem,
we assume that the start-vertex (end-vertex) is si (ti ) for each Vi , i ∈ [k]. Obviously,
s1 coincides with s and tk coincides with t . Our algorithm mainly consists of four
steps. At Step 1, for each fixed i ∈ [k], we find the pathi , a path from si to ti that
goes through all vertices in Vi , and this is exactly the PTSP with given start-vertex
and end-vertex. At Step 2, we replace the pathi by the arc (si , ti ). At Step 3, we
apply Algorithm 1 and Algorithm 2 to find a Hamiltonian path PPSCP from s1 to tk
that traverses each arc (si , ti ). At Step 4, we replace the arc (si , ti ) by the path pathi
obtained at Step 1.

Algorithm 3
Input: A complete graph G = (V , E) with an edge weight function w : E → R+, clusters V1, · · · , Vk ,
and the start-vertex ( end-vertex) si (ti ) for each Vi , i ∈ [k].
Output: Hamiltonian path T .
Begin
Step 1: For each Vi , i ∈ [k], compute pathi , a Hamiltonian path with start-vertex si and end-vertex ti .
Step 2: Replace the pathi with the arc (si , ti ). (This results in a mixed multigraph with vertex set

V ′ = {si , ti | i ∈ [k]}, V ′ and undirected edge set form a complete graph and D = {(si , ti ) | i ∈ [k]}.)
Step 3: Apply Algorithm 1 and Algorithm 2 to find the solution PPSCP of PSCP with less weight in the
mixed multigraph obtained above.
Step 4: In PPSCP, replace the arc (si , ti ) by the pathi , i ∈ [k].
End
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Fig. 3 Illustration of Algorithm 3

In this algorithm, we are involved in the PTSP and the PSCP that are both solvable
in polynomial time, so our algorithm runs in polynomial time.

Example 3 See this example for a sample execution of the algorithm.
In this example, we are given three clusters (seeing Fig. 3a). We first compute

pathi with specified start-vertex si and end-vertex ti in each cluster Vi , i ∈ [k]
(seeing Fig. 3b). Then we replace the pathi with the arc (si , ti ) and solve the PSCP
(seeing Fig. 3c). Using Algorithm 1 and Algorithm 2 to get the solution of PSCP, then
we replace the arc by the pathi in each cluster (seeing Fig. 3d).

Let OPT denote both an optimal solution of the CPTSP and its total weight. We
get the approximation ratio of Algorithm 3 as follows.

Theorem 1 Let T be the path output by Algorithm 3. Then w(T ) ≤ 8
3OPT .

The algorithm consists of two subproblems: the PTSP with given start-vertex and
end-vertex, and the PSCP. Denote by Pi the induced path of the OPT on Vi for
each i ∈ [k]. Let L = ∑

i∈[k]
∑

e∈Pi∩OPT w(e) and L
′ = OPT − L . Recall that
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U = ∑k
i=1w(si , ti ). By Lemma 3, we get w(

∑k
i=1 pathi ) ≤ min(2L − U , 3

2 L).

Therefore, w(
∑k

i=1 pathi ) ≤ min(2 L −U , 3
2 L) ≤ 2 L −U .

Note that there exists a solution to the PSCP with weight L
′ + U . By Lemmas 4

and 5, the weight of the two solutions returned by Algorithm 1 and Algorithm 2 is at
most 3 L

′ +U and 2 L
′ + 4U , respectively. Therefore, using the fact that for a set of

quantities, the minimum is less than or equal to any convex combination of them, we
get

w(PPSCP) ≤ min(3L
′ +U , 2L

′ + 4U )

≤ 2

3
(3L

′ +U ) + 1

3
(2L

′ + 4U )

= 8

3
L

′ + 2U .

At Step 4 of Algorithm 3, by replacing the arc (si , ti ) by pathi for each i ∈ [k],
we obtain

w(T ) = w(

k∑

i=1

pathi ) −U + w(PPSCP)

≤ (2L −U ) −U + (
8

3
L

′ + 2U )

= 2L + 8

3
L

′

≤ 8

3
(L + L

′
) = 8

3
OPT .

5 Discussion

In this paper, we only consider the case that the start-vertex and the end-vertex are both
given in each cluster. Other cases including two endpoints in each cluster are given
but we are free to choose the start-vertex, only the start-vertex is given in each cluster,
and neither of the endpoints is given in each cluster, are also interesting problems to
consider.
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