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Abstract
Maximizing a submodular function has a wide range of applications in machine learn-
ing and data mining. One such application is data summarization whose goal is to
select a small set of representative and diverse data items from a large dataset. How-
ever, data items might have sensitive attributes such as race or gender, in this setting, it
is important to design fairness-aware algorithms to mitigate potential algorithmic bias
that may cause over- or under- representation of particular groups. Motivated by that,
we propose and study the classic non-monotone submodular maximization problem
subject to novel group fairness constraints. Our goal is to select a set of items that
maximizes a non-monotone submodular function, while ensuring that the number of
selected items from each group is proportionate to its size, to the extent specified by
the decision maker. We develop the first constant-factor approximation algorithms for
this problem. We also extend the basic model to incorporate an additional global size
constraint on the total number of selected items.

Keywords Approximation algorithm · Group fairness · Submodular optimization

1 Introduction

Submodular function refers to a broad class of functions which satisfy the natural
diminishing returns property: adding an additional item to a larger existing subset
is less beneficial. A wide range of machine learning and AI problems, including
exemplar-based clustering (Dueck and Frey 2007), feature selection (Das and Kempe
2008), active learning (Golovin and Krause 2011), influence maximization in social
networks (Tang and Yuan 2020), recommender system (El-Arini and Guestrin 2011),
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and diverse data summarization (Sipos et al. 2012), can be formulated as a submodular
maximization problem.This problem,whose goal is to select a set of items tomaximize
a submodular function, and its variants (Gu et al. 2022; Shi et al. 2021) have been
extensively studied in the literature subject to various constraints, including cardinality,
matroid, or knapsack-type restrictions.

We notice that in practise, items or individuals are often associated with different
groups based on various attributes, such as gender, race, age, religion, or other factors.
Existing algorithms might exhibit bias if left unchecked, for example, some of the
groups might be over- or under-represented in the final selected subset. Therefore, it
becomes increasingly important to design fairness-aware algorithms to mitigate such
issues. Towards this end, we propose and study the classic non-monotone submodular
maximization problem subject to novel group fairness constraints. Our goal is to select
a balanced set of items that maximizes a non-monotone submodular function, such
that the ratio of selected items from each group to its size is within a desired range,
as determined by the decision maker. Non-monotone submodular maximization has
multiple compelling applications, such as feature selection (Das and Kempe 2008),
profit maximization (Tang and Yuan 2021), maximum cut (Gotovos et al. 2015) and
data summarization (Mirzasoleiman et al. 2016). Formally,we consider a setV of items
(e.g., datapoints) which are partitioned intom groups: V1, V2, · · · , Vm such that items
from the same group share same attributes (e.g., gender). We say that a set S ⊆ V of
items is (α, β)-fair if for all groups i ∈ [m], it holds that �α|Vi |� ≤ |S∩Vi | ≤ �β|Vi |�.
Using ourmodel, it allows for the decisionmaker to specify the desired level of fairness
by setting appropriate values ofα andβ. Specifically, settingα = β leads to the highest
level of fairness in that the number of selected items is strictly proportional to its group
size; if we set α = 0 and β = 1, there are no fairness constraints. Our goal is to find
such a (α, β)-fair subset of items that maximizes a submodular objective function. Our
definition of fairness, which balances solutions with respect to sensitive attributes, has
gained widespread acceptance in the academic community, as demonstrated by its
frequent use in previous studies (Celis et al. 2018b; El Halabi et al. 2020; Chierichetti
et al. 2019). There are several other notations of fairness that can be captured by our
formulation such as the 80%-rule (Biddle 2017), statistical parity (Dwork et al. 2012)
and proportional representation (Monroe 1995).

1.1 Our contributions

– Our study breaks new ground by examining the classic (non-monotone) submod-
ular maximization problem under (α, β)-fairness constraints. Our model offers
flexibility in capturing varying degrees of fairness as desired by the decisionmaker,
by adjusting the values of α and β.

– We develop the first constant-factor approximation algorithm for this problem.
We observe that the parameter α is closely linked to the complexity of solving
the (α, β)-fair non-monotone submodular maximization problem. In particular,
when α ≤ 1/2, we design a γ

2 -approximation algorithm and when α > 1/2, we
develop a γ

3 -approximation algorithm, where γ is the approximation ratio of the
current best algorithm formatroid-constrained submodular maximization.We also
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extend the basic model to incorporate an additional global size constraint on the
total number of selected items. We provide approximation algorithms that have a
constant-factor approximation ratio for this extended model.

1.2 Additional related works

In recent years, there has been a growing awareness of the importance of fair and unbi-
ased decision-making systems. This has led to an increased interest in the development
of fair algorithms in a wide range of applications, including influence maximization
(Tsang et al. 2019), classification (Zafar et al. 2017), voting (Celis et al. 2018b), bandit
learning (Joseph et al. 2016), and data summarization (Celis et al. 2018a). Depending
on the specific context and the type of bias that one is trying to mitigate, existing
studies adopt different metrics of fairness. This can lead to different optimization
problems and different fair algorithms that are tailored to the specific requirements of
the application. Our notation of fairness is general enough to capture many existing
notations such as the 80%-rule (Biddle 2017), statistical parity (Dwork et al. 2012)
and proportional representation (Monroe 1995). Unlike most of existing studies on
fair submodular maximization (Celis et al. 2018b) whose objective is to maximize a
monotone submodular function, (El Halabi et al. 2020) develop fair algorithms in the
context of streaming non-monotone submodular maximization. Their proposed nota-
tion of fairness is more general than ours, leading to a more challenging optimization
problem which does not admit any constant-factor approximation algorithms. Tang et
al. (2023), Tang and Yuan (2023) aim to develop randomized algorithms that satisfy
average fairness constraints. Very recently, Tang and Yuan (2022) extend the studies of
fair algorithms to a more complicated adaptive setting and they propose a new metric
of fairness called group equality.

2 Preliminaries and problem statement

We consider a set V of n items. There is a non-negative submodular utility function
f : 2V → R+. Denote by f (e | S) the marginal utility of e ∈ V on top of S ⊆ V ,
i.e., f (e | S) = f ({e} ∪ S) − f (S). We say a function f : 2V → R+ is submodular
if for any two sets X ,Y ⊆ V such that X ⊆ Y and any item e ∈ V \ Y ,

f (e | Y ) ≤ f (e | X).

Assume V is partitioned into m disjoint groups: V1, V2, · · · , Vm . We assume that
there is a given lower and upper bound on the fraction of items of each group that must
be contained in a feasible solution. These two bounds, namelyα andβ, represent group
fairness constraints. The problem of (α, β)-fair submodular maximization problem
(labelled as P.0) can be written as follows.

P.0 max f (S)

subject to:
�α|Vi |� ≤ |S ∩ Vi | ≤ �β|Vi |�, ∀i ∈ [m].
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One can adjust the degree of group fairness in a feasible solution through choosing
appropriate values of α and β. I.e., strict group fairness is achieved at α = β in which
case every feasible solutionmust contain the sameα fraction of items from each group;
if we set α = 0 and β = 1, then there is no group fairness constraints. We next present
the hardness result of this problem.

Lemma 1 Problem P.0 is NP-hard.

Proof We prove this through reduction to the classic cardinality constrained submod-
ular maximization problem which we define below.

Definition 1 The input of cardinality constrained submodular maximization problem
is a group of items U , a submodular function h : 2U → R+, and a cardinality
constraint b; we aim to select a group of items S ⊆ U such that h(S) is maximized
and |S| ≤ b.

We next show a reduction from cardinality constrained submodular maximization
problem to P.0. Consider any given instance of cardinality constrained submodular
maximization problem, we construct a corresponding instance of P.0 as follows: Let
V = U , f = h, assume there is only one group, i.e., V = V1, and let α = 0,
β = b/|U |. It is easy to verify that these two instances are equivalent. This finishes
the proof of the reduction. �

3 Non-monotone submodular maximization with group fairness

Warm-up: Monotone Utility Function If f is monotone and submodular, we can easily
confirm that P.0 can be simplified to P.1 by removing the lower bound constraints.
This is because in this case, increasing the size of a solution by adding more items
will not decrease its utility. As a result, the lower bound constraints in P.0, which state
that �α|Vi |� ≤ |S ∩ Vi | for all i ∈ [m], can always be met by adding sufficient items
to the solution.

P.1 max f (S)

subject to:
|S ∩ Vi | ≤ �β|Vi |�, ∀i ∈ [m].

Since f is a monotone submodular function, P.1 is a well-known problem of maxi-
mizing amonotone submodular function subject tomatroid constraints1. This problem
has a (1 − 1/e)-approximation algorithm.

We then proceed to develop approximation algorithms for non-monotone functions.
We will examine two scenarios, specifically when α ≤ 1/2 and when α > 1/2.

3.1 The case when˛ ≤ 1/2

In the scenario where α ≤ 1/2, we use the solution of P.1 as a building block to
construct our algorithm. First, it is easy to verify that P.1 is a relaxed version of P.0

1 A matroid is a pairM = (V ,I) where I ⊆ 2V and 1. ∀Y ∈ I, X ⊆ Y → X ∈ I. 2. ∀X , Y ∈ I; |X | <

|Y | → ∃e ∈ Y \ X; X ∪ {e} ∈ I.
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with lower bound constraints �α|Vi |� ≤ |S ∩ Vi | in P.0 being removed. Because f
is a submodular function, P.1 is a classic problem of maximizing a (non-monotone)
submodular function subject to matroid constraints. There exist effective solutions for
P.1. Now we are ready to present the design of our algorithm as below.

1. Apply the state-of-the-art algorithm A for matroid constrained submodular maxi-
mization to solve P.1 and obtain a solution AP.1.

2. Note that AP.1 is not necessarily a feasible solution to P.0 because it might violate
the lower bound constraints �α|Vi |� ≤ |S ∩ Vi | for some groups. To make it
feasible, we add additional items to AP.1. Specifically, for each group i ∈ [m]
such that |AP.1 ∩ Vi | < �α|Vi |�, our algorithm selects a backup set Bi of size
�α|Vi |� − |AP.1 ∩ Vi |, by randomly sampling �α|Vi |� − |AP.1 ∩ Vi | items from
Vi \ AP.1. Define Bi = ∅ if |AP.1 ∩ Vi | ≥ �α|Vi |�.

3. At the end, add∪i∈[m]Bi to AP.1 to build the final solution Aapprox , i.e., Aapprox =
AP.1 ∪ (∪i∈[m]Bi ).

Algorithm 1 Approximation Algorithm for P.0 when α ≤ 1/2

1: ApplyA to solve P.1 and obtain a solution AP.1

2: for every group i ∈ [m] do
3: if |AP.1 ∩ Vi | < �α|Vi |� then
4: select a random backup set Bi of size �α|Vi |� − |AP.1 ∩ Vi | from Vi \ AP.1

5: else
6: Bi ← ∅
7: Aapprox ← AP.1 ∪ (∪i∈[m]Bi )
8: return Aapprox

The pseudocode of this approximation algorithm is given as Algorithm 1. Observe
that AP.1 is a feasible solution to P.1, hence, AP.1 satisfies upper bound constraints of
P.1 and hence P.0, i.e., |S∩Vi | ≤ �β|Vi |�,∀i ∈ [m]. According to the construction of
Bi , it is easy to verify that adding ∪i∈[m]Bi to AP.1 does not violate the upper bound
constraints because ∪i∈[m]Bi are only supplemented to those groups which do not
satisfy the lower bound constraints of P.0, i.e., �α|Vi |� ≤ |S ∩ Vi |. Moreover, adding
∪i∈[m]Bi to AP.1 makes it satisfy lower bound constraints of P.0. Hence, Aapprox is a
feasible solution to P.0.

Lemma 2 Aapprox is a feasible solution to P.0.

3.1.1 Performance analysis

We next analyze the performance of Algorithm 1. We first introduce a useful lemma
from Buchbinder et al. (2014).

Lemma 3 If f is submodular and S is a random subset of V , such that each item in
V is contained in S with probability at most p, then ES[ f (S)] ≥ (1 − p) f (∅).

The next lemma states that if AP.1 is a γ -approximate solution of P.1, then f (AP.1)

is at least γ fraction of the optimal solution of P.0.
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Lemma 4 Suppose A is a γ -approximate algorithm for non-monotone submodular
maximization subject to a matroid constraint. Let OPT denote the optimal solution
of P.0, we have f (AP.1) ≥ γ f (OPT ).

Proof BecauseA is a γ -approximate algorithm for non-monotone submodular maxi-
mization subject to a matroid constraint, we have f (AP.1) ≥ γ f (OP.1) where OP.1

denotes the optimal solution of P.1. Moreover, because P.1 is a relaxed version of P.0,
we have f (OP.1) ≥ f (OPT ). Hence, f (AP.1) ≥ γ f (OPT ). �

We next show that augmenting AP.1 with items from the random set ∪i∈[m]Bi
reduces its utility by a factor of at most 1/2 in expectation. Here the expectation is
taken over the distribution of ∪i∈[m]Bi .

Lemma 5 Suppose α ≤ 1/2, we have EAapprox [ f (Aapprox )] ≥ 1
2 f (AP.1) where

Aapprox = AP.1 ∪ (∪i∈[m]Bi ).

Proof Recall that Bi = ∅ for all i ∈ [m] such that |AP.1 ∩ Vi | ≥ �α|Vi |�, hence,
adding those Bi to AP.1 does not affect its utility. In the rest of the proof we focus on
those Bi with

|AP.1 ∩ Vi | < �α|Vi |�. (1)

Recall that for every i ∈ [m] such that |AP.1 ∩ Vi | < �α|Vi |�, Bi is a random set of
size �α|Vi |� − |AP.1 ∩ Vi | that is sampled from Vi \ AP.1. It follows that each item in
Vi \ AP.1 is contained in Bi with probability at most

�α|Vi |� − |AP.1 ∩ Vi |
|Vi \ AP.1| . (2)

We next give an upper bound of (2). First,

�α|Vi |� − |AP.1 ∩ Vi | ≤ �α|Vi |� ≤ |Vi |/2, (3)

where the second inequality is by the assumption that α ≤ 1/2. Moreover,

|Vi \ AP.1| = |Vi | − |AP.1 ∩ Vi | = (�α|Vi |� − |AP.1 ∩ Vi |) + (|Vi | − �α|Vi |�)
(4)

≥ (�α|Vi |� − |AP.1 ∩ Vi |) + |Vi |/2, (5)

where the inequality is by the assumption that α ≤ 1/2.
Hence,

(15) ≤ �α|Vi |� − |AP.1 ∩ Vi |
(�α|Vi |� − |AP.1 ∩ Vi |) + |Vi |/2 ≤ |Vi |/2

|Vi |/2 + |Vi |/2 = 1/2, (6)

where the first inequality is by (5); the second inequality is by (3) and the assumption
that �α|Vi |� − |AP.1 ∩ Vi | > 0 (listed in (1)). That is, the probability that each item
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in Vi \ AP.1 is contained in Bi is at most 1/2. It follows that the probability that
each item in V \ AP.1 is contained in ∪i∈[m]Bi is at most 1/2. Moreover, Lemma 3
states that if f is submodular and S is a random subset of V , such that each item in
V appears in S with probability at most p, then EA[ f (A)] ≥ (1 − p) f (∅). With the
above discussion and the observation that f (AP.1 ∪ ·) is submodular, it holds that
EAapprox [ f (Aapprox )] = E∪i∈[m]Bi [ f (AP.1 ∪ (∪i∈[m]Bi ))] ≥ (1 − 1

2 ) f (A
P.1 ∪ ∅) =

1
2 f (AP.1). �

Our main theorem as below follows from Lemma 4 and Lemma 5.

Theorem 1 Suppose A is a γ -approximate algorithm for non-monotone submod-
ular maximization subject to a matroid constraint and α ≤ 1/2, we have
EAapprox [ f (Aapprox )] ≥ γ

2 f (OPT ).

One option of A is the continuous double greedy algorithm proposed in Feld-
man et al. (2011) which gives a 1/e − o(1)-approximation solution, that is, γ ≥
1/e − o(1). This, together with Theorem 1, implies that EAapprox [ f (Aapprox )] ≥
1/e−o(1)

2 f (OPT ).

3.2 The case when˛ > 1/2

We next consider the case when α > 1/2. We first introduce a new utility function
g : 2V → R+ as below:

g(·) = f (V \ ·). (7)

We first present a well-known result, which states that submodular functions maintain
their submodularity property when taking their complement.

Lemma 6 If f is submodular, then g must be submodular.

With utility function g, we present a new optimization problem P.2 as below:

P.2 max g(S)

subject to:
|Vi | − �β|Vi |� ≤ |S ∩ Vi | ≤ |Vi | − �α|Vi |�, ∀i ∈ [m].

P.2 is a flipped version of the original problem P.0 in the sense that if there is a
γ -approximate solution AP.2 to P.2, it can be easily verified that V \ AP.2 is a γ -
approximate solution to P.0. As a result, we will focus on solving P.2 for the rest of
this section.

To solve P.2, we introduce another problem (labeled as P.3) as follows:

P.3 max g(S)

subject to:
|S ∩ Vi | ≤ |Vi | − �α|Vi |�, ∀i ∈ [m].

P.3 is relaxed version of P.2with lower bound constraints |Vi |−�β|Vi |� ≤ |S∩Vi |
in P.2 being removed. Because g is a submodular function, P.3 is a classic problem of
maximizing a submodular function subject to matroid constraints. Now we are ready
to present the design of our algorithm.
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1. Apply the state-of-the-art algorithm A for matroid constrained submodular maxi-
mization to solve P.3 and obtain a solution AP.3.

2. Note that AP.3 is not necessarily a feasible solution to P.2 because it might violate
the lower bound constraints |Vi | − �β|Vi |� ≤ |S ∩ Vi | for some groups. We add
additional items to AP.3 to make it feasible. Specifically, for each group i ∈ [m]
such that |AP.3∩Vi | < |Vi |−�β|Vi |�, our algorithm selects a backup set Bi of size
|Vi | − �β|Vi |� − |AP.3 ∩ Vi |, by randomly sampling |Vi | − �β|Vi |� − |AP.3 ∩ Vi |
items from Vi \ AP.3. Define Bi = ∅ if |AP.1 ∩ Vi | ≥ |Vi | − �β|Vi |�.

3. Add ∪i∈[m]Bi to AP.3 to build Aapprox , i.e., Aapprox = AP.3 ∪ (∪i∈[m]Bi ). Return
V \ Aapprox as the final solution.

Algorithm 2 Approximation Algorithm for P.0 when α > 1/2

1: ApplyA to solve P.3 and obtain a solution AP.3

2: for every group i ∈ [m] do
3: if |AP.3 ∩ Vi | < |Vi | − �β|Vi |� then
4: select a random backup set Bi of size |Vi | − �β|Vi |� − |AP.3 ∩ Vi | from Vi \ AP.3

5: else
6: Bi ← ∅
7: Aapprox ← AP.3 ∪ (∪i∈[m]Bi )
8: return V \ Aapprox

The pseudocode of this approximation algorithm is given as Algorithm 2. Observe
that AP.3 satisfies upper bound constraints of P.3 and hence P.2 because AP.3 is a
feasible solution to P.3. According to the construction of Bi , adding ∪i∈[m]Bi to AP.1

does not violate the upper bound constraints because ∪i∈[m]Bi are added to meet the
lower bound constraints of P.2 if necessary. Moreover, adding∪i∈[m]Bi to AP.3 makes
it satisfy lower bound constraints of P.2. Hence, Aapprox is a feasible solution to P.2.

Lemma 7 Aapprox is a feasible solution to P.2.

3.2.1 Performance analysis

We first introduce a technical lemma which states that if AP.3 is a γ -approximate
solution of P.3, then f (AP.3) is at least γ fraction of the optimal solution of P.2. This
lemma follows from the observation that P.3 is a relaxation of P.2 .

Lemma 8 Suppose A is a γ -approximate algorithm for non-monotone submodular
maximization subject to a matroid constraint. Let OP.2 denote the optimal solution of
P.2, it holds that g(AP.3) ≥ γ g(OP.2).

We next show that augmenting AP.3 with items from ∪i∈[m]Bi reduces its utility
by a factor of at most 2/3 in expectation.

Lemma 9 Suppose α > 1/2, EAapprox [g(Aapprox )] ≥ 1
3g(A

P.3) where Aapprox =
AP.3 ∪ (∪i∈[m]Bi ).
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Proof Recall that Bi = ∅ for all i ∈ [m] such that |AP.3 ∩ Vi | ≥ |Vi | − �β|Vi |�,
hence, adding those Bi to AP.3 does not affect its utility. Therefore, we focus on
those groups i ∈ [m] with |AP.3 ∩ Vi | < |Vi | − �β|Vi |� in the rest of the proof. Let
M = {i | |AP.3 ∩ Vi | < |Vi | − �β|Vi |�} denote the set containing the indexes of all
such groups and we assume M �= ∅ to avoid trivial cases. We next show that it is safe
to assume mini∈M |Vi | > 1 without loss of generality, i.e., the smallest group in M
contains at least two items. To prove this, we consider two cases, depending on the
value of β. If β = 1, then |AP.3 ∩ Vi | < |Vi | − �β|Vi |� does not hold for any group
i such that |Vi | = 1, that is, mini∈M |Vi | > 1. If β < 1, then according to the group
fairness constraints listed in P.0, we are not allowed to select any items from those
groups with |Vi | = 1. Hence, removing all groups with size one from consideration
does not affect the quality of the optimal solution.

With the assumption that mini∈M |Vi | > 1, we are now in position to prove this
lemma. Recall that for every i ∈ M , Bi is a random set of size |Vi |−�β|Vi |�−|AP.3∩
Vi | that is sampled from Vi \ AP.3. It follows that each item in Vi \ AP.3 appears in
Bi with probability at most

|Vi | − �β|Vi |� − |AP.3 ∩ Vi |
|Vi \ AP.3| . (8)

We next give an upper bound of (8). Because we assume α > 1/2, we have β ≥
α > 1/2. This, together with the assumption that mini∈M |Vi | > 1, implies that for
all i ∈ M ,

|Vi | − �β|Vi |� − |AP.3 ∩ Vi | ≤ |Vi | − �β|Vi |� ≤ 2|Vi |/3. (9)

Moreover,

|Vi \ AP.3| = |Vi | − |AP.3 ∩ Vi | (10)

= (|Vi | − �β|Vi |� − |AP.3 ∩ Vi |) + (|Vi | − (|Vi | − �β|Vi |�)) (11)

= (|Vi | − �β|Vi |� − |AP.3 ∩ Vi |) + �β|Vi |� (12)

≥ (|Vi | − �β|Vi |� − |AP.3 ∩ Vi |) + |Vi |/3, (13)

where the inequality is by the observation that β > 1/2. It follows that

(8) ≤ |Vi | − �β|Vi |� − |AP.3 ∩ Vi |
(|Vi | − �β|Vi |� − |AP.3 ∩ Vi |) + |Vi |/3 ≤ 2|Vi |/3

2|Vi |/3 + |Vi |/3 = 2/3, (14)

where the first inequality is by (13) and the second inequality is by (9) and the assump-
tion that |Vi | − �β|Vi |� − |AP.3 ∩ Vi | > 0. That is, each item in Vi \ AP.3 appears
in Bi with probability at most 2/3. Lemma 3 and the observation that g(AP.3 ∪ ·)
is submodular imply that EAapprox [g(Aapprox )] = E∪i∈[m]Bi [g(AP.3 ∪ (∪i∈[m]Bi ))] ≥
(1 − 2

3 )g(A
P.3 ∪ ∅) = 1

3g(A
P.3). �
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Lemmas 8 and 9 together imply that

EAapprox [g(Aapprox )] ≥ 1

3
g(AP.3) ≥ γ

3
g(OP.2).

By the definition of function g, we have

EAapprox [ f (V \ Aapprox )] = EAapprox [g(Aapprox )] ≥ γ

3
g(OP.2) = γ

3
f (OPT )

where the last equality is by the observation that P.2 and P.0 share the same value of
the optimal solution. Hence, the following main theorem holds.

Theorem 2 Suppose A is a γ -approximate algorithm for non-monotone submodular
maximization subject to a matroid constraint and α > 1/2, we have EAapprox [ f (V \
Aapprox )] ≥ γ

3 f (OPT ).

If we adopt the continuous double greedy algorithm (Feldman et al. 2011) as
A to compute AP.3, it gives a 1/e − o(1)-approximation solution, that is, γ ≥
1/e − o(1). This, together with Theorem 2, implies that EAapprox [ f (V \ Aapprox )] ≥
1/e−o(1)

3 f (OPT ).

4 Extension: incorporating global cardinality constraint

In this section, we extend P.0 to incorporate a global cardinality constraint. A formal
definition of this problem is listed in P.A. Our objective is to find a best S subject to a
group fairness constraint (α, β) and an additional cardinality constraint c.

P.A max f (S)

subject to:
�α|Vi |� ≤ |S ∩ Vi | ≤ �β|Vi |�, ∀i ∈ [m].
|S| ≤ c.

4.1 The case when˛ ≤ 1/2

We first consider the case when α ≤ 1/2. We introduce a new optimization problem
P.B as follows:

P.B max f (S)

subject to:
|S ∩ Vi | ≤ �β|Vi |�, ∀i ∈ [m].∑

i∈[m] max{�α|Vi |�, |S ∩ Vi |} ≤ c.

It is easy to verify that P.B is a relaxation of P.A in the sense that every feasible
solution to P.A is also a feasible solution to P.B. Hence, we have the following lemma.

Lemma 10 Let OPT denote the optimal solution of P.A and OP.B denote the optimal
solution of P.B, we have f (OP.B) ≥ f (OPT ).
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It has been shown that the constraints in P.B gives rise to a matroid (El Halabi et al.
2020). This, together with the assumption that f is a submodular function, implies
that P.B is a classic problem of maximizing a submodular function subject to matroid
constraints. Now we are ready to present the design of our algorithm.

1. Apply the state-of-the-art algorithm A for matroid constrained submodular maxi-
mization to solve P.B and obtain a solution AP.B .

2. Note that AP.B is not necessarily a feasible solution to P.A because it might violate
the lower bound constraints �α|Vi |� ≤ |S ∩ Vi | for some groups. To make it
feasible, we add additional items to AP.B . Specifically, for each group i ∈ [m]
such that |AP.B ∩ Vi | < �α|Vi |�, our algorithm selects a backup set Bi of size
�α|Vi |� − |AP.B ∩ Vi |, by randomly sampling �α|Vi |� − |AP.B ∩ Vi | items from
Vi \ AP.B . Define Bi = ∅ if |AP.1 ∩ Vi | ≥ �α|Vi |�.

3. At the end, add∪i∈[m]Bi to AP.B to build the final solution Aapprox , i.e., Aapprox =
AP.B ∪ (∪i∈[m]Bi ).

Algorithm 3 Approximation Algorithm for P.A when α ≤ 1/2

1: ApplyA to solve P.B and obtain a solution AP.B

2: for every group i ∈ [m] do
3: if |AP.B ∩ Vi | < �α|Vi |� then
4: select a random backup set Bi of size �α|Vi |� − |AP.B ∩ Vi | from Vi \ AP.B

5: else
6: Bi ← ∅
7: Aapprox ← AP.B ∪ (∪i∈[m]Bi )
8: return Aapprox

The pseudocode of this approximation algorithm is given as Algorithm 3. Observe
that AP.B satisfies the group-wise upper bound constraints of P.A because AP.B meets
the first set of constraints in P.B. According to the construction of Bi , adding ∪i∈[m]Bi
to AP.B does not violate the group-wise upper bound constraints of P.A because
∪i∈[m]Bi are added to meet the lower bound constraints of P.A if necessary. Moreover,
adding ∪i∈[m]Bi to AP.B does not violate the global cardinality constraint of P.A
because AP.B meets the second set of constraints in P.B. At last, it is easy to verify
that adding ∪i∈[m]Bi to AP.B makes it satisfy the lower bound constraints of P.A.
Hence, Aapprox is a feasible solution to P.A.

Lemma 11 Aapprox is a feasible solution to P.A.

Following the same proof of Theorem 1, we have the following theorem.

Theorem 3 Suppose A is a γ -approximate algorithm for non-monotone submod-
ular maximization subject to a matroid constraint and α ≤ 1/2, we have
EAapprox [ f (Aapprox )] ≥ γ

2 f (OPT ).

4.2 The case when˛ > 1/2

We next consider the case when α > 1/2. Recall that g(·) = f (V \ ·). We first present
a flipped formation of P.A as below:
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P.C max g(S)

subject to:
|Vi | − �β|Vi |� ≤ |S ∩ Vi | ≤ |Vi | − �α|Vi |�, ∀i ∈ [m].
|S| ≥ n − c.

Suppose there is a γ -approximate solution AP.C to P.C, it is easy to verify that
V \ AP.C is a γ -approximate solution to P.A. We focus on solving P.C in the rest of
this section.We first introduce a new optimization problem (labeled asP.D) as follows:

P.D max g(S)

subject to:
|S ∩ Vi | ≤ |Vi | − �α|Vi |�, ∀i ∈ [m].

P.D is relaxed version of P.C with both group-wise lower bound constraints |Vi | −
�β|Vi |� ≤ |S ∩ Vi | and global lower bound constraints |S| ≥ n − c in P.C being
removed. Hence, we have the following lemma.

Lemma 12 Let OP.C denote the optimal solution of P.C and OP.D denote the optimal
solution of P.D, we have g(OP.D) ≥ g(OP.C ).

Recall that if f is submodular, g must be submodular (by Lemma 6). Hence, P.D is
a classic problem ofmaximizing a submodular function subject to matroid constraints.
We next present the design of our algorithm.

1. Apply the state-of-the-art algorithm A for matroid constrained submodular maxi-
mization to solve P.D and obtain a solution AP.D .

2. Note that AP.D is not necessarily a feasible solution to P.C because it might violate
the group-wise or the global lower bound constraints of P.C. We add additional
items to AP.D tomake it feasible. Specifically, for eachgroup i ∈ [m], our algorithm
selects a backup set Bi of size |Vi |−�α|Vi |�− |AP.D ∩Vi |, by randomly sampling
|Vi | − �α|Vi |� − |AP.D ∩ Vi | items from Vi \ AP.D . Define Bi = ∅ if |Vi | −
�α|Vi |� − |AP.D ∩ Vi | = 0.

3. Add∪i∈[m]Bi to AP.D to build Aapprox , i.e., Aapprox = AP.D∪(∪i∈[m]Bi ). Return
V \ Aapprox as the final solution.

Algorithm 4 Approximation Algorithm for P.A when α > 1/2

1: ApplyA to solve P.D and obtain a solution AP.D

2: for every group i ∈ [m] do
3: if |AP.D ∩ Vi | < |Vi | − �α|Vi |� then
4: select a random backup set Bi of size |Vi | − �α|Vi |� − |AP.D ∩ Vi | from Vi \ AP.D

5: else
6: Bi ← ∅
7: Aapprox ← AP.D ∪ (∪i∈[m]Bi )
8: return V \ Aapprox

The pseudocode of this approximation algorithm is given as Algorithm 4. Observe
that adding∪i∈[m]Bi to AP.D ensures that each group contributes exactly |Vi |−�α|Vi |�
number of items to the solution. Because n − c ≤ ∑

i∈[m](|Vi | − �α|Vi |�) (otherwise
P.C does not have a feasible solution), AP.D ∪ (∪i∈[m]Bi ) must satisfy all constraints
in P.C. Hence, we have the following lemma.
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Lemma 13 Aapprox is a feasible solution to P.C.

We next analyze the performance of Aapprox . The following lemma states that
adding ∪i∈[m]Bi to AP.D reduces its utility by a factor of at most 2/3 in expectation.

Lemma 14 Suppose α > 1/2, we have EAapprox [g(Aapprox )] ≥ 1
3g(A

P.D).

Proof Observe that Bi = ∅ for all i ∈ [m] such that |AP.D ∩ Vi | = |Vi | − �α|Vi |�,
hence, adding those Bi to AP.D does not affect its utility. Therefore, we focus on
those groups i ∈ [m] with |AP.D ∩ Vi | < |Vi | − �α|Vi |� in the rest of the proof. Let
Z = {i ∈ [m] | |AP.D ∩ Vi | < |Vi | − �α|Vi |�} denote the set containing the indexes
all such groups. We assume Z �= ∅ to avoid trivial cases. We next show that it is safe
to assume mini∈Z |Vi | > 1 without loss of generality, i.e., the smallest group in Z
contains at least two items. To prove this, we consider two cases, depending on the
value of α. If α = 1, then |AP.D ∩ Vi | < |Vi | − �α|Vi |� does not hold for any group
i such that |Vi | = 1. Hence, mini∈Z |Vi | > 1. If α < 1, then according to the group
fairness constraints listed in P.A, we are not allowed to select any items from those
groups with |Vi | = 1. Hence, removing all groups with size one from consideration
does not affect the quality of the optimal solution.

With the assumption that mini∈Z |Vi | > 1, we are now ready to prove this lemma.
Recall that for every i ∈ Z , Bi is a random set of size |Vi | − �α|Vi |� − |AP.D ∩ Vi |
that is sampled from Vi \ AP.D . It follows each item in Vi \ AP.D appears in Bi with
probability at most

|Vi | − �α|Vi |� − |AP.D ∩ Vi |
|Vi \ AP.D| . (15)

We next give an upper bound of (15). Because we assume α > 1/2 and
mini∈Z |Vi | > 1, it holds that for all i ∈ M ,

|Vi | − �α|Vi |� − |AP.D ∩ Vi | ≤ |Vi | − �α|Vi |� ≤ 2|Vi |/3. (16)

Moreover,

|Vi \ AP.D| = |Vi | − |AP.D ∩ Vi | (17)

= (|Vi | − �α|Vi |� − |AP.D ∩ Vi |) + (|Vi | − (|Vi | − �α|Vi |�)) (18)

= (|Vi | − �α|Vi |� − |AP.D ∩ Vi |) + �α|Vi |� (19)

≥ (|Vi | − �α|Vi |� − |AP.D ∩ Vi |) + |Vi |/3, (20)

where the inequality is by the assumptions that α > 1/2 and |Vi | > 1. It follows that

(15) ≤ |Vi | − �α|Vi |� − |AP.D ∩ Vi |
(|Vi | − �α|Vi |� − |AP.D ∩ Vi |) + |Vi |/3 ≤ 2|Vi |/3

2|Vi |/3 + |Vi |/3 = 2/3,(21)

where the first inequality is by (20) and the second inequality is by (16) and the
assumption that |Vi |−�α|Vi |�−|AP.D∩Vi | > 0.That is, each item inVi\AP.D appears
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in Bi with probability at most 2/3. Lemma 3 and the observation that g(AP.D ∪ ·) is
submodular imply that EAapprox [g(Aapprox )] = E∪i∈[m]Bi [g(AP.D ∪ (∪i∈[m]Bi ))] ≥
(1 − 2

3 )g(A
P.D ∪ ∅) = 1

3g(A
P.D). �

SupposeA is a γ -approximate algorithm for non-monotone submodular maximiza-
tion subject to a matroid constraint, we have

EAapprox [g(Aapprox )] ≥ 1

3
g(AP.D) ≥ γ

3
g(OP.D)

where the first inequality is by Lemma 14. This, together with g(OP.D) ≥ g(OP.C )

(as proved in Lemma 12), implies that EAapprox [g(Aapprox )] ≥ γ
3 g(O

P.C ). By the
definition of function g, we have

EAapprox [ f (V \ Aapprox )] = EAapprox [g(Aapprox )] ≥ γ

3
g(OP.C ) = γ

3
f (OPT )

where the last equality is by the observation that P.A and P.C share the same value of
the optimal solution. Hence, the following main theorem holds.

Theorem 4 Suppose A is a γ -approximate algorithm for non-monotone submodular
maximization subject to a matroid constraint and α > 1/2, we have EAapprox [ f (V \
Aapprox )] ≥ γ

3 f (OPT ).

5 Conclusion

This paper presents a comprehensive investigation of the non-monotone submodular
maximization problem under group fairness constraints. Our main contribution is the
development of several constant-factor approximation algorithms for this problem. In
the future, we plan to expand our research to explore alternative fairness metrics.
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