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Abstract
In recent years, the energy consumption and associated carbon emissions from house-
hold consumption are increasing rapidly. It is an essential indicator to evaluate the
extent of building a low-carbon society in China under the background of carbon
peaking and carbon neutrality. Thus, we firstly calculate the information entropy
of direct household consumption-induced carbon emission structure (I DHCES) in
China during 2005–2019. Secondly, the spatial association network of the I DHCES
is constructedbyusing themodifiedgravitymodel. Finally,we apply the social network
analysis (SN A) to investigate spatial association characteristics of the spatial associa-
tion network and explore influential factors by constructing the quadratic assignment
procedure (QAP) model. There are four primary discoveries: (1) The balance of
inter-provincial direct carbon emission structure from residential consumption is quite
different. And the spatial linkage of the I DHCES is not just geographical proximity,
but shows the complex network pattern. The extent of this network linkage is getting
higher over time. (2) The spatial association network of the I DHCES presents an
evident core-edge distribution. Most of the eastern provinces situated at the core of
this network, such as Shanghai, Beijing and Tianjin, play essential roles, while most of
the central and western provinces such as Qinghai, Guizhou, Xiangjiang and Ningxia
are on the edge and have slight influence to this network. (3) The spatial associa-
tion network for the I DHCES can be divided into four blocks, which are strongly
related to each other and have obvious stepwise spillover effects. (4) The expansion
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of differences in per capita GDP , energy consumption per unit of GDP , family size
and government investment in science and technology promotes the formation of the
spatial association network of the I DHCES. While, the expansion of differences
in geographical distance, population density and engel coefficient acts as a barrier.
Based on the above analysis, we put forward some related suggestions for optimizing
the information entropy of the direct carbon emission structure fromChinese residents’
consumption.

Keywords Household consumption · Carbon emissions · Information entropy ·
Spatial association · Social network analysis · QAP model

1 Introduction

With the deepening of reform and opening-up, the economy of China, the level of
social development has improved significantly. Moreover, the energy consumption
and associated carbon emissions from household consumption are increasing rapidly.
The carbon emissions statistics in 2007 indicated that the carbon emissions of China
exceeded the United States to become the largest carbon emitter in the world(Dong
et al. 2013). As a result, China is under increasing pressure from the international
community to address the environmental problems as soon as possible.

In fact,Chinahas beenmovinghand in hand in solving the problemof environmental
pollution to create a bright future in the past few years. In 2020, China proposed many
targets in the UNGeneral Assembly aiming to peak carbon dioxide emissions by 2030
and striving for carbon neutrality by 2060 (Jiang and Fu 2021). In order to achieve the
goal of low-carbon development, China has put forward many relevant policies and
measures(Zhang et al. 2019).

The primary source of carbon emissions is fossil fuels. The use of fossil energy
is mainly concentrated in chemical industry, steel, construction and other industrial
fields, somanypolicies andmeasures are targeted at the production sector. Thus, a large
number of scholars also concentrated on carbon emissions in the production sector and
obtained lots of research results in the past few years, please see references (Sassani
et al. 2018; Zhou et al. 2019a, b; Jary et al. 2016). However, numerous previous studies
pointed out that the carbon emissions from the household sectorwere also growingwith
the continuous improvement of residents’ living standards.Wei et al. (2007) suggested
that the carbon emissions generated by residents’ energy consumption accounted for
30%of total carbon emissions in China during 1996–2006.Wang and Shi (2009) found
the proportions of energy consumption and associated carbon emissions caused by the
household sector increased substantially with a trend of rapid growth. Subsequently,
Lu and Liu (2014) indicated that the household sector is the second largest energy
consumer in China, after the industrial sector. Numerous research by other scholars
also verified this view, please see references (Feng et al. 2011; Liu et al. 2011; Wang
and Liu 2017; Streimikiene 2015; Das and Paul 2014). To a large extent, household
consumption-induced carbon emissions can reflect residents’ consumption level and
living quality, which is an important basis for building a green, energy-saving and low-
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carbon society. Thus, it is urgent to study the carbon emissions of household energy
consumption.

Based on study by Qu et al. (2013), the household consumption-induced carbon
emissions (HCE) included those both from direct and indirect energy consumption.
The direct household consumption-induced carbon emissions (DHCE) referred to
the carbon emissions generated by household direct energy consumption, such as
lighting, heating, cooling, lighting, cooking, transportation and other activities. And
the indirect household consumption-induced carbon emissions (I HCE) referred to
the carbons emission generated by the energy consumed by the products and services
used by residents in the process of processing and production. Reinders et al. (2003)
and Li et al. (2015) introduced the carbon emission coefficient method to calculate
household consumption-induced carbon emissions. Shan et al. (2017) proposed the
carbon emission accounting method based on energy balance sheet. In addition, many
studies (Nansai et al. 2012; Kadian et al. 2007) also indicated that the carbon emission
coefficientmethodprovided by the Intergovernmental Panel onClimateChange (2006)
was more suitable and widely accepted to measure carbon emissions generated by
household consumption than other methods.

Current analysis of carbon emissions can fall into the following three categories
(Bai et al. 2020; Wei et al. 2020).

(1) Calculation of carbon emissions and analysis of influencing factors. Cao et al.
(2019) calculated the household consumption-induced carbon emissions and
analyzed the influencing factors and found that residents’ income level and urban-
ization level were the main influencing factors. Tian et al. (2016) studied the
changing trend and influencing factors of carbon emissions from household con-
sumption in Shanghai and found residential consumption pattern was the main
influence. Song et al. (2008) analyzed the relationship between industrial pollu-
tants and economic growth, found that the trend meets the environmental Kuznets
curve (EKC) hypothesis. Shortly afterwards, Wang et al. (2011) investigated the
relationship between economic growth and energy consumption. Their research
manifested a causal relationship among energy consumption, capital, employment
and economic growth. For more information, please refer to (Barrett et al. 2014;
Dong et al. 2019; Zhou et al. 2018; Zheng et al. 2018; Liao et al. 2011).

(2) The trend analysis and forecast of carbon emissions. Xia et al. (2019) studied the
influencing factors by multiple regression analysis and input-output analysis, and
predicted the trend of inter-provincial domestic indirect carbon emissions in the
future. They found that the growth rate of carbon emissions would slow down
under the effective guidance of national policies. Wang and Ye (2017) forecasted
carbon emissions from fossil energy consumption in China based on the improved
grey model. Pao and Tsai (2011) predicted Brazil’s carbon emissions from energy
consumption by using time series analysis.

(3) The spatial-temporal evolution analysis of carbon emissions.With the development
of spatial econometrics, spatial factors were gradually taken into consideration in
the analysis of influencing factors of carbon emissions in the past few years. Wang
et al. (2020) studied the temporal and spatial characteristics of the relationship
between transportation carbon emissions and economic growth in China. Kang
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et al. (2020) quantified the impact of the development of Chinese express delivery
industry on carbon emissions. It is evident from the studies that numerous scholars
have shifted their research perspective from temporal analysis to spatial analysis.
For more information, please see(Danish and Baloch 2018; Rong et al. 2020; Dou
et al. 2016; Wang and Feng 2017; Chen et al. 2018).

There are still three deficiencies in the previous literature as shown in the following.

(1) Many studies are conducted on the household consumption-induced carbon emis-
sions from national level instead of regional level. In fact, different regions have
significant differences in resource endowment, economic level, residents’ living
habits and other aspects in China, so the inter-provincial household energy con-
sumption carbon emissions are also different.

(2) Much research describes the spatial distribution characteristics and spatial corre-
lation of carbon emissions based on “attribute” data rather than “relational data”,
which may fail to reflect the spatial structural characteristics and the effect of each
region in the network.

(3) The previous research for household consumption-induced carbon emissions
mainly focuses on carbon emissions, which can not reflect the uniformity of car-
bon emission distribution and the balance of carbon emission structure generated
by various types of energy consumption.

According to the above results, in this paper we first calculate the inter-provincial
carbon emissions from the household sector in China during 2005–2019. Secondly,
the information entropy of the household consumption-induced carbon emissions can
be derived based on the information entropy theory. Thirdly, the association network
for information entropy of household consumption-induced carbon emissions can be
studied by utilizing the social network analysis (SN A) method. Finally, the quadratic
assignment procedure (QAP) model can be constructed to find out the influencing
factors.

The uniqueness of this paper is presented in the following. Firstly, we deeply study
the differences of inter-provincial household energy consumption structure, the pro-
portion of carbon emissions generated by various types of energy, and the balance and
stability of carbon emissions structure among residents of different provinces in China
based on the information entropy theory in thermodynamics. Secondly, we utilize the
SN A method to study the association of inter-provincial household consumption-
induced carbon emissions from the perspective of complex network. SN A derived
from graph theory is a method usually used in investigating the spatial network char-
acteristics of a certain system based on “relational data”. For more information, please
see (Wei et al. 2020; Liu et al. 2021, 2022; Liu and Xiao 2021; Sun et al. 2019). In
recent years, it is widely used in the study of complex inter-regional relationship struc-
ture, but few studies apply it to inter-provincial household carbon emissions. So, our
study can enrich the literature.

The remainder is as follows. Section 2 concludes the methodology description and
data sources. Section 3 applies social network analysis to investigate spatial associa-
tion characteristics of the spatial association network and explores influential factors
by constructing the QAP model. Section 4 summarizes the entire text and makes
appropriate recommendations.
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Table 1 Conversion factor and carbon emission factor of various types of energy

Energy types Conversion factor Carbon emission factor

Raw coal 0.7143 0.7559

Cleaned coal 0.9000 0.7559

Other washed coal 0.4286 0.7559

Gangue 0.6000 0.7476

Coke 0.9714 0.8550

Coke oven gas 0.6143 0.3548

Gasoline 1.4714 0.5538

Kerosene 1.4714 0.5714

Diesel 1.4571 0.5921

Liquefied petroleum gas 1.7143 0.5042

Natural gas 1.3300 0.4438

2 Methodology and data sources

In this section, we will introduce the basic principles of the research method, the
construction of the research model, the selection of research variables and the source
of research data, which can provide theoretical basis for the empirical analysis below.

2.1 The calculation of IDHCES

In this part, the information entropy of direct household consumption-induced
carbon emission structure (I DHCES) can be calculated. Based on the Inter-
governmental Panel on Climate Change (2006) power system carbon emissions
measurement method, we estimate the direct household consumption-induced car-
bon emissions(DHCE) by using the terminal consumption of 12 kinds of energy,
namely raw coal, cleaned coal, other washed coal, gangue, coke, coke oven gas, gaso-
line, kerosene, diesel, liquefied petroleum gas, natural gas and electricity. Except
electricity, the formula of carbon emissions generated by 11 kinds of fossil energy
consumption from household sector can be derived as shown

Cit =
11∑

j=1

α j × E j × β j , (2.1)

where Cit denotes the total carbon emissions of province i in the t year, E j is the
consumption of energy j . α j is the conversion factor of energy j and β j is the carbon
emission factor of energy j , as shown in Table 1.

Since the electricity consumption varies significantly among regions and differ-
ent provinces belong to different grids, in this paper we utilize the emission factors
of regional grids published by the National Development and Reform Commission
(NDRC) in 2012 for measuring the carbon emissions of electricity consumed in res-
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Table 2 Carbon emission factors of electricity in different regions

Region name Carbon emission factor Provinces covered

North China 0.8843 Beijing, Tianjin, Hebei, Shanxi,
Shandong, Inner Mongolia

Northeast China 0.7769 Liaoning, Jilin, Heilongjiang

East China 0.7035 Shanghai, Jiangsu, Zhejiang,
Anhui, Fujian

Central China 0.5257 Henan, Hubei, Hunan, Jiangxi,
Sichuan, Chongqing

Northwest China 0.6671 Shaanxi, Gansu, Qinghai,
Ningxia, Xinjiang

South China 0.5271 Guangdong, Guangxi, Yunnan,
Guizhou, Hainan

idential life. The regional power grids can be divided into six regional grids. The
division range and emission factors of each region are shown in Table 2.

Let Ci jt be the carbon emissions generated by energy j of province i in the t year
and Ri jt be the ratio of carbon emissions generated by energy j of province i in the t
year with calculation formula as below:

⎧
⎨

⎩
Ri jt = Ci jt

Cit
= Ci jt∑10

j=1 Ci jt
,

∑10
j=1 Ri jt = 1.

Then Hit represents I DHCES of province i in the t year derived as

Hit = −
10∑

j=1

Ri jt lnRi j t = −
10∑

j=1

(
Ci jt∑10
j=1 Ci jt

)
ln

(
Ci jt∑10
j=1 Ci jt

)
. (2.2)

H reflects the distribution of various types of energy’s carbon emissions and the bal-
ance of carbon emission structure in household consumption. The larger H is, the lower
the proportion of carbon emissions from single energy consumed by residents. In other
words, the larger H is, the more balanced the household consumption-induced carbon
emissions from different energy sources are and the more stabilized the household
consumption-induced carbon emission structure is.

2.2 Spatial association network of IDHCES

The association network of I DHCES is composed of the aggregate among provinces.
Nodes represent provinces and directed line segments represent the correlation rela-
tionships between any two provinces in China. According to the law of universal
gravitation and previous studies, please see (Barrios et al. 2012; Ma et al. 2019), the
optimized gravity model for spatial correlation network of I DHCES can be con-
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structed as shown in the following:

ψi j =
(

Hi

Hi + Hj

)
×

3
√
Pi × Hi × Gi × 3

√
Pj × Hj × G j

(
di j

gi−g j

)2 , (2.3)

where ψi j reflects the correlation between information entropy of direct household
consumption-induced carbon emission structure between provinces i and j , Hi and
Hj are respectively the information entropy of direct household consumption-induced
carbon emission structure of provinces i and j , Pi and Pj are respectively represents the
total population of provinces i and j at the end of the year, Gi and G j are respectively
the regional GDP of provinces i and j , di j is the real spherical distance between
capital cities of provinces i and j , gi and g j are the per capita GDP of provinces i
and j .

Then, the matrix of association network of I DHCES between 30 provinces can
be obtained from Formula (2.3), shown as follows

� = (ψi j )30×30 =

⎛

⎜⎜⎜⎝

ψ1,1 ψ1,2 · · · ψ1,30
ψ2,1 ψ2,2 · · · ψ2,30

...
...

. . .
...

ψ30,1 ψ30,2 · · · ψ30,30

⎞

⎟⎟⎟⎠ . (2.4)

In order to indicate whether the degree of correlation is significant clearly and intu-
itively, we transform the spatial correlation matrix into relational matrix, namely 0-1
matrix. The specificmethod of constructing 0-1matrix can be seen inWei et al. (2020).

Based on the above changes, the spatial association matrix of I DHCES can be
derived. A directed line segment can be drawn to connect the provinces i and j which
have a spatial correlation.

2.3 Characterization index analysis in the network of IDHCES

In this section, we will introduce the selection of research variables and the source of
research data, which can provide theoretical basis for the empirical analysis below.

2.3.1 Integral network analysis

According to previous studies, we reflect the integral structure characteristics of
I DHCES through four indicators: network connectedness, network density, network
efficiency and network hierarchy.

Network connectedness indicates robustness of the network (Scott 2007). The
greater the value of network connectedness is, the fewer outliers exist and the higher
the overall network correlation degree is. The calculation formula of network connect-
edness is:

CN = 1 − 2v

n(n − 1)
, (2.5)
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whereCN is the network connectedness, n and v are the number of nodes andmutually
unreachable node pairs in the network, respectively.

Network density shows tightness of the network (Scott 2007). Its value ranges from
0 to 1. The closer the value of network density is to 1, the closer the connection between
different nodes in the network is. It is defined as follows:

DN = l

n(n − 1)
, (2.6)

where DN is the network density, l is the amount of edges that really exist.
Network efficiency aims to reflect the degree of redundant connections in the net-

work (Scott 2007). The lower the network efficiency, the more redundant connections
between nodes, the more obvious the spillover effect, and the more stable the network.
Its calculation formula is as follows:

EN = 1 − R

max(R)
, (2.7)

where EN is the network efficiency, R is the number of redundant connections between
nodes, and max(R) is the maximum number of redundant connections that can exist.

Network hierarchy shows importance and control of the nodes in the overall network
(Scott 2007). The higher the network hierarchy , the more distinct the classes among
the nodes in the network, and the more difficult it is for the nodes at the edge of the
network to integrate into the center of the network. Therefore, the more uneven the
distribution of the whole network. The formula for calculating network hierarchy is:

HN = 1 − Q

max(Q)
, (2.8)

where HN is the network hierarchy, Q is the logarithm of the symmetric reachable
nodes, and max(Q) is the logarithm of the largest possible reachable nodes.

2.3.2 Individual network analysis

According to previous studies, in this paper we reflect the individual structure charac-
teristics of the association network for I DHCES through centrality. Centrality can
reflect the position of one or some nodes in the overall network. The stronger the
centrality of the node, the closer the node is to the center of the network, and the more
influence and control the node has over other nodes. The indices commonly used
to characterize centrality are point centrality, closeness centrality and betweenness
centrality.

Point centrality measures the number of nodes directly connected to the node irre-
spective of nodes indirectly connected, so the point centrality reflects the node’s
centrality on a localised scale of the whole network. The higher the node’s point
centrality, the more the node tends to be at the center of the network, and the greater
the influence of the node. Point centrality is divided into absolute point centrality and
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relative point centrality. The former is applicable to the case where the size of the net-
work is the same, and the latter is applicable to the case where the size of the network
is different. In this paper, absolute point centrality is used. Since the network stud-
ied in this paper is a directed network, point centrality is also divided into in-degree
and out-degree. The in-degree of a node is the number of direct relations obtained
from that node, and the out-degree is the number of relations issued directly from that
node(Scott 2007). The formulas for calculating in-degree and out-degree are shown
in the following:

I ndi =
n∑

j=1

x ji , (2.9)

Outdi =
n∑

j=1

xi j , (2.10)

where n is total number of nodes in the network, x ji is the number of relationships
from node j to node i , and xi j is the number of relationships from node i to node j .

Closeness centrality, obtained by measuring the shortest distance from a node to
other nodes, reflects the proximity of the node to others (Borgatti et al. 2009). The
higher the closeness centrality of the node, the shorter the distance between the node
with others, the faster and greater the node’s influence on others(Freeman 1979). It’s
calculated as follows:

Ci = 1∑n
j=1 si j

, (2.11)

where si j denotes the shortest distance between node i and node j .
Betweenness centrality is divided into the point-betweenness centrality and the

edge-betweenness centrality. This paper studied the point-betweenness centrality with
each province as a node. The point-betweenness centrality reflects the node’s control
and mediation capability in the network. In other words, if the node is on the shortest
path ofmanypairs of nodes, itmeans that this node has a strong control ability(Freeman
1979). Its formula is:

Bi =
2

∑n−1
p=1

∑n
q=2

gpq (i)
gpq

n2 − 3n + 2
, (2.12)

where gpq is the number of shortest paths between nodes i and j , gpq(i) is the number
of shortest paths between nodes p and q through node i .

2.3.3 Block model analysis

The purpose of the block model analysis method is to reduce a complex network
to a block model or image matrix, which can more intuitively reflect the properties
and roles of the nodes in the network. According to previous studies, network can
be divided into four blocks, namely “Main outflow”, “Main inflow”, “Agent” and
“Bidirectional spillover”. The “Main outflow” block has few internal correlations
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Table 3 Block model block division

Proportion inside the block Proportion received by block
≈ 0 > 0

≥ ( fi − 1)/( f − 1) Bidirectional spillover Main inflow

≤ ( fi − 1)/( f − 1) Main outflow Agent

and receives few relationships from other blocks, but sends many relationships out-
ward to other blocks(Zhou et al. 2021). On the contrary, the “Main inflow” block
has many internal affiliations but few external affiliations, receives many relation-
ships from others but sends few to others. The “Agent” block both sends and accepts
external relations, but has fewer links with others(Lv et al. 2019). The “Bidirectional
spillover” block both receives contacts and sends contacts to others in internally and
externally. Wasserman and Faust (1994) obtained a method to measure intra-location
relationships, as shown in Table 3, where fi is the amount of nodes in block i , and f
represents the amount of all nodes in the network.

2.3.4 QAPmodel

Independent variables should satisfy the basic assumption of mutual independence
in the traditional multiple linear regression analysis, otherwise, multicollinearity will
occur,whichmakes the regression results have serious errors. In this paperwe study the
relationship matrix, which is not independent, so the traditional multiple linear regres-
sion analysis is not appropriate now. However, the QAP model can avoid the above
undesirable effects, which is often used together with the SN A method to explore the
regression relationship between relationship variables. The QAP regression model is
as follows:

� = f (X1, X2, · · · , Xm), (2.13)

where� refers to the network relationshipmatrix, Xi (i = 1, 2, . . . ,m) is the influence
matrix.

2.3.5 Data sources

For the reason of the serious short of energy consumption data of provinces before
2005 as well as the serious lack of data of Tibet Autonomous Region and Hong Kong,
Macao and Taiwan, in this paper we take 2005–2019 as the research interval and
30 Chinese provinces as the research objects for analysis. The consumption data of
11 kinds of energy are obtained from the China Energy Statistical Yearbook and the
National Data Center on the official website of China Statistics Bureau. The data
of QAP regression impact factors are taken from China Statistical Yearbook, China
Energy Statistical Yearbook, etc. Among them, the individual missing data of some
provinces are uniformly processed by regression difference method.
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3 Results and discussions

In the following, we will present the main points of this section. Firstly, we calcu-
late inter-provincial information entropy of household consumption-induced carbon
emission structure during 2005–2019. Secondly, the spatial correlation network of the
I DHCES among provinces can be constructed by using the improved gravity model.
Thirdly, the overall characteristic indicators and individual characteristic indicators of
above network are analyzed based on the SN A. Finally, the influencing factors are
analyzed by building QAP model.

3.1 Spatial distribution analysis of the IDHCES

According to formulas (2.1) and (2.2), the average direct carbon emissions from
household consumption and the average information entropy of direct carbon emis-
sion structure from household consumption from 2005 to 2019 in 30 provinces can
be calculated. The results are exhibited in Fig. 1. On the one hand, the distribu-
tion of household consumption-induced direct carbon emissions was uneven among
the 30 provinces in China. Hebei, Guangdong, Shandong and Henan were the four
provinces with the highest household consumption-induced direct carbon emissions.
These provinces have one thing in common: large populations. In other words, people
need more energy for their daily lives, which can lead to large amounts of carbon
emissions. Guangdong is the most populous province in China with more than 100
million people, followed by Shandong and Henan with nearly 100 million, respec-
tively. From Fig. 1, most of the provinces with small carbon emissions are remote,
economically backward and sparsely populated, such as Ningxia, Qinghai, etc. On
the other hand, the gap in information entropy of direct household consumption-
induced carbon emission structure among the 30 provinces in China was also large.
The seven provinces with the highest information entropy were Jiangxi, Shandong,
Liaoning, Fujian, Zhejiang, Hunan and Shanghai. The seven provinces with the lowest
information entropy were Guizhou, Qinghai, Xinjiang, Ningxia, Sichuan, Gansu and
Hainan. It is straightforward to find that provinces with higher information entropy of
direct household consumption-induced carbon emission structure are mainly located
in the eastern regions with higher level of economic development but relatively scarce
resources. The proportion of single energy in the residential energy consumption struc-
ture of these provinces is relatively low, the energy consumption is diversified and the
energy consumption structure is reasonable, so the carbon emission structure is more
balanced than other provinces. On the contrary, provinces with lower information
entropy of direct carbon emissions structure from household consumption are mainly
in western regions which have a relatively low level of economic development. These
provinces have good resource endowment but lack of diversity in energy utilization.

Figure 2 depicts the trend of information entropy of the inter-provincial household
consumption-induced direct carbon emissions structure in 2005, 2012 and 2019. As
shown in Fig. 2, the information entropy of inter-provincial household consumption-
induced direct carbon emissions structure shows a trend of fluctuation influenced by
the type and level of energy consumption. The fluctuation can be roughly divided
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Fig. 1 Mean inter-provincial direct household consumption-induced carbon emissions and carbon emission
structure information entropy in 2005–2019

Fig. 2 Inter-provincial direct household consumption-induced carbon emission structure information
entropy (2005, 2012, 2019)

into three types: (1) Information entropy decreased year by year, such as Beijing,
Shanghai, Tianjin, Jiangsu, etc. (2) Information entropy increased year by year, such
as Chongqing, Inner Mongolia, Gansu, Ningxia, Qinghai, etc. (3) Information entropy
fell after rose or shook after rose, such as Heilongjiang, Shanxi, Hubei, etc. Evidently,
the first wave trend was mostly concentrated in the eastern region, the second was
mostly concentrated in the western region and the third was mostly concentrated in the
central region. The results of these three fluctuation trendsmay narrow the information
entropy gap of the inter-provincial household consumption-induced carbon emissions
structure. Therefore, we plot the annual change trend of the information entropy of
inter-provincial household consumption-induced carbon emissions structure covered
by eastern region, central region and western region in 2005–2019, as shown in Fig. 3,
which proving the above speculation is correct.
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Fig. 3 Different regions’ inter-provincial direct household consumption-induced carbon emission structure
information entropy in 2005–2019

Fig. 4 Household consumption-induced direct carbon emission structure information entropy distribution
in 2005

In order tomore intuitively reflect the spatial distribution characteristics and tempo-
ral change trends of the information entropy of the direct carbon emission structure of
residential consumption in each province in China, in this paper we also select 2005,
2012 and 2019 as examples to draw the spatial distribution of the information entropy
of the direct carbon emission structure of residential consumption in each province in
China, as shown in Figs. 4, 5 and 6 below.

From Figs. 4, 5 and 6, we can clearly see that: in 2005, the information entropy
of the direct carbon emission structure of residential consumption in most regions
of China, especially in the western regions was very low, showing that the energy
structure of residential consumption in these provinces was overly dominated by a
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Fig. 5 Household consumption-induced direct carbon emission structure information entropy distribution
in 2012

Fig. 6 Household consumption-induced direct carbon emission structure information entropy distribution
in 2019
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Fig. 7 Spatial correlation network diagram of the information entropy of the household consumption-
induced carbon emission structure in China in 2005

single energy source and lacked diversity in energy use. In the following years, with
the strengthening of the relatedness of the association network of I DHCES, the
direct carbon emission structure of residential consumption was optimized in most
provinces.

Based on the above analysis, we can derive that the information entropy of inter-
provincial direct carbon emission structure from household consumption may be
related to regional economic development level and regional resource endowment.

3.2 Network characterization for spatial association network of IDHCES

3.2.1 Integral structural characteristics for spatial association network of IDHCES

Based on the the optimized gravity model of the network for I DHCES shown as
formula (2.3), in this paper we derive the gravity matrices for spatial association
network of I DHCES in 2005–2019 and draw the spatial correlation structures by
using the visualization tool NetDraw in UCINET software. It is motivating to observe
that the spatial correlation of the network of I DHCES is not simply geographic
proximity, but presents complex network structure pattern, which also indicates the
necessity of using SN A method for further analysis. Due to limited space, this paper
takes the spatial correlation for the network of IDHCES diagrams in 2005, 2012 and
2019 as examples, shown in Figs. 7, 8 and 9. In Figs. 7, 8 and 9, directed line segments
are used to connect provinces with spatial correlation. There are 30 provinces studied
in this paper, namely, there are 30 nodes in the spatial association network diagram.
The size of the node is divided based on the value of its point centrality, which can
reflect the spatial association strength of the province.On thewhole, there is no isolated
province in the spatial association networks during 2005–2019, indicating that existed
correlation between provinces and the form of the spatial association networks are
relatively stable.

From Figs. 7, 8 and 9, we can evidently find the following two points:

(1) The spatial association network of information entropy of the household
consumption-induced direct carbon emission structure was centered around

123



79 Page 16 of 34 Journal of Combinatorial Optimization (2023) 45 :79

Fig. 8 Spatial correlation network diagram of the information entropy of the household consumption-
induced carbon emission structure in China in 2012

Fig. 9 Spatial correlation network diagram of the information entropy of the household consumption-
induced carbon emission structure in China in 2019

Shanghai, Beijing, Zhejiang, Jiangsu, Tianjin, Guangdong and Shandong in 2005.
Shanghai, Jiangsu, Beijing, Tianjin, Shandong and Zhejiang were the center in
2012, and Beijing, Shanghai, Jiangsu, zhejiang and Fujiang were the center in
2019. These provinces formed a radiation network. Some provinces have always
been situated at the core of above network, like Shanghai, Beijing and Jiangsu,
indicating that these provinces exert a very important influence in the association
network of information entropy of the household consumption-induced direct car-
bon emission structure. Most of these provinces have developed economy, high
consumption level and good quality of life, but lack of natural resources. On the
contrary, most of the central and western provinces like Qinghai, Guizhou and
Xiangjiang are at the edge of above network and have slight influence to the net-
work.

(2) The blue nodes indicated that these provinces both received and sent contacts from
others, while red nodes indicated the provinces sent contacts but didn’t receive con-
tacts from others. In 2005, eleven provinces, including Sichuan, Qinghai, Guizhou,
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Fig. 10 Evolution of network density and network contacts of the information entropy of the household
consumption-induced carbon emission structure

Gansu, Ningxia, Shaanxi, Xinjiang, Fujian, Heilongjiang and Inner Mongolia, did
not receive contact from other provinces. Most of these provinces are economi-
cally backward, with underdeveloped transportation and low consumption level,
but rich in natural resources. In 2012, three provinces, namely Xinjiang, Ningxia
and Qinghai, did not receive contact from others. In 2019, only two provinces,
namely Ningxia and Xinjiang, didn’t receive contacts. It is motivating to observe
that the association of information entropy of carbon emission structure of resi-
dents’ direct consumption among provinces had been increasing in 2005–2019.

Based on the formulas (2.5)–(2.8), we analyse the integral structural characteristics
of the spatial association network of the I DHCES through five indicators, namely
network density, network contacts, network hierarchy, network efficiency and con-
nectedness, as shown in Figs. 10, 11.

From Fig. 10, the network density and network contacts show an trend of first
upward and then steady in general.

By 2019, the number of network contacts and the value of network density were
207 and 0.2379, respectively. This indicates that the association for the network of
I DHCES has been increasing from 2005 to 2019. The larger the values of network
contacts and network density are, the more complicated the spatial relationship of the
information entropy of the household consumption-induced direct carbon emission
structure between provinces will be. Moreover, there is still a large gap between the
number of network contacts and themaximumpossible network contacts, which shows
that improving the above network is still necessary.

Figure 11 depicts the evolution of network hierarchy, network efficiency and con-
nectedness of the spatial association network of I DHCES in 2005–2019. Both
network hierarchy and efficiency demonstrate a downward trend in general with the
former declining faster. From 2005 to 2019, the value of network hierarchy decreased
from 0.5481 to 0.129 with an overall decrease of 76.46%, indicating that the for-
merly relatively strict spatial correlation structure of the spatial association network
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Fig. 11 Evolution of network hierarchy, network efficiency and connectedness of the information entropy
of the household consumption-induced carbon emission structure

of I DHCES was broken gradually, and the mutual influence and connection of the
information entropy of carbon emission structure among provinces was deepened. The
value of network efficiency gradually decreased from 2005 to 2012, showing that the
correlation and mutual influence of the spatial correlation network of the household
consumption-induced direct carbon emission structure’s information entropy among
province were strengthened. After 2012, the network efficiency leveled off, showing
that the efficiency of the spatial network was controlled reasonably. It also indicated
that the establishment of the pilot carbon tradingmarket in the 12th Five-Year Plan nor-
malized the relationship of the carbon emission spatial correlation network, improved
the efficiency of carbon emission, and optimized the spatial allocation of carbon emis-
sions. The network connectedness was 1, indicating that the network structure was
stable and there was spatial spillover effect and correlation effect among provinces.

3.2.2 Centrality analysis for the spatial association network of IDHCES

In this section, we will further study the individual structure characteristics for the
spatial association network of I DHCES in order to find out the key provinces. In
this paper we identify the key provinces by calculating the point centrality, between-
ness centrality, and closeness centrality according to the formulas (2.9)–(2.13). The
calculation results are shown in Table 4 and 5.

(1) Point centrality
The analysis reveals that the point centrality of each province in similar years didn’t

change much although the point centrality of each province was fluctuated during
2005–2019. In recent years, Shanghai, Jiangsu, Beijing and Zhejiang are always on
the head of the list of the point centrality among 30 provinces, indicating that these
provinces play an absolute central role in the spatial association network of I DHCES.
Moreover, more and more provinces’ point centrality were higher than the average
with the passage of time, showing that the correlation of inter-provincial direct carbon
emissions from household consumption was becoming more and more equal, and the
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Table 4 Comparison of different
obfuscations in terms of their
transformation capabilities

Province Point centrality

In-degree Out-degree Degree No.

Beijing 23 7 79.310 3

Shanghai 26 9 93.100 1

Tianjin 6 2 20.690 26

Chongqing 6 8 34.483 9

Heilongjiang 1 8 27.586 11

Jilin 1 7 24.138 21

Liaoning 3 7 24.138 22

Inner Mongolia 2 5 17.241 30

Hebei 8 5 27.586 12

Shanxi 3 7 27.586 13

Shandong 9 5 34.483 10

Henan 7 6 27.586 14

Shaanxi 1 8 27.586 15

Gansu 5 12 44.828 7

Ningxia 0 7 24.138 23

Qinghai 1 8 27.586 16

Xinjiang 0 6 20.690 27

Anhui 6 3 20.690 28

Jiangsu 25 6 86.207 2

Zhejiang 21 6 75.862 4

Hunan 6 7 27.586 17

Jiangxi 6 7 24.138 24

Hubei 9 8 41.379 8

Sichuan 2 8 27.586 18

Guizhou 2 8 27.586 19

Fujian 13 7 62.069 5

Guangdong 11 9 48.276 6

Hainan 1 6 20.690 29

Guangxi 1 7 24.138 25

Yunnan 2 8 27.586 20

Mean 6.9 6.9 36.552 –

number of core provinces was also increasing. For lack of space, the data for 2019 is
analyzed in Table 4.

From the perspective of the in-degree and out-degree centrality, the top five
provinces with the highest in-degree centrality in 2019 were Shanghai, Jiangsu, Bei-
jing, Zhejiang and Fujian. And these provinces were also foremost among others in the
ranking of point centrality in 2019. It is not difficult to find that most of these provinces
are situated in the eastern region, with developed economy, convenient transportation
and high living standards, need to receive energy from across China to meet their own
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Table 5 Comparison of different obfuscations in terms of their transformation capabilities

Province Closeness centrality Betweenness centrality

Closeness No. Betweenness No.

Beijing 82.857 3 14.465 2

Shanghai 93.548 1 14.774 1

Tianjin 53.704 30 0.354 16

Chongqing 60.417 9 0.660 13

Heilongjiang 58.000 11 0.697 11

Jilin 56.863 21 0.344 17

Liaoning 56.863 22 0.289 21

Inner Mongolia 54.717 28 0.058 30

Hebei 58.000 12 0.851 9

Shanxi 58.000 13 0.683 12

Shandong 60.417 10 0.732 10

Henan 58.000 14 0.370 15

Shaanxi 58.000 15 0.381 14

Gansu 64.444 6 1.373 7

Ningxia 56.863 23 0.167 26

Qinghai 58.000 16 0.256 22

Xinjiang 55.769 26 0.167 27

Anhui 54.717 29 0.112 29

Jiangsu 87.879 2 12.181 3

Zhejiang 80.556 4 8.259 4

Hunan 58.000 17 0.322 18

Jiangxi 56.863 24 0.198 25

Hubei 63.043 8 1.083 8

Sichuan 58.000 18 0.256 23

Guizhou 58.000 19 0.322 19

Fujian 72.500 5 5.462 5

Guangdong 64.444 7 2.917 6

Hainan 55.769 27 0.167 28

Guangxi 56.863 25 0.256 24

Yunnan 58.000 20 0.322 20

Mean 62.303 – 2.282 –

needs. These provinces are benefited from the spatial spillovers of other provinces in
the spatial association network of information entropy of direct carbon emissions from
household consumption in China. The top five provinces with the highest out-degree
centrality in 2019 were Gansu, Shanghai, Guangdong, Shannxi and Guizhou. As is
known to all, Gansu province is rich in energy resources. It is an important compre-
hensive energy base and land energy transmission channel in China, and occupies an
important position in the national energy development strategy. Shaanxi and Guizhou
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are rich in coal resources and both the top provinces in China in terms of coal output,
with Shaanxi consistently topping the list in recent years. Guangdong province is rich
in electricity resources.

(2) Closeness centrality and Betweenness centrality
The calculation results of closeness centrality and betweenness centrality of 30

provinces in 2019 are shown in Table 5. As seen from Table 5, the mean closeness
centrality was 62.303. The eight provinces whose closeness centrality surpassed the
average were Shanghai, Jiangsu, Beijing, Zhejiang, Fujian, Gansu, Guangdong and
Hubei. These provinces have superior economic foundation, high technological level
and developed transportation infrastructure, so the transmission of carbon emission
correlation may don’t control and affect by other provinces to a large extent. The eight
provinces whose closeness centrality at the bottom of the list of closeness centrality
among 30 provinces were Tianjin, Anhui, InnerMongolia, Hainan, Xinjiang, Guangxi
and Jiangxi. Most of these provinces, like Xinjiang, Guangxi and Hainan, have few
connections with other provinces due to their unfavorable geographical location, low
economic development, low per capita income, low consumption level of residents
and inconvenient transportation. They were at the edge of spatial correlation network,
which was not conducive to the flow of carbon emission relations.

From the perspective of betweenness centrality, the mean value was 2.282 and
the sum was 68.478. The six provinces whose betweenness centrality surpassed the
averagewere Shanghai, Beijing, Jiangsu, Zhejiang, Fujian andGuangdong. The sumof
these provinces’ the betweenness centrality was 58.058, accounting for 84.78% of the
total national betweenness centrality. The six provinces whose betweenness centrality
at the bottom of the list of betweenness centrality among 30 provinces were Inner
Mongolia, Anhui, Hainan, Xinjiang, Ningxia and Jiangxi. The sum of these provinces’
betweenness centrality was 0.869, accounting for 1.27% of the total. Based on the
above analysis, it can obtain that the network of information entropy of direct carbon
emissions structure from household consumption in China had obvious unbalanced
distribution characteristics. Therefore, this network mainly realized the flow of carbon
emissions through several important provinceswith the highest betweenness centrality.
These provinces had strong influence and control over the carbon emission correlation
among other provinces, acting as “bridge” in the association network, while other
provinces with the lowest betweenness centrality were all in a controlled position.

(3) Block model analysis
According to the CONCOR tool in UCINET software, the maximum segmentation

depth was set to 2, the centralised standard was set to 0.2, then 4 blocks can be formed.
Due to limited space, in this paper we take 2005 and 2019 as examples to conduct
blockmodel analysis on the data of the above two years. The specific results are shown
in Figs. 12, 13, 14 and 15 and Table 6.

From Figs. 12 and 13, in 2005, Block 1 included 3 provinces, Beijing, Tianjin
and Shangdong. The expected internal relationship was 6.90%, and the actual internal
relationship was 16.44%. Block 1 received 52 contacts from other blocks and sent 9
contacts to other blocks. The number of contacts received was higher than sent. So,
Block 1 was the “Main inflow” block. Block 2 included 4 provinces, Shanghai, Zhe-
jiang, Guangdong and Jiangsu. The expected internal relationshipwas 10.34%, and the
actual internal relationshipwas10.10%.Block2 received76 contacts fromother blocks
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Fig. 12 Inter-provincial information entropy of the household consumption-induced carbon emission struc-
ture aggregation results in 2005

Fig. 13 Inter-provincial information entropy of the household consumption-induced carbon emission struc-
ture block distribution in 2005
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Fig. 14 Inter-provincial information entropy of the household consumption-induced carbon emission struc-
ture aggregation results in 2019

but only received 5 from inside, showing that it had many contacts with other blocks
but litter contacts from inside. Thus Block 2 belonged to the “Agents” block. Block
3 included 17 provinces, Jiangxi, Hunan, Guizhou, Hubei, Sichuan, Shaanxi, Gansu,
Ningxia, Qinghai, Xinjiang, Anhui, Chongqing, Helongjiang, Hainan, Guangxi, Yun-
nan and Fujian. The expected internal relationship was 55.17%, and the actual internal
relationship was 1.74%. Block 3 sent 101 contacts to other blocks but only received
12 from others, showing that the number of external contacts sent was far more than
received. So, Block 3 was the “Main outflow” block. Block 4 included 6 provinces,
Hebei, Shanxi, Henan, Jilin, Liaoning and InnerMongolia. The expected internal rela-
tionship was 17.24%, and the actual internal relationship was 10.26%. Block 4 sent
26 contacts to other blocks but only sent 2 to inside, showing that it had many contacts
with other blocks but litter contacts from inside. So Block 4 belonged to the “Agents”
block.

From Figs. 13, 14, in 2019, Block 1 included 3 provinces, Beijing, Tianjin and
Jiangsu. The expected internal relationship was 6.90%, and the actual internal rela-
tionshipwas 5.80%.Block 1 received 52 contacts fromother blocks but only received 2
from inside.And it sent 13 contacts to other blocks but only sent 2 to inside. Thus,Block
1 belonged to the “Agents” block. Block 2 included 5 provinces, Shanghai, Zhejiang,
Guangdong, Hubei and Fujian. The expected internal relationshipwas 13.79%, and the
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Fig. 15 Inter-provincial information entropy of the household consumption-induced carbon emission struc-
ture block distribution in 2019

actual internal relationship was 13.45%. Similarly, Block 2 had plentiful contacts with
other blocks, while the contacts among the inside block were a small amount, there-
fore it was the “Agents” block. Block 3 included 14 provinces, Jiangxi, Hunan, Fujian,
Guizhou, Sichuan, Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang, Hainan, Chongqing,
Yunnan and Guangxi. The expected internal relationship was 41.38%, and the actual
internal relationship was 27.07%. Block 3 sent 82 contacts to other blocks but only
received 15 from others. So, Block 3 was the “Main outflow” block. Block 4 included
8 provinces, Anhui, Helongjiang, Hebei, Shandong, Henan, Jilin, Liaoning and Inner
Mongolia. The expected internal relationship was 27.59%, and the actual internal
relationship was 27.96%. Block 4 received 40 contacts and sent 53 contacts in total,
showing that it both sent many to other blocks and received many from others, and had
many internal relations. So, Block 4 belonged to the “Bidirectional spillover” block
which played a role in diffusing, radiating and transferring carbon emissions in the
overall network.

Comparing the above two figures, it can be found that: as time goes by, the links
between the sections became closer and closer, the number of provinces in the “Main
inflow” block was decreasing, the number of provinces in the “Agents” block and
“Bidirectional spillover” block were increasing, and the number of provinces in ”Main
outflow” block didn’t change much. This indicates that the network shows stepwise
spillover effect.

In order to further investigate the correlation relationship and spillover effect among
various blocks in the network of information entropy of direct carbon emissions from
household consumption, we then calculate the image matrix. In 2005 and 2019, the
total network density of the information entropy of the direct household consumption-
induced carbon emission structure were 0.1885 and 0.2379, respectively. The image
matrix is obtained by comparing the density of each block in the density matrix with
that in the overall network. If the block’s density is greater than that in the overall
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Table 6 Spillover effect of the association network

Year Block
No.

Provinces
number

Contacts
received

Contacts
sent

Expected
internal
relationship
ratio

Actual internal
relationship
ratio

Block
attribute

InsideOutside InsideOutside

2005 Block 1 3 6 52 6 9 6.90% 16.44% Main inflow

Block 2 4 5 76 5 13 10.34% 10.10% Agent

Block 3 17 1 12 1 101 55.17% 1.74% Main outflow

Block 4 6 2 9 2 26 17.24% 10.26% Agent

2019 Block 1 3 2 52 2 13 6.90% 5.80% Agent

Block 2 5 8 72 8 31 13.79% 13.45% Agent

Block 3 14 18 15 18 82 41.38% 27.07% Main outflow

Block 4 8 13 27 13 40 27.59% 27.96% Bidirectional
spillover

network, then the block has a central tendency, denoted as “1”, otherwise, it means
that the block has no central tendency, denoted as “0”. The image matrix can show the
correlation and flow of information entropy of carbon emission structure inside and
outside the four blocks more clearly. The density matrix and the image matrix in 2005
and 2019 are shown in Table 7.

From Table 7, in 2005, on the one hand, Block 1 and Block 2 not only were
internally related but also received spillovers from Block 3 and Block 4. Block 1
and Block 2 are economically developed provinces, with high population density,
high per capita income, much residents’ living consumption and a relative shortage of
resources, which can lead to the large energy consumption and need energy supplies
from other provinces. The regions from Block 3 and Block 4 are wealthy in energy
sources, providing energy sources for other provinces. Thus, the spatial correlation of
carbon emissions within plates was generated. On the other hand, Block 3 had neither
the spatial relationships inside nor inflow relationships from external blocks. Block
4 was not internally relevant either, but inflowed relationships from Block 1. So the
spatial association between provinces internal to block 4 should be enhanced in order
to facilitate the flow of carbon emissions among provinces. In 2019, it can be find that
the correlations between blocks was strengthened. The spatial correlation between
Block 1, Block 2 and Block 4 was enhanced, reflecting that with the increasingly
frequent economic exchanges, the energy mobility of these plates was better and the
spillover effect of information entropy of carbon emission structure wasmore obvious.

3.3 Factors affecting the spatial association network of IDHCES

In this section, we will analyse the influencing factors of the association network
of information entropy of direct household consumption-induced carbon emission
structure. Firstly, we establish the QAP model, which contains 11 influential factors.
Secondly, the QAP correlation and regression analysis are used to examine them.
Finally, the extent of influence of different factors can be derived.
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Table 7 Density matrix and image matrix of the association network

Year Block No. Density matrix Image matrix
Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4

2005 Block 1 1.000 0.083 0.000 0.444 1 0 0 1

Block 2 0.083 0.417 0.176 0.000 0 1 0 0

Block 3 0.706 0.941 0.007 0.010 1 1 0 0

Block 4 0.833 0.458 0.000 0.067 1 1 0 0

2019 Block 1 0.333 0.067 0.026 0.407 1 0 0 1

Block 2 0.267 0.400 0.215 0.289 1 1 0 1

Block 3 0.667 0.815 0.115 0.026 1 1 0 0

Block 4 0.815 0.400 0.000 0.181 1 1 0 0

3.3.1 Model Construction

From the analysis of the association network for the information entropy of direct
household consumption-induced carbon emission structure, it is evident that the spatial
association network of I DHCES has spatial correlation and spatial spillover effect.
Therefore, we study the influencing factors of the association network of I DHCES,
which can provide effective reference for the proposal of carbon emission reduction
measures.

Based on the above analysis, we derive that the factors affecting the above network
may include geographical location, population size, economic level and the amount
of household energy consumption. Referring to relevant literature, see (Druckman
et al. 2012; Yu and Du 2019), it can be seen that in addition to the above factors,
the amount of science and technology input and the government’s emission reduction
intensity may also affect the spatial correlation of the above networks. Therefore,
in this paper we assume that geographical distance, economic level, the amount of
household energy consumption, the amount of science and technology input and the
government’s emission reduction intensity are factors.

The specific observation targets in the model are as follows: the actual distance
between the two provincial capitals, urbanization rate, population density, household
size, per capitaGDP , engel coefficient, per capita electricity consumption, the propor-
tion of coal consumption to total household energy consumption, energy consumption
per unit ofGDP , the proportion of R&D toGDP and the government expenditure on
energy conservation and environmental protection. Then, themodel can be constructed
as follow:

Net = f (AD,UR, PD, HS, PAG, EC, PAE, PCT , EPG, RD,GE), (3.1)

where Net represents the association matrix of the information entropy of the house-
hold consumption-induced carbon emission structure; AD is the provincial geographic
distance matrix; UR is the urbanization rate difference matrix; PD is the population
density difference matrix; HS is the household size difference matrix; PAG is the per
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Table 8 QAP correlation analysis results of spatial association matrix Net and influencing factors

Variables Obs Value Significa Average Std Dev Minimum Maximum Prop ≥ 0 Prop ≤ 0

AD −0.279 0.000∗∗∗ 0.000 0.057 −0.170 0.228 1.000 0.000

UR 0.410 0.000∗∗∗ −0.001 0.062 −0.149 0.291 0.000 1.000

PD 0.280 0.000∗∗∗ −0.001 0.071 -0.116 0.245 0.000 1.000

HS 0.179 0.000∗∗∗ 0.000 0.049 -0.149 0.192 0.001 0.999

PAG 0.479 0.000∗∗∗ −0.001 0.061 −0.151 0.386 0.000 1.000

EC −0.146 0.000∗∗∗ 0.000 0.055 −0.158 0.263 1.000 0.000

PAE 0.114 0.062∗ 0.000 0.065 −0.143 0.304 0.062 0.939

PCT 0.021 0.317 0.000 0.050 −0.156 0.226 0.317 0.683

EPG −0.062 0.150 0.000 0.064 −0.171 0.286 0.850 0.150

RD 0.207 0.000∗∗∗ 0.000 0.049 −0.163 0.210 0.000 1.000

GE 0.093 0.090∗ 0.000 0.063 −0.167 0.282 0.090 0.910

∗ ∗ ∗, ∗∗, and ∗ indicate significant at the 1%, 5%, and 10% confidence level, respectively

capita GDP difference matrix; EC is the engel coefficient difference matrix; PAE is
the per capita electricity consumption difference matrix; PCT is the difference matrix
of the percentage of coal consumption to total household energy consumption; EPG
is the difference matrix of the power consumption per unit of GDP , RD is the differ-
ence matrix of the percentage of R&D to GDP , GE is the government expenditure
on energy conservation and environmental protection difference matrix, respectively.
The above 11 difference matrices were obtained by the following methods: firstly, the
mean of analysis indexes corresponding to influencing factors in each province from
2005 to 2019 were calculated, and then the difference matrices were derived by using
the absolute differences of the relevant indexes among provinces. In order to eliminate
the error caused by the difference of dimension, all the difference matrices were nor-
malized by range. The variables of regression analysis are the relationship matrices
between two provinces, so the commonly used numerical statistical test methods are
not applicable. Therefore, the non-parametric method QAP correlation analysis and
QAP regression analysis in social network are selected for study.

3.3.2 QAP correlation analysis

In this paper, the result can be shown inTable 8. AD,UR, PD, HS, PAG, EC and RD
are significant at 1% level, indicating that the above variables have a very important
impact on the construction of the correlation network of information entropy of direct
carbon emissions structure from household consumption in China. PAE and GE
are significant at 10% level, suggesting that the above variables have some influence
on the construction of spatial correlation network of direct carbon emission structure
information entropy of Chinese residents’ living consumption.

Among them, the correlation coefficients of urbanization rate, population density,
household size, per capita GDP , per capita electricity consumption, the proportion
of R&D to GDP and the government expenditure on energy conservation and envi-
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Table 9 QAP correlation analysis results of every influencing factor

Variables AD UR PD HS PAG EC PAE PCT EPG RD GE

AD 1.000∗∗∗ 0.051 −0.006 0.223∗∗∗ −0.017 0.278∗∗ 0.045 0.283∗∗∗ 0.162∗ 0.187∗∗ 0.006

UR 0.051 1.000∗∗∗ 0.681∗∗∗ 0.510∗∗∗ 0.906∗∗∗ 0.058 −0.050 0.111 0.021 0.238∗∗ 0.056

PD −0.006 0.681∗∗∗ 1.000∗∗∗ 0.340∗∗∗ 0.675∗∗∗ −0.023 −0.025 0.102 0.033 0.233∗∗ −0.001

HS 0.223∗∗∗ 0.510∗∗∗ 0.340∗∗∗ 1.000∗∗∗ 0.475∗∗∗ 0.220∗∗∗ −0.063 0.138∗∗ 0.039 0.206∗∗∗ 0.018

PAG −0.017 0.906∗∗∗ 0.675∗∗∗ 0.475∗∗∗ 1.000∗∗∗ 0.065 0.020 0.137∗ 0.034 0.360∗∗∗ 0.083

EC 0.278∗∗ 0.058 −0.023 0.220∗∗∗ 0.065 1.000∗∗∗ −0.038 0.054 −0.014 −0.023 0.139∗

PAE 0.045 −0.050 −0.025 −0.063 0.020 −0.038 1∗∗∗ 0.259∗∗∗ 0.147 0.425∗∗∗ 0.703∗∗∗

PCT 0.283∗∗∗ 0.111 0.102 0.138∗∗ 0.137∗ 0.054 0.259∗∗∗ 1.000∗∗∗ 0.353∗∗∗ 0.364∗∗∗ 0.172∗∗

EPG 0.162∗∗ 0.021 0.033 0.039 0.034 −0.014 0.147 0.353∗∗∗ 1.000∗∗∗ 0.088 0.121

RD 0.187∗∗ 0.238∗∗ 0.233∗∗ 0.206∗∗∗ 0.360∗∗∗ −0.023 0.425∗∗∗ 0.364∗∗∗ 0.088 1.000∗∗∗ 0.272∗∗∗

GE 0.006 0.056 −0.001 0.018 0.083 0.139∗ 0.703∗∗∗ 0.172∗∗ 0.121 0.272∗∗∗ 1.000∗∗∗

∗ ∗ ∗, ∗∗, and ∗ indicate significant at the 1%, 5%, and 10% confidence level, respectively

ronmental protection are higher than “0”, showing that they contribute to the spatial
association of the network of I DHCES. The correlation coefficient of spatial distance
was less than “0”, indicating that the shorter the distance between provinces, the more
likely to produce spatial relevancy. The correlation coefficient of engel coefficient
was also less than “0”, reflecting that the gap in the engel coefficients of provinces
hinders the spatial relevancy of the network of I DHCES. PCT and EPG fail the
significance test, indicating the effects of the differences in the percentage of coal
consumption to total household energy consumption and the power consumption per
unit of GDP are not significant in the association network of I DHCES.

Table 9 shows the correlations among the 11 variables mentioned above. From
Table 9, it can be found that multicollinearity exists among independent variables,
which is difficult to be analyzed by linear regression method. Therefore, we next use
QAP regression analysis which can avoid the above shortcoming.

3.3.3 QAP regression analysis

We eliminated the PCT and EPG which had no significant impact on the spatial
correlation and used the remaining 9 variables for QAP regression analysis. Then, the
regression results of the spatial associations and influencing factors can be obtained
based on the selection of 10000 random permutations, as shown in Table 10. The
R2 is 0.330 and the adjusted R2 is 0.324, which pass the significance level test of
1%, indicating that these variables can explain 32.4% of the correlation of spatial
correlation network of information entropy of the household consumption-induced
carbon emission structure in China.

From the perspective of significance level, AD, PD, PAG and EC are significant
at 1% level, RD is significant at 5% level, HS and PAE are significant at 10%
level, UR and EG fail the significance test, indicating that the above variables affect
the correlation of spatial correlation network of information entropy of direct carbon
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Table 10 QAP regression analysis results

Independent Unstandardised
Coefficient

Standardised
Coefficient

Significance Proportion
As Large

Proportion
As Small

Interception 0.227 0 – – –

AD −0.587 −0.269 0.000∗∗∗ 1.000 0.000

UR 0.058 0.031 0.352 0.352 0.649

PD −0.182 −0.092 0.008∗∗∗ 0.992 0.008

HS 0.098 0.046 0.095∗ 0.095 0.905

PAG 0.788 0.470 0.000∗∗∗ 0.000 1.000

EC −0.266 −0.111 0.001∗∗∗ 1.000 0.001

PAE 0.128 0.061 0.089∗ 0.089 0.911

RD 0.132 0.068 0.029∗∗ 0.029 0.971

GE −0.024 −0.011 0.410 0.591 0.410

∗ ∗ ∗, ∗∗, and ∗ indicate significant at the 1%, 5%, and 10% confidence level, respectively

emissions from household consumption in China except urbanization rate and the
government expenditure on energy conservation and environmental protection.

From the perspective of standardised regression coefficient, the absolute value of
standardised regression coefficient of PAG is the largest, followed by AD, EC ,
PD, RD, PAE and HS. It indicates that the spatial relevance of I DHCES is most
influencedby theper capitaGDP factor, geographical position factor, engel coefficient
factor and population density factor, followed by science and technology input factor,
energy consumption factor and family size factor. The results show that provinces
with larger gap in per capita GDP , regional investment in science and technology and
residents’ living energy consumption have closer correlation with carbon emissions,
and provinces with closer geographical distance, similar population density and engel
coefficient have closer correlation with carbon emissions.

4 Conclusions and policy implications

In this section, we will show the results of this paper and present related suggestion.

4.1 Conclusions

Firstly, in this paper we calculated information entropy of the household consumption-
induced carbon emission structure in 30 Chinese provinces and cities during
2005–2019 based on the carbon emission coefficient method. Secondly, the associa-
tion network of information entropy of direct household consumption-induced carbon
emissions structure among provinces was derived by the improved gravity model.
Thirdly, the overall characteristic indicators and individual characteristic indicators
of above network were analyzed according to the SN A method. Finally, the influ-
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encing factors of the association network of information entropy of direct household
consumption-induced carbon emissions structure were analyzed.

Through the above analysis, we can gain several main conclusions including the
following.

(1) From the perspective of integral structural characteristics of the association net-
work for the I DHCES, the I DHCES in China became more and more spatially
connected and the overall network gradually became more robust during 2005–
2019. The network density and network contacts showed an trend of first upward
and then steady in general and network hierarchy and network efficiency demon-
strated a downward trend in general.

(2) From the perspective of centrality, Shanghai, Beijing and Jiangsu were always on
the head of the list of the point centrality, indicating that these provinces played
an absolute central role in the association network of I DHCES. The distribution
of betweenness centrality was extremely uneven, suggesting that the association
network for the information entropy of direct household consumption-induced
carbon emissions structure was flowing through several major provinces such as
Shanghai, Beijing, Jiangsu, etc.

(3) From the perspective of spatial clustering, the provinces in the “Agent” block and
the “Bidirectional spillover” blockweremainly economically developed areaswith
high living standards, convenient transportation and good infrastructure, while
the provinces in the “Main outflow” block were mainly economically backward
areas with low consumption and inconvenient transportation. The blocks were
increasingly connected, with the number of provinces in “Main outflow” block
decreasing and the number of provinces in the “Agent” block and “Bidirectional
spillover” block increasing.

(4) From the perspective of influence factors, the relevance of direct carbon emissions
structure information entropy is extremely influenced by the per capita GDP
factor, geographical position factor, engel coefficient factor and population density
factor, followed by science and technology input factor, energy consumption factor
and family size factor. And the increase in differences in per capita GDP , energy
consumption per unit of GDP , family size and government investment in science
and technology promotes the formation of the spatial correlation of the I DHCES.
On the contrary, the expansion of differences in geographical distance, population
density and engel coefficient acts as a barrier.
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4.2 Policy implications

Based on the analysis above, we present related suggestion and solution to implement
as below.

(1) There are obvious information entropy differences in the structure of carbon
emissions caused by household consumption in China, so Chinese government
departments should consider the actual situation of each region and pay attention
to the spatial linkage effect of the association network of information entropy of
direct carbon emission structure of residential consumption to formulate targeted
and effective energy conservation and emission reduction policies.

(2) In optimizing the structure of carbon emissions caused by residential consumption,
Chinese government departments should consider the status and the role of each
province in the spatial association network of I DHCES and give full play to the
provinces’ unique advantages. For example, provinces which at the center of the
spatial association network of I DHCES are as bridges in the spatial association
of carbon emissions.

(3) Provinces should improve their own innovation capacity. On the one hand, clean
energy should be vigorously developed, and the policies of promoting energy
transfer from provinces with abundant clean energy sources such as hydro, wind,
solar and tidal energy should be proposed in order to reduce over-representation of
a single energy source and the unstable structure of carbon emissions. On the other
hand, new technologies should be utilized, and the exchange of new energy saving
and emission reduction technologies between provinces should be enhanced to
achieve the goal of improving energy efficiency and reducing carbon emissions.

(4) Chinese government departments should formulate relevant policies to increase
the population density of central and western provinces and improve the living
standard of residents in economically backward provinces. Strengthening the rel-
evance of the network of I DHCES by reducing the inter-provincial differences
in population density and engel coefficient.

(5) On the one hand, Chinese government departments should increase energy saving
and emission reduction efforts and enhancefinancial expenditures on energy saving
and environmental protection. On the other hand, it should actively advocate green
travel and low-carbon life to achieve the purpose of raising residents’ awareness
of energy conservation.
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