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Abstract
This paper considers online scheduling on two unit flowshop machines, which there
exists unbounded parallel-batch scheduling with incompatible job families and looka-
head intervals. The unit flowshop machine means that the processing time of any job
on each machine is unit processing time. The objective is to minimize the maximum
completion time. The lookahead model means that an online algorithm can foresee the
information of all jobs arriving in time interval (t, t +β] at time t . There exist incom-
patible job families, that is, jobs belonging to different families cannot be processed
in the same batch. In this paper, we address the lower bound of the proposed problem,
and provide a best possible online algorithm of competitive ratio 1+α f for 0 ≤ β < 1,
where α f is the positive root of the equation ( f + 1)α2 + (β + 2)α + β − f = 0 and
f is the number of incompatible job families which is known in advance.

Keywords Online algorithm · Lookahead interval · Incompatible job families ·
Parallel-batch scheduling · Competitive ratio

1 Introduction

Scheduling theory is an important branch of combinatorial optimization. Under certain
conditions, it reasonably allocates limited resources to complete tasks and achieve one
ormore objectives. In online over time scheduling problems (Say to online scheduling),
the jobs information becomes known until they are arrived. In other word, the all
characteristics (such as, arrival time, processing time, due date, and so on) of each job
are unknown until its arrival time. For a minimization problem, the competitive ratio
of an online algorithm A is defined as

ρA = sup
∀I

A(I )

opt(I )
,
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where A(I ) denotes the objective value of the schedule given by online algorithm A
for job list I , and opt(I ) denotes the objective value in an optimal off-line schedule
for I . It is trivial for ρA ≥ 1, and the online algorithm is the better algorithm if the
ratio is smaller. Furthermore, we say that online algorithm A is an optimal algorithm
if ρA = 1, and A is also an off-line optimal algorithm. An online algorithm A is called
best possible if there does not exist any online algorithm which its competitive ratio
is less than that of A.

The parallel-batch scheduling problem is that at most b jobs are processed simul-
taneously as a batch with capacity b in the machine. The processing time of a batch
is defined to be the maximum processing time of jobs in the batch. Furthermore, the
jobs in a batch have a common starting time and a common completion time. There
exist two versions about parallel-batch scheduling: unbounded model with b = ∞,
and bounded model with b < ∞.

Many important results about online parallel-batch scheduling problems have been
published. Such as, Zhang et al. (2001) provided the best possible online algorithm of

competitive ratio

√
5 + 1

2
for problem 1|online, p − batch, b = ∞|Cmax. Further-

more, the unbound model provided two online algorithm with a competitive ratio at
most 2 is also studied. Liu and Lu (2021) studied online scheduling on an unbounded
drop-line parallel batch machine with delivery times and limited restarts, given the
lower bound and presented a best possible online algorithm. More recent papers could
be founded in literature (Zhang et al. 2003; Tian et al. 2009; Li et al. 2012; Arman and
Philip 2021; Chai et al. 2021; Fowler and Mönch 2022; Xia and Zhang 2022).

To be obtain a better competitive ratio, we will consider some semi-online models,
i.e., adding the more information of jobs and machines. In this paper, we consider
the semi-online models by using the function of lookahead, where lookahead means
that an online algorithm can foresee the information of some future jobs. Lookahead
problems have been comprehensively investigated in previous literature with different
definitions (Keskinocak 1999; Zheng et al. 2008;Mandelbaum and Shabtay 2011; Jiao
et al. 2019). Li et al. (2009) pointed that the lookahead model, denoted by LKβ , is
defined by the length of processing time, i.e., algorithm A can foresee the jobs arrived
in time interval (t, t + β] at time t .

Assume that there are f incompatible job families and each job belongs to a given
family. Jobs from different families cannot be processed in the same batch because
they may have different chemical properties, or they may need different operations.
Hence, we must schedule the jobs into batches where each batch consists of jobs
from the same family and the number of jobs in a batch does not exceed the capacity
of the machine. Relevant results on off-line parallel-batch scheduling problems with
incompatible job families, the readers may refer to (Fu et al. 2009; Yang and Li 2012;
Li et al. 2019).

For problem 1|online, p − batch, b = ∞, f − f amily|Cmax, when f = 1,
Zhang et al. (2001) provided a best possible online algorithm with a competitive

ratio of

√
5 + 1

2
. When f = 2, Fu et al. (2009) proposed a best possible online√

17 + 3

4
-competitive algorithm. Further, for general f , Fu et al. (2013) provided a
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best possible online algorithm with a competitive ratio of 1 + α f , where α f is the

positive root of the equation f α2 + α − f = 0, i.e., α f =
√
4 f 2 + 1 − 1

2 f
. For

the problem 1|online, p − batch, b = ∞, p j = 1, LKβ, f amilies|Cmax , Li et al.
(2014) gave that the lower bound of the problem and provided a best possible online
algorithm with a competitive ratio of 1 + α f , where α f is the positive root of the
equation f α2 + (1 + β)α + β − f = 0, 0 ≤ β < 1.

In this paper, we extends the singlemachine online scheduling problem of f incom-
patible job families with lookahead interval into flowshop environment. The rest of
the paper is organized as follows. In Section 2, we give the definition of unit flowshop
machine and present the formally problem description. In Section 3, we prove the
competitive ratio of any online algorithm for the scheduling model under study. In
Section 4, we provide a best possible online algorithm to match the lower bound. In
Section 5, the conclusion of this paper is given.

2 Problem description

In this section, we will give the definition of unit flowshop machine and present
formally the problem description.

Definition 1 Unit flow shop machine (u f ): The processing time of a job on each
machine is unit processing time.

This paper will study unbounded parallel-batch online scheduling problem with f
incompatible job families on two unit flowshop machine, in which our objective is to
minimize the makespan with lookahead of the jobs arrival. Preemption or restart is not
allowed and the value of f is known in advance. The processing time of each job on
each machine is 1 and an arrival time r j is a nonnegative real number. β denotes the
lookahead length in the online setting. Then, at time t , an online algorithm can foresee
the information of all the jobs arriving in time interval (t, t + β]. Using the standard
scheduling classification scheme of Lawler et al. (1993), the problem studied here is
written as

F2|online, p − batch, b = ∞, u f , LKβ, f − f amily|Cmax (0 ≤ β < 1).

Let jobs set J = {J1, J2, · · · , Jn}, machines set M = {M1, M2}. The proposed
scheduling problem can be normally narrated as follows:

pi, j = 1 the normal processing time of job J j at machine Mi , j = 1, 2, · · · , n,
i = 1, 2.
r j the arriving time of job J j , j = 1, 2, · · · , n.
β length of lookahead interval.
Fi the i th job family, i = 1, 2, · · · , f .
|Fi | the number of batches of the i th job family. Here, i = 1, 2, · · · , f .
Cmax(σ ) the maximum completion time of the online sequence σ given by
algorithm A for job instance L .
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Cmax(π) the maximum completion time in an optimal off-line sequence π for
job instance L .

3 The lower bound

Let f be the number of incompatible job families, which is known in advance. Suppose

that α f =
√
4 f ( f − β + 1) + β2 + 4 − (2 + β)

2( f + 1)
is the positive root of the equation

( f + 1)α2 + (β +2)α+β − f = 0 (0 ≤ β < 1). Then 0 < α f < 1 and ( f +1)α f =√
4 f ( f − β + 1) + β2 + 4 − (2 + β)

2
.

Theorem 1 For problem F2|online, p−batch, b = ∞, u f , LKβ, f − f amily|Cmax

(0 ≤ β < 1), there does not exist online algorithm with a competitive ratio of less
than 1 + α f .

Proof Let ε be a sufficiently small positive number. We will take the adversary to
generate the following job instance:

For any online algorithm A, at time 0, the adversary releases f jobs belonging to
the f distinct job families, respectively. If no job has been started before or at a time t
by A, we are informed that no jobs will arrive at the time interval (t, t +β]. In the time
interval [0, ( f + 1) · α f ), whenever a job J is started by A at a time t , the adversary
informs us at time t + ε that a new job J ′ from the same family as J will be released
at time t + β + ε. Furthermore, at time ( f + 1) · α f , the adversary informs us that no
jobs will arrive at any time t ≥ ( f + 1) · α f + β.

If no job is started before time ( f + 1) · α f in σ , then f jobs and all of them
are released at time 0. Since the f jobs belong to f distinct job families, we have
Cmax(σ ) ≥ ( f + 1) · α f + f + 1 = ( f + 1) · (α f + 1) and Cmax(π) = f + 1.
Consequently, Cmax(σ ) ≥ (1 + α f )Cmax(π).

Next, we assume that at least one job is started before time ( f + 1) · α f in σ . Let
S′ < ( f + 1) · α f be maximum so that some job is started at time S′ in σ . Then the
last job is released at time S′ +β +ε. By the construction of the job instance, there are
still f unprocessed jobs belonging to f distinct job families available at time S′ + 1.
Let S ≥ S′ + 1 be minimum so that some job is started at time S in σ . Then we have
S ≥ ( f + 1) · α f and S′ ≤ S − 1. Consequently, we have

Cmax(σ ) ≥ S + f + 1 ≥ max
{(
1 + α f

)
( f + 1), S′ + f + 2

}
. (1)

Assume that, in time interval [0, S + 1), the processed jobs in σ are from k
distinct families, say F1,F2, · · · ,Fk . The other f − k families are denoted by
Fk+1,Fk+2, · · · ,F f . Then |Fi | ≥ 2 for 1 ≤ i ≤ k, and |Fi | = 1 for k + 1 ≤ i ≤ f .
For each Fi with 1 ≤ i ≤ k, let Si be the last starting time of the jobs in Fi start-
ing before time S. Suppose further that S1 < S2 < · · · < Sk . Then Sk = S and
Si+1 − Si ≥ 1 for 1 ≤ i ≤ k − 1. Note that the last arrival time of the jobs in family
Fi with 1 ≤ i ≤ k, denoted by Ri , where Ri = Si + β + ε, and the arrival time of the
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jobs in family Fi with k + 1 ≤ i ≤ f is 0. Thus we also have

Ri+1 − Ri ≥ 1 f or 1 ≤ i ≤ k − 1 (2)

Let Ω = max {Rk, f − 1} − k + 1. Then Ω ≥ Rk − k + 1. Define S∗
i = Ω + i − 1

for 1 ≤ i ≤ k, and S∗
i = i − k − 1 for k + 1 ≤ i ≤ f . From Eq. (2) and by the fact

that Ω ≥ Rk − k + 1, we have

S∗
i ≥ Ri f or 1 ≤ i ≤ k (3)

Since Ω = max {Rk, f − 1} − k + 1 ≥ f − k, we have S∗
1 = Ω ≥ f − k. Let

π∗ be an off-line schedule of the jobs in the f job families in which each family Fi ,
1 ≤ i ≤ f , is scheduled as a single batch starting at time S∗

i . Then the sequence of the
processing batches in π∗ is given by (Fk+1, · · · ,F f ,F1, · · · ,Fk). Based on Eq. (3)
and S∗

1 ≥ f − k, it can be verified that π∗ is feasible and Cmax(π
∗) = S∗

k + 1 + 1 =
Ω + k + 1 = max{Rk, f − 1} + 2. Since Rk = S′ + β + ε, we have

Cmax(π) ≤ Cmax
(
π∗) = max

{
S′ + β + ε + 2, f + 1

}
. (4)

If f + 1 ≥ S′ + β + ε + 2, from Eq. (1) and Eq. (4), we have Cmax(σ ) ≥
( f + 1) · (1 + α f ) and Cmax(π) ≤ f + 1. Consequently, Cmax(σ ) ≥ (1 +
α f )Cmax(π).

If f + 1 < S′ + β + ε + 2, from Eq. (1) and Eq. (4), we have Cmax(σ ) ≥
S′ + f + 2 and Cmax(π) ≤ S′ + β + ε + 2. From the fact S′ < ( f + 1)α f , we
have

Cmax(σ )

Cmax(π)
≥ S′ + f + 2

S′ + β + ε + 2
→ S′ + f + 2

S′ + β + 2

= 1 + f − β

S′ + β + 2

> 1 + f − β

( f + 1) · α f + β + 2

= 1 + α f .

as ε → 0, The result follows. 
�

4 A best possible online algorithm

This section presents a best possible online algorithm A f (β), with a competitive ratio

of 1 + α f = 1 +
√
4 f ( f − β + 1) + β2 + 4 − (2 + β)

2( f + 1)
for the proposed problem.

We first give some important properties of the optimal off-line schedules by the job-
exchanging argument. Let job Ji be the last arriving job in family Fi , 1 ≤ i ≤ f . We
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index the f job families by the early release date first ERD(Li et al. 2014) rule so
that r1 ≤ r2 ≤ · · · ≤ r f .

Some notations and parameters that will be used in the algorithm are defined as
follows.

– U (t) is the set of jobs available for processing at time t .
– Ui (t) = U (t)

⋂Fi is the set of jobs from Fi available for processing at time t .
Ui (t) is called a waiting batch at time t if Ui (t) �= ∅.

– U (t, β) is the set of jobs arriving at the time interval (t, t + β].
– N (t) = {i : Ui (t) �= ∅,U (t, β) = ∅}.
– n(t) = |N (t)| denotes the number of waiting batches Ui (t).
– ri (t)(1 ≤ i ≤ n(t)) is the last arrival time of jobs in Ui (t) if Ui (t) �= ∅.
– q(t) is the number of job families in U (t)

⋃
U (t, β).

– rl the last arrival time of all jobs in the online sequence σ .

If there exists an idle time at one of machines and at least one waiting batch, then
it will be the decision point of the algorithm. The following algorithm is described:

Algorithm A f (β)

Step 0: Set t = 0.
Step 1: If U (t) = ∅, reset t to be the minimum time moment such that U (t) is not

empty.
Step 2: Determine q(t).
Step 2.1: If t < (q(t) + 1)α f , then wait for the first time moment t∗ ∈ (t, (q(t) +

1)α f ] so that either t∗ = (q(t) + 1)α f or a new job arrives at time t∗ + β. Reset
t := t∗ and return to Step 2.

Step 2.2: Else, if N (t) �= ∅, we normalize the n(t)waiting batchesUi (t), i ∈ N (t),
at time t , sayU1(t), · · · ,Un(t)(t), so that r1(t) ≤ · · · ≤ rn(t)(t). Then start processing
the waiting batch U1(t) at time t . Reset t := t + 1 and return to Step 1.

Step 2.3: Else, we wait for the first time moment t1 such that either t1 is the first
arriving time in (t, t + β] or a new job will arrive at time t1 + β. Reset t := t1 and
return to Step 2.

As it is an unbounded capacity model in this work, at each time there arrive more
than one job from the same job family is equivalent to the case with one arrival job.
Without loss of generality, we assume that at each arrival time, there is at most one
job arriving from each job family. Let the last arrival time of the jobs be rl . Based
on algorithm A f (β), there will be a batch block (which is a set of batches processed
consecutively), say B, processed after time rl in schedule σ . The block B is composed
by some batches B1, B2, · · · , Bk which belong to distinct families, 1 ≤ k ≤ f . We
use Si and Ci to denote the starting time and the completion time of each batch Bi ,
respectively. Furthermore, the k batches are indexed so that S1 < · · · < Sk , thus
S1 ≥ rl .

Apart from the k batches in B, there may be other batches generated by algorithm
A f (β). For a batch Bi generated by algorithm A f (β), if Ji is the latest arriving job
in Bi , we call Ji the critical job of Bi . Then

Cmax(σ ) = S1 + k + 1 ≥ rl + k + 1. (5)
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Fig. 1 An idle time immediately preceding time S1 in σ picture

The following three observations for schedule σ are implied in the implementation of
algorithm A f (β).

Observation 1 IfUi (t) is a batch starting at time t in A f (β), then there is no job from
Fi arriving in the interval (t, t + β].
Observation 2 If Ui (t) is a batch starting at time t in A f (β), and there are h distinct
families in U (t)

⋃
U (t, β), then t ≥ (q(t) + 1)α f . Furthermore, if there is an idle

time immediately preceding t , then t = max {ri (t), (q(t) + 1)α f }.
Observation 3 If Jx and Jy are two critical jobs of two batches from distinct families
withCx < Cy , then rx < ry , that is, the jobs are batched and processed in ERD order.

Next, we will give a useful lemma to solve the following lemmas and theorem, in
which it can be showed by the differential method.

Lemma 1 If a, b, c are positive, then f (x) = x − a

bx + c
is an increasing function.

Proof For f ′(x) = (bx + c) − b(x − a)

(bx + c)2
= c + ab

(bx + c)2
> 0, therefore, f (x) =

x − a

bx + c
is an increasing function.

Lemma 2 There exists an idle time immediately preceding time S1 in σ (see fig 1),
then we have

Cmax(σ ) ≤ (1 + α f )Cmax(π).

Proof Since there exists an idle time before time moment S1 in σ , by Observation 2,
we have S1 = max{rl , (k + 1)α f }.

If S1 = (k + 1)α f , then we have Cmax(σ ) = S1 + k + 1 = (k + 1)(1+ α f ). Since
the jobs in B1, B2, · · · , Bk belong to distinct families, we have Cmax(π) ≥ k + 1 and
Cmax(σ ) ≤ (1 + α f )Cmax(π).

If S1 = rl > (k + 1)α f , then we claim that all critical jobs in block B arrive at
time S1. Otherwise, if some critical job in B arrive before S1, then the corresponding
batch in B should be started before time S1 in σ , a contradiction. So, Cmax(σ ) =
S1 + k + 1 = Cmax(π). The result follows. 
�
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Fig. 2 there exists no idle time immediately preceding time S1 in σ picture

Lemma 3 There exists no idle time immediately preceding time S1 in σ (see fig 2),
then we have

Cmax(σ ) ≤ (1 + α f )Cmax(π).

Proof Since there exists no idle time immediately preceding time S1 in σ , S1 is the
completion time of some batch, say B ′, in σ . Then S1 = S′ +1, where S′ is the starting
time of batch B ′ in σ . It is easy to see that S1 ≥ rl > S′.

We divide block B into two batch sets, say B1 and B2, such that the critical job of
each batch in B1 arrives before or at time S′ + β and the critical job of each batch in
B2 arrives after time S′ + β. Suppose that B1 includes k1 batches and B2 includes k2
batches. Then k1 + k2 = k and

Cmax(σ ) = S′ + 1 + k + 1 = S′ + 2 + k1 + k2. (6)

From Observation 1, batch B ′ belongs to distinct family with each batch (if any) in
B1. Since B ′ and the batches (if any) in B1 are in U (S′)

⋃
U (S′, β), and there are at

most f − 1 distinct families in B1, by Observation 2, we have k1 + 1 ≤ f and

S′ ≥ α f (k1 + 2). (7)

If rl > S′ + β, then B2 �= ∅, and 1 ≤ k2 ≤ f . Note that the critical jobs of the
batches in B2 arrive after S′ +β, we have Cmax(π) ≥ S′ + β + k2 + 1. From Eq. (6),
we haveCmax(σ )−Cmax(π) ≤ (S′ + 2 + k1 + k2) − (S′ + β + k2 + 1) = k1+1−β.
It follows that

Cmax(σ ) − Cmax(π)

Cmax(π)
≤ k1 + 1 − β

S′ + β + k2 + 1

≤ k1 + 1 − β

α f · (k1 + 2) + β + 2

≤ f − β

( f + 1) · α f + β + 2

= α f .
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From Lemma 1 and k1 + 1 ≤ f . If rl ≤ S′ + β, then B2 = ∅ and k = k1. Let
Sl(π) be the starting time of Jl in the off-line optimal schedule π . We consider the
following two cases.

(1) Sl(π) > S′ + β. Then Cmax(π) ≥ Sl(π) + 1 + 1 > S′ + β + 2. From Eq. (6)
and Eq. (7), we have

Cmax(σ ) − Cmax(π)

Cmax(π)
≤ k1 + 1 − β

S′ + β + 2

≤ k1 + 1 − β

α f · (k1 + 2) + β + 2

≤ f − β

( f + 1) · α f + β + 2

= α f .

(2) Sl(π) ≤ S′ + β. Note that rl is the largest arrival time of critical jobs in B and
two batches in block B ′ ⋃B belong to two distinct families. Suppose that the
critical job in B ′ is J ′ and the arrival time of J ′ is r ′. By Observation 3, we have
r ′ ≤ r1 ≤ · · · ≤ rk , where ri is the arrival time of the critical job in Bi with
1 ≤ i ≤ k. By ERD rule, in π , the starting time of J ′ is not larger than Sl(π)− k.
So, r ′ ≤ Sl(π) − k. Since Sl(π) ≤ S′ + β, we further have

r ′ ≤ Sl(π) − k ≤ (S′ − k) + β. (8)

We establish three claims in the following.


�
Claim 1 There exists no idle time in [r ′, S′] in σ .

Since rl ≤ S′ + β, there are k + 1 distinct families in U (S′)
⋃

U (S′, β), so r ′ is
the last arriving time of the jobs from the family of batch B ′. By the implementation
of algorithm A f (β), if there exists an idle time in [r ′, S′], then the starting time of
batch B ′ should be earlier than S′, a contradiction. Claim 1 follows.

Claim 2 There exists no idle time in [S′ − k, S′] in σ .
If r ′ ≤ S′ − k, then Claim 2 follows from Claim 1. Hence, if r ′ > S′ − k,. then

we have S′ − k < r ′ ≤ (S′ − k) + β. We now only need to show that there exists
no idle time in [S′ − k, r ′]. Otherwise, there is some batch starting in (S′ − k, r ′) ⊆
[S′ −k, (S′ −k)+β], which is an interval of length at most β < 1. This results an idle
time in [r ′, S′] since the batches have the unit processing times, contradicting Claim
1. Claim 2 follows.

From Claim 2, we may suppose that the k batches consecutively scheduled in
[S′ − k, S′] in σ are B(1), · · · , B(k) in this order and the arrival times of the critical
jobs of these batches are r (1), r (2), · · · , r (k), respectively. Then the starting time of
B(1) is S(1) = S′ − k. By ERD rule, we have r (1) ≤ r (2) ≤ · · · ≤ r (k) ≤ r ′.
Furthermore, we have r ′ ≤ S(1) + β. By the implementation of the algorithm, we
have the following Claim 3.
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Claim 3 The batches B(1), · · · , B(k), B ′ belong to distinct families and S(1) ≥
α f · (k + 2).

Recall that Cmax(π) ≥ Sl(π) + 2 ≥ rl + 2. From Eq. (6), we have

Cmax(σ ) − Cmax(π) ≤ (S′ + 2 + k) − (Sl(π) + 2) = S′ + k − Sl(π) ≤ k + 1 − β,

where the last inequality follows from the assumption that Sl(π) ≤ S′ + β. By Claim
3 and the fact that k ≥ 1 > β, we have Cmax(π) ≥ rl + 2 > S′ + 2 = S(1) + k + 2 ≥
α f · (k + 2) + β + 2. Thus,

Cmax(σ ) − Cmax(π)

Cmax(π)
≤ k + 1 − β

α f · (k + 2) + β + 2
≤ f − β

( f + 1) · α f + β + 2
= α f .

This completes the proof of Lemma 3.

From Theorem 1, Lemma 2 and Lemma 3, we conclude the following final result.

Theorem 2 For the problem F2|online, p − batch, b = ∞, u f , LKβ, f − f amily
|Cmax (0 ≤ β < 1), algorithm A f (β) is a best possible online algorithm with a
competitive ratio of 1 + α f for 0 ≤ β < 1, where α f is the positive root of the
equation ( f + 1)α2 + (β + 2)α + β − f = 0 and f is the number of job families
which is known in advance.

5 Conclusion

For problem F2|online, p − batch, b = ∞, u f , LKβ, f − f amily|Cmax (0 ≤ β <

1), there exists no online algorithm with a competitive ratio of less than 1 + α f .
Meanwhile, we give a best possible online algorithm A f (β). Where α f is the positive
root of the equation ( f + 1)α2 + (β + 2)α + β − f = 0 and f is the number of job
families which is known in advance.

For future research we suggest several interesting topics as follows:

– The general version: The processing time of the job on each machine is arbitrary,
the problem is worthy of being further studied;

– Extending our model to m flowshop machines;
– Extending our model to considering other classical scheduling objectives, e.g.,∑

C j ,
∑

WjC j ;
– Extending our model to different machine environments, e.g., the open shop.
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