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Abstract
We show that the problem of deciding whether a given graph G has a well-balanced
orientation �G such that d+

�G (v) ≤ �(v) for all v ∈ V (G) for a given function
� : V (G) → Z≥0 is NP-complete. We also prove a similar result for best-balanced
orientations. This improves a result of Bernáth, Iwata, Király, Király and Szigeti and
answers a question of Frank.

Keywords Graph orientation · Well-balanced · Complexity

1 Introduction

This article contains a negative result concerning the possibility of deciding whether
a given graph has a well-balanced or best-balanced orientation with a certain extra
property. Any undefined notions can be found in Sect. 2.

During the history of graph orientations, the problem of characterizing graphs
admitting orientations with certain connectivity properties has played a decisive role.
The first important theorem due to Robbins (1939) states that a graph has a strongly
connected orientation if and only if it is 2-edge-connected. Nash-Williams (1960)
proved several theorems generalizing the result of Robbins. The first one is the fol-
lowing natural generalization of the result of Robbins to higher global arc-connectivity.

Theorem 1 Let G be a graph and k a positive integer. Then G has a k-arc-connected
orientation if and only if G is 2k-edge-connected.

While Theorem 1 resolves the problem of finding graph orientations of high
global arc-connectivity, Nash-Williams also considered orientations satisfying local
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arc-connectivity conditions. We say that an orientation �G of a graph G is well-
balanced if λ �G(u, v) ≥ �λG (u,v)

2 � for all (u, v) ∈ V (G) × V (G). If additionally

d+
�G (v) ∈ {� dG (v)

2 �, 	 dG (v)
2 
} holds for all v ∈ V (G), then �G is called best-balanced.

Nash-Williams (1960) proved the following result.

Theorem 2 Every graph has a best-balanced orientation.

Observe that Theorem 2 implies Theorem 1. In the last decades, numerous attempts
have been made to develop theory surrounding Theorems 1 and 2. These attempts
turned out to be much more successful when concerning Theorem 1 than when con-
cerning Theorem 2. For example, while a relatively simple proof of Theorem 1 relying
on a splitting off theorem of Lovász has been found by Frank (2011), no simple proof
of Theorem 2 is known. Even though since the original, very complicated proof of
Nash-Williams new proofs have been found by Mader (1978) and Frank (1993), all
of them are pretty involved.

Another branch of research in the theory surrounding Theorems 1 and 2 consists
in characterizing graphs which admit orientations satisfying some extra properties in
addition to the connectivity conditions. These problems turn out to be much more
tractable when trying to generalize Theorem 1 than when trying to generalize Theo-
rem 2.

For generalizing Theorem 1, polymatroid theory has proven to be a valuable tool.
It allowed Frank (2011) to solve the problem of deciding whether a mixed graph has
a k-arc-connected orientation for some given positive integer k and to solve the more
general problem of finding a minimum cost k-arc-connected orientation of a given
graph where a cost is given for both possible orientations of each edge.

Bernáth et al. (2008) attempted to obtain similar generalizations for Theorem 2
which yielded several negative results, see also (Bernáth 2006). For example, the
problems of finding well-balanced and best-balanced orientations minimizing a given
weight function were proven to be NP-complete in Bernáth et al. (2008). The problem
of deciding whether a mixed graph has a best-balanced orientation has also been
proven to beNP-complete inBernáth et al. (2008).A proof that the problemof deciding
whether a mixed graph has a well-balanced orientation is NP-complete has been found
by Bernáth and Joret (2008).

Another extra property which can be imposed on the orientation is degree con-
straints. Here a generalization of Theorem 1 has been obtained by Frank (1980) using
comparatively elementary methods. As its proof is constructive, he obtained the fol-
lowing result.

Theorem 3 There is a polynomial-time algorithm which, given a graph G, a positive
integer k and two functions �1, �2 : V (G) → Z≥0, decides whether there is a k-arc-
connected orientation �G of G such that �1(v) ≤ d+

�G (v) ≤ �2(v) for all v ∈ V (G).

Yet again, a similar generalization of Theorem 2 was proven to be out of reach in
Bernáth et al. (2008).

Theorem 4 The problem of deciding whether, given a graph G and two functions
�1, �2 : V (G) → Z≥0, there is a well-balanced orientation �G of G such that �1(v) ≤
d+

�G (v) ≤ �2(v) for all v ∈ V (G), is NP-complete.
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Asimilar result for best-balanced orientations is also proven inBernáth et al. (2008).
In this article, we deal with the question whether a version of the above problem

with milder restrictions on the vertex degrees is better tractable. We are interested in
the case when instead of imposing an upper and a lower bound on the out-degree of
every vertex only an upper bound is imposed.

More concretely, we consider the following two problems:
Upper-bounded well-balanced orientation (UBWBO):
Input: A graph G, a function � : V (G) → Z≥0.
Question: Is there a well-balanced orientation �G of G such that d+

�G (v) ≤ �(v) for all
v ∈ V (G)?
Upper-bounded best-balanced orientation (UBBBO):
Input: A graph G, a function � : V (G) → Z≥0.
Question: Is there a best-balanced orientation �G of G such that d+

�G (v) ≤ �(v) for all
v ∈ V (G)?

Observe that any orientation obtained from a well-balanced (best-balanced) orien-
tation by reversing the orientation of all arcs is again well-balanced (best-balanced).
Hence imposing lower bounds instead of upper bounds on the out-degrees would lead
to equivalent problems. Similarly, the bounds could be imposed on the in-degrees
instead of the out-degrees.

The question of the complexity of UBBBO can be found in various sources. It is
mentioned by Frank (2011), by Bernáth et al. (2008) and there is an online posting on
it in the open problem collection of the Egerváry Research group. The contribution of
this article is to prove that even these problems involving milder restrictions remain
hard. We prove the following two results:

Theorem 5 UBWBO is NP-complete.

Theorem 6 UBBBO is NP-complete.

Observe that Theorem 5 implies Theorem 4. Theorems 5 and 6 can be considered
yet another indication of the isolated position that Theorem 2 has in the theory of
graph orientations.

After a collection of formal definitions and preliminary results in Sect. 2, we prove
Theorems 5 and 6 in Sect. 3 using a reduction from Cubic Vertex Cover. While our
reduction is inspired by the one used in Bernáth et al. (2008) to prove Theorem 4, it
is more involved.

2 Preliminaries

This section is dedicated to providing the background for the proof of the main results
in Sect. 3.Wefirst define all important terms inSect. 2.1 and then give somepreliminary
results in Sect. 2.2.
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2.1 Definitions

We first give some basic notions of graph theory. A mixed graph F consists of a
vertex set V (F), an edge set E(F), and an arc set A(F). We also say that F contains
V (F), E(F), and A(F). An edge e = uv ∈ E(F) is a set containing the vertices u and
v. We say that e links u and v and e is incident to u and v. More generally, we say that
e links two disjoint sets X ,Y ⊆ V (F) if u ∈ X and v ∈ Y . If e links X and V (F)− X ,
we say that e enters X . An arc a = uv ∈ A(F) is an ordered tuple of the vertices
u, v ∈ V (F) where u is called the tail of a and v is called the head of a. For some
X ⊆ V (F) with u ∈ X and v ∈ V (F)− X , we say that e enters V (F)− X and leaves
X . For some e = uv ∈ E(F) ∪ A(F), we say that u and v are the endvertices of e. A
mixed subgraph F ′ of F is a mixed graph F ′ with V (F ′) ⊆ V (F), E(F ′) ⊆ E(F),
and A(F ′) ⊆ A(F). For some X ⊆ V (F), we let F[X ] denote the mixed subgraph
of F whose vertex set is X and that contains all the edges in E(F) and all the arcs in
A(F) whose both endvertices are in X .

Amixed graphG without arcs is called a graph. For a graphG and some X ⊆ V (G),
we let dG(X) denote the number of edges in E(G) that have exactly one endvertex in
X and we let iG(X) denote the number of edges in E(G) that have both endvertices in
X . For a single vertex v ∈ V (G), we abbreviate dG({v}) to dG(v) and call this number
the degree of v in G. If dG(v) = 3 for all v ∈ V (G), we say that G is cubic. For
two vertices u, v ∈ V (G), we use λG(u, v) for minu∈X⊆V (G)−v dG(X). Observe that
λG(u, v) = λG(v, u). For some positive integer k, we say that G is k-edge-connected
if λG(u, v) ≥ k for all u, v ∈ V (G). A 1-edge-connected graph which contains two
vertices u, v of degree 1 and in which all other vertices are of degree 2 is called a uv-
path. We also say that u and v are the endvertices of the path. Two graphs whose edge
sets are disjoint are called edge-disjoint. For two paths T1, T2 with V (T1)∩V (T2) = x
for a vertex x that is an endvertex of both T1 and T2, we denote by T1T2 the path with
V (T1T2) = V (T1) ∪ V (T2) and E(T1T2) = E(T1) ∪ E(T2).

A mixed graph D without edges is called a digraph. For a digraph D and some
X ⊆ V (D), we let d+

D(X) denote the number of arcs whose tail is in X andwhose head
is in V (D) − X . We use d−

D(X) for d+
D(V (D) − X). For a single vertex v ∈ V (D),

we abbreviate d+
D ({v})(d−

D({v})) to d+
D(v)(d−

D (v)) and call this number the out-degree
(in-degree) of v in D. If d+

D(v) = d−
D (v) for all v ∈ V (D), we say that D is eulerian.

Given a function � : V (D) → Z≥0, we say that D is �-bounded if d+
D (v) ≤ �(v) for all

v ∈ V (D). For twoverticesu, v ∈ V (D),weuseλD(u, v) forminv∈X⊆V (D)−u d
−
D(X).

For some positive integer k, we say that D is k-arc-connected if λD(u, v) ≥ k for all
(u, v) ∈ V (D) × V (D). We abbreviate 1-arc-connected to strongly connected. The
operation of exchanging the head and the tail of an arc is called reversing the arc. Two
digraphs whose arc sets are disjoint are called arc-disjoint.

A mixed graph F ′ is called a partial orientation of another mixed graph F if F ′
can be obtained from F by replacing some of the edges in E(F) by an arc with the
same two endvertices. This operation is called orienting the edge. If F ′ is a digraph,
then F ′ is called an orientation of F . The unique graph G such that F is an orientation
of G is called the underlying graph of F . A strongly connected orientation of a graph
all of whose vertices are of degree 2 is called a circuit. An orientation T of a uv-
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path with λT (u, v) = 1 is called a directed uv-path. For a directed uv-path T1 and a
directed vw-path T2 for some vertices u, v andw, we denote by T1T2 the uw-path with
V (T1T2) = V (T1)∪V (T2) and A(T1T2) = A(T1)∪ A(T2). We say that an orientation
�G of a graphG iswell-balanced ifλ �G(u, v) ≥ �λG (u,v)

2 � for all (u, v) ∈ V (G)×V (G).

If additionally d+
�G (v) ∈ {� dG (v)

2 �, 	 dG (v)
2 
} holds for all v ∈ V (G), then �G is called

best-balanced. We also say that a digraph is well-balanced (best-balanced) if it is a
well-balanced (best-balanced) orientation of its underlying graph.

For basic notions of complexity theory, see Garey and Johnson (1979). Given a
graph H , a vertex cover of H is a subset U of V (H) such that every e ∈ E(H) is
incident to at least one vertex in U . We consider the following algorithmic problem:
Cubic Vertex Cover (CVC):
Input: A cubic graph H , a positive integer k. Question: Is there a vertex cover of H
of size at most k?

2.2 Preliminary results

For proving the correctness of our reduction, we need a few preliminaries.
The following classic results are due to Menger (1927) and fundamental to graph

connectivity.

Theorem 7 Let G be a graph and s1, s2 ∈ V (G). Then the maximum number of
pairwise edge-disjoint s1s2-paths in G is λG(s1, s2).

The second result is the directed analogue of Theorem 7.

Theorem 8 Let D be a digraph and s1, s2 ∈ V (D). Then the maximum number of
pairwise arc-disjoint directed s1s2-paths in D is λD(s1, s2).

The next result is helpful when proving that a given orientation is well-balanced.

Proposition 1 Let G be a graph and a ∈ V (G). Let �G be an orientation of G such
that λ �G(a, s) ≥ � dG (s)

2 � and λ �G(s, a) ≥ � dG (s)
2 � hold for all s ∈ V (G) − a. Then �G

is well-balanced.

Proof Let s1, s2 ∈ V (G) and R ⊆ V (G) − s1 with s2 ∈ R. If a ∈ R, we have
d−

�G (R) ≥ λ �G(s1, a) ≥ � dG (s1)
2 � ≥ �λG (s1,s2)

2 �. If a ∈ V (G) − R, we have d−
�G (R) ≥

λ �G(a, s2) ≥ � dG (s2)
2 � ≥ �λG (s1,s2)

2 �. In either case, we obtain d−
�G (R) ≥ �λG (s1,s2)

2 �, so
λ �G(s1, s2) ≥ �λG (s1,s2)

2 �. Hence �G is well-balanced. ��
The next simple result allows to modify orientations maintaining important prop-

erties.

Proposition 2 Let G be a graph, � : V (G) → Z≥0 a function, �G0 an �-bounded,
well-balanced orientation of G, D an eulerian directed subgraph of �G0 and �G1 the
orientation of G which is obtained by reversing all the arcs of D. Then �G1 is �-bounded
and well-balanced.
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Proof Since D is eulerian, we have d+
�G1

(s) = d+
�G0

(s) for all s ∈ V (G). Hence, as �G0

is �-bounded, so is �G1. Similarly, we have d−
�G1

(s) = d−
�G0

(s) for all s ∈ V (G). We

hence have d−
�G1

(R) = ∑
s∈R d

−
�G1

(s)− iG(R) = ∑
s∈R d

−
�G0

(s)− iG(R) = d−
�G0

(R) for

all R ⊆ V . Hence λ �G1
(s1, s2) = mins2∈R⊆V−s1 d

−
�G1

(R) = mins2∈R⊆V−s1 d
−
�G0

(R) =
λ �G0

(s1, s2) for all (s1, s2) ∈ V (G)× V (G). Thus, as �G0 is well-balanced, so is �G1. ��
Finally, we need the following result to justify the usefulness of our reduction. It

can be found in Garey and Johnson (1979).

Theorem 9 Cubic Vertex Cover is NP-complete.

3 The reduction

In this section,we give the reductionwe need to proveTheorems 5 and 6.Wefirst give a
reduction for Theorem5 and then showhow to adapt it to proveTheorem6. In Sect. 3.1,
we describe the instance (G, �) of UBWBO we create from a given instance (H , k)
of CVC. In the remaining part of the paper (H , k) and (G, �) are fixed. In Sect. 3.2,
we describe a particular kind of orientations, called convenient orientations that play
a crucial role in the proof of the reduction. In Sect. 3.3, we give the first direction of
the reduction showing how to obtain an �-bounded, well-balanced orientation of G
from a vertex cover of H . The other direction is divided into two parts. First, we show
in Sect. 3.4 how an �-bounded, well-balanced orientation of G can be turned into one
that additionally has the property of being convenient. After, in Sect. 3.5, we show
how an orientation with this extra property yields a vertex cover of H . In Sect. 3.6, we
show how to adapt our construction for the proof of Theorem 6. Finally, in Sect. 3.7,
we conclude our proof.

3.1 The construction

We here show how to create an instance of UBWBO from an instance of CVC. Let
(H , k) be an instance of CVC. Since H is cubic, we have |V (H)| = 2n and |E(H)| =
3n for some integer n ≥ 2.

We first describe, for every v ∈ V (H), a vertex gadget Gv that contains 6 vertices:
pv
0 , p

v
1 , p

v
2 , q

v
0 , qv

1 , qv
2 and 5 edges: p

v
0 p

v
1 , p

v
1 p

v
2 , q

v
0q

v
1 , qv

1q
v
2 , pv

0q
v
0 .We next describe,

for every e ∈ E(H), an edge gadget Ge that contains 6 vertices xe, ye, ze1, z
e
2, z

e
3, z

e
4

and 5 edges: xe ye, xeze1, y
eze2, y

eze3, y
eze4.An illustration of these gadgets can be found

in Fig. 1.
We are now ready to describe G. For every v ∈ V (H), we let G contain a vertex

gadget Gv and for every e ∈ E(H), we let G contain an edge gadget Ge. Let P =⋃
v∈V (H) V (Gv), X = ⋃

e∈E(H){xe, ye}, and Z = ⋃
e∈E(H){ze1, ze2, ze3, ze4}. We let

V (G) contain two more vertices a and b. We now finish the description of G by
linking these components by some additional edges. For every z ∈ Z , we let E(G)

contain an edge az and an edge bz. Further, for every v ∈ V (H), let e1, e2, e3 be
an arbitrary ordering of the edges in E(H) which are incident to v in H . We add
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Fig. 1 A vertex gadget for a vertex v and an edge gadget for an edge e

Fig. 2 An example for the graph G created from a graph H where V (H) contains two vertices u and
v and E(H) contains three parallel edges e, e′, and e′′ linking u and v. All the edges belonging to a
vertex gadget are marked in red while all the edges belonging to an edge gadget are marked in blue.
The names of the vertices in Z have been omitted due to space restrictions. They are from left to right:

ze1, z
e
2, z

e
3, z

e
4, z

e′
1 , ze

′
2 , ze

′
3 , ze

′
4 , ze

′′
1 , ze

′′
2 , ze

′′
3 , ze

′′
4 . See also Fig. 1 (Color figure online)

the edges apv
0 , aq

v
0 , pv

1 y
e1 , pv

2 y
e2 , pv

2 y
e3 , qv

1 x
e1 , qv

2 x
e2 , and qv

2 x
e3 . This finishes the

construction of G.
Observe that dG(a) = 4|E(H)| + 2|V (H)| = 16n, dG(b) = 4|E(H)| =

12n, dG(s) = 3 for all s ∈ P ∪ Z , and dG(xe) = 4 and dG(ye) = 6 for all e ∈ E(H).
An illustration can be found in Fig. 2.

We now define �. We set �(a) = 8n + k and �(z) = 1 for all z ∈ Z . For all
s ∈ V (G) − (Z ∪ a), we set the trivial bound �(s) = dG(s).

We now give an important result on the connectivity properties of G.
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Proposition 3 λG(s, a) = dG(s) for all s ∈ V (G) − a.

Proof By definition, λG(s, a) ≤ dG(s) for all s ∈ V (G) − a. First observe that for
every z ∈ Z ,G contains the ba-path bza. By Theorem 7, this yields λG(b, a) ≥ |Z | =
12n = dG(b). Now consider some e = uv ∈ E(H). By construction, there are some
i, j ∈ {1, 2} such that G contains the edges qui x

e, pui y
e, qv

j x
e and pv

j y
e. Due to the

pairwise edge-disjoint xea-paths T1 = xeze1a, T2 = xe yeze2a, T3 = xequi . . . qu0 a and
T4 = xeqv

j . . . qv
0a and Theorem 7, we obtain that λG(xe, a) ≥ 4 = dG(xe). Due to

the pairwise edge-disjoint yea-paths T1 = yexeze1a, T2 = yeze2a, T3 = yeze3a, T4 =
yeze4a, T5 = ye pui . . . pu0a and T6 = ye pv

j . . . pv
0a and Theorem 7, we obtain that

λG(ye, a) ≥ 6 = dG(ye). Finally, suppose for the sake of a contradiction that for some
t ∈ P ∪ Z , λG(t, a) < dG(t) = 3. Let a ∈ R ⊆ V (G) − t with dG(R) = λG(t, a).
As λG(s, a) ≥ 3 for all s ∈ X ∪ b, we obtain X ∪ b ⊆ R. Hence, since every z ∈ Z is
adjacent to three vertices in R, we obtain Z ⊆ R, so t ∈ P. As t is adjacent to three
distinct vertices in G and every vertex in P is linked to R, we obtain dG(R) ≥ 3, a
contradiction. ��

By Propositions 1 and 3, we have the following characterization of well-balanced
orientations of G.

Corollary 1 Let �G be an orientation of G.

(a) �G is well-balanced if and only if λ �G(a, s) ≥ � dG (s)
2 � and λ �G(s, a) ≥ � dG (s)

2 � for
all s ∈ V (G) − a.

(b) If �G is well-balanced, then d+
�G (s) = d−

�G (s) = dG (s)
2 = λ �G(a, s) = λ �G(s, a) for

all s ∈ X ∪ b.

Proof (a) The sufficiency is Proposition 1. The necessity is an immediate consequence
of the definition of well-balanced orientations and Proposition 3.

(b) Suppose that �G is well-balanced and let s ∈ X ∪ b. As dG(s) is even and by (a),
we have dG(s) = 2� dG (s)

2 � ≤ λ �G(s, a) + λ �G(a, s) ≤ d+
�G (s) + d−

�G (s) = dG(s),
hence equality holds throughout.

��

3.2 Convenient orientations

In order to prove that the reduction works indeed, we wish to consider a certain
restricted class of orientations. We now define a mixed graph F which is obtained as
a partial orientation of G.

First for every e ∈ E(H) and i ∈ {1, 2}, let the edge azei be oriented from a to zei
and the edge bzei be oriented from zei to b. For every e ∈ E(H) and i ∈ {3, 4}, let the
edge azei be oriented from zei to a and the edge bzei be oriented from b to zei . Let all
the edges linking X and Z be oriented from X to Z . For every e ∈ E(H), let the edge
xe ye be oriented from xe to ye. Next, let all the edges linking P and X be oriented
from P to X . For every v ∈ V (H) and i ∈ {0, 1}, let the edge pv

i p
v
i+1 be oriented

from pv
i to pv

i+1 and let the edge qv
i q

v
i+1 be oriented from qv

i to qv
i+1. We denote the

obtained partial orientation of G by F .
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a

b

pu0 pu1

qu0 qu1

qv0 qv1

pv0 pv1

qu2

pu2

qv2

pv2

xe

ye

xe′

ye′
xe′′

ye′′

Z

X

P

Fig. 3 An example for the mixed graph F created from the same graph H as considered in Fig. 2. The edges
of F are marked in green (Color figure online)

Observe that the edge set of F consists of the 3 edges aqv
0 , apv

0 , p
v
0q

v
0 for every

v ∈ V (H). An illustration of F can be found in Fig. 3.
We now say that an orientation �G of G is convenient if �G is also an orientation

of F . The following lemma contains a characterization of convenient, well-balanced
orientations of G which is a crucial ingredient for proving the correctness of our
reduction.

Lemma 1 A convenient orientation �G of G is well-balanced if and only if for every
uv ∈ E(H),

(i) either the edges from a to {pu0 , qu0 } are oriented from a to {pu0 , qu0 } or the edges
from a to {pv

0 , q
v
0 } are oriented from a to {pv

0 , q
v
0 },

(ii) in �G[{a, pu0 , q
u
0 , pv

0 , q
v
0 }], there is a directed as-path for all s ∈ {pu0 , qu0 , pv

0 , q
v
0 }.

Proof First suppose that �G is well-balanced and let e = uv ∈ E(H). Consider the set
R = V (Gu) ∪ V (Gv) ∪ {xe, ye}. By ye ∈ R ⊆ V − a and Corollary 1(b), we have
d−

�G (R) ≥ λ �G(a, ye) = dG (ye)
2 = 3. As �G is convenient, it follows that the only arcs

entering R in �G have the tail a. Since the set of edges linking a and R consists of the
four edges apu0 , aq

u
0 , apv

0 , and aq
v
0 , we get that either the arcs ap

u
0 and aqu0 exist in �G

or the arcs apv
0 and aqv

0 exist in �G, that is, (i) holds.
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Consider a vertex s in {pu0 , qu0 , pv
0 , q

v
0 }.Since �G is well-balanced, byCorollary 1(a),

dG(s) = 3 and Theorem 8, there exists a directed as-path in �G. Since �G is convenient,
this path also exists in �G[{a, pu0 , q

u
0 , pv

0 , q
v
0 }], that is, (ii) holds.

For the other direction, we will use that �G is convenient several times without
explicit mention. By Corollary 1(a), it suffices to prove that λ �G(a, s) ≥ � dG (s)

2 � and

λ �G(s, a) ≥ � dG (s)
2 � hold for all s ∈ V (G) − a.

First we consider b. For every e ∈ E(H), i ∈ {1, 2} and j ∈ {3, 4}, azei b and bzej a

is a directed ab-path and ba-path, respectively, in �G. We obtain, by Theorem 8, that
min{λ �G(a, b), λ �G(b, a)} ≥ 2|E(H)| = � dG (b)

2 �.
We next consider the vertices in X . Let e = uv ∈ E(H). By construction, there are

indices i, j ∈ {1, 2} such that �G contains the arcs pui y
e, qui x

e, pv
j y

e, and qv
j x

e. By (ii),

there is a directed as-path Ts in �G[{a, pu0 , q
u
0 , pv

0 , q
v
0 }] for every s ∈ {pu0 , qu0 , pv

0 , q
v
0 }.

Since T1 = Tqu0 q
u
0 q

u
1 . . . qui x

e and T2 = Tqv
0
qv
0q

v
1 . . . qv

i x
e are two arc-disjoint

directed axe-paths, by Theorem 8, we obtain λ �G(a, xe) ≥ 2 = � dG (xe)
2 �. Since T1 =

xeze1bz
e
3a and T2 = xe yeze4a are two arc-disjoint directed xea-paths, by Theorem 8,

we obtain λ �G(xe, a) ≥ 2 = � dG (xe)
2 �.

Next consider T1 = yeze2bz
e′
3 a, T2 = yeze3a, and T3 = yeze4a, where e

′ ∈ E(H)−e
is chosen arbitrarily. These are three arc-disjoint directed yea-paths, so by Theorem 8,
wehaveλ �G(ye, a) ≥ 3 = � dG (ye)

2 �. For the next part, by (i) and symmetry,wemay sup-
pose that the arcs apu0 , aq

u
0 exist in �G. Since T1 = apu0 . . . pui y

e, T2 = aqu0 . . . qui y
e,

and T3 = Tpv
0
pv
0 p

v
1 . . . pv

j y
e are three arc-disjoint directed aye-paths, by Theorem 8,

we obtain λ �G(a, ye) ≥ 3 = � dG (ye)
2 �.

Let R be the vertex set of the strongly connected component of �G containing a. By
the above, we have X ∪ b ⊆ R. Next, every z ∈ Z is incident to an arc entering R − z
and an arc leaving R − z, so Z ⊆ R. Now let v ∈ V (H). For every p ∈ V (Gv), by
(i i), a directed ap-path is contained in �G[V (Gv) ∪ a]. Further, �G contains a directed
path from p to X . We hence obtain that P ⊆ R, so �G is strongly connected. This
yields λ �G(a, s) ≥ 1 = � dG (s)

2 � and λ �G(s, a) ≥ 1 = � dG (s)
2 � for all s ∈ P ∪ Z . ��

3.3 From vertex cover to orientation

In this section, we give the first direction of the reduction. More formally, we prove
the following result.

Lemma 2 If there exists a vertex cover of size at most k of H, then there exists an
�-bounded, well-balanced orientation of G.

Proof LetU be a vertex cover of size at most k of H . Let �G be the unique convenient
orientation of G in which for every v ∈ V (H), the edges apv

0 , p
v
0q

v
0 are oriented to

a directed path apv
0q

v
0 ; further the edge aqv

0 is oriented from a to qv
0 if and only if

v ∈ U . By Lemma 1 and asU is a vertex cover, we obtain that �G is well-balanced. By
construction, we have d+

�G (s) ≤ �(s) for all s ∈ V (G)−a. Finally, �G contains 2|E(H)|
arcs from a to Z , one arc from a to pv

0 for all v ∈ V (H) and one arc from a to qv
0 for
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all v ∈ U . This yields d+
�G (a) = 2|E(H)| + |V (H)| + |U | ≤ 6n + 2n + k = �(a), so

�G is �-bounded. ��

3.4 Making a well-balanced orientation convenient

In this section, we give a slightly technical lemma that shows that if an �-bounded,
well-balanced orientation of G exists, we can also find one which is additionally
convenient.

Lemma 3 If there exists a well-balanced, �-bounded orientation of G, then there also
exists a convenient, well-balanced, �-bounded orientation of G.

Proof Let �G0 be a well-balanced, �-bounded orientation of G.

Let Z+
0 be the set of all z ∈ Z such that �G0 contains the arc bz and let Z

−
0 = Z−Z+

0 .
As �G0 is well-balanced and by Corollary 1 (b), we have |Z+

0 | = |Z−
0 | = 6n. Further,

let Z∗
0 be the set of all z ∈ Z such that �G0 contains an arc from z to X . Observe that

Z∗
0 ⊆ Z+

0 because �G0 is �-bounded. ��
Claim 1 There is a set of pairwise arc-disjoint circuits {Cz : z ∈ Z∗

0} such that
V (Cz) ∩ Z = z for all z ∈ Z∗

0 .

Proof By Corollary 1(b), we have λ �G0
(b, a) = d+

�G0
(b) = dG (b)

2 = 6n. By Theorem 8,

there is a set T of 6n pairwise arc-disjoint directed ba-paths in �G0. For all z ∈ Z−
0 , as�G0 is �-bounded and contains the arc zb, we obtain that z is not contained in a directed

ba-path of T .
Clearly, every T ∈ T contains a vertex in Z+

0 . Further, as �G0 is �-bounded and the
directed ba-paths in T are pairwise arc-disjoint, no vertex in Z+

0 can be contained in
two distinct ba-paths of T . As |Z+

0 | = 6n = |T |, we obtain that every z ∈ Z+
0 is

contained in exactly one directed ba-path Tz of T and Tz satisfies V (Tz)∩ Z = z. For
every z ∈ Z∗

0 , as �G0 is �-bounded, the arc az is contained in �G0. Now letCz be obtained
from Tz by deleting the arc bz and adding the arc az. Then Cz is a circuit. Since the
directed ba-paths in T are arc-disjoint, {Cz : z ∈ Z∗

0} has the desired properties. ��
Let �G1 be obtained from �G0 by reversing all the arcs of ∪z∈Z∗

0
A(Cz). Observe that

in �G1 all the edges linking Z and X are oriented from X to Z . Further observe that
for all z ∈ Z+

0 , �G1 contains the directed ba-path bza and for all z ∈ Z−
0 , �G1 contains

the directed ab-path azb. Now let Z1,2 = ⋃
e∈E(H){ze1, ze2} and Z3,4 = Z − Z1,2. Let

D be the spanning directed subgraph of �G1 whose arc set is
⋃

z∈Z+
0 ∩Z1,2{bz, za} ∪

⋃
z∈Z−

0 ∩Z3,4{az, zb}.
Claim 2 D is eulerian.

Proof Clearly, we have d+
D(s) = d−

D (s) for all s ∈ V (G) − {a, b}. Further, we have
d+
D(b) = |Z+

0 ∩ Z1,2| = |Z1,2| − |Z−
0 ∩ Z1,2| = 6n − |Z−

0 ∩ Z1,2| = |Z−
0 | − |Z−

0 ∩
Z1,2| = |Z−

0 ∩ Z3,4| = d−
D(b) and similarly d+

D(a) = d−
D(a). ��
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Let �G2 be obtained from �G1 by reversing the orientation of every arc of D.
Observe that all the edges in G incident to a vertex of Z have the same orientation

in �G2 and F . Applying Proposition 2 twice, we obtain that �G2 is well-balanced and
�-bounded. In order to complete the proof of Lemma 3, we show in the following that
�G2 is convenient.

Claim 3 All the edges inG incident to at least one vertex in X have the sameorientation
in �G2 and F.

Proof Let e ∈ E(H). As observed above, all the edges linking {xe, ye} and Z are
oriented from {xe, ye} to Z in �G2. By Corollary 1(b), we obtain d

+
�G2

(ye) = d−
�G2

(ye) =
dG (ye)

2 = 3 and d+
�G2

(xe) = d−
�G2

(xe) = dG (xe)
2 = 2. As �G2 contains 3 arcs from ye to

Z , we obtain that the edges linking P and ye are oriented from P to ye in �G2 and that
the edge xe ye is oriented from xe to ye in �G2. As �G2 contains two arcs from xe to
Z ∪ ye, we obtain that the edges linking P and xe are oriented from P to xe in �G2. ��
Claim 4 For every v ∈ V (H), the edges in E(Gv)−{pv

0q
v
0 } have the same orientation

in �G2 and F.

Proof For every v ∈ V (H), as �G2 is well-balanced and by Corollary 1(a), we have

λ �G2
(a, pv

2) ≥ � dG (pv
2 )

2 � = 1. Hence, by construction and Claim 3, we obtain that

there is a directed pv
0 p

v
2-path in �G2, namely pv

0 p
v
1 p

v
2 . Similarly, qv

0q
v
1q

v
2 is a directed

qv
0q

v
2 -path in �G2. ��
Claims 3 and 4 finish the proof of the fact that �G2 is convenient. ��

3.5 From convenient orientation to vertex cover

We now give the last step of the other direction of our reduction. More formally, we
prove the following result.

Lemma 4 If there is a convenient, well-balanced, �-bounded orientation of G, then
there is a vertex cover of size at most k of H.

Proof Let �G be a convenient, well-balanced, �-bounded orientation of G. Let U ⊆
V (H) be the set of vertices v for which the arcs apv

0 and aq
v
0 exist in �G. By Lemma 1,

we get that U is a vertex cover of H and for every v ∈ V (H), at least one arc
exists in �G from a to V (Gv). Next note that there are exactly 2|E(H)| = 6n arcs
leaving a in F . As �G is a convenient, �-bounded orientation of G, we have |U | =
d+

�G (a) − d+
F (a) − |V (H)| ≤ �(a) − 6n − 2n = (8n + k) − 8n = k. ��

3.6 Best-balanced orientations

We now show how to extend our reduction to best-balanced orientations. We create
an instance (G ′, �′) of UBBBO by altering the instance (G, �) of UBWBO created in
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Sect. 3.1. Let G ′ be obtained from G by adding a setW of 2k new vertices and an edge
wa for all w ∈ W . Observe that dG ′(a) = dG(a) + |W | = 16n + 2k and dG ′(w) = 1
for all w ∈ W . Further, we set �′(z) = 1 for all z ∈ Z and we set the trivial bound
�′(s) = dG ′(s) for all s ∈ V (G ′) − Z .

Lemma 5 There exists an �′-bounded, best-balanced orientation of G ′ if and only if
there exists an �-bounded, well-balanced orientation of G.

Proof First suppose that there exists an �′-bounded, best-balanced orientation �G ′ of
G ′. Let �G = �G ′[V (G)]. Observe that �G is an orientation of G. Further, as �G ′ is
well-balanced, for any (s1, s2) ∈ V (G) × V (G), we have λ �G(s1, s2) = λ �G ′(s1, s2) ≥
�λG′ (s1,s2)

2 � = �λG (s1,s2)
2 �, hence �G is well-balanced. For any s ∈ V (G) − a, as �G ′ is

�′-bounded, we have d+
�G (s) = d+

�G ′(s) ≤ �′(s) = �(s). Finally, as �G ′ is best-balanced,
we have d+

�G (a) ≤ d+
�G ′(a) ≤ 	 dG′ (a)

2 
 = 8n + k = �(a). Hence �G is �-bounded.
Now suppose that there is an �-bounded, well-balanced orientation ofG. We obtain

by Lemma 3 that there is also a convenient, �-bounded, well-balanced orientation �G
of G. This yields 8n ≤ d+

�G (a) ≤ 8n + k.

We now create an orientation �G ′ by giving every edge in E(G) the orientation it
has in �G, orienting 8n + k − d+

�G (a) of the edges linking W and a from a to W and
orienting all the remaining edges linking W and a from W to a. For any (s1, s2) ∈
V (G) × V (G), we have λ �G ′(s1, s2) = λ �G(s1, s2) ≥ �λG (s1,s2)

2 � = �λG′ (s1,s2)
2 �. For

any (s1, s2) ∈ V (G ′) × V (G ′) with {s1, s2} ∩ W �= ∅, we have λ �G ′(s1, s2) ≥ 0 =
� 1
2� = �λG′ (s1,s2)

2 �. Hence, �G ′ is well-balanced. For every s ∈ V (G) − a, we have
d+

�G ′(s) = d+
�G (s) ≤ �(s) = �′(s). Further, as �G is convenient, we have d+

�G ′(s) ∈
{� dG (s)

2 �, 	 dG (s)
2 
} = {� dG′ (s)

2 �, 	 dG′ (s)
2 
}. For allw ∈ W , we have d+

�G ′(w) ≤ 1 = �(w)

and d+
�G ′(w) ∈ {0, 1} = {� dG (w)

2 �, 	 dG (w)
2 
}. Finally, we have d+

�G ′(a) = d+
�G (a)+ (8n+

k − d+
�G (a)) = 8n+ k = dG′ (a)

2 ≤ �′(a). Hence �G ′ is best-balanced and �′-bounded. ��

3.7 Conclusion

We here conclude the proof of Theorems 5 and 6. First observe that both UBWBO
and UBBBO are clearly in NP. Next observe that the size of both (G, �) and (G ′, �′) is
polynomial in the size of (H , k). By Lemmas 2 to 4, we obtain that (G, �) is a positive
instance of UBWBO if and only if (H , k) is a positive instance of CVC. By Lemmas 2
to 5, we obtain that (G ′, �′) is a positive instance of UBBBO if and only if (H , k) is
a positive instance of CVC. As CVC is NP-complete by Theorem 9, Theorems 5 and
6 follow.
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